
 2

A REVIEW OF COMPUTERISED STANDARDS
SUPPORT IN NEW ZEALAND

ABSTRACT: The contributions made to the field of computerised
standards checking by New Zealand institutions and the services offered by
commercial providers are detailed in this paper. Historically the work has
been research oriented, with collaborations between university and industry
associations concentrating on requisite frameworks to support code
compliance checkers. In more recent times commercial interest in the area
has grown, leading to fully commercial products and services being offered
to handle uniquely New Zealand standards. This is balanced with on-going
research into frameworks for the integration of multiple compliance checkers
through common models of buildings and systems.

Keywords: standard compliance, integrated environment, computerised checking.

INTRODUCTION

As part of this special issue on standards processing, we present a review of
national activities in research and practice in New Zealand. Work on
computerised support for standards and standards processing in the building and
construction industry in New Zealand has proceeded for approximately 10 years.
The major thrust of this work has been research oriented, but the advent of a new
building code together with wide-spread access to cheaper computers and
networking facilities has created opportunities for larger scale commercial
development of tools.

We commence with a discussion of the earlier research work, which has
focussed on frameworks for the development of code conformance applications.
Current work is then described. Current research has concentrated on support for
integrating multiple code conformance (and other) tools into a design support
environment, while commercial development has concentrated on cost effective
delivery. We conclude with a description of likely future activity in both research
and commercial sectors.

EARLIER RESEARCH

Previous work in computerised standards processing in New Zealand has
principally been conducted by the University of Auckland Department of
Computer Science (UACS), to which the authors belong, in collaboration with the
Building Research Association of New Zealand (BRANZ). This work has been
predominantly research oriented, focussing on the design and implementation of a
framework for developing code conformance applications (Hosking et al, 1987;
Hosking et al, 1989; Mugridge and Hosking, 1989; Hosking et al, 1990; Amor et
al, 1992). This framework has developed out of the experience in constructing a
number of such applications including:
• FireCode: a system for checking building designs for conformance with the

means of escape provisions of a draft Fire Safety Code (Hosking et al,
1987). This code of practice is quite prescriptive.

• Seismic: which assists in checking that a design meets earthquake and wind
loading requirements of a rather more performance-based code of practice

 3

than the Fire Safety Code (Hosking et al, 1989). This system incorporates
heuristic advice obtained via interviews with a domain expert.

• WallBrace: (Mugridge and Hosking, 1989) which assists in checking and
designing wall bracing to meet the requirements of a prescriptive loading
code for light timber framed buildings (SANZ, 1990). Despite the
prescriptive nature of the code, WallBrace required additional expert-
derived heuristic information to allow it to cope with designs that fall within
the scope of the code of practice, but which were not adequately covered by
its provisions. Variants for floor and roof bracing have also been developed
by BRANZ (Hosking et al, 1990).

• ThermalDesigner: (Amor et al, 1992) which assists in checking
conformance of residential dwelling designs against a Thermal Insulation
Code (SANZ, 1977). The code itself is performance based, but
ThermalDesigner encodes a previously developed paper based methodology
for checking compliance (Bassett et al, 1990).

In the following, we describe the framework and its rationale in a reasonable
amount of detail, as it is the cornerstone of current research activities.

Representational model

The development of the Standards Analysis, Synthesis, and Expression (SASE)
methodology and tool set (Fenves et al, 1987) has been influential in most
subsequent work in code of practice representation. The SASE approach
formalised the provision as the basic building block of codes of practice and code
conformance systems, and argued for a functional interpretation of provisions.
Tools provided with SASE permitted a provision to be multiply categorised and
indexed.

A diverse range of programming techniques has been used in the
implementation of provisions for conformance checking, including procedural
code (Turk, 1991), rule-based approaches (Rosenman, 1985), logic programming
(Sergot et al, 1986), decision tables (Fenves et al, 1987) and the authors' approach
of functional programming described below. An alternative to SASE's functional
interpretation of provisions is to treat them as multi-directional constraints
(Cornick et al, 1991). This latter approach may be appropriate for automated
design optimisation, but it is not necessary for conformance checking where a
design has already been provided. A general constraint satisfaction approach can
also have serious practical difficulties (Leler, 1988). For these reasons, a
functional interpretation of provisions is more common.

The seasonal heat loss of a building is the air heat loss plus the sum of the floor,
wall, window, and roof heat losses for each space in the building

The heat loss of a floor is the floor area times the annual loss factor of the floor
divided by the thermal resistance of the floor.

The thermal resistance of a suspended floor is the subfloor thermal resistance plus
the floor components thermal resistance plus the floor covering thermal resistance.

The thermal resistance of a slab floor is the ground plus slab thermal resistance plus
the floor covering thermal resistance.

Figure 1: Example thermal code provision

 4

 Building

seasonal heat loss
air heat loss

 Floor

heat loss

annual loss factor
thermal resistance
covering thermal res

 Suspended floor

subfloor thermal res
components thermal res

 Slab floor

ground+slab thermal res

 Wall

heat loss

 Window

heat loss

 Roof

heat loss

 Space

floor heat loss
wall heat loss
window heat loss
roof heat loss

floortype

heat loss

area

Figure 2: Object-oriented model from analysis of Fig. 1

In addition to provision interpretation, a representation is needed for the
building being checked for conformance. An object-oriented approach to building
representation is the de facto standard (de Waard, 1992; Turk, 1991). As an
example of how such a model can be developed, consider the provision in Fig. 1,
taken from ThermalDesigner, which specifies the seasonal heat loss of a building.
Fig. 2 shows an object-oriented model constructed from the significant
objects/classes and attributes mentioned in the provision, together with their
relationships. The representation uses standard object oriented analysis constructs,
and follows the OOA notation of Coad and Yourdon (1991).

Representing provisions within the object-oriented model

 While an object-oriented building model is becoming standard, opinions differ
on the most appropriate way of integrating provisions with a building model.
Some advocate a separate "rule-base" of provisions with free access to the entire
building model (Dym et al, 1988). We argue that provisions must be applied
within a context (eg the thermal resistance of the north facing wall of the kitchen
of my house) and thus it is better to first model the context in which provisions
are applied and then embellish the model with a suitable encoding of provisions.
Thus in our approach, provisions are represented as functions organised and

 5

distributed according to the components of the building that they affect. To
support this approach, Kea, a functional object-oriented language, has been
developed (Hosking et al, 1990, 1991). Fig. 3 shows the Kea implementation of
the provision of Fig. 1 within the object-oriented model of Fig. 2. The following
features of the implementation are of note:
• Inheritance is used to implement generalisation-specialisation links. Thus

SuspendedFloor and SlabFloor inherit from Floor.
• Lists are used to implement one-to-many whole-part relationships. Thus

Space includes list features for its floors, walls, windows and roofs.
• Attributes, corresponding to provisions and the data items they use, are

coded as functions.
• Information hiding provides control over the interaction between objects.
• Functions may be inherited or overridden. Thus SuspendedFloors and

SlabFloors both inherit Floor's function for evaluating heat_loss. While
Floors have a thermal_resistance, SuspendedFloors and SlabFloors have
their own methods for calculating it.

• Placing provisions as attributes in the object-oriented model often simplifies
them due to an assumed context (Hamer et al, 1989). For example, as the
thermal_resistance function in class SuspendedFloor can assume a
SuspendedFloor object is being checked, this need not be explicitly stated
in the function.

• Kea is strongly typed, reducing the number of possible errors in an
application and the manual effort involved in the validation of an
application.

• Classifiers are built into Kea. Class Floor has a classifier floortype which
can take a value of SuspendedFloor or SlabFloor. Classifiers have both a
static interpretation as constraints on inheritance and a dynamic
interpretation (Hamer et al, 1992). The latter allows the class membership of
an object to be elaborated at run time. Thus, an object initially created as a
Floor may be refined to be a Suspended (or Slab) Floor, as more is known
about or required of the object.

• Functions are evaluated lazily. Thus the spaces of a Building are only
constructed as needed, such as to calculate the Building's
seasonal_heat_loss. Classification is also lazy. Thus if the
thermal_resistance of a Floor is needed, the floortype classifier is first
evaluated, causing classification of the Floor to SuspendedFloor or
SlabFloor. The thermal_resistance function in the chosen subclass is then
executed. Laziness means that only parts of the model necessary for
satisfying a particular task need elaboration, reducing computational costs
and data entry requirements.

class Building
 (* parts *)
 spaces: list Space.
 (* attributes *)
 public seasonal_heat_loss: float
 := air_heat_loss + sum(collect(s in spaces, s^heat_loss)).
 air_heat_loss: float := ...
end Building.

class Space
 (* parts *)

 6

 floors: list Floor.
 walls: list Wall.
 windows: list Window.
 roofs: list Roof.
 (* attributes *)
 public heat_loss: float
 := floor_heat_loss + wall_heat_loss + window_heat_loss + roof_heat_loss.
 floor_heat_loss: float := sum(collect(f in floors, f^heat_loss)).
 wall_heat_loss: float := sum(collect(w in walls, w^heat_loss)).
 window_heat_loss: float := sum(collect(w in windows, w^heat_loss)).
 roof_heat_loss: float := sum(collect(r in roofs, r^heat_loss)).
end Space.

class Floor
 classifier
 floortype: [SuspendedFloor, SlabFloor] := ...
 public heat_loss: float := area * annual_loss_factor / thermal_resistance.
 annual_loss_factor: float := ...
 thermal_resistance: float.
 covering_thermal_res: float := ...
end Floor

class SuspendedFloor
 inherits Floor.
 thermal_resistance :=
 subfloor_thermal_res + components_thermal_res + covering_thermal_res.
 subfloor_thermal_res: float := ...
 components_thermal_res: float := ...
end SuspendedFloor.

class SlabFloor
 inherits Floor.
 thermal_resistance: float :=
 ground_plus_slab_thermal_res + covering_thermal_res.
 ground_plus_slab_thermal_res: float := ...
end Sleeping.

Figure 3: Kea implementation of the provision of Fig. 1

User interaction

Users must be able to construct and interact with instances of the building
model and be supplied with code compliance results. This requires i/o and model
navigation facilities. The Kea-based code conformance architecture includes three
components for interacting with the object-oriented building model:
• A CADrafting front end to allow users to enter plan details. This is a

generic, X-window based package for entry of simple orthogonal building
plan information, particularly the geometry of the external envelope.

• An X-window based forms interface. Forms allow users to provide
additional non-geometric information as well as to obtain information about
the model and its conformance to the code of practice. Buttons on forms
also provide a hyper-text like navigation facility permitting the user to
browse the model and treat the system more as a set of services than as a
function that calculates a single result.

• Textual output for production of summary reports.

 7

Figure 4 shows an example of the ThermalDesigner system, constructed using
the Kea architecture, in use.

Figure 4: ThermalDesigner system in operation

Consistency management

Facilities for modification of the model are also necessary to allow users to
alter building designs, experiment with design alternatives, and correct design
flaws. In the Kea framework this is handled incrementally, i.e. changes are
immediately propagated through the system and results modified appropriately.
Providing a mechanism to handle incremental modifications usually involves
explicit code in the design system to handle the changes. An important feature of
the Kea approach to modelling is that the programmer programs as if the building
is described once by the user with no subsequent modifications. Thus there is no
explicit code in a Kea application to handle modifications to the building design.
This approach simplifies the application code considerably. The user may modify
any input and Kea will automatically propagate the effects of the change. The
state following the design change is as if the application had the modified value as
its initial entry.

For example, modifying plan elements, such as resizing a space, causes Kea's
consistency manager to propagate the effects of the change to the corresponding
object attributes, ensuring displayed results are consistent with the plan
modifications. Thus a provision will be reinterpreted whenever any value it
depends on is changed, either due to a direct input change (from plan entry or a
form) or indirectly due to the reinterpretation of another provision on which it
depends. Provisions that check for conformance with the code may signal
violations through the display of additional forms (with suggested changes to
achieve conformance). The top-most form in Fig. 4 is an example. Such error
forms are subsequently eliminated if an input change causes the violated provision
to be satisfied.

 8

Experience

The results of the Kea-based project have been encouraging. However, they
have not directly led to commercial products for a number of reasons. One reason
is the small size of the market in New Zealand. Given a population of just 3.6
million, specialised tools to address codes specific to this country will have
problems generating enough income to cover their development costs, let alone
return a profit. Another reason is that the research systems, being experimental in
nature, consume fairly large amounts of computational resource, more than could
be reasonably expected in the typical building design office. A third, and more
fundamental, reason is that each of the Kea-based code conformance tools
developed to date has been designed for stand-alone usage. This means that
designers wanting to check their design for conformance against multiple
standards have a considerable overhead in entering the same or similar building
information to each such design tool, and this introduces much opportunity for
inconsistency of data.

In response to these problems, research directions in New Zealand have
concentrated on the problem of integrating multiple design tools, while
commercial and pre-commercial development has concentrated on the use of low-
cost PC-based platforms and conventional development environments for delivery
of applications.

CURRENT RESEARCH AND DEVELOPMENT ACTIVITIES

It has become clear over the last few years that the task of transferring data
between design applications working on a common design presents one of the
major bottlenecks in computerisation of the building industry. Much effort has
been concentrated on the development of standards for the representation of
building structures and components (Amor et al, 1993; Augenbroe and Laret,
1989; ATLAS, 1993; ISO/TC184, 1993). These projects have in common the
recognition that an integrated model of a building is essential to the creation of a
"collaborating" set of design tools. In New Zealand, both BRANZ and the UACS
have been working on related aspects of integrated building model construction
with the overall aim of constructing a demonstration system integrating at least
two of the Kea-based tools, ThermalDesigner and WallBrace, via a common
model of residential dwellings. The development of such a system requires a
number of tools and techniques including:
• A means of defining the various models involved: the schema of the

common building model and the schemas for each of the tools involved.
• A means of developing the common building model schema from the tool

schemas: schema integration techniques.
• A means of defining the mappings between the tool schemas and the

integrated schema
• A means of creating model instances and moving data between a common

instance and the tools using the mapping specifications
• An overall framework for managing the above

In the following we discuss the approaches taken by UACS and by BRANZ in
attempting to meet these requirements and the resulting ICAtect framework for
design tool integration. Figure 5 shows the structure of the ICAtect system,
highlighting the major components of the framework and their connections with
the code compliance checkers.

 9

Schema definition

Schema specification in ICAtect is supported by the EXPRESS Programming
Environment (EPE) (Amor et al, 1995). EPE permits multiple graphical
(EXPRESS-G) and textual (EXPRESS) views of a schema to be created and
manipulated as required for various stages of the specification process while
maintaining the consistency of the data in all the views. EPE thus permits
graphical specification of entity hierarchies in analysis views, graphical
specification of entities and attributes in design views, and textual specification of
complete entities in late design views. The system also provides navigation
methods to find views which reference particular entities and documentation
facilities to track modifications and developers' reasons for changes. Figure 6
shows EPE in use, with an EXPRESS-G graphical view and EXPRESS textual
view visible.

Common
Schema

ThermalDesigner
Schema

WallBrace
Schema

PlanEntry
Schema

ThermalDesigner WallBrace

External
Application

Schema

External Application
eg SunCode

VML
mapping

VML
mapping

VML
mapping

VML
mapping

External file or
database format

simple
mapping

simple
mapping

simple
mappingsimple

mapping
PlanEntry

Figure 5: General structure of the ICAtect system

 10

Figure 6: EPE textual and graphical views of an EXPRESS schema

Schema integration and mapping definitions

In both the UACS and BRANZ work, an incremental and evolutionary
approach to the construction of a common building model has been taken. In this
approach, the common model is extended by the connection of an additional
design tool. At Auckland, work has concentrated on schema integration
techniques appropriate for such an evolutionary approach (Mugridge and
Hosking, 1995), while at BRANZ work has concentrated on appropriate
geometric models for a residential building model (Price, 1994).

This schema integration experience, together with earlier experience at
Victoria University of Wellington (Amor et al, 1993), has led to development of a
mapping definition language VML (View Mapping Language, see Amor, 1994) to
both describe mappings between common and tool schema and to assist in
extension of the common schema to incorporate changes imposed by the
information needs of new tools.

In contrast to other mapping languages being developed, VML takes a
declarative approach to the specification of mappings. A VML mapping has three
major parts. Inter class specifications detail the entities which take part in the
described mapping. Invariant specifications describe when and if the particular
mapping can be applied to a certain set of objects. Equivalences specify the
relationships between attributes in the entities named in the mapping. The
equivalences are mostly specified as mathematical equations or functions which
can be applied in either direction (ie only one mapping specification is needed to
map data in both directions). For cases where a functional specification of an
equivalence is not possible the integrator can define a procedure to handle the
mapping.

 11

Figure 7: Specification of attribute mappings using VML graphical environment

The VML language is supported by a specification environment in a similar
fashion to EPE (see Figure 7). This environment allows the definition of
mappings between entities in two schemas in both graphical and textual notations.
The environment also supports the modification of the schemas it is mapping
between. This allows the addition of new entities, relationships and attributes to
the common schema based upon a mapping specification for new types of data in
a tool being connected to the integrated system. Integration of a new tool to the
common model thus proceeds in the following manner:
• an EXPRESS schema is constructed defining the information needs of the

new tool
• VML definitions are used to define the mappings between entities and

attributes in the new tool schema and the existing common schema, possibly
extending the common schema in the process.

Once the schemas and inter-schema mappings are defined, the final task in tool
integration is to define a simple mapping from the EXPRESS-based Tool schema
to the actual data format required by the tool. A parser and un-parser kit are used
to support specification of these mappings.

Instance construction and manipulation

ICAtect supports instance construction and manipulation via a generic,
extendible plan drawing system, PlanEntry, and an object-based model navigation
tool, Cerno. Both of these construct and manipulate models implemented in the
Snart object-oriented logic language. The EPE tool has facilities for translating
EXPRESS schema definitions into Snart implementations which can then be
instantiated. Instances of a schema can be loaded into, and saved out of, the EPE
system in the form of STEP data transfer format files. These files provide a
neutral method of exchange of instance data between the integrated system and
other, un-connected, applications.

PlanEntry is constructed using a novel object-oriented constraint based
language (Hosking et al, 1994). It allows users to construct an object-oriented
model of a building and its components via multiple, editable, 2-D views of the
building. Views and the underlying model are kept consistent with one another via
constraint propagation

Users can construct any number of building views with PlanEntry. In Fig. 8,
four such views are shown, each in its own window. Labelled view lines indicate

 12

the plane of orthogonal views and allow rapid navigation between views by
clicking on them. They also allow the offset of a view on its view axis to be
shifted by dragging the view line. Generic graphics tools are provided for view
creation and removal, selection/dragging, space, roof, window, and internal wall
creation, and the addition of user specified constraints. The tool palette and
underlying building model may be extended to permit graphical definition of
other building components.

Figure 8: PlanEntry system in use
Some objects are implicitly constrained in how they can be manipulated. For

example, ridge lines of roofs are constrained to be parallel to their original axis, so
moving one end of a roof perpendicular to that axis causes the other end to shift
correspondingly. Users may interactively specify additional constraints between
parts, such as constraining two walls to be in the same plane.

 13

Figure 9: The Cerno object browser

To manipulate the textual attributes of objects the Cerno system provides a
graphical model instance browser (Fenwick et al, 1994). Model entities, attributes,
and relationships can be visualised and manipulated simply and effectively in a
mixture of iconic and textual forms (Figure 9). The amount of information shown,
the form of display, and the level of abstraction, are all under the user's control.
Cerno updates its visualisations as applications execute, allowing both static and
dynamic visualisation of model behaviour.

Mapping between instances

VML has dynamic semantics which permits model instances of a schema to be
kept consistent with other schemas via the VML inter-schema definitions.
Mapping to and from a design tool and the common model is done in two steps
(see Figure 5). VML definitions both control the mapping between an instance of
the common building model and an instance of the tool schema (both
implemented as collections of Snart objects) and ensure both model instances are
kept consistent.

A second mapping process translates from the Snart representation of the tool's
data to and from the physical representation of the data actually used by the tool,
eg Kea objects for the code conformance tools. The VML mapping is usually a
complex one, involving significant transformation in the logical representation.
The tool-tool schema mapping is usually more straightforward.

Overall framework

This type of framework provides a very general mechanism for attaching new
conformance or simulation tools. The implementor need only specify the schema
of the tool to be attached, the mapping between the tool’s schema and the
common schema and a mapping of the tool’s data files to the tool’s schema.
Therefore, any conformance tool, simulation tool, and user interface that is
required by participants in a design project can be linked into a single framework
which will manage the consistency of the data throughout the project.

 14

It must be noted, however, that the work described here details a framework
with its emphasis on the product of the design process. There is still much work to
be performed in introducing notions of process into the framework along with
modelling of the users of the system. This is obviously an important step to take
as a collaborative design system should have built-in notions of the users of the
system, the access privileges they have, and what aspects of the design they have
the authority to change. These ideas are of concern to the authors of this paper and
are currently being investigated as part of the development of this framework.

The structure of the framework described in this paper has evolved over several
years to reach its current state. Many schemas for conformance tools and
simulation tools have been developed with parsers and unparsers to transfer data
between the tools data files. The tool schemas have been used to construct a
common schema which has been revised as new conformance tools have been
modelled in the system. With the recent addition of the VML language the
mapping between a few tool schemas and the common schema have been detailed.
In its current incarnation the ICAtect system contains all the composite parts that
have been discussed in this paper tied into a coherent working system. The
majority of the implementation entailed incorporating the operational aspects of
the VML language into the ICAtect control system, a process which is now
complete.

CURRENT COMMERCIAL PRODUCTS

Though electronic information services are currently available to the building
industry in New Zealand, there is little on offer that addresses the use of codes
and standards. One reason for this is the small size of the market, as mentioned
earlier. However, two commercial systems have recently been developed, both of
which use a spreadsheet approach to encapsulate the calculations found in a
particular standard. The standards covered in these applications are somewhat
different to other national standards as they have a very algorithmic specification
of compliance criteria, and are therefore prime candidates for computerisation.

The ALF Design Manual (Bassett et al. 1990) is a paper-based design guide
developed to assist in the process of checking that a building meets the
requirements of the New Zealand thermal insulation standard for residential
buildings (NZS 4218P, SANZ 1977). It embodies an empirical approach to the
problem that has been developed by the Building Research Association of New
Zealand (BRANZ) and is allowed as a verification method for the new
performance based New Zealand Building Code (NZBC, see SANZ, 1992). ALF
formed the basis of the Kea-based ThermalDesigner system described earlier.

Following on the experience of ThermalDesigner, a spreadsheet based version
of the design aid has been developed for BRANZ by the School of Architecture at
Victoria University and is now sold alongside the paper version (BRANZ, 1993).
This system duplicates much of the style of the original ALF worksheets, both in
terms of layout and the data which must be entered by the user. However, the
system automatically performs all the required calculations. It also has on-line
help for individual fields and when the value for a field is limited it allows
selection from a menu. The final output of the ALF system is seen in Figure 10
where the calculated Building Performance Index is displayed along with an
indication of whether the design meets the energy efficiency provision of the
code.

 15

Figure 10: ALF Results screen with code compliance verification

BraceS (SANZ, 1991) allows for the calculation of the bracing requirements
for light timber framed buildings in accordance to NZS 3604 (SANZ, 1990), the
standard addressed by the WallBrace system mentioned in the earlier research,
and is a verification method for Clause B1 of the NZBC. The paper based
standard does not have a worksheet like calculation procedure as found in the
ALF design manual, so the BraceS system has had to codify the appropriate parts
of the standard into a worksheet layout in order to calculate the bracing units
required for a building (Figure 11). Thus the user need only enter the most
fundamental data on building layout and structure and the program performs all
required calculations to determine earthquake and wind loading as well as
minimum bracing requirements.

BRANZ have also investigated the development of a code browsing system for
the NZBC, implemented as an extension to the Microsoft Windows Help facility.
The NZBC comprises 35 approved documents along with verification methods
(many of the previous standards can be used as verification methods) and
acceptable solutions. The browser allows hypertext like searching and cross-
referencing through portions of the building code. As well as browsing the text of
the code this system provides precise definitions of key words and diagrams from
the code which may be copied from the code into the user’s own documents.
BRANZ have also investigated the addition of small compliance checkers for
portions of the new code as part of their browsing system.

 16

Figure 11: BraceS Bracing Unit calculation phase

FUTURE DEVELOPMENTS

Research and Development

Research at UACS is concentrating on the integration framework for tools in
the building domain. The most immediate goal is to complete the current
incarnation of the ICAtect system to provide a working platform of integrated
conformance and simulation tools. Following on from the completion of this
platform will be research into several connected areas which will make the
systems more adaptable to individual users needs and the actual projects that they
are working on.

The development of support tools for the specification of tool schemas, their
connection with the common schema, and possible updates to existing tools is one
area of interest. Existing tools generally have poor support for multiple developers
working on the same model. Handling concurrency necessitates the addition of
versioning control and policies for handling collaboration between the various
developers.

Extending the control structures in integrated systems to handle notions of
process, and user modelling and control are planned extensions to the ICAtect
system. These additions will allow configuration of integrated systems for specific
projects, taking into account the actual people who will be involved in a project,
their responsibilities and time frames for completion.

Commercial Products

The commercial products planned for the future feature larger institutions in
the building industry than those involved in the current computerised standards
projects. These players have been working with paper based systems or
computerised database systems up till this point. Having gauged the New Zealand
market for some years, they have decided that the time is now ripe for further

 17

developments in this area. Reflecting their background in the industry, the three
commercial developments that are discussed in this section feature integration of
services as part of their overall development strategy.

The Building Industry Authority (BIA), the body responsible for the NZBC,
has recently polled the principal users of the NZBC and determined their
requirements for using the code. Based upon this survey, the BIA has decided to
make an electronic version of the code available to practitioners. To achieve this,
the BIA has put out to tender the development of either a fully on-line system, or
a mix of on-line and CD-ROM based system that must supply the full 35
approved documents comprising the code as well as verification methods and
acceptable solutions. One of the BIA's major concerns in computerising the
building code is that the electronic form is easily mixed and linked with other
existing forms of electronic data used by building practitioners. Initially the
proposed system will be a purely electronic copy of the code as it exists in paper
form, though embodied with enhanced searching capabilities. The initial system
will not include codification of verification procedures as exist currently for some
of the standards, though the BIA hopes to extend the scope of the system to this
level at a later date either through funded projects or through development by
some of New Zealand's larger institutions and societies.

SPECTEL is one of the major suppliers of electronic information for the New
Zealand building industry. Currently they supply information on products and
companies as well as information on approved products, existing standards and
news from the industry. They have expanded rapidly over the last few years and
are planning to develop a more integrated system, heading towards the ability to
supply all the building related information a user may require from a single
electronic source. To this end they are planning to offer electronic versions of all
New Zealand standards as well as the NZBC and other relevant legislation
(subject to suitable copyright arrangements). This service will allow users free
viewing of the standards, incorporating both text and graphics, but with a fee
when the user downloads a copy (comparable to a sale of the standard). Their
other major drive in providing a single source of information is the addition of
Intelligent Design Systems (IDS) to their system. These are packages, written by
suppliers listed in the SPECTEL service, to aid in the correct selection of products
for a particular design situation. At the moment, there are 20 IDS packages
available for products including fasteners, security systems, paints, gas systems,
whiteware, masonry and timber products. For some of the IDS systems it is
necessary to check a contemplated design for compliance with portions of a
building code before selecting the product to use. SPECTEL expect more IDS
systems that provide code compliance checking as part of their selection process
to be developed in the next few years.

In order to perform compliance checking from a CAD system, the group at the
School of Architecture at Victoria University who developed the computerised
version of the ALF Design Manual for BRANZ are investigating its integration
with the Archsoft architectural design package (based on AutoCAD). In a manner
similar to the Archsoft-Energy product, developed by Pacific Northwest Labs to
provide energy analysis of a design, this development will provide an
environment where a commercial CAD based design can automatically be
checked for compliance with NZS 4218P through the ALF method.

 18

DISCUSSION AND CONCLUSIONS

There has been an evolution over the last ten years of the research and
development carried out in New Zealand in the development of computerised
compliance checking systems and frameworks for their description and
integration. Commercial development of code compliance checkers has begun
with a few products suited exclusively to the New Zealand environment. The
work to date has highlighted several desirable features of environments
supporting computerised code systems, namely:
• A functional representation of code provisions
• The usefulness of object-orientation in code representation.
• The need for flexible user interface tools.
• The need for an integrated framework which manages the consistency of

data across connected tools.
• The need for integrated systems to manage more information than purely

building related data such as design processes and user models.
Following on from the formulation of the NZBC, commercial interest in

making code information available to New Zealand users has increased. However,
all developers have realised that some level of integration between applications
must be supported. This has lead to current and proposed projects where CAD and
compliance checkers are integrated, or where the electronic supply of code text is
offered in a form that can be readily integrated with other common applications.

ACKNOWLEDGMENTS

The first author acknowledges the support of the University of Auckland
Research Committee and the University of Auckland for their PhD scholarship.
The authors also acknowledge the financial support offered by BRANZ and the
New Zealand Foundation for Research Science and Technology.

REFERENCES

Amor, R., Augenbroe, G., Hosking, J., Rombouts, W., Grundy, J., 1995,
Directions in Modelling Environments, accepted for publication in Automation in
Construction..

Amor, R., 1994, A Mapping Language for Views, Department of Computer
Science University of Auckland Internal Report, Auckland.

Amor, R.A., Hosking, J.G., Mugridge, W.B., Hamer, J., Williams, M., 1992,
ThermalDesigner: an application of an object-oriented code conformance
architecture, Proc Joint CIB Workshops on Computers and Information in
Construction, International Council for Building Research Studies and
Documentation (CIB) Publication 165, Montreal, 1-11.

Amor, R., Hosking, J., Donn, M., 1993, Integrating Design Tools for Total
Building Evaluation, Building and Environment, 28(4), 475-482.

ATLAS, 1993, ATLAS: Architecture, methodology and Tools for computer
integrated LArge Scale engineering, ESPRIT 7280, Delft.

 19

Augenbroe, G., Laret, L., 1989, COMBINE pilot study report, CEC-JOULE
Report.

Bailey, I., 1994, EXPRESS-M Reference Manual, Product Data Representation
and Exchange, ISO TC184/SC4/WG5 N51.

Bassett, M.R., Bishop, R.C., van der Werff, I.S., 1990, ALF Manual, Annual Loss
Factor Design Manual, An aid to thermal design of buildings, Building Research
Association of New Zealand, Judgeford, New Zealand.

BRANZ, 1993, ALF Design Manual: aid to thermal design of buildings, Building
Research Association of New Zealand, Judgeford, New Zealand.

Clark, S.N., 1992, Transformr: A Prototype STEP Exchange File Migration Tool,
National PDES Testbed Report Series, NISTIR 4944, US Department of
Commerce, National Institute of Standards and Technology.

Coad, P., Yourdon, E., 1991, Object-Oriented Analysis. Prentice-Hall.

Cornick, S., Leishman, D., Thomas, R., 1991, Integrating building codes into
design systems, VTT Symposium 125 Computers and Building Regulations,
Technical Research Centre of Finland (VTT), Espoo, 210-236.

de Waard, M, 1992, Computer Aided Conformance Checking, Thesis Technische
Universiteit Delft, Delft.

Dym, C.L., Henchey, R.P., Delis, E.A., Gonick, S., 1988, A knowledge-based
system for automated architectural code checking, CAD, 20(3), 137-145.

Fenves, S.J., Wright, R.N., Stahl, F.I., Reed, K.A., 1987, Introduction to
SASE:Standards Analysis, Synthesis, and Expression, NBSIR 87-3513, U.S.
Department of Commerce, National Bureau of Standards.

Fenwick, S., Hosking, J.G., Mugridge, W.B., 1994, Cerno-II: A program
visualisation system, University of Auckland, Department of Computer Science
Report No 87, Auckland.

Hamer, J., Hosking, J.G., Mugridge, W.B., 1992, Static subclass constraints and
dynamic class membership using classifiers, Auckland Computer Science Report
No 62, Department of Computer Science, University of Auckland, Auckland.

Hamer, J., Mugridge, W.B., Hosking, J.G., 1989, Object-oriented representation
of codes of practice, Proc of the Australasian Conf. on Expert Systems in Eng.
Arch. and Construction, Sydney, 209-222.

Hardwick, M., 1994, Towards Integrated Product Databases Using Views,
Technical Report 94003, Rensselaer Polytechnic Institute, Troy, New York.

Hosking, J.G, Hamer, J., Mugridge, W.B., 1990, Integrating functional and
object-oriented programming, Proc TOOLS Pacific '90, Sydney, 345-355.

 20

Hosking, J.G., Hamer, J., Mugridge, W.B., 1991, Kea 1.0 Tutorial Manual,
BRANZ Contract 85-024, Technical Report No18, Department of Computer
Science, University of Auckland, Auckland.

Hosking, J.G., Lomas, S., Mugridge, W.B., Cranston, A.J., 1989, The
development of an expert system for seismic loading, Civil Engineering Systems,
6(1-2), 27-35.

Hosking, J.G., Mugridge, W.B., Buis, M., 1987, FireCode: a case study in the
application of expert system techniques to a design code, Environment Planning
and Design B, 14, 267-280.

Hosking, J.G., Mugridge, W.B., Blackmore, S., 1994, Objects and constraints: a
constraint based approach to plan drawing, Technology of object-oriented
languages and systems TOOLS 15, Prentice Hall, Sydney.

Hosking, J.G., Hamer, J., Mugridge, W.B., Dechapunya, A.H., 1990, From
FireCode to ThermalDesign: KBS for the building industry, New Zealand J
Computing, 2(1), 23-32.

ISO/TC184, 1993, Part 1: Overview and fundamental principles in Industrial
automation systems and integration - Product data representation and exchange,
Draft International Standard, ISO DIS 10303-1, ISO-IEC, Geneva.

Leler, W., 1988, Constraint Programming Languages Their Specification and
Generation, Addison-Wesley.

Mugridge, W.B., Hosking, J.G., 1988, The development of an expert system for
wall bracing, Proc 3rd New Zealand Expert System Conference, Wellington, 10-
27.

Mugridge, W.B., Hosking, J.G., 1995, Towards a lazy, evolutionary common
building model, Building and Environment , 30(1), 99-114.

Price, C.G., 1994, The development of class libraries for building product model
development, Technical Computing, The ACADS Journal, 80, 13-15.

Rosenman, M.A., Gero, J.S., 1985, Design codes as expert systems, CAD, 17(9),
399-409.

SANZ, 1977, NZS 4218P 1977: Minimum thermal insulation requirements for
residential buildings, Standards Association of New Zealand, Wellington.

SANZ, 1990, NZS 3604 1990: Code of practice for light timber frame buildings
not requiring specific design, Standards Association of New Zealand, Wellington.

SANZ, 1991, BraceS the computer program to use with NZS 3604-1990,
Standards Association of New Zealand, Wellington.

SANZ, 1992, The New Zealand Building Code, Standards Association of New
Zealand, Wellington.

 21

Sergot, M.J., Sadri, F., Kowalski, R.A., Kriwaczek, F., Hammond, P., Cory, H.T.,
1986, The British Nationality Act as a logic program, Comm. ACM, 29, 370-386.

Turk, Z., 1991, Building model standard as a basis for computer integrated design,
VTT Symposium 125 Computers and Building Regulations, Technical Research
Centre of Finland (VTT), Espoo, 181-194.

