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A REVIEW OF COMPUTERISED STANDARDS 
SUPPORT IN NEW ZEALAND 

ABSTRACT:   The contributions made to the field of computerised 
standards checking by New Zealand institutions and the services offered by 
commercial providers are detailed in this paper. Historically the work has 
been research oriented, with collaborations between university and industry 
associations concentrating on requisite frameworks to support code 
compliance checkers. In more recent times commercial interest in the area 
has grown, leading to fully commercial products and services being offered 
to handle uniquely New Zealand standards. This is balanced with on-going 
research into frameworks for the integration of multiple compliance checkers 
through common models of buildings and systems. 
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INTRODUCTION 

As part of this special issue on standards processing, we present a review of 
national activities in research and practice in New Zealand. Work on 
computerised support for standards and standards processing in the building and 
construction industry in New Zealand has proceeded for approximately 10 years. 
The major thrust of this work has been research oriented, but the advent of a new 
building code together with wide-spread access to cheaper computers and 
networking facilities has created opportunities for larger scale commercial 
development of tools.  

We commence with a discussion of the earlier research work, which has 
focussed on frameworks for the development of code conformance applications. 
Current work is then described. Current research has concentrated on support for 
integrating multiple code conformance (and other) tools into a design support 
environment, while commercial development has concentrated on cost effective 
delivery. We conclude with a description of likely future activity in both research 
and commercial sectors. 

EARLIER RESEARCH 

Previous work in computerised standards processing in New Zealand has 
principally been conducted by the University of Auckland Department of 
Computer Science (UACS), to which the authors belong, in collaboration with the 
Building Research Association of New Zealand (BRANZ). This work has been 
predominantly research oriented, focussing on the design and implementation of a 
framework for developing code conformance applications (Hosking et al, 1987; 
Hosking et al, 1989; Mugridge and Hosking, 1989; Hosking et al, 1990; Amor et 
al, 1992). This framework has developed out of the experience in constructing a 
number of such applications including: 
• FireCode: a system for checking building designs for conformance with the 

means of escape provisions of a draft Fire Safety Code (Hosking et al, 
1987). This code of practice is quite prescriptive. 

• Seismic: which assists in checking that a design meets earthquake and wind 
loading requirements of a rather more performance-based code of practice 
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than the Fire Safety Code (Hosking et al, 1989). This system incorporates 
heuristic advice obtained via interviews with a domain expert. 

• WallBrace: (Mugridge and Hosking, 1989) which assists in checking and 
designing wall bracing to meet the requirements of a prescriptive loading 
code for light timber framed buildings (SANZ, 1990). Despite the 
prescriptive nature of the code, WallBrace required additional expert-
derived heuristic information to allow it to cope with designs that fall within 
the scope of the code of practice, but which were not adequately covered by 
its provisions. Variants for floor and roof bracing have also been developed 
by BRANZ (Hosking et al, 1990). 

• ThermalDesigner: (Amor et al, 1992) which assists in checking 
conformance of residential dwelling designs against a Thermal Insulation 
Code (SANZ, 1977). The code itself is performance based, but 
ThermalDesigner encodes a previously developed paper based methodology 
for checking compliance (Bassett et al, 1990). 

In the following, we describe the framework and its rationale in a reasonable 
amount of detail, as it is the cornerstone of current research activities. 

Representational model 

The development of the Standards Analysis, Synthesis, and Expression (SASE) 
methodology and tool set (Fenves et al, 1987) has been influential in most 
subsequent work in code of practice representation. The SASE approach 
formalised the provision as the basic building block of codes of practice and code 
conformance systems, and argued for a functional interpretation of provisions. 
Tools provided with SASE permitted a provision to be multiply categorised and 
indexed. 

A diverse range of programming techniques has been used in the 
implementation of provisions for conformance checking, including procedural 
code (Turk, 1991), rule-based approaches (Rosenman, 1985), logic programming 
(Sergot et al, 1986), decision tables (Fenves et al, 1987) and the authors' approach 
of functional programming described below. An alternative to SASE's functional 
interpretation of provisions is to treat them as multi-directional constraints 
(Cornick et al, 1991). This latter approach may be appropriate for automated 
design optimisation, but it is not necessary for conformance checking where a 
design has already been provided. A general constraint satisfaction approach can 
also have serious practical difficulties (Leler, 1988). For these reasons, a 
functional interpretation of provisions is more common.  

The seasonal heat loss of a building is the air heat loss plus the sum of the floor, 
wall, window, and roof heat losses for each space in the building 

The heat loss of a floor is the floor area times the annual loss factor of the floor 
divided by the thermal resistance of the floor. 

The thermal resistance of a suspended floor is the subfloor thermal resistance plus 
the floor components thermal resistance plus the floor covering thermal resistance. 

The thermal resistance of a slab floor is the ground plus slab thermal resistance plus 
the floor covering thermal resistance. 

Figure 1: Example thermal code provision 
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Figure 2: Object-oriented model from analysis of Fig. 1 

In addition to provision interpretation, a representation is needed for the 
building being checked for conformance. An object-oriented approach to building 
representation is the de facto standard (de Waard, 1992; Turk, 1991). As an 
example of how such a model can be developed, consider the provision in Fig. 1, 
taken from ThermalDesigner, which specifies the seasonal heat loss of a building. 
Fig. 2 shows an object-oriented model constructed from the significant 
objects/classes and attributes mentioned in the provision, together with their 
relationships. The representation uses standard object oriented analysis constructs, 
and follows the OOA notation of Coad and Yourdon (1991). 

Representing provisions within the object-oriented model 

 While an object-oriented building model is becoming standard, opinions differ 
on the most appropriate way of integrating provisions with a building model. 
Some advocate a separate "rule-base" of provisions with free access to the entire 
building model (Dym et al, 1988). We argue that provisions must be applied 
within a context (eg the thermal resistance of the north facing wall of the kitchen 
of my house) and thus it is better to first model the context in which provisions 
are applied and then embellish the model with a suitable encoding of provisions. 
Thus in our approach, provisions are represented as functions organised and 
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distributed according to the components of the building that they affect. To 
support this approach, Kea, a functional object-oriented language, has been 
developed (Hosking et al, 1990, 1991). Fig. 3 shows the Kea implementation of 
the provision of Fig. 1 within the object-oriented model of Fig. 2. The following 
features of the implementation are of note: 
• Inheritance is used to implement generalisation-specialisation links. Thus 

SuspendedFloor and SlabFloor inherit from Floor. 
• Lists are used to implement one-to-many whole-part relationships. Thus 

Space includes list features for its floors, walls, windows and roofs. 
• Attributes, corresponding to provisions and the data items they use, are 

coded as functions.  
• Information hiding provides control over the interaction between objects.  
• Functions may be inherited or overridden. Thus SuspendedFloors and 

SlabFloors both inherit Floor's function for evaluating heat_loss. While 
Floors have a thermal_resistance, SuspendedFloors and SlabFloors have 
their own methods for calculating it.  

• Placing provisions as attributes in the object-oriented model often simplifies 
them due to an assumed context (Hamer et al, 1989). For example, as the 
thermal_resistance function in class SuspendedFloor can assume a 
SuspendedFloor  object is being checked, this need not be explicitly stated 
in the function. 

• Kea is strongly typed, reducing the number of possible errors in an 
application and the manual effort involved in the validation of an 
application. 

• Classifiers are built into Kea. Class Floor has a classifier floortype which 
can take a value of SuspendedFloor or SlabFloor. Classifiers have both a 
static interpretation as constraints on inheritance and a dynamic 
interpretation (Hamer et al, 1992). The latter allows the class membership of 
an object to be elaborated at run time. Thus, an object initially created as a 
Floor may be refined to be a Suspended (or Slab) Floor, as more is known 
about or required of the object.  

• Functions are evaluated lazily. Thus the spaces of a Building are only 
constructed as needed, such as to calculate the Building's 
seasonal_heat_loss. Classification is also lazy. Thus if the 
thermal_resistance of a Floor is needed, the floortype classifier is first 
evaluated, causing classification of the Floor to SuspendedFloor or 
SlabFloor. The thermal_resistance function in the chosen subclass is then 
executed. Laziness means that only parts of the model necessary for 
satisfying a particular task need elaboration, reducing computational costs 
and data entry requirements. 

class Building 
  (* parts *) 
 spaces: list Space. 
  (* attributes *) 
 public seasonal_heat_loss: float 
  := air_heat_loss + sum(collect(s in spaces, s^heat_loss)). 
  air_heat_loss: float := ... 
end Building. 
 
class Space 
  (* parts *) 
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  floors: list Floor. 
  walls: list Wall. 
  windows: list Window. 
  roofs: list Roof. 
  (* attributes *) 
 public heat_loss: float  
       := floor_heat_loss + wall_heat_loss + window_heat_loss + roof_heat_loss. 
 floor_heat_loss: float  := sum(collect(f in floors, f^heat_loss)). 
 wall_heat_loss: float  := sum(collect(w in walls, w^heat_loss)). 
 window_heat_loss: float  := sum(collect(w in windows, w^heat_loss)). 
 roof_heat_loss: float  := sum(collect(r in roofs, r^heat_loss)). 
end Space. 
 
class Floor 
 classifier 
     floortype: [SuspendedFloor, SlabFloor] := ...  
  public heat_loss: float := area * annual_loss_factor / thermal_resistance. 
  annual_loss_factor: float := ... 
  thermal_resistance: float. 
  covering_thermal_res: float := ... 
end Floor 
 
class SuspendedFloor 
 inherits Floor. 
 thermal_resistance := 
      subfloor_thermal_res + components_thermal_res + covering_thermal_res. 
 subfloor_thermal_res: float := ... 
  components_thermal_res: float := ... 
end SuspendedFloor. 
 
class SlabFloor 
 inherits Floor. 
 thermal_resistance: float := 
      ground_plus_slab_thermal_res + covering_thermal_res. 
  ground_plus_slab_thermal_res: float := ... 
end Sleeping. 

Figure 3: Kea implementation of the provision of Fig. 1 

User interaction 

Users must be able to construct and interact with instances of the building 
model and be supplied with code compliance results. This requires i/o and model 
navigation facilities. The Kea-based code conformance architecture includes three 
components for interacting with the object-oriented building model: 
• A CADrafting front end to allow users to enter plan details. This is a 

generic, X-window based package for entry of simple orthogonal building 
plan information, particularly the geometry of the external envelope. 

• An X-window based forms interface. Forms allow users to provide 
additional non-geometric information as well as to obtain information about 
the model and its conformance to the code of practice. Buttons on forms 
also provide a hyper-text like navigation facility permitting the user to 
browse the model and treat the system more as a set of services than as a 
function that calculates a single result. 

• Textual output for production of summary reports. 
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Figure 4 shows an example of the ThermalDesigner system, constructed using 
the Kea architecture, in use. 

 

Figure 4: ThermalDesigner system in operation 

Consistency management 

Facilities for modification of the model are also necessary to allow users to 
alter building designs, experiment with design alternatives, and correct design 
flaws. In the Kea framework this is handled incrementally, i.e. changes are 
immediately propagated through the system and results modified appropriately. 
Providing a mechanism to handle incremental modifications usually involves 
explicit code in the design system to handle the changes. An important feature of 
the Kea approach to modelling is that the programmer programs as if the building 
is described once by the user with no subsequent modifications. Thus there is no 
explicit code in a Kea application to handle modifications to the building design. 
This approach simplifies the application code considerably. The user may modify 
any input and Kea will automatically propagate the effects of the change. The 
state following the design change is as if the application had the modified value as 
its initial entry. 

For example, modifying plan elements, such as resizing a space, causes Kea's 
consistency manager to propagate the effects of the change to the corresponding 
object attributes, ensuring displayed results are consistent with the plan 
modifications. Thus a provision will be reinterpreted whenever any value it 
depends on is changed, either due to a direct input change (from plan entry or a 
form) or indirectly due to the reinterpretation of another provision on which it 
depends. Provisions that check for conformance with the code may signal 
violations through the display of additional forms (with suggested changes to 
achieve conformance). The top-most form in Fig. 4 is an example. Such error 
forms are subsequently eliminated if an input change causes the violated provision 
to be satisfied.  



 8 

Experience 

The results of the Kea-based project have been encouraging. However, they 
have not directly led to commercial products for a number of reasons. One reason 
is the small size of the market in New Zealand. Given a population of just 3.6 
million, specialised tools to address codes specific to this country will have 
problems generating enough income to cover their development costs, let alone 
return a profit. Another reason is that the research systems, being experimental in 
nature, consume fairly large amounts of computational resource, more than could 
be reasonably expected in the typical building design office. A third, and more 
fundamental, reason is that each of the Kea-based code conformance tools 
developed to date has been designed for stand-alone usage. This means that 
designers wanting to check their design for conformance against multiple 
standards have a considerable overhead in entering the same or similar building 
information to each such design tool, and this introduces much opportunity for 
inconsistency of data.  

In response to these problems, research directions in New Zealand have 
concentrated on the problem of integrating multiple design tools, while 
commercial and pre-commercial development has concentrated on the use of low-
cost PC-based platforms and conventional development environments for delivery 
of applications.  

CURRENT RESEARCH AND DEVELOPMENT ACTIVITIES 

It has become clear over the last few years that the task of transferring data 
between design applications working on a common design presents one of the 
major bottlenecks in computerisation of the building industry. Much effort has 
been concentrated on the development of standards for the representation of 
building structures and components (Amor et al, 1993; Augenbroe and Laret, 
1989; ATLAS, 1993; ISO/TC184, 1993). These projects have in common the 
recognition that an integrated model of a building is essential to the creation of a 
"collaborating" set of design tools. In New Zealand, both BRANZ and the UACS 
have been working on related aspects of integrated building model construction 
with the overall aim of constructing a demonstration system integrating at least 
two of the Kea-based tools, ThermalDesigner and WallBrace, via a common 
model of residential dwellings.  The development of such a system requires a 
number of tools and techniques including: 
• A means of defining the various models involved: the schema of the 

common building model and the schemas for each of the tools involved.  
• A means of developing the common building model schema from the tool 

schemas: schema integration techniques. 
• A means of defining the mappings between the tool schemas and the 

integrated schema 
• A means of creating model instances and moving data between a common 

instance and the tools using the mapping specifications 
• An overall framework for managing the above  

In the following we discuss the approaches taken by UACS and by BRANZ in 
attempting to meet these requirements and the resulting ICAtect framework for 
design tool integration. Figure 5 shows the structure of the ICAtect system, 
highlighting the major components of the framework and their connections with 
the code compliance checkers. 
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Schema definition 

Schema specification in ICAtect is supported by the EXPRESS Programming 
Environment (EPE) (Amor et al, 1995). EPE permits multiple graphical 
(EXPRESS-G) and textual (EXPRESS) views of a schema to be created and 
manipulated as required for various stages of the specification process while 
maintaining the consistency of the data in all the views. EPE thus permits 
graphical specification of entity hierarchies in analysis views, graphical 
specification of entities and attributes in design views, and textual specification of 
complete entities in late design views. The system also provides navigation 
methods to find views which reference particular entities and documentation 
facilities to track modifications and developers' reasons for changes. Figure 6 
shows EPE in use, with an EXPRESS-G graphical view and EXPRESS textual 
view visible.  

Common 
Schema

ThermalDesigner 
Schema

WallBrace 
Schema

PlanEntry 
Schema

ThermalDesigner WallBrace

External 
Application 

Schema

External Application 
eg SunCode

VML 
mapping

VML 
mapping

VML 
mapping

VML 
mapping

External file or 
database format

simple 
mapping

simple 
mapping

simple 
mappingsimple 

mapping
PlanEntry

 

Figure 5: General structure of the ICAtect system 



 10 

 

Figure 6: EPE textual and graphical views of an EXPRESS schema 

Schema integration and mapping definitions 

In both the UACS and BRANZ work, an incremental and evolutionary 
approach to the construction of a common building model has been taken. In this 
approach, the common model is extended by the connection of an additional 
design tool. At Auckland, work has concentrated on schema integration 
techniques appropriate for such an evolutionary approach (Mugridge and 
Hosking, 1995), while at BRANZ work has concentrated on appropriate 
geometric models for a residential building model (Price, 1994).  

This schema integration experience, together with earlier experience at 
Victoria University of Wellington (Amor et al, 1993), has led to development of a 
mapping definition language VML (View Mapping Language, see Amor, 1994) to 
both describe mappings between common and tool schema and to assist in 
extension of the common schema to incorporate changes imposed by the 
information needs of new tools. 

In contrast to other mapping languages being developed, VML takes a 
declarative approach to the specification of mappings. A VML mapping has three 
major parts. Inter class specifications detail the entities which take part in the 
described mapping. Invariant specifications describe when and if the particular 
mapping can be applied to a certain set of objects. Equivalences specify the 
relationships between attributes in the entities named in the mapping. The 
equivalences are mostly specified as mathematical equations or functions which 
can be applied in either direction (ie only one mapping specification is needed to 
map data in both directions). For cases where a functional specification of an 
equivalence is not possible the integrator can define a procedure to handle the 
mapping. 
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Figure 7: Specification of attribute mappings using VML graphical environment 

The VML language is supported by a specification environment in a similar 
fashion to EPE (see Figure 7). This environment allows the definition of 
mappings between entities in two schemas in both graphical and textual notations. 
The environment also supports the modification of the schemas it is mapping 
between. This allows the addition of new entities, relationships and attributes to 
the common schema based upon a mapping specification for new types of data in 
a tool being connected to the integrated system. Integration of a new tool to the 
common model thus proceeds in the following manner: 
• an EXPRESS schema is constructed defining the information needs of the 

new tool 
• VML definitions are used to define the mappings between entities and 

attributes in the new tool schema and the existing common schema, possibly 
extending the common schema in the process. 

Once the schemas and inter-schema mappings are defined, the final task in tool 
integration is to define a simple mapping from the EXPRESS-based Tool schema 
to the actual data format required by the tool. A parser and un-parser kit are used 
to support specification of these mappings. 

Instance construction and manipulation 

ICAtect supports instance construction and manipulation via a generic, 
extendible plan drawing system, PlanEntry, and an object-based model navigation 
tool, Cerno. Both of these construct and manipulate models implemented in the 
Snart object-oriented logic language. The EPE tool has facilities for translating 
EXPRESS schema definitions into Snart implementations which can then be 
instantiated. Instances of a schema can be loaded into, and saved out of, the EPE 
system in the form of STEP data transfer format files. These files provide a 
neutral method of exchange of instance data between the integrated system and 
other, un-connected, applications.  

PlanEntry is constructed using a novel object-oriented constraint based 
language (Hosking et al, 1994). It allows users to construct an object-oriented 
model of a building and its components via multiple, editable, 2-D views of the 
building. Views and the underlying model are kept consistent with one another via 
constraint propagation 

Users can construct any number of building views with PlanEntry. In Fig. 8, 
four such views are shown, each in its own window. Labelled view lines indicate 
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the plane of orthogonal views and allow rapid navigation between views by 
clicking on them. They also allow the offset of a view on its view axis to be 
shifted by dragging the view line. Generic graphics tools are provided for view 
creation and removal, selection/dragging, space, roof, window, and internal wall 
creation, and the addition of user specified constraints. The tool palette and 
underlying building model may be extended to permit graphical definition of 
other building components. 

 

Figure 8: PlanEntry system in use 
Some objects are implicitly constrained in how they can be manipulated. For 

example, ridge lines of roofs are constrained to be parallel to their original axis, so 
moving one end of a roof perpendicular to that axis causes the other end to shift 
correspondingly. Users may interactively specify additional constraints between 
parts, such as constraining two walls to be in the same plane. 
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Figure 9: The Cerno object browser 

To manipulate the textual attributes of objects the Cerno system provides a 
graphical model instance browser (Fenwick et al, 1994). Model entities, attributes, 
and relationships can be visualised and manipulated simply and effectively in a 
mixture of iconic and textual forms (Figure 9). The amount of information shown, 
the form of display, and the level of abstraction, are all under the user's control. 
Cerno updates its visualisations as applications execute, allowing both static and 
dynamic visualisation of model behaviour. 

Mapping between instances 

VML has dynamic semantics which permits model instances of a schema to be 
kept consistent with other schemas via the VML inter-schema definitions.  
Mapping to and from a design tool and the common model is done in two steps 
(see Figure 5). VML definitions both control the mapping between an instance of 
the common building model and an instance of the tool schema (both 
implemented as collections of Snart objects) and ensure both model instances are 
kept consistent.  

A second mapping process translates from the Snart representation of the tool's 
data to and from the physical representation of the data actually used by the tool, 
eg Kea objects for the code conformance tools. The VML mapping is usually a 
complex one, involving significant transformation in the logical representation. 
The tool-tool schema mapping is usually more straightforward. 

Overall framework 

This type of framework provides a very general mechanism for attaching new 
conformance or simulation tools. The implementor need only specify the schema 
of the tool to be attached, the mapping between the tool’s schema and the 
common schema and a mapping of the tool’s data files to the tool’s schema. 
Therefore, any conformance tool, simulation tool, and user interface that is 
required by participants in a design project can be linked into a single framework 
which will manage the consistency of the data throughout the project. 
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It must be noted, however, that the work described here details a framework 
with its emphasis on the product of the design process. There is still much work to 
be performed in introducing notions of process into the framework along with 
modelling of the users of the system. This is obviously an important step to take 
as a collaborative design system should have built-in notions of the users of the 
system, the access privileges they have, and what aspects of the design they have 
the authority to change. These ideas are of concern to the authors of this paper and 
are currently being investigated as part of the development of this framework. 

The structure of the framework described in this paper has evolved over several 
years to reach its current state. Many schemas for conformance tools and 
simulation tools have been developed with parsers and unparsers to transfer data 
between the tools data files. The tool schemas have been used to construct a 
common schema which has been revised as new conformance tools have been 
modelled in the system. With the recent addition of the VML language the 
mapping between a few tool schemas and the common schema have been detailed. 
In its current incarnation the ICAtect system contains all the composite parts that 
have been discussed in this paper tied into a coherent working system. The 
majority of the implementation entailed incorporating the operational aspects of 
the VML language into the ICAtect control system, a process which is now 
complete. 

CURRENT COMMERCIAL PRODUCTS 

Though electronic information services are currently available to the building 
industry in New Zealand, there is little on offer that addresses the use of codes 
and standards. One reason for this is the small size of the market, as mentioned 
earlier. However, two commercial systems have recently been developed, both of 
which use a spreadsheet approach to encapsulate the calculations found in a 
particular standard. The standards covered in these applications are somewhat 
different to other national standards as they have a very algorithmic specification 
of compliance criteria, and are therefore prime candidates for computerisation. 

The ALF Design Manual (Bassett et al. 1990) is a paper-based design guide 
developed to assist in the process of checking that a building meets the 
requirements of the New Zealand thermal insulation standard for residential 
buildings (NZS 4218P, SANZ 1977). It embodies an empirical approach to the 
problem that has been developed by the Building Research Association of New 
Zealand (BRANZ) and is allowed as a verification method for the new 
performance based New Zealand Building Code (NZBC, see SANZ, 1992). ALF 
formed the basis of the Kea-based ThermalDesigner system described earlier.  

Following on the experience of ThermalDesigner, a spreadsheet based version 
of the design aid has been developed for BRANZ by the School of Architecture at 
Victoria University and is now sold alongside the paper version (BRANZ, 1993). 
This system  duplicates much of the style of the original ALF worksheets, both in 
terms of layout and the data which must be entered by the user. However, the 
system automatically performs all the required calculations. It also has on-line 
help for individual fields and when the value for a field is limited it allows 
selection from a menu. The final output of the ALF system is seen in Figure 10 
where the calculated Building Performance Index is displayed along with an 
indication of whether the design meets the energy efficiency provision of the 
code. 
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Figure 10: ALF Results screen with code compliance verification 

BraceS (SANZ, 1991) allows for the calculation of the bracing requirements 
for light timber framed buildings in accordance to NZS 3604 (SANZ, 1990), the 
standard addressed by the WallBrace system mentioned in the earlier research, 
and is a verification method for Clause B1 of the NZBC. The paper based 
standard does not have a worksheet like calculation procedure as found in the 
ALF design manual, so the BraceS system has had to codify the appropriate parts 
of the standard into a worksheet layout in order to calculate the bracing units 
required for a building (Figure 11). Thus the user need only enter the most 
fundamental data on building layout and structure and the program performs all 
required calculations to determine earthquake and wind loading as well as 
minimum bracing requirements. 

BRANZ have also investigated the development of a code browsing system for 
the NZBC, implemented as an extension to the Microsoft Windows Help facility. 
The NZBC comprises 35 approved documents along with verification methods 
(many of the previous standards can be used as verification methods) and 
acceptable solutions. The browser allows hypertext like searching and cross-
referencing through portions of the building code. As well as browsing the text of 
the code this system provides precise definitions of key words and diagrams from 
the code which may be copied from the code into the user’s own documents. 
BRANZ have also investigated the addition of small compliance checkers for 
portions of the new code as part of their browsing system.  
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Figure 11: BraceS Bracing Unit calculation phase 

FUTURE DEVELOPMENTS 

Research and Development 

Research at UACS is concentrating on the integration framework for tools in 
the building domain. The most immediate goal is to complete the current 
incarnation of the ICAtect system to provide a working platform of integrated 
conformance and simulation tools. Following on from the completion of this 
platform will be research into several connected areas which will make the 
systems more adaptable to individual users needs and the actual projects that they 
are working on. 

The development of support tools for the specification of tool schemas, their 
connection with the common schema, and possible updates to existing tools is one 
area of interest. Existing tools generally have poor support for multiple developers 
working on the same model. Handling concurrency necessitates the addition of 
versioning control and policies for handling collaboration between the various 
developers. 

Extending the control structures in integrated systems to handle notions of 
process, and user modelling and control are planned extensions to the ICAtect 
system. These additions will allow configuration of integrated systems for specific 
projects, taking into account the actual people who will be involved in a project, 
their responsibilities and time frames for completion. 

Commercial Products 

The commercial products planned for the future feature larger institutions in 
the building industry than those involved in the current computerised standards 
projects. These players have been working with paper based systems or 
computerised database systems up till this point. Having gauged the New Zealand 
market for some years, they have decided that the time is now ripe for further 
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developments in this area. Reflecting their background in the industry, the three 
commercial developments that are discussed in this section feature integration of 
services as part of their overall development strategy. 

The Building Industry Authority (BIA), the body responsible for the NZBC, 
has recently polled the principal users of the NZBC and determined their 
requirements for using the code. Based upon this survey, the BIA has decided to 
make an electronic version of the code available to practitioners. To achieve this, 
the BIA has put out to tender the development of either a fully on-line system, or 
a mix of on-line and CD-ROM based system that must supply the full 35 
approved documents comprising the code as well as verification methods and 
acceptable solutions. One of the BIA's major concerns in computerising the 
building code is that the electronic form is easily mixed and linked with other 
existing forms of electronic data used by building practitioners. Initially the 
proposed system will be a purely electronic copy of the code as it exists in paper 
form, though embodied with enhanced searching capabilities. The initial system 
will not include codification of verification procedures as exist currently for some 
of the standards, though the BIA hopes to extend the scope of the system to this 
level at a later date either through funded projects or through development by 
some of New Zealand's larger institutions and societies. 

SPECTEL is one of the major suppliers of electronic information for the New 
Zealand building industry. Currently they supply information on products and 
companies as well as information on approved products, existing standards and 
news from the industry. They have expanded rapidly over the last few years and 
are planning to develop a more integrated system, heading towards the ability to 
supply all the building related information a user may require from a single 
electronic source. To this end they are planning to offer electronic versions of all 
New Zealand standards as well as the NZBC and other relevant legislation 
(subject to suitable copyright arrangements). This service will allow users free 
viewing of the standards, incorporating both text and graphics, but with a fee 
when the user downloads a copy (comparable to a sale of the standard). Their 
other major drive in providing a single source of information is the addition of 
Intelligent Design Systems (IDS) to their system. These are packages, written by 
suppliers listed in the SPECTEL service, to aid in the correct selection of products 
for a particular design situation. At the moment, there are 20 IDS packages 
available for products including fasteners, security systems, paints, gas systems, 
whiteware, masonry and timber products. For some of the IDS systems it is 
necessary to check a contemplated design for compliance with portions of a 
building code before selecting the product to use. SPECTEL expect more IDS 
systems that provide code compliance checking as part of their selection process 
to be developed in the next few years. 

In order to perform compliance checking from a CAD system, the group at the 
School of Architecture at Victoria University who developed the computerised 
version of the ALF Design Manual for BRANZ are investigating its integration 
with the Archsoft architectural design package (based on AutoCAD). In a manner 
similar to the Archsoft-Energy product, developed by Pacific Northwest Labs to 
provide energy analysis of a design, this development will provide an 
environment where a commercial CAD based design can automatically be 
checked for compliance with NZS 4218P through the ALF method. 
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DISCUSSION AND CONCLUSIONS 

There has been an evolution over the last ten years of the research and 
development carried out in New Zealand in the development of computerised 
compliance checking systems and frameworks for their description and 
integration. Commercial development of code compliance checkers has begun 
with a few products suited exclusively to the New Zealand environment. The 
work to date has highlighted several desirable features of environments 
supporting computerised code systems, namely:  
• A functional representation of code provisions 
• The usefulness of object-orientation in code representation. 
• The need for flexible user interface tools. 
• The need for an integrated framework which manages the consistency of 

data across connected tools. 
• The need for integrated systems to manage more information than purely 

building related data such as design processes and user models. 
Following on from the formulation of the NZBC, commercial interest in 

making code information available to New Zealand users has increased. However, 
all developers have realised that some level of integration between applications 
must be supported. This has lead to current and proposed projects where CAD and 
compliance checkers are integrated, or where the electronic supply of code text is 
offered in a form that can be readily integrated with other common applications. 
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