
Multi-Disciplinary Views for Integrated and
Concurrent Design

R W AMOR and J G HOSKING
e-mail: john@cs.auckland.ac.nz
Department of Computer Science
University of Auckland
Private Bag 92019, Auckland
New Zealand

ABSTRACT

The definition and implementation of user views is likely to be a major factor in the success of
the ISO-STEP standard for computer-based representation of building components and their
inter-connection. The development of a method for describing user views to a particular model
is also likely to increase the usage of existing design tools. Currently, the arcane languages and
the detailed knowledge required of the physics and terminology of the specific domains of many
of these tools limit their use by designers. This paper addresses these issues by describing a
system that can present information from a base computer model of a building to a given user.
The language and level of detail of the system are directed at the needs and understanding of the
user. This system allows multiple concurrent views to the base model, each view tailored to a
particular discipline (eg, architect, structural engineer, thermal engineer, etc) and further tailored
to meet the specific needs of the particular user in terms of understanding of the various
disciplines and the level of information required. Used with a system that integrates various
design tools through a computer based building model, this system will offer users information
from a range of design tools at a level that they can comprehend.
Key Words
multi discipline views; product modelling; user interaction

INTRODUCTION

The emerging standard ISO 10303, colloquially known as STEP (STandard for the Exchange of
Product model data, STEP 1991), is being developed for the exchange of product data in the
fields of manufacturing, architecture, engineering, construction and electronics. While it is likely
to be many years before a full representation of buildings can be supported by this standard, it is
almost guaranteed success through the support of major commercial and governmental
organisations such as Boeing, the US Army and the US Navy.

The STEP standard will become the preferred method for transferring building information
between various CAD systems, simulation tools and knowledge based systems. It will also make
available technical information about products in a form that can be accessed by the design
tools. This will help make these tools more attractive to use in the design of a building. Such

design tools have been available to designers for many years, but there have been several
obstacles to their acceptance and use. Amongst these are:

• The duplication of effort in describing the same building to multiple design tools. To
gain information about varied aspects of the building design the same data must be
input into each tool in its own specific format.

• The language used to describe a building to any tool. This is often arcane and in many
cases unreadable to a human operator. This leads to long learning curves, and many
opportunities for errors in describing the building to the tool.

• The level of expertise required to describe a building to the design tools. A high level of
expertise in the specific area, and a good knowledge of the physics and mechanical
aspects of the components involved, is often assumed.

While the STEP standard will help overcome some of the problems detailed above, it will do
little to change the interface to design tools, apart from providing a view of a building suitable
for computer based transfer of building data.

The problem of interacting with users in a manner with which they feel comfortable has long
been recognised. For example, in 1977, Kay writing about trends in computing noted that:

'...20th-century physics assigns equal importance to a phenomenon and its context, since
observers with different vantage points perceive the world differently. In an observer language,
activities are replaced by "viewpoints" that become attached to one another to form
correspondences between concepts.' (p239, Kay 1977)

Only recently, however, has the emphasis of the conversation with a design tool shifted from
requirements necessitated by the structure of the program and the language in which it was
written, to something closer to the views of the user. Unfortunately, most of the tools which
incorporate such user-friendly interfaces are aimed directly at one market in the industry, eg,
architects, and so do not address the needs of other users.

To understand what we envisage when talking about views we describe what we believe
constitutes a user view. There are several components to a view, many of them technical ones
relating to the technology required to support integration and concurrency. However, from a
users viewpoint we describe a view as being able to:

• Provide the information required by the user in the form they request, request
information that the user will know, only request information that is needed, and use
other sources to find other required information, for example other users in the system,
defaults for specific objects, or information from external databases.

• Work at the same level of comprehension as the user. This involves tailoring concepts
to the user’s level of comprehension so as not to overwhelm the user.

• Follow the methods of design with which the user is familiar.

In this paper we look at what is required to establish multiple views to a data model such as
STEP. This is discussed with reference to available methods for providing views and the current
research being undertaken in the field. Later sections develop an initial method for providing
user views and demonstrate views to a building model. As STEP is not yet in a form which is
useable for such a project, we use the model provided in the ICAtect system described later in
the paper.

METHODS OF PROVIDING VIEWS

Existing technology and current research provide some methods of describing user views to a
given base model. In this section we briefly examine some of these methods.

Database views

Databases have long been the main method used to store data about objects in a particular
domain. A database, whether in relational form, network form, etc, provides a model of a
particular domain. In the field of databases a mechanism is provided to specify a view of the
base data for users and external systems. This gives the user access to a database through one or
more levels of abstraction from the physical implementation of the database.

From Ullman (1982) we define a conceptual database as an abstraction of some real world
domain. A view to a database is defined as an abstract model of a portion of this conceptual
database (see Figure 1). This view is defined through some subscheme data manipulation
language, which in practice is usually a constrained version of the schema definition language
used to define the conceptual database. In some senses a view is just a conceptual database, and
at the same level of abstraction. There are senses in which it is more abstract, in that it can be
constructible from the conceptual database (through formulae and aggregate functions), but not
actually present in it.

user group 1

user group 2

user group n

view 1

view 2

view n

conceptual
database

physical
database

Figure 1. Views of a database (Ullman 1982)

Database views provide for data manipulation on the conceptual database, including updates,
additions and deletions. However, there are very severe constraints on the types of views that
these operations are allowed to act upon. In most systems, such as SQL (van der Lans 1988), the
restrictions on updateable views limit the cases almost to the point where there is a one-to-one
correspondence between the view and its base relation.

One-to-one mappings between base relations and views do not provide for particularly friendly
or useable views. The data presented to and requested from the user will be very much a
reflection of the base relations, which is a computer based view of a domain, serving the needs
of many groups. This is unlikely to be at the level at which an individual user would wish to
work.

The research area of database schema integration (Batini et al 1986) provides insights to the
problems in mapping between the various perspectives of similar objects when integrating
databases from various organisations. These mappings can be considered analogous to the
mappings that will be required between a user view and a building model.

Views in engineering and architecture

Many researchers throughout the world are working on the problem of defining and maintaining
views as part of their systems. Their work falls into two categories, the first being similar to the
database views in that the mappings are essentially one-to-one, and the second being at a higher
level through the use of functional abstractions.

The first approach (Luiten and Tolman 1992; STEP 1991) specifies a sub-set of the global
model to be visible in a particular view. This approach relies on the central model containing all
the objects and abstractions that a user would wish to use. It is compatible with current database
technology as the mapping to a view is always one-to-one, and the database system can use its
locking mechanisms to control access to the data and to maintain consistency of updates even
when multiple users have overlapping views.

The second approach (Bowen and Bahler 1992; Wong et al 1992; Clarke et al 1989;) specifies
functional abstractions of the global model which are visible in a particular view. This approach
relies upon the ability to define a mapping from the global model to a specific view and to
enable data to be converted in both directions as needed. This makes the approach more
powerful than the model sub-sets, and in fact subsumes that approach. The systems that take this
approach require application-specific code to handle mappings between objects in the various
views, and, in most cases, require specially tailored knowledge bases or code attached to the
global objects, to maintain the conceptual views for each user.

The ICAtect project

An example of the type of project described above is the ICAtect project (Amor et al 1990;
Amor 1990). ICAtect has been developed over the last four years to examine a method of design
tool integration, specifically for preliminary architectural design. The aim is to make quality
information available to architects from these design tools as they examine variations in their
building design to satisfy the design requirements.

The core of the current ICAtect system is a model of a building capable of holding all
information required by a range of design tools useful to architects in the preliminary design
stage (see Figure 2 for the structure of ICAtect). This common building model (CBM) was
created from an analysis and amalgamation of the classes and attributes used by various design
tools to describe a building for their simulation purposes (in a similar manner to the database
schema integration methods described in Batini et al 1986).

. . .

User
ICAtect

User
Interface

Frames and Worlds

Inter-Model
Mapping

Tool Mapping
Tool-1

Tool-2

Tool-n

Common
Building
Model

Model
Tool-1

Model
Tool-2

Model
Tool-n

Instances

...

Data
Files

Data
Files

Data
Files

Figure 2. The structure of ICAtect

To allow data to pass between ICAtect and the design tools, a mechanism for moving common
building data, mainly geometric, is necessary. This is achieved by providing a mapping of data
between every design tool required, and the CBM, enabling ICAtect to move its description of a
building from one design tool to the next as needed. This is similar to the view methods
provided by functional abstraction systems, as described in the previous section.

To allow user interaction with ICAtect an interface is provided that is structured to be easy and
intuitive to use. It provides one language to describe a building to any design tool; and, through
the use of constraints on classes and attributes in the CBM, validates the consistency of the
building design as information is entered.

ICAtect is structured to allow the user to analyse a building design at an early stage when very
little of the building information has been specified. This is done by providing much of the
detailed information required by the design tools as defaults. Once the system knows the type of
building being constructed and its general locality, the defaults can be used to provide other
unstated information.

A new direction for ICAtect

Analysis of the prototype ICAtect system and further work on a graphical interface to ICAtect
(Dearden 1991) highlighted some of the deficiencies of the present model and system. Having
constructed a CBM from various simulation tool models, access to the resulting system still
requires the user to think and work at the same semantic level as the various simulation tools, ie,
the user must still describe the building design in a language similar to those of simulation tools.

To address this problem it is necessary to generalise the structure of ICAtect's user interface
subsystem to make it capable of handling multiple views of the building model. This structure

will allow views of the database to be tailored not just for different classes of design tools, such
as simulation and knowledge-based systems, but also for the different classes of practitioner in
the building profession such as architects, engineers, developers, etc. Thus, an architect is
presented with a quite different view of the building from a structural engineer. This ensures that
users of each class are addressed in a language they understand, and are presented with the view
of the building most relevant to them. The amount of similar work undertaken in the areas of
quantity surveying, thermal engineering and structural engineering (Karstila et al 1991; Luiten
and Tolman 1992; Wong et al 1992; Clarke et al 1989) demonstrates quite clearly that this
project has greater scope than the field of preliminary architectural design for which it was first
envisaged.

To find some help to the problem of describing multiple user views we look to research in the
field of software engineering. Many aspects of software engineering mirror those in building
design, making the application of software engineering techniques a viable approach to solving
building industry problems. In particular, the work on programming environments is directly
applicable to the provision of views of a building model as described below.

Visual programming environments

As diagrams are useful in the software lifecycle to help define, explain and understand concepts
that are difficult to represent in text, it is natural that researchers look at methods of
incorporating diagrams into the software development and maintenance cycle. This has lead to
the increasingly popular field of visual programming (Ambler and Burnett 1989).

Grundy and Hosking (1992), working in the area of a visual programming environment for
object-oriented languages, have developed the MViews framework. Some of the major benefits
of their system are:

• Multiple graphical and textual views of the program can be defined, with any view
being able to share information with other views.

• The use of diagram views can focus a programmer’s concentration on particular aspects
of the program, yet the programming of details is still supported in a textual view.

• Consistency is maintained throughout all the views, whichever view the information is
modified in.

The structure of the MViews visual programming environment is defined at three levels. A base
level contains the complete definition of the program. Above this are subset views which, as
their name suggests, define a subset of the program. These subsets are free to overlap, and
common information can be accessed and modified in any of the subsets. At the top level are the
display views which describe how some piece of code can be displayed and manipulated on a
screen (see Figure 3). Several display views can be used on the same subset view, providing a
different rendering of the same information in each view.

Base Views Subset Views

Display Views

Add Element
Delete Element

Establish Relationship
Disolve Relationship

Modify
Attribute

Expand
Subgraph

Cut/Copy/Paste
Subgraph

Add/ Delete
Subset View

Add/ Delete
Display View

class(A,
parents([e]),
attributes([a,b])
methods([c,d])).

Unparse/
Parse View

Add/Delete/
Modify Icons

& Glue

Figure 3. View management in the MViews system (Grundy and Hosking 1992)

From an analysis of the MViews environment it is clear that it is sophisticated enough to provide
the basic support required for describing views to a given model and generalisable to domains
other than that of object-oriented programming. The structure of its solution for a programming
environment with its definition of a base level is certainly applicable to the field of integrated
and standardised building models.

VIEWS THROUGH MVIEWS

Given the requirements for a new interface to ICAtect, and the basic support offered by the
MViews system, this appears to be the most fruitful research direction. In addition to being able
to display differing views for differing purposes in ICAtect, it is also imperative to maintain the
consistency between the various views, so that modifications to any view are propagated
appropriately to other views. The MViews visual programming environment provides the
requisite support for multiple, overlapping, editable views of a program, with a built-in
consistency management system which propagates modifications from view to view
automatically via a common model of the program. The challenge is to extend the method of
view definition to be able to define and manage views that reflect the needs of users other than
programmers.

Given the similar definition of the CBM in ICAtect, a frames system, and the object-oriented
language supported in MViews it was a straight forward task to re-implement the CBM inside
MViews. This provides a system for managing the CBM in terms of making updates to the
model, checking connections between classes and editing the definition of the classes in textual
views, all in a unified and consistently maintained environment.

Figure 4 shows a snapshot of the CBM being manipulated in the MViews system. The main
graphical window shows the base graphical view of the CBM. This view details all the classes in
the CBM and the part-of relations between the different classes. The small graphical window on
the left shows the inheritance relations between material classes in the CBM (notice that all the
classes in this window are previously referenced in the base graphical window). The textual
window on the right details the attributes and methods of the class window and the textual
window on the left provides a second textual view of the class window detailing its deletion
method.

The MViews system provides many functions to help manipulate the CBM. The icons to the left
of the graphical windows provide access to certain functions on classes, a pointer tool for
selecting and manipulating classes is at the top left, and the tool for adding classes at the top
right. When placing a class the user defines a class name and, optionally, other pertinent
information. If the class exists in the base then a connection will be established between the
existing definition and the graphic icon, or else a new class definition is entered in the base. In a
similar manner the next two rows of icons allow the user to define generalisation, client-server,
and classification links between classes, and to define features of a class. The last two rows of
icons provide for view creation, hiding classes, links and views, and deleting the class, link or
view. Each class icon has several regions sensitive to mouse clicks, which can be used to: bring
up the list of views for the class; automatically display the class text view; show the feature
views; show the feature text; show the class features; and show all class features.

Figure 4. The CBM in MViews

To ensure the results of the work on user views are generalisable to the tools that are integrated
in the ICAtect system we have also created a view for one of the more difficult tools integrated
into ICAtect. This view (see figure 5) describes the model of a building used by the design tool
SUNCODE (1981). This model was difficult to integrate into ICAtect as it is based purely on the
need of a thermal analysis through paths of heat flow. Hence it has little notion of room
geometry and location as required by most other design tools and the CBM.

Figure 5. SUNCODE building model

The MViews system is now being extended from views of the class definitions to provide the
same services for the instances of classes created in the ICAtect system. At this point we have
defined the first user view to the model, that of the programmer/implementor who will need to
deal with instances of classes in their raw form, but who also needs to see the overview of
classes and the connections between them in the system.

From the definition of the first user view (the programmer/implementor) of the model the next
step is the definition of user views for various practitioners. Through interviews with a graduate
architect and a building scientist we have developed two views of a building which are directly
applicable to these two users. These views capture the classes, and relationships between
classes, that these two users think of when working with a building. These two views have been
described in the MViews system with the same types of display views as used for the CBM (see
figure 6 for the model of a user view). This allows us to manipulate the structure of the views
and to query and examine the information stored in the views.

With this set of views defined in MViews we now need to analyse the mappings required
between the views and the CBM. From the results of this analysis we will know exactly what
types of mappings will need to be supported for a particular type of view and will then work on
the method for defining the requisite mappings. The definition of the mappings will be
developed along with the method to transfer data back and forth between the views and the
CBM.

Figure 6. The model of a user view

CONCLUSIONS

With the evolution of very large integrated, and increasingly standardised, building models for
the building industry it is becoming more and more important to provide user definable and
modifiable interfaces. Many of the technologies required to provide multiple user views have
already been developed and there are many groups working towards this goal. However, little of
the work has concentrated on a formalised schema for the definition of user views of a base
model.

The use of the available research in visual programming environments provides us with the
starting point in providing user definable views. The MViews system provides a wonderful
programmers interface to a common building model, users views of a building and a design
tool’s view of a building. With the definition of these views further work is being undertaken to
analyse the required mappings between the views and the CBM and on developing methods to

describe and manage these mappings in the MViews environment. When completed the system
will finally provide user views tailored to user needs.

Acknowledgment

The financial assistance provided by an Auckland University Graduate Scholarship is gratefully
acknowledged.

References

Ambler, A and Burnett, M (1989), Influence of Visual Technology on the Evolution of
Language Environments, IEEE Computer, 22, pp 9-22.

Amor, R, Groves, L and Donn, M (1990), Integrating Design Tools: An Object-Oriented
Approach, Building Systems Automation-Integration, First International Symposium, June 2-8,
University of Wisconsin, Madison, Wisconsin, USA.

Amor, R (1990), ICAtect: Integrating Design Tools for Preliminary Architectural Design, MSc
thesis, Dept. of Computer Science, Victoria University of Wellington, Wellington, New
Zealand.

Batini, C, Lenzerini, M and Navathe, SB (1986), A Comparative Analysis of Methodologies for
Database Schema Integration, ACM Computing Surveys, 18(4), December, pp 323-364.

Bowen, J and Bahler, D (1992), Negotiation in Concurrent Engineering, Technical report TR-
92-10, North Carolina State University, USA.

Clarke, JA, Rutherford, JH and MacRandal, D (1989), An intelligent front-end for computer-
aided building design, University of Strathclyde, Scotland.

Dearden, R (1991), Object-oriented CAD system, Honours report, Department of Computer
Science, Victoria University of Wellington, Wellington, New Zealand.

Grundy, J and Hosking, JG (1992), The MViews framework for constructing multi-view editing
environments, Proceedings New Zealand Computer Science Research Students' Conference,
Hamilton, 28-30 October.

Hosking, JG (1990), A PlanEntry Package for Thermal Design, BRANZ contract No. 85-024,
Technical Report No. 7, Department of Computer Science, Auckland University, Auckland,
New Zealand.

Hosking, JG, Mugridge, WB and Hamer, J (1991), An architecture for code of practice
conformance systems, in Kahkonen and Björk (eds) Computers and Building Regulations, VTT
Symposium 125, VTT Espoo, Finland, pp 171-180.

Kay, AC (1977), Microelectronics and the Personal Computer, Scientific American, September,
pp 230-244.

Karstila, K, Björk, BC and Hannus, M (1991), A conceptual framework for design and
construction information, Building Systems Automation-Integration, First International
Symposium, June 2-8, University of Wisconsin, Madison, Wisconsin, USA.

Luiten, B and Tolman F (1992), Computer Aided DfC (Design for Construction) in the Building
and Construction Industries, CIB W78, Computer and Building Standards Workshop, Montreal,
11-15 May.

STEP (1991), Part 1: Overview and Fundamental Principles, Draft N14, ISO TC 184/SC4/WG6.

SUNCODE (1981), Ecotope Group, 2812 E. Madison, Seattle, WA 98112, USA.

Ullman, DU (1982), Principles of Database Systems, Computer Science Press.

van der Lans, RF (1988), Introduction to SQL, Addison-Wesley Publishing Company.

Wong, A, Sriram, D and Logcher, R (1992), SHARED: An Information Model for Cooperative
Product Development, submitted to IEEE Computer.

