
ThermalDesigner: an application of an object-oriented code
conformance architecture

Robert Amor, John Hosking, Rick Mugridge, John Hamer, Mike Williams
Department of Computer Science
University of Auckland.

Abstract

In an earlier paper an architecture was described for supporting code conformance
applications based on Kea, an object-oriented functional language. Here we describe
a prototype application, developed using Kea, for checking conformance with a
thermal insulation standard. Called ThermalDesigner, this application incorporates an
object-oriented building model, a graphical plan entry system for editing plans, and
form-based interaction for obtaining non-plan information and supplying results to
the user.

1 Introduction

In Hosking et al (1991), an architecture was proposed for developing code of practice
conformance applications. This architecture includes the following components:

• An object-oriented building model
• A functional representation of code provisions which are embedded

within the object-oriented building model
• A CAD-like drafting front end to allow users to enter plan details
• A forms interface for entry and display of non-geometric information
• A consistency manager to handle changes to user-supplied data

The first two elements of the architecture are embodied in the Kea object-oriented-
functional programming language. Kea has been developed in parallel with work on
code conformance applications, and has been used to implement several such systems
(Hosking et al, 1987; Mugridge and Hosking, 1988; Hosking et al, 1989). The plan
entry and forms interface to Kea were developed to solve deficiencies in data entry
for these applications. Consistency management has been an important component of
our model since its inception. To this end, Kea provides an automatic consistency
manager, freeing the programmer from explicitly dealing with the consequences of
changes to user inputs.

In this paper ThermalDesigner is described. This is an application constructed using
the code conformance architecture outlined above. Section 2 describes
ThermalDesigner's problem domain. Sections 3 1nd 4 illustrate how each component
of the architecture is used in ThermalDesigner's implementation. We complete the
paper by briefly describing current work aimed at developing a common building
model based on a generalisation of the code conformance architecture.

2 The thermal insulation problem

ThermalDesigner assists the process of checking that a building design meets the
requirements of the New Zealand thermal insulation standard for residential
buildings, NZS4218P (SANZ, 1977). It embodies an empirical approach to this

process developed by the Building Research Association of New Zealand (BRANZ)
and published as a (paper) design guide (Bassett et al, 1990).

For designs to comply with NZS4218P, they must have a building performance index
(bpi) less than 0.13 kWh m-2 (oC day) -1 (units as used in NZS4218P) where

 bpi = Purchased Heat (kWh) x (Seasonal degree days (oC day) x floor area (m2))-1

The method of Bassett et al (1990) is to calculate empirical estimates of:

• the thermal resistance (R-value) of each element of the building,
caluclated from properties of materials and building techniques used in
construction

• heat losses related to air infiltration, based on the volume, joint length,
together with regional and microclimate effects

• heat losses of each element of the building based on the relationship
between R-values, orientation, and the standard climate of the region

• internal heat gains, based on the number of occupants and on the window
areas and orientations, shading, and location

• internal and solar heat gains, based respectively on the number of
occupants; a factor for standard household equipment is included

• the net useful heat gain, based on the above heat gain and loss estimates,
together with an estimate of the thermal mass level of the building

• the degree of winter overheating through excess solar gains
• the amount of energy needed to keep the building at 20 oC and the bpi.

3 The ThermalDesigner Building Model

Figure 1 shows part of ThermalDesigner's object-oriented building model, including
the principal classes and the major whole-part relationships between them. Thus a
building is composed of a number of spaces, each of which includes a number of
floors, roofs and walls, etc. Most of the classes shown have associated sub or super
classes representing specialisations and generalisations of the concept they embody.
The object-oriented model was derived by performing an object-oriented analysis
(after the style of Coad and Yourdon, 1991) on Bassett et al (1990) and NZS4218P.

Construction of the object-oriented model also involved identification of attributes of
the classes and methods for calculating those attributes. These attributes arise from
provisional requirements of NZS4218P and additional data items required as part of
the Bassett et al (1990) methodology. The attributes and their methods of calculation
are represented functionally in Kea, following the arguments of Fenves at al (1987),
but embedded within the class they relate to.

Building

Space

spaces

Wall

walls

Roof

roof

Floor

floor

Hole

holes

Floor_material

floor_material

Hole

holes

Roof_material

roof_material

Window
windows

Hole
holeswall_material

Wall_material

Window_materia
window_material

l
Figure 1: Class structure diagram of ThermalDesigner building model

Figure 2 shows how example attributes of the building class are represented as Kea
functions. The expressions (function bodies) associated with each attribute define
how to calculate a value for the attribute. The functions may refer to other functions,
possibly associated with other objects, in order to perform their evaluation. For
example, the total seasonal gain attribute of class Building is calculated as the sum of
the Building's internal heat gain together with the sum of the windows heat gain of
each of the Spaces in the spaces list associated with the Building. The internal heat
gain of the building is calculated using one of two empirical formulae, the choice of
which depends on whether the number of occupants of the building is known or not.

class Building
 spaces: list Space :=
 ...
 gain_loss_ratio: float :=
 total_seasonal_gain / total_seasonal_heat_losses.
 total_seasonal_gain: kWh :=
 internal_heat_gain +
 sum(collect (s in spaces, s^windows_heat_gain)).
 internal_heat_gain: kWh :=
 % Empirical formula: ALF worksheet 30
 900.0 + 150.0 * num_of_occupants if known_num_occ
 | 1500. % the | means "else"
 total_seasonal_heat_losses: kWh :=
 air_heat_loss +
 sum(collect(s in spaces)).
 air_heat_loss: kWh :=
 num_of_occupants: integer :=
 known_num_occ: boolean :=
 ...
end Building.

Figure 2: functional representation of building attributes

Other features of Kea as a programming language can be found in Hosking et al
(1991) and Hosking et al (1990). These include:

• strong typing
• multiple inheritance
• dynamic classification of objects at execution time
• object creation functions
• a limited form of procedural control, used to enforce sequence
• a form of daemon called a "when conditional" allowing opportunistic

execution. This is useful for error handling.

4 Interfacing to the building model

The Kea-based code conformance architecture includes two components for
interacting with the object-oriented building model:

• PlanEntry: A CAD-like drafting front end to allow users to enter plan
details. The plan is translated into corresponding Kea objects and object
attributes.

• A forms interface for entry and display of non-geometric information.
The use of form classes allow forms to be easily defined and incorporated
into an application. Upon creation of a Kea object inheriting from a form
class a corresponding form is created and displayed on the screen.

Figure 3: PlanEntry system in use

PlanEntry is a generic package for entry of plan information. Figure 3 shows the
PlanEntry system in use as part of ThermalDesigner. PlanEntry appears to the user as
a fairly standard, if rudimentary, X-window based CAD-like drafting system, which
includes the following features:

• tools for mouse-based drawing of spaces and external openings
• automatic removal of external walls in overlapping spaces

• ability to handle multiple storeys
• standard mouse-based resizing and cut and paste
• ability to associate attributes (eg material types) with plan objects (eg

walls, roofs) via menus

Corresponding to each type of plan object is a Kea class. Construction of a plan by a
user causes creation of corresponding Kea objects, which have access to the plan's
object's attributes. Tailoring PlanEntry for use with an application involves a
combination of specialising the Kea plan classes and transforming the generic
aggregation structure to one suited for the application. An example of the latter is the
elimination of storeys from the aggregation structure needed for ThermalDesigner.

In addition, the attribute information that can be associated with plan objects is
completely tailorable. For example, menu entries corresponding to material types are
provided in ThermalDesigner. The information in these menus, material names and
the Kea objects associated with them, is constructed within ThermalDesigner and
passed to the PlanEntry system.

Kea form classes are used to define forms. Forms can include:

• Input (textual, toggle button, and menu) and output fields: Input fields of
form objects are like ordinary object attributes but with externally
calculated values. Output fields are object attributes which have their
values displayed on the form upon calculation.

• Buttons: each having an associated Kea procedure, which is executed on a
button click.

Some example ThermalDesigner forms are shown in Figure 4. In ThermalDesigner
forms are used for:

• Obtaining location, climate, and owner information (eg the building form)
• Obtaining material description information, for incorporation into the

PlanEntry menus (eg the wall material definition forms)
• Providing results (eg the BPI field of the building form)
• Providing help in a hypertext-like manner (eg the space help form and its

associated buttons which allow navigation to other forms)
• Providing feedback on design errors (eg the high temperature form)
• Providing control of the running application (eg the building form

buttons)

Figure 4: Example forms: building form (top left), high temperature form (top right),

wall material definition forms (bottom left), and space help form (bottom right)

Figure 5 shows the structure of the complete ThermalDesigner system in an iconic
form, indicating how the two interface components interact with the building model.
An additional textual interface permits summary reports to be generated.

Building

Space

spaces

Wall

walls

Roof

roof
Floor
floor

Hole
holes

Floor_material
floor_material

Hole
holes

Roof_material
roof_material

Window
windows

Hole
holeswall_material

Wall_material

Window_material
window_material

ClimateForm

LocationForm

HighTempForm

ThermalDesigner
Report
For: Joe Bloggs
 78 Garden St
 Onehunga

Plan Entry

Plan Entry
Building Model

Thermal Designer
Building Model

Forms

Form
Classes

Summary
Reports

Text
Interface

Space
spaces

Wall
walls

Roof

roof
Floor
floor

Hole
holes

Hole
holes Window

windows
Hole
holes

Plan

Building

Storey

storeys

Figure 5: Architecture of ThermalDesigner

5 Consistency management

An important feature of the Kea approach to modelling is that the programmer
programs as if the building is described once with no subsequent modifications to that
description. Thus there is no explicit code in the Kea application to handle
modifications to the building design. This approach simplifies the application code
considerably.

In practice, however, it is essential to permit the user to modify a building design to
experiment with different design alternatives, and to correct design flaws. Kea
permits the user to modify any input, either from a form or from PlanEntry, and

automatically propagates the effect of such a change. The state following the design
change is as if the application had the modified value as its initial entry. Thus, for
example, a user can modify the size of a space drawn in PlanEntry and all results
dependent on that, such as the bpi value, are updated to reflect the new space size.

This is similar to the automatic recalculation facilities of spreadsheets, but is
significantly more complicated as changes to a user input can cause:

• recalculation of values of output fields of forms
• invalidation of inputs to a form, as the value modified changes a prompt

field on another form
• elimination of forms (and any inputs supplied to them), because the

changed value eliminates the reason for the creation of those forms
• creation of additional forms, as the changed value causes additional

information to be requested or displayed

An example of the use of this facility is illustrated by the high temperature warning
form (Fig. 4). This form comes into existence when the estimated maximum winter
indoor temperature (EMWIT) is greater than an empirical threshold. The Fix button
on the form assists the user in deciding how best to modify the design to lower the
estimated temperature and, in effect, provides a way of navigating to the objects most
suitable to modify. When the user decides upon a modification, the effects of the
change are propagated. If the EMWIT is now lower than the threshold, the reason for
displaying the high temperature warning form is no longer valid and the form is
eliminated, providing feedback to the user that the fault is repaired. Otherwise the
form is updated with the newly calculated EMWIT value.

6 Current work

Current work aims to generalise the code conformance architecture to form the basis
of a common building model. We are pursuing two projects to obtain information on
the best approach to making this generalisation.

The first project involves collaboration with the Victoria University of Wellington
group who have been developing the ICAtect common building model (Amor et al,
1991). The development of ICAtect has primarily focussed on integrating several
simulation packages (mainly thermal) via a common building model. The
collaborative project is investigating the integration of the heuristic-based
ThermalDesigner system with the predominantly simulation-tool based ICAtect
model. Full details of this project may be found in Amor et al (1992).

In the second project, we are integrating ThermalDesigner with another Kea
application, WallBrace. The latter is a loadings code conformance checker and hence
concerned with a structural rather than thermal model of the building. Our approach
is to generalise PlanEntry and use it, together with appropriate forms, as a building
model editor. Common building model schema will be represented as Kea classes.
Code specific to ThermalDesigner and WallBrace will make use of the common
building model to perform their services, and may supplement the common model
information with forms of their own. The proposed architecture is shown in Fig. 6. It
is still an open issue as to the best way to modularise the application specific code
within the object-oriented framework. We expect that obtaining a suitable solution to

this problem will provide an insight into modularity and information hiding
requirements within object-oriented systems.

Building

Space

Wall Roof Floor

Window

Climate

Model Editor- Generalised PlanEntry + Forms

Common Kea Building Model

WallBrace Specific
Kea Code

ThermalDesigner
Specific Kea Code

WallBrace Specific
Data Entry

ThermalDesigner
Specific Data Entry

Kea

Figure 6: Integrating ThermalDesigner and WallBrace

In an ancillary project, we are designing and implementing a low-level graphics
interface to Kea. When implemented this will permit the bulk of PlanEntry to be
written in Kea, rather than as a monolithic C-based package as it is currently. A Kea
implementation will permit PlanEntry to be far more readily tailored than it is
currently and will assist in the generalisation of PlanEntry to a building model editor.

7 Summary

We have described an application of an object-oriented code conformance
architecture, demonstrating the use of each component of the architecture. Particular
benefits of using this architecture include:

• the object-oriented approach to modelling the building. This provides a
natural framework to embed the computational components of code
conformance checking. This framework is reasonably robust against
modifications to code of practice provisions (Hosking et al, 1991).

• a functional representation of provisions, which is a preferred approach in
most influential work on code conformance (eg Fenves et al, 1987).

• the combination of PlanEntry and the forms interface, which provides a
flexible set of tools for developing building model editors. The object-
oriented nature of these tools encourages their reuse via appropriate
specialisation.

• the ability for users to readily navigate between forms, entering
information as desired. This provides the user with considerable control
over execution of the system, rather than the user being required to act as
a passive information supplier

• the consistency management system. This allows the application to be
programmed without the need to include code to handle modifications to
the building design. This simplifies the programming considerably,
without losing the ability for users to arbitrarily modify their designs to
experiment with alternative design decisions and to correct design flaws.

We have also described current work aimed at generalising the architecture to form
the basis of a common building model. This consists of two projects to generalise the
architecture incrementally in two directions. These involve, on the one hand,
integration of heuristic and simulation-based tools in the same application domain
(thermal modelling) and, on the other hand, integration of two heuristic-based tools in
different application domains (thermal and structural).

Acknowledgements

The authors gratefully acknowledge the support of the Building Research Association
of New Zealand and the University of Auckland Research Committee in pursuit of
this research.

References

Amor, R., Groves, L, Donn, M, 1991: Integrating design tools: an object-oriented

approach . Building Systems Automation-Integration, First International
Symposium, University of Wisconsin, Madison, Wisconsin, June.

Amor, R., Hosking, J, Groves, L, Donn, M, 1992: Design tool integration: model
flexibility for the building profession. Accepted for presentation to Building
Systems Automation-Integration 1992 Symposium: Computer Integration of the
Building Industry, Dallas, Texas, June.

Bassett, M.R., Bishop, R.C. and van der Werff, I.S., 1990: ALF MANUAL, Annual
Loss Factor Design Manual, An aid to thermal design of buildings, Building
Research Association of New Zealand, Judgeford, New Zealand.

Coad P. and Yourdon, E., 1991: Object-Oriented Analysis Second Edition, Prentice
Hall, New Jersey.

Fenves S J, Wright R N, Stahl F I, Reed K A, 1987: Introduction to SASE: Standards
Analysis, Synthesis, and Expression, Report NBSIR 87-3513 U.S. Department
of Commerce, National Bureau of Standards.

Hosking, J.G., Hamer, J. and W.B. Mugridge, 1990: Integrating functional and
object-oriented programming, Proc TOOLS Pacific '90, Sydney, pp. 345-355.

Hosking, J.G., Lomas, S., Mugridge, W.B., and A.J. Cranston, 1989: The
development of an expert system for seismic loading. Civil Engineering
Systems, 6 (1-2), pp 27-35.

Hosking, J.G., Mugridge, W.B. and M. Buis, 1987: FireCode: a case study in the
application of expert systems techniques to a design code. Environment
Planning and Design B, 14, pp267-280.

Hosking, J.G., Mugridge, W.B., Hamer, J., 1991: An architecture for code of practice
conformance systems, in Kahkonen and Bjork (eds) Computers and Building
Regulations, VTT Symposium 125, VTT Espoo, Finland, pp171-180.

Mugridge, W.B. and J.G. Hosking, 1988: The development of an expert system for
wall bracing design. Proc. NZES'88 The third New Zealand Expert Systems
Conference, Wellington, New Zealand , pp10-27.

SANZ, 1977: NZS4218P 1977: Minimum Thermal Insulation Requirements for
Residential Buildings, a New Zealand Standard, Standards Association of New
Zealand, Wellington, New Zealand.

	Abstract
	1 Introduction
	2 The thermal insulation problem
	3 The ThermalDesigner Building Model
	
	
	
	
	
	
	Figure 1: Class structure diagram of ThermalDesigner building model
	Figure 2: functional representation of building attributes

	4 Interfacing to the building model
	
	
	
	
	
	
	Figure 3: PlanEntry system in use
	Figure 4: Example forms: building form (top left), high temperature form (top right), wall material definition forms (bottom left), and space help form (bottom right)
	Figure 5: Architecture of ThermalDesigner

	5 Consistency management
	6 Current work
	
	
	
	
	
	
	Figure 6: Integrating ThermalDesigner and WallBrace

	7 Summary
	Acknowledgements
	References

