
Integrating Design Tools:
An Object-Oriented Approach

by

Robert Amor
Lindsay Groves

Mike Donn

Victoria University of Wellington
PO Box 600
Wellington
New Zealand

Abstract

The problems of integrating design tools from the many disciplines in
architectural design are well known. Many approaches to solving this
problem have been proposed, and much research has gone into attempts at
solutions. In this paper we present the approach used at Victoria
University in the ICAtect project.

ICAtect integrates several design tools commonly used in architectural
design, through the use of an object-oriented model of a building based
upon the frames and worlds systems developed from research into
Artificial Intelligence. The building model developed is structured so
as to capture all the information required by a selection of design
tools, as well as to provide a level of intelligence capable of ensuring
only valid designs are described in the model.

There were many problems encountered when integrating the various design
tools with the building model in ICAtect. The solutions to these
problems are discussed, along with the value of the object-oriented
approach in overcoming these problems.

1. Introduction

In a world that expects its buildings to be one-off designs with
increasing performance and reliability, the building design team is
under great pressure to use as many tools for design analysis and
building performance prediction as possible. Numerous CAD systems,
simulation programs, and, more recently, expert systems are being
developed to assist the team with this analysis.

Each of these tools requires a detailed description of the building or
structure being modelled. Preparing the data describing a building for
use in a design analysis tool can take several days. Even if the design
tool is a computer program, constructing the description of the
building, in a language understood by the design tool, takes a similar
length of time. When the same building is to be analysed by several
different tools, similar base data has to be prepared for each tool,
entailing considerable duplication of effort and many opportunities for
error. If a building is to be described for several design tools,
updating the design or testing the performance changes resulting from
design modifications requires changes to be made in all the descriptions

of the building for all the design tools. This duplication of data
leads to possible inconsistencies of building versions between tools,
which increases the likelihood of erroneous design decisions being made
on the basis of design tool advice.

Each design tool is generally designed to perform one particular type of
analysis or simulation. Few are designed with a view to interfacing
with other tools. This leads to a situation where many tools exist in
isolation and there is little or no transfer of information between
tools in different areas. The exception to this is in CAD systems,
where it has been realised that some sort of exchange protocol is needed
to allow data to be moved from one CAD system to another. This has led
to several different protocols being defined by the major vendors. Only
recently has an ISO standard been defined for the exchange of data
between CAD systems (IGES 1986).

From the problems outlined above it was concluded that there was a need
for a system that would allow a user to automatically transfer common
building data between different design tools, i.e. translate between
different building description languages. This system should also
enable the user to create building descriptions for different design
tools without having to learn the command syntax and idiosyncrasies of
each tool. Writing translators to transfer data between all design
tools would require approximately n2 translators (actually n(n-1)),
where n is the number of design tools. The huge number of translators
required as the number of design tools increases can be reduced by
creating a common building model (CBM) to hold all the information on a
building. With this common building model as the mid-point between
translators, the number of translators required reduces to 2n.

This is the approach that has been taken with ICAtect (see Figure 1 for
the structure of ICAtect). To hold the information on the building
being designed there is a central representation of the building called
the common building model. This common building model represents all
the information that may be required by any of the design tools
integrated into ICAtect. To move information between the various design
tools and the common building model a two stage mapping process has
been defined. At the centre of this mapping, for each design tool, is a
model of the data described using the design tool’s building description
language. This intermediate representation models all the objects and
attributes found in the tool’s data files including any defaults of the
attributes, allowable ranges, methods for calculation, etc. This
greatly simplifies the mapping process by making one stage a direct
translation between the tool’s data file and the intermediate
representation, while the second stage becomes a purely manipulative
process between the two different representations.

To allow the designer to use the system, a separate user interface is
provided. It is designed to ease data entry to the common building
model, and to present the output of the analytical tools.
2. The benefits of integration

A system comprised of multiple integrated design tools allows the
possibility that the user interface functions as a standard interface to
all of the tools in the system. This has the advantage that users need
to learn only one method of entering information or conversing with the
system, instead of the many complicated languages which need to be
mastered to enter information to a range of different design tools,
which is the case today. The advantage to the users is that a single
interface to many different performance analysis tools makes it easier

to use these tools in design. A single consistent language and thought
process is used to access all the tools, reducing the distraction from
the process of designing a building. This system also allows the
designer to devote more time to the actual design as it removes the need
to re-enter information about the building each time a new design tool
is used to analyse its performance.

Common
Building
Model

User
Interface

Intermediate
Representation
Tool #1

Intermediate
Representation
Tool #n

Design
Tool 1

Design
Tool n

User

Figure 1. ICAtect’s structure

The integrated approach offers the architect a way of developing better
designs because it offers a means by which the design performance can be
checked quickly by several different design analysis tools and expert
systems. The use of an object-oriented model of a building allows the
data entry for each design tool to be checked as it is entered. This
can be used to catch simple placement errors in the design, by
specifying requirements of connections between objects, e.g., doors must
be placed inside a wall, windows must be placed inside a wall or door,
etc. It can also pick up gale force ventilation rates or a grossly
over-sized heating plant.

An integrated system helps with the consistency of the building
description data. As there is only one central model of the building
being designed it is not possible to have inconsistent or outdated
models of the building encoded in building descriptions for several
design tools. All changes happen to one model, and all analyses are
derived from the same source of data.

A well designed integrated system will be an open-ended solution, not
locking the user into one or two packages by any particular company. In
the ICAtect system it is a relatively easy matter to add another design
tool to the system by specifying the mapping between the design tools
data file and the common building model in ICAtect, as described later
in this paper. This type of solution allows the designer to keep using

design tools he or she is familiar with and understands.

3. Problems encountered during integration

There are several major problems that are encountered when considering
the integration of design tools into a single system. The quest for
solutions to these problems are central to the research undertaken on
the ICAtect system, and their solutions define the working system. The
problems that were considered can be summarised under three headings:

3.1 The construction of a common building model
This is a problem in two parts, one being what to represent in such a
model of a building, the other being how to represent the building
model. The solutions selected for each of these parts of the problem
greatly influence the final form and performance of the integrated
system. For example, the information represented in the model
determines what types of design tools can be integrated into the system,
and the way the information is structured determines the ease of
integrating new design tools into the system. Also the method of
representing the information determines how that information can be
accessed by the system; the type of query needed, and the speed and
efficiency of access are all affected.

The representation method determines the types of information that can
be represented in the system. For example, there are many types of
information that can be represented in an object-oriented data base that
cannot easily be represent in a standard relational data base. These
types of information are: the notion of classes and inheritance of
information between related classes; the representation of formulae
describing how to calculate values for an attribute; the representation
of code constraints as found in local and national building codes and
standards.

The selection of a representation method can even affect the building
design process by driving the way in which the system runs. The goal
with ICAtect was to allow designers to be free to work at any level they
chose, and not to force them to work in a pre-defined manner.

3.2 Interfacing the common building model to existing design
tools
The problem is that all relevant information must be transferred between
the design tool’s data file and the common building model, and vice-
versa. It is also important that any tool-specific data can be
requested from the user before the tool is invoked. The ideal solution
to this problem is for a system that could take the description of a
design tool’s data files and automatically create the mappings required
to transfer data between it and the common building model. This can be
difficult as many of the existing design tools were created before much
research on parsing had been undertaken. As a result the design tools’
building description languages have been structured in ways that do not
allow standard parsing techniques to be used.

3.3 Interfacing with the user
It is widely accepted that most design tools in use today, especially
CAD systems, work at too low a level of descriptive power to be truly

usable by designers. However, new methods of interaction with the
designer are slowly being tested and adopted by some of the so-called
2nd generation CAD systems. The most common trend is to design the CAD
system around an object based system (Sonata 1988; Vervoert 1987). This
is the approach being used in ICAtect. It is also a major goal to
ensure that the user interface will allow designers to work at any level
they choose, keeping away from structured design and guided
conversations in the system. This extends to allowing users to define
multiple views of their building design, and to allow them to easily
design and test many alterations to a single building without major
effort.

4. The Common Building Model

The design criteria of ICAtect’s common building model were:

• that it should be capable of modelling the objects, relationships

and information used in any of the design tools examined.
• that it should be easily modifiable to allow the addition of

classes of objects without major modifications to its structure.
• that the data captured in the model should only exist in one

place, eliminating redundancy in the model.

On top of these considerations of the model structure, there were the
considerations of the design process, which can be affected by the
method by which this information is represented.

Consideration of the design process placed a number of constraints on
the nature of the common building model. The most severe constraint was
provided by the goal of allowing ‘design freedom’: designers must be
free to work at any level of detail they choose; they must be free to
explore the performance impact of variations in their early concept
design; and they must be able to test modifications to this design as a
means of developing the best possible design.

To help the decision of which representation to use for the building
model, several possible categories of information used to describe a
building were examined. These categories were drawn from an examination
of the different design tools and from general consideration of what
categories could exist (see Amor et al. 1990b). The resulting list of
categories provided a way of ranking representation methods by
determining which categories of information could be represented. After
evaluating the capabilities of the various representations (see Amor et
al. 1990b), it was clear that the only two contenders for representing
buildings were: object-oriented data base systems and frames systems.
The frames approach was chosen, primarily because of the availability of
software (the frames system is fairly easily implemented in Prolog) and
the freedom for expansion or modification offered by a system
implemented on site. It was also noted that a frames system developed
on site would be very flexible and easily modifiable to handle extra
modelling capabilities as needed. This proved useful when modelling
design alternatives (see below).

4.1 Structuring the common building model
Defining the structure of the common building model was potentially a
very complicated task. It was greatly simplified by creating a database
of the attributes and objects used in many of the design tools that
exist at the School of Architecture. This database now contains

information on 17 design tools spanning the range of structural, thermal
and lighting design, as well as information on weather file formats and
CAD exchange representations. It contains over 2,600 entries describing
the attributes defining the building model in each of these design
tools. The database proved very useful for analysing the attributes
required to represent an object in the common building model for many
different types of applications.

The major problem was one of defining the objects required in the common
building model, and the relationships that could exist between the
different objects. From our analysis of the description languages for
buildings, and from charts of objects and relationships defined in the
design tools, it was apparent that a building should be described in a
hierarchical manner. The abstraction hierarchy developed splits objects
into five levels (see Figure 2), much like the abstraction hierarchy in
RATAS (Björk 1989). The five parts of the abstraction hierarchy are:
Building level: This is the top level of the data structure. There is

only one building object for each building. It contains only
building-specific data, such as the location, orientation, number
of floor, etc.

System level: This level breaks up a building into its main functionally
distinct systems. For a building these would be: the spaces in a
building, the structure, HVAC system, lighting system, lifts,
power, communications, etc.

Sub-system level: As the system level represents very high level
concepts this level is used to break a system into its major
functionally distinct components. This allows the grouping of
objects that have common functions. Thus far, it has been used
mainly in the description of the HVAC system, which is broken up
into plant, distribution, and terminal sub-systems, and then
further divided to represent all the major functions of the
components in an HVAC system.

Object level: This level represents each physical object in a building.
All major components in a building are listed on this level. The
types of objects are walls, doors, windows, columns, boilers,
chillers, fans, diffusers, etc.

Part level: This level is used to represent the constituent parts of
components at the object level. For instance, a window at the
object level is represented as a frame and panes at the part
level. The same applies for some plant equipment, e.g., fans,
condensors, and cooling coils are parts of a chiller.

Building

System

Sub-system

Object

Part

Building

SpaceZone Structure

Column/BeamWallFurniture

Overhang Sidefin Window Door

Frame Pane

Figure 2. Abstraction hierarchy

4.2 The frames system
Frames systems (Minsky 1975; Winston 1977) have evolved from the field
of artificial intelligence as a method of embodying the types of
knowledge humans have in their minds, and the methods they use to
manipulate it. As this is a very object-oriented concept, the power and
representation capabilities of frames systems are very similar to
object-oriented DBMS systems. Frames systems can represent the
following types of information: structured objects and their attributes;
relationships between objects; classes of objects and the inheritance of
information between them; formulae and in most cases whole programs
inside an object.

The major reason for developing the frames system in-house was that
commercial frames systems suffer from restrictions on the types of
facets on attributes and relationships between objects that are allowed.
These constraints are coded by the developers, who aim their product for
a set market and are less concerned with the wider applicability of a
more open system. Another major drawback for the purposes of this
project was their scarcity in the market, and the price of those that
exist. However, as noted above, frames systems are relatively easy to
implement in the languages used in artificial intelligence work, and
most researchers end up implementing a system that suits their
particular needs, as was the case in ICAtect.

In keeping with the generalised concept of frames systems (Winston
1977), ICAtect’s frames system is conceptualised in three levels. These
are:

• Frame Holds all attributes needed to define an object.
• Attributes Attributes of an object (and their values).
• Facet Properties of an attribute (and their values).

The frames system has been split into two semantically different
segments: classes and instances (see Figure 3 for the Prolog
representation of classes and instances). Classes are further
subdivided into two conceptually different segments: one for the common
building model; and one for the design tools. Due to the nature of the
information held in a description of a design tool, some of the
relationships and facets used are different from those in the common
building model. This information is mainly concerned with the format of
attributes in a design tool’s data file, and constraints on the number
of allowable objects of any one type.

 Class structure
 class(class_name, data_model, tool_type).
 slot(slot_name, class_name, relationship, facets, data_model,

tool_type).

 Instance structure
 frame(frame_name, data_model, instance_number).
 slot(slot_name, frame_name, relationship, facets).

Figure 3. Class and instance structure

Classes are used to describe the structure of the model or design tool.
They include all objects that can appear in the model or design tool,
all the attributes that can be associated with the objects, and facets
of the attributes describing defaults, constraints, units, etc.
Instances hold specific information on an individual building, they hold
the actual values that describe the objects in a building. The
instances make use of the class definitions to determine what attributes
can be attached to what objects, whether a value is valid and what
objects it can be attached to.

As ICAtect has to manipulate the information on one or more buildings in
the common building model and several different design tools at the same
time, it was important that the frames system could handle many
representations simultaneously. As the frames system is implemented in
Prolog, which keys everything to a single global database, it was
necessary to make explicit the tool to which a piece of information
belongs (data_model in Figure 3). To this extent the frames system
keys all the information in Prolog by the design tool name or the name
‘Common Building Model’. To cope with the possibility of many buildings
being handled at any one time all the information is also keyed by a
unique number denoting the building being modelled (instance_number in
Figure 3). The design tools offer the added complication that many of
them can accept the description of a building in different formats, in
most cases using either imperial or metric units. To handle this, all
of the class information about a design tool is keyed with a number
identifying which format of the building model is being described
(tool_type in Figure 3).

It may be noticed in Figure 3 that each frame is described in two
stages: first, the class or frame predicate detailing the object name
and the design tool it belongs to; and second, the slot predicate
describing the properties of a single attribute for the particular
design tool. This two part structure was derived from an earlier
attempt to describe a frame as one predicate, with all attribute
descriptions in a large list inside the frame predicate (much like the
facets are in the slot predicate). The single predicate frames system
created very large data structures which involved a large amount of
searching and list manipulation to extract the required information

about an attribute. Breaking the frame into two predicates makes Prolog
do all the work and speeds up searches considerably. As Prolog indexes
each predicate in its data base, searching for a named predicate is very
fast and requires no work on the programmer’s part. This also reduced
the amount of code for the frames system to about half of what was
required previously.

As can be seen in Figure 3, all attributes are classified by a
relationship type. This relationship type distinguishes the function of
the attribute in the description of the object to which it belongs.
This allows the selection of attributes of an object which perform a
certain task, for example to find all attributes which describe the
connection to another object. This classification also gives the frames
system some assistance in deciding how to handle the values for the
attribute. There are nine types of relationships defined in ICAtect.
They are fully described in Amor et al. (1990a).

The facet section of the attribute’s definition is a list defining all
the facets applicable to the attribute. There are nine types of facets
defined in ICAtect, they were determined by what facets would be needed
to describe the properties of attributes in such a system. These
properties can be used by the frames system to determine default values,
the type of data expected, restrictions on the attribute, where the
value was derived, a description of the function of the attribute, etc.
The full list of facets is described in detail in Amor et al. (1990b).

4.3 Augmenting frames: Worlds
The frames system is quite capable of modelling buildings and their
components. However, as a standard frames system is not capable of
representing design alternatives, which is one of the major
considerations for ICAtect’s building representation, the frames system
has been augmented with a worlds system that allows this. This system
is based upon the concept of worlds as described in KEE (1988). Worlds
in KEE are used to explore alternative choices in an analysis and to
maintain derived results. KEE incorporates a truth maintenance system
for tracking beliefs and their presence in various worlds, a facility
not deemed necessary for ICAtect. The addition of worlds to the frames
system demonstrates the flexibility of the frames system in allowing
modifications to suit a particular purpose.

The worlds system allows the designer to take the model of a building
constructed in the frames system and examine various modifications to
this base building without destroying the base building description, and
without having to duplicate any of the data in the base building. This
concept is very similar to the layers systems in CAD packages, where a
layer is like a sheet of clear plastic on which the designer draws a
certain object. If the sheet is laid over the rest of the CAD drawing
the object is in the building, and the designer has a different view of
the building without having duplicated the rest of the CAD drawing. The
worlds system is different from the layers system in that all
modifications, or worlds, are recorded in a hierarchical tree. This
structure allows the designer to explore many different branches of
thought, and with the hierarchical tree recording all the detours,
provides a method of changing quickly from one view to another.

The worlds system works by taking the concept of inheritance one step
further than the inheritance of attributes between objects, to the
inheritance of whole sets of objects, in this case comprising a whole
building. The worlds system is based upon a hierarchical tree of
worlds, with each world inheriting all the modifications made further up

the tree right back to the root world which is the original description
of the building being examined.

0

1 2

3

+

Figure 4. Worlds

The example in Figure 4 shows four worlds. The root world (world 0),
describes the whole building which, for the purposes of this example,
has a coal fired boiler and single glazed windows. After analysing the
base building, the designer decides to examine the effects of two
changes. First, the coal boiler is replaced with a gas fired boiler
(world 1). Second, all exterior windows are changed to double glazing
and the coal fired boiler is replaced with an electric boiler (world 2).
After further analysis of these two modifications the designer decides
to test a gas fired boiler instead of the electric boiler in world 2
(world 3). Worlds 1 through 3 demonstrate the power of the worlds
system. With very little effort the designer is able to construct a new
building, derived from the existing design, without duplicating any
objects and adding only the changed systems. The designer now has three
variations of the base building, all with the detail of the base
building without having to duplicate any of the base building data. The
designer can move between the different variations just by changing the
world number he or she is working on.

The actual implementation of the worlds system required remarkably
little effort. Representing an attribute’s value for the different
worlds required only a small modification to the value facet of the
frames structure. The notation used for labelling worlds is that the
root world (base building) is number zero, and all other worlds are
numbered sequentially as they are created. Keeping track of which world
a value relates to is achieved by changing the value of the value facet
to a list of values, each denoted by a world number. In this way any
number of worlds can be accommodated.

e.g., in frames facet(value, 12.5)
 with worlds facet(value, [world(0, 12.5), world(1, 8.7)])

The frames system was modified to handle worlds by the addition of a
world_number parameter to all operators which deal with instance frames.
This parameter is passed through to the low level operators for
extracting, deleting or adding a value to a facet. At this level the

operators had to be re-written separately to handle a value facet, which
is indexed by world numbers.

The hierarchical tree of worlds is represented in a simple structure,
representing the world number and its parent world for each building
model. Figure 5 shows the world hierarchical tree for Figure 4. Using
this structure when looking for a value for an attribute, the frames
system will look for a value for the current world, for example world 3.
If there is no value for that world it will look up the hierarchy, in
this case world 2. If there is no value for that world it will look at
the next world up in the hierarchy, and so on, until it reaches the root
world. If there is still no value, or possibility of a default value,
in the root world then it will fail.

 world_tree(1, 0, “COMMON BUILDING MODEL”, 1, 1).
 world_tree(2, 0, “COMMON BUILDING MODEL”, 1, 1).
 world_tree(3, 2, “COMMON BUILDING MODEL”, 1, 1).

Figure 5. Worlds hierarchy representation

There are only two inconveniences with this worlds representation, both
involved with removing objects. The first occurs when it is necessary
to remove a whole world from the world hierarchy. While it easy to
restructure the hierarchical tree of worlds to accommodate this removal,
if there are any worlds inheriting data from the world being removed it
is necessary to find every value asserted for the world being removed
and make it a value for the world or worlds under the one being removed,
while checking that the value of the world being removed has not been
superseded by a value in one of the lower worlds. This change would
have to be propagated down through every world right down the
hierarchical tree from the one being removed. For this reason worlds
are not allowed to be removed in ICAtect. The second occurs when the
designer wants to modify the base building by removing an object. The
worlds notation has no mechanism for signifying the removal of an
object. In this case the value of the parts relationship, which
specifies the objects which exist as part of a higher level object, must
be duplicated for the current world but omitting the reference to the
object to be removed.

4.4 Summary of model
The final model developed in ICAtect contains 93 objects, enabling
representation of information for a building and its structure, thermal
properties and lighting systems as required by the design tools at the
School of Architecture.

The use of a frames system augmented with the worlds concept provided a
powerful yet flexible method to represent the information required by a
wide range of design tools. The use of this system to represent the
building model in each of the design tools linked to ICAtect has allowed
much information about the design tools to be encapsulated inside the
ICAtect system. This information proves invaluable when integrating the
design tools as described below.

Structuring the building model through the use of the abstraction
hierarchy has given us a system which is very modular, and proves to be
easily extendible for new application areas as they need to be added to
ICAtect.

5. Integrating design tools

Having developed the common building model to capture building designs,
it was necessary to develop an interface between this and each of the
tools used. For each tool, ICAtect needs to be able to generate the
input to the tool in order to run it. ICAtect also needs to be able to
read the output from the tool in order to interpret the results and add
information obtained to the knowledge base. Finally if there are
existing data files for a particular tool, ICAtect needs to be able to
read these and construct the relevant parts of the building description
from them.

To construct the data file required to drive a particular tool, ICAtect
has to be able to extract the necessary information for a building from
the common building model and format it in the appropriate way. It is
also necessary for the user to be able to add other parameters required
by the tool, such as the length of time over which to run the
simulation, where to find weather data, or what output options are
required. To read the output from a tool, or a data file for a tool, a
parser is needed that understands the structure of the file being read.
ICAtect then needs to be able to display the results in an appropriate
form and make suitable entries in the knowledge base.

The mapping process between the description of a building in the
knowledge base and a data file produced by, or prepared as input for, a
specific tool, is performed in two stages. The link between the two
stages is the frames representation of the information in the tool’s
data file, giving the structure in Figure 6.

Common
Knowledge
Base

Knowledge
Base
Tool - 1

Knowledge
Base
Tool - n

Tool - 1
Input

Tool - 1
Output

Tool - n
Input

Tool - n
Output

Tool - 1

Tool - n

Figure 6. Detailed structure of ICAtect system

The advantage of splitting the mapping into two stages in this way is
that the distinct types of mapping are separated. The mapping between
the knowledge base and the frames representation for a particular file
is only concerned with the relationship between two knowledge bases, not
with the syntactic format of the description language for a particular
tool. The mapping between the frames representation and the data file
for a particular tool is only concerned with the information needed by
the tool and not with any other aspects of the complete knowledge base.

Splitting the mapping into two stages with an intermediate knowledge
base for each design tool defines the attributes needed by a specific
tool. This is of enormous benefit when the system has to determine what
extra information is required by the design tool to be used. From the
intermediate representation, it is possible to ascertain what attributes
are needed by the design tool, where they come from in the common
building model, and whether they are actually present in the common
building model or have to be requested from the user.

The initial approach to implementing these interface mappings has been
to write specific programs to perform the mappings required for each
tool used. These programs, like the frames system described earlier,
are written in Prolog. With example programs which perform a mapping
between a certain type of data file and the common building model, it
should be easy to incorporate tools of the same type. Ultimately, these
interfaces could be generated automatically from descriptions of the
input and output formats and the knowledge base.

5.1 Mapping between the CBM and an intermediate
representation
Mapping between the CBM and the intermediate representation for a
particular tool involves the manipulation of structures of objects and
the combining or splitting of attributes. From the work to date this
appears to be the hardest part of the mapping process.

Attributes needed by a tool but not in the common building model are
asked for at this stage of the mapping process. These values are only
required when moving data from the CBM to a tool’s intermediate
representation, as the tool must have all the data required to perform
its analysis. These values are not requested when moving data to the
CBM as the CBM can hold much data which relates to different fields of
design, many of which will not be needed by the designer. The strategy
is to only ask for information from the user when it is absolutely
necessary.

When information is mapped between the CBM and an intermediate
representation it is necessary to keep track (an audit trail) of what
model in the CBM is mapped to what intermediate representation, and
vice-versa. This gives the designer some information on where the
information is coming from, and allows results from a particular
analysis to be incorporated back into the original model.

There are several different types of translations that can occur when
mapping objects and attributes. These are: a one to one mapping; many
to one mapping; and a one to many mapping of both attributes and
objects. Mixtures of these types of mapping can prove difficult to
handle in a consistent notation, e.g., when several objects have some
attributes which map into the same object in the new representation. At
present a mapping between two objects is represented by a set of
mappings between attributes. A mapping between attributes can be a
straight one to one mapping, or it can map a set of attributes to a set
of attributes by a user defined procedure.

The generalised form of the ‘map’ predicate is shown in Figure 7. There
is a ‘map’ predicate defined for each set of attributes that has to be
transfered between two objects in different representations. This
predicate defines the mapping between one object in a design tool and
one object in the CBM which is of a certain type, defined by
Mapping_Type. This can either define that a new object is created, or

the attributes are added to an existing object, or that the mapping
denotes an object in a design tool which will be incorporated into an
object in the CBM through the reference of another object in a design
tool.

 map(Tool_Object, CBM_Object, Mapping_Type, [
 ...
 All mappings between these objects
 ...
], Data_Model, Tool_Type).

Figure 7. General form of the ‘map’ predicate

To incorporate a mapping between the CBM and a tool's representation
requires a set of mappings to be defined for each object in the tool's
model. Creating these mappings consists of analysing each object in a
tool's model and deciding where each attribute's data belongs in the
CBM. A mapping procedure must be selected for each attribute to be
mapped between representations. If it is a straight-forward mapping
then it is likely that there already exists a procedure which will
handle what is required. However, for mappings which require tool-
specific knowledge, it will be necessary to hand-code mapping procedures
to perform the task required.

5.2 Mapping between a tool's intermediate representation
and a tool's data file
Mapping between the intermediate representation and a tool's data file
involves parsing and pretty-printing the data files used by the various
tools. Much of the parsing work can be implemented with the standard
parsing techniques used in compilers. It was hoped that it would be
possible to develop a standard method of parsing these data files into
their intermediate representation. However, due to the range of data
file types and their complexity, this does not seem feasible. The best
approach seems to be to develop standard methods of parsing particular
types of files, and provide as many services as possible to facilitate
the addition of new tools into the system. To this extent a range of
parsers and pretty-printers have been developed that can handle the
majority of data file types that exist.

6. Current work

The discussion above describes ICAtect as at the time of writing. As
was stated at the start of this paper, the development of ICAtect is
part of an on-going programme of research. Further work is currently
being done in the following areas:

6.1 Object-Oriented user interface
This is the final component required to make ICAtect truly usable. Work
is underway investigating the addition of an object-oriented user
interface based upon the objects defined in the common building model.
This interface will allow users to perform the complete design of a
building through ICAtect, and to analyse the results in a friendlier
environment than the current text-based system offers.

6.2 Extending the design tools integrated
The number and types of design tools incorporated into ICAtect is being

expanded. This will, with the graphical user interface, enable an
evaluation of the usability of this type of system in a real working
environment. It is envisaged that there will be five design tools from
the major areas of structural, thermal and lighting design integrated
into ICAtect before the system is evaluated.

7. Conclusion

The prototype ICAtect system developed provides proof that the
integrated design tool environment that was visualised can actually be
constructed. It shows that it is possible to develop a model of a
building capable of holding the information required by a variety of
design tools, and demonstrates that by using an object-oriented common
building model it is possible to construct a system that can move
information between several disparate design tools. The object-oriented
intermediate representation of a tool's data file greatly simplifies the
mapping between tools, and also simplifies the addition of new tools.

The ICAtect system demonstrates that the use of an object-oriented
representation, that of a frames system augmented with the worlds
concept, provides a powerful yet flexible representation method for use
in representing knowledge about a building. The building model
constructed has proved capable of holding the majority of information
needed by a range of design tools from disparate areas of design. The
worlds system developed allows the designer to examine many different
options during the design of a building, with an ease that is not
possible with the state of the art design tools.

The technique of providing example methods for interfacing to the
ICAtect system seems the best way to approach the problem of interfacing
to design tool’s data files, given that a generalised interfacing system
seems to be out of contention. The methods examined to date, cover all
the data file types that exist at the School of Architecture. This
means that the addition of a new tool only requires modifying the method
that matches the new data file type, not writing a parser from scratch.

References

Amor, R., Groves, L. and Donn, M. (1990a). Integrating Design Tools

for Building Design, ASHRAE Transactions, Volume 96, Part 2, pp.
501-507.

Amor, R., Groves, L. and Donn, M. (1990b). An Augmented Frame

Representation for Building Designs, Proceedings of the 4th New
Zealand Expert Systems Conference, Palmerston North, New Zealand.

Björk, B-C (1989). Basic structure of a proposed building product

model, Computer-Aided Design, 21(2), March, pp. 71-78.

IGES (1986). Initial graphics exchange specification 3.0, National

Bureau of Standards, Gaithersburg, MD 20899, USA.

KEE (Knowledge Engineering Environment) (1988). KEE Software

Development System User’s manual, Unisys, USA.

Minsky, A. (1975). A framework for representing knowledge, The

psychology of computer vision, McGraw-Hill, pp 211-277.

Sonata (1988). t2 Solutions Limited, The Teamwork Centre, Prince Edward
Street, Berkhamsted, Hertfordshire, HP4 3AY, England.

Vervoert, C. (1987). Intergraph’s Objects Based Architectural Design

and Production System, NBS Data, Vol. 24, September, pp. 39-59.

Winston, P. H. (1977). Artificial Intelligence, Addison Wesley.

