| ntegrating Design Tools:
An (bj ect-Oiented Approach

by
Robert Anor
Li ndsay G oves
M ke Donn

Victoria University of Wellington
PO Box 600
Wl i ngt on
New Zeal and

Abstract

The problens of integrating design tools from the nmany disciplines in
architectural design are well known. Many approaches to solving this
probl em have been proposed, and nuch research has gone into attenpts at
sol utions. In this paper we present the approach used at Victoria
University in the | CAtect project.

| CAtect integrates several design tools commonly used in architectural
design, through the use of an object-oriented nodel of a building based
upon the frames and worlds systens developed from research into
Artificial Intelligence. The building nodel developed is structured so
as to capture all the information required by a selection of design
tools, as well as to provide a level of intelligence capable of ensuring
only valid designs are described in the nodel.

There were many probl ens encountered when integrating the various design
tools with the building nodel in |CAtect. The solutions to these
problens are discussed, along with the value of the object-oriented
approach in overcom ng these probl ens.

1. | nt roducti on

In a world that expects its buildings to be one-off designs wth
increasing performance and reliability, the building design team is
under great pressure to use as many tools for design analysis and
buil ding performance prediction as possible. Nuner ous CAD systens,
simulation progranms, and, nore recently, expert systens are being
devel oped to assist the teamw th this analysis.

Each of these tools requires a detailed description of the building or
structure being nodelled. Preparing the data describing a building for
use in a design analysis tool can take several days. Even if the design
tool is a conmputer program constructing the description of the
buil ding, in a |language understood by the design tool, takes a simlar
| ength of tine. When the sane building is to be analysed by severa

different tools, sinmlar base data has to be prepared for each tool

entailing considerable duplication of effort and nany opportunities for
error. If a building is to be described for several design tools

updating the design or testing the performance changes resulting from
design nodifications requires changes to be made in all the descriptions

of the building for all the design tools. This duplication of data
| eads to possible inconsistencies of building versions between tools
whi ch increases the likelihood of erroneous design decisions being nade
on the basis of design tool advice.

Each design tool is generally designed to performone particular type of
anal ysis or simulation. Few are designed with a view to interfacing
with other tools. This leads to a situation where many tools exist in
isolation and there is little or no transfer of information between
tools in different areas. The exception to this is in CAD systens,
where it has been realised that sone sort of exchange protocol is needed
to allow data to be noved from one CAD systemto another. This has |ed
to several different protocols being defined by the major vendors. Only
recently has an |1SO standard been defined for the exchange of data
bet ween CAD systens (1 CGES 1986).

From the probl ens outlined above it was concluded that there was a need
for a system that would allow a user to automatically transfer comon
buil ding data between different design tools, i.e. translate between
different building description |anguages. This system should also
enable the user to create building descriptions for different design
tools without having to learn the conmand syntax and idiosyncrasies of
each tool. Witing translators to transfer data between all design

tools would require approximately n? translators (actually n(n-1)),
where n is the nunber of design tools. The huge nunber of translators
required as the nunber of design tools increases can be reduced by
creating a comon building nodel (CBM to hold all the information on a
bui | di ng. Wth this common building nodel as the nid-point between
translators, the nunber of translators required reduces to 2n

This is the approach that has been taken with | CAtect (see Figure 1 for

the structure of |CAtect). To hold the information on the building
bei ng designed there is a central representation of the building called
the common buil di ng nodel . This common buil ding nodel represents all

the information that may be required by any of the design tools
integrated into I CAtect. To nmove infornmation between the various design
tools and the common buil di ng nodel a two stage mapping process has
been defined. At the centre of this mapping, for each design tool, is a
nodel of the data described using the design tool’'s building description
| anguage. This internediate representation nodels all the objects and
attributes found in the tool's data files including any defaults of the
attributes, allowable ranges, nethods for calculation, etc. Thi s
greatly sinplifies the mapping process by making one stage a direct
translation between the tool's data file and the internediate
representation, while the second stage beconmes a purely nanipulative
process between the two different representations.

To allow the designer to use the system a separate user interface is
provi ded. It is designed to ease data entry to the common buil ding
nodel, and to present the output of the analytical tools.

2. The benefits of integration

A system conprised of multiple integrated design tools allows the
possibility that the user interface functions as a standard interface to
all of the tools in the system This has the advantage that users need
to learn only one nethod of entering information or conversing with the
system instead of the many conplicated |anguages which need to be
mastered to enter information to a range of different design tools,
which is the case today. The advantage to the users is that a single
interface to nany different performance analysis tools nakes it easier

to use these tools in design. A single consistent |anguage and thought
process is used to access all the tools, reducing the distraction from
the process of designing a building. This system also allows the
designer to devote nmore tinme to the actual design as it renoves the need
to re-enter information about the building each tine a new design tool
is used to analyse its performance.

Intermediate Design
Representation Tool 1
Tool #1
° °
Common °
Building
Model L
Intermediate Design
Representation Tool n
Tool #n
User
Interface
Figure 1. |CAtect’'s structure

The integrated approach offers the architect a way of devel opi ng better
desi gns because it offers a neans by which the design performance can be
checked quickly by several different design analysis tools and expert
systems. The use of an object-oriented nodel of a building allows the
data entry for each design tool to be checked as it is entered. Thi s
can be used to catch sinple placenent errors in the design, by
speci fying requi renments of connections between objects, e.g., doors nust
be placed inside a wall, w ndows nust be placed inside a wall or door,
etc. It can also pick up gale force ventilation rates or a grossly
over-si zed heating plant.

An integrated system helps with the consistency of the building
description data. As there is only one central nodel of the building
being designed it is not possible to have inconsistent or outdated
nodels of the building encoded in building descriptions for several
design tools. Al'l changes happen to one nodel, and all analyses are
derived fromthe same source of data.

A well designed integrated system will be an open-ended solution, not
| ocking the user into one or two packages by any particul ar conpany. In
the I CAtect systemit is a relatively easy matter to add another design
tool to the system by specifying the nmapping between the design tools
data file and the comon building nodel in |ICAtect, as described |ater
in this paper. This type of solution allows the designer to keep using

design tools he or she is fanmliar with and understands.

3. Problens encountered during integration

There are several nmmjor problens that are encountered when considering
the integration of design tools into a single system The quest for
solutions to these problens are central to the research undertaken on
the | CAtect system and their solutions define the working system The
probl ens that were considered can be sunmari sed under three headi ngs:

3.1 The construction of a common buil di ng nodel
This is a problemin tw parts, one being what to represent in such a
nodel of a building, the other being how to represent the building

nodel . The solutions selected for each of these parts of the problem
greatly influence the final form and performance of the integrated
system For exanple, the information represented in the node

det erm nes what types of design tools can be integrated into the system
and the way the information is structured determnes the ease of
integrating new design tools into the system Also the nethod of
representing the information deternmines how that information can be
accessed by the system the type of query needed, and the speed and
efficiency of access are all affected.

The representation nethod determnes the types of information that can
be represented in the system For exanple, there are nmany types of
i nfornati on that can be represented in an object-oriented data base that
cannot easily be represent in a standard relational data base. These
types of information are: the notion of classes and inheritance of
information between related classes; the representation of formulae
describing how to calculate values for an attribute; the representation
of code constraints as found in local and national building codes and
st andar ds.

The selection of a representation nethod can even affect the building
design process by driving the way in which the system runs. The goal
with I CAtect was to all ow designers to be free to work at any |evel they
chose, and not to force themto work in a pre-defined nmanner.

3.2 Interfacing the comon building nodel to existing design
t ool s

The problemis that all relevant information nust be transferred between
the design tool's data file and the common building nodel, and vice-
versa. It is also inportant that any tool-specific data can be
requested fromthe user before the tool is invoked. The ideal solution
to this problemis for a system that could take the description of a
design tool’'s data files and automatically create the mappings required
to transfer data between it and the conmmon building nodel. This can be
difficult as many of the existing design tools were created before much
research on parsing had been undertaken. As a result the design tools’
bui | di ng description | anguages have been structured in ways that do not
al | ow standard parsing techniques to be used.

3.3 Interfacing with the user
It is widely accepted that nbst design tools in use today, especially
CAD systens, work at too low a level of descriptive power to be truly

usabl e by designers. However, new nethods of interaction with the
designer are slowy being tested and adopted by some of the so-called

2nd generation CAD systens. The nbst conmon trend is to design the CAD
system around an obj ect based system (Sonata 1988; Vervoert 1987). This

is the approach being used in |CAtect. It is also a major goal to
ensure that the user interface will allow designers to work at any | eve
they choose, keeping away from structured design and guided

conversations in the system This extends to allowi ng users to define
multiple views of their building design, and to allow them to easily
design and test nmany alterations to a single building wthout najor
effort.

4. The Common Buil di ng Model

The design criteria of | CAtect’s comon buil di ng nodel were:

. that it should be capable of nodelling the objects, relationships
and information used in any of the design tools exam ned.

. that it should be easily nodifiable to allow the addition of
cl asses of objects without major nodifications to its structure.

. that the data captured in the nodel should only exist in one

pl ace, elim nating redundancy in the nodel

On top of these considerations of the nobdel structure, there were the
considerations of the design process, which can be affected by the
met hod by which this information is represented.

Consi deration of the design process placed a nunmber of constraints on
the nature of the comon buil ding nodel. The nbst severe constraint was
provided by the goal of allowing ‘design freedoni: designers must be
free to work at any level of detail they choose; they nust be free to
explore the performance inpact of variations in their early concept
design; and they nust be able to test nodifications to this design as a
means of devel opi ng the best possibl e design.

To help the decision of which representation to use for the building
nodel , several possible categories of information used to describe a
bui | di ng were exam ned. These categories were drawn from an exam nation
of the different design tools and from general consideration of what
categories could exist (see Anor et al. 1990b). The resulting list of
categories provided a way of ranking representation nethods by
determ ni ng which categories of information could be represented. After
eval uating the capabilities of the various representations (see Anor et
al. 1990b), it was clear that the only two contenders for representing
buil di ngs were: object-oriented data base systenms and franes systens.
The franmes approach was chosen, prinmarily because of the availability of
software (the franmes systemis fairly easily inplenented in Prol og) and
the freedom for expansion or nodification offered by a system

i npl enented on site. It was also noted that a franes system devel oped
on site would be very flexible and easily nodifiable to handle extra
nodel | ing capabilities as needed. This proved useful when nodelling

design alternatives (see bel ow).

4.1 Structuring the comon buil di ng nodel

Defining the structure of the comon building nodel was potentially a
very conplicated task. It was greatly sinplified by creating a database
of the attributes and objects used in many of the design tools that
exist at the School of Architecture. This database now contains

i nfornmati on on 17 design tools spanning the range of structural, therma
and lighting design, as well as information on weather file formats and

CAD exchange representations. It contains over 2,600 entries describing
the attributes defining the building nodel in each of these design
t ool s. The database proved very useful for analysing the attributes

required to represent an object in the conmon buil ding nodel for many
different types of applications.

The maj or problem was one of defining the objects required in the comon
buil ding nodel, and the relationships that could exist between the
di fferent objects. From our analysis of the description |anguages for
buil dings, and from charts of objects and relationships defined in the
design tools, it was apparent that a building should be described in a
hi erarchi cal nmanner. The abstraction hierarchy devel oped splits objects
into five levels (see Figure 2), much like the abstraction hierarchy in
RATAS (Bjork 1989). The five parts of the abstraction hierarchy are:
Building level: This is the top |level of the data structure. There is
only one building object for each building. It contains only
bui | di ng-specific data, such as the location, orientation, number
of floor, etc.

System |l evel: This level breaks up a building into its main functionally
distinct systenms. For a building these would be: the spaces in a
building, the structure, HVAC system lighting system lifts,
power, communi cations, etc.

Sub-system level: As the system level represents very high |eve
concepts this level is used to break a system into its nmgmjor
functionally distinct conponents. This allows the grouping of
obj ects that have comon functions. Thus far, it has been used
mainly in the description of the HVAC system which is broken up
into plant, distribution, and termnal sub-systens, and then
further divided to represent all the mjor functions of the
conponents in an HVAC system

ohject level: This level represents each physical object in a building.
Al nmajor conmponents in a building are listed on this level. The
types of objects are walls, doors, wndows, colums, boilers,
chillers, fans, diffusers, etc.

Part level: This level is used to represent the constituent parts of

conmponents at the object |evel. For instance, a w ndow at the
object level is represented as a frame and panes at the part
| evel . The sane applies for sone plant equipnent, e.g., fans,

condensors, and cooling coils are parts of a chiller

Building

Building
System
Zone Space Structure

Sub-system / /
Object

Furniture Wall Column/Beam

Overhang Sidefin Window Door

N
Part Wil [
Frame Pane

Figure 2. Abstraction hierarchy

4.2 The frames system

Frames systens (M nsky 1975; Wnston 1977) have evolved fromthe field
of artificial intelligence as a nethod of enbodying the types of
knowl edge hunmans have in their minds, and the nethods they use to
mani pulate it. As this is a very object-oriented concept, the power and
representation capabilities of franes systens are very simlar to
object-oriented DBMS systens. Frames systens can represent the
following types of information: structured objects and their attributes;
rel ati onshi ps between objects; classes of objects and the inheritance of
informati on between them fornulae and in nost cases whole prograns
i nsi de an obj ect.

The major reason for developing the frames system in-house was that
commercial franes systens suffer from restrictions on the types of
facets on attributes and rel ati onshi ps between objects that are all owed.
These constraints are coded by the devel opers, who aimtheir product for
a set market and are less concerned with the wider applicability of a
nore open system Anot her nmmjor drawback for the purposes of this
project was their scarcity in the market, and the price of those that
exi st. However, as noted above, frames systens are relatively easy to
implenent in the |anguages used in artificial intelligence work, and
nost researchers end up inplenmenting a system that suits their
particul ar needs, as was the case in | CAtect.

In keeping with the generalised concept of frames systens (Wnston
1977), ICAtect’s frames systemis conceptualised in three levels. These
are:

* Frame Holds all attributes needed to define an object.
e Attributes Attributes of an object (and their val ues).
* Facet Properties of an attribute (and their val ues).

The franes system has been split into two semantically different
segnents: classes and instances (see Figure 3 for the Prolog
representation of classes and instances). Casses are further
subdivided into two conceptually different segnents: one for the comon
bui | di ng nodel ; and one for the design tools. Due to the nature of the

information held in a description of a design tool, sonme of the
rel ationships and facets used are different from those in the common
buil ding nmodel. This information is mainly concerned with the format of

attributes in a design tool's data file, and constraints on the numnber
of all owabl e objects of any one type.

Class structure

cl ass(cl ass_nane, data_nodel, tool _type).

slot(slot_name, class_nanme, relationship, facets, data_nodel
tool type).

I nstance structure
frame(frame_nane, data_nodel, instance_numnber).
sl ot (sl ot _name, franme_nane, relationship, facets).

Figure 3. dass and instance structure

Cl asses are used to describe the structure of the nodel or design tool.
They include all objects that can appear in the nodel or design tool
all the attributes that can be associated with the objects, and facets
of the attributes describing defaults, constraints, wunits, etc.
I nstances hold specific information on an individual building, they hold
the actual values that describe the objects in a building. The
i nstances nake use of the class definitions to determ ne what attributes
can be attached to what objects, whether a value is valid and what
objects it can be attached to.

As | CAtect has to manipul ate the information on one or nore buildings in
t he conmon buil di ng nodel and several different design tools at the same

time, it was inportant that the frames system could handle many
representations sinultaneously. As the frames systemis inplenmented in
Prol og, which keys everything to a single global database, it was
necessary to nake explicit the tool to which a piece of information
bel ongs (data_nodel in Figure 3). To this extent the frames system
keys all the infornmation in Prolog by the design tool name or the nane
“Cormon Buil ding Mddel’. To cope with the possibility of many buil dings

being handled at any one time all the information is also keyed by a
uni que nunber denoting the building being nodelled (instance nunber in
Figure 3). The design tools offer the added conplication that nany of
them can accept the description of a building in different formats, in
nost cases using either inperial or metric units. To handle this, al
of the class information about a design tool is keyed with a nunber
identifying which format of the building nodel is being described
(tool type in Figure 3).

It may be noticed in Figure 3 that each franme is described in two
stages: first, the class or frane predicate detailing the object nane
and the design tool it belongs to; and second, the slot predicate
describing the properties of a single attribute for the particular

design tool. This two part structure was derived from an earlier
attenpt to describe a frame as one predicate, with all attribute
descriptions in a large list inside the franme predicate (nuch like the
facets are in the slot predicate). The single predicate frames system

created very large data structures which involved a |arge anount of
searching and list nanipulation to extract the required information

about an attribute. Breaking the frame into two predicates nakes Prol og
do all the work and speeds up searches considerably. As Prolog indexes
each predicate in its data base, searching for a nanmed predicate is very
fast and requires no work on the programmer’s part. This also reduced
the amount of code for the franes system to about half of what was
requi red previously.

As can be seen in Figure 3, all attributes are classified by a
relationship type. This relationship type distinguishes the function of
the attribute in the description of the object to which it belongs.
This allows the selection of attributes of an object which perform a
certain task, for exanple to find all attributes which describe the
connection to another object. This classification also gives the franes
system sone assistance in deciding how to handle the values for the
attribute. There are nine types of relationships defined in |CAtect.
They are fully described in Amor et al. (1990a).

The facet section of the attribute’s definition is a list defining al

the facets applicable to the attribute. There are nine types of facets
defined in I CAtect, they were determ ned by what facets would be needed
to describe the properties of attributes in such a system These
properties can be used by the franes systemto deternine default val ues,
the type of data expected, restrictions on the attribute, where the
val ue was derived, a description of the function of the attribute, etc.
The full list of facets is described in detail in Aror et al. (1990b).

4.3 Augnenting franes: Worlds

The frames system is quite capable of nodelling buildings and their
conponents. However, as a standard frames system is not capable of
representing design alternatives, which is one of the mjor
considerations for |CAtect’s building representation, the franes system
has been augnented with a worlds systemthat allows this. This system
i s based upon the concept of worlds as described in KEE (1988). Worlds
in KEE are used to explore alternative choices in an analysis and to
mai ntain derived results. KEE incorporates a truth nmaintenance system
for tracking beliefs and their presence in various worlds, a facility
not deened necessary for |ICAtect. The addition of worlds to the franes
system denonstrates the flexibility of the frames system in allow ng
nodi fications to suit a particul ar purpose.

The worlds system allows the designer to take the nbdel of a building
constructed in the frames system and exami ne various nodifications to
this base building without destroying the base building description, and
wi t hout having to duplicate any of the data in the base building. This
concept is very simlar to the layers systens in CAD packages, where a
layer is like a sheet of clear plastic on which the designer draws a
certain object. |If the sheet is laid over the rest of the CAD draw ng
the object is in the building, and the designer has a different view of
the buil ding without having duplicated the rest of the CAD drawing. The
worlds system is different from the Ilayers system in that al
nodi fications, or worlds, are recorded in a hierarchical tree. Thi s
structure allows the designer to explore many different branches of
thought, and with the hierarchical tree recording all the detours,
provi des a net hod of changing quickly fromone view to another.

The worlds system works by taking the concept of inheritance one step
further than the inheritance of attributes between objects, to the
i nheritance of whole sets of objects, in this case conprising a whole
bui | di ng. The worlds system is based upon a hierarchical tree of
worl ds, with each world inheriting all the nodifications made further up

the tree right back to the root world which is the original description
of the building being exani ned.

A
ooon
ooon
oooo |/
ooon ;
000 FE—
ooof0O
oo

4 O iiww
4

The exanple in Figure 4 shows four worlds. The root world (world 0),
describes the whole building which, for the purposes of this exanple,
has a coal fired boiler and single glazed wi ndows. After analysing the
base building, the designer decides to examne the effects of two
changes. First, the coal boiler is replaced with a gas fired boiler
(world 1). Second, all exterior wi ndows are changed to double glazing
and the coal fired boiler is replaced with an electric boiler (world 2).
After further analysis of these two nodifications the designer decides
to test a gas fired boiler instead of the electric boiler in world 2
(world 3). Wrlds 1 through 3 denonstrate the power of the worlds
system Wth very little effort the designer is able to construct a new
building, derived from the existing design, wthout duplicating any
obj ects and addi ng only the changed systens. The designer now has three
variations of the base building, all wth the detail of the base
bui | di ng wi thout having to duplicate any of the base building data. The
desi gner can nove between the different variations just by changing the
wor | d nunber he or she is working on

The actual inplementation of the worlds system required renmarkably
little effort. Representing an attribute’s value for the different
worlds required only a snall nodification to the value facet of the
frames structure. The notation used for labelling worlds is that the
root world (base building) is nunber zero, and all other worlds are
nunbered sequentially as they are created. Keeping track of which world
a value relates to is achieved by changing the value of the value facet
to a list of values, each denoted by a world nunber. In this way any
nunber of worlds can be accommodat ed.

e.g., in frames facet(value, 12.5)
with worlds facet(value, [world(0, 12.5), world(1l, 8.7)])

The franes system was nodified to handle worlds by the addition of a
wor | d_nunber paraneter to all operators which deal with instance franes.
This paranmeter is passed through to the low level operators for
extracting, deleting or adding a value to a facet. At this level the

operators had to be re-witten separately to handle a val ue facet, which
i s indexed by world nunbers.

The hierarchical tree of worlds is represented in a sinple structure,
representing the world nunber and its parent world for each building

nodel. Figure 5 shows the world hierarchical tree for Figure 4. Using
this structure when |ooking for a value for an attribute, the franes
systemw || | ook for a value for the current world, for exanple world 3.
If there is no value for that world it will look up the hierarchy, in
this case world 2. If there is no value for that world it will |ook at
the next world up in the hierarchy, and so on, until it reaches the root
wor | d. If there is still no value, or possibility of a default val ue,

in the root world then it will fail.

worl d_tree(1, 0, “COWVMON BUI LDI NG MODEL”, 1, 1).
worl d_tree(2, 0, “COWVMON BU LDI NG MODEL”, 1, 1).
worl d_tree(3, 2, “COWVVON BU LDI NG MODEL”, 1, 1).

Figure 5. Wrlds hierarchy representation

There are only two inconveniences with this worlds representation, both
invol ved with renoving objects. The first occurs when it is necessary
to renove a whole world from the world hierarchy. VWhile it easy to
restructure the hierarchical tree of worlds to accommodate this renoval,
if there are any worlds inheriting data fromthe world being renoved it
is necessary to find every value asserted for the world being renoved
and nake it a value for the world or worlds under the one being renoved,
whil e checking that the value of the world being renoved has not been
superseded by a value in one of the |ower worlds. Thi s change woul d
have to be propagated down through every world right down the
hi erarchical tree from the one being renoved. For this reason worlds

are not allowed to be renmoved in |CAtect. The second occurs when the
designer wants to nodify the base building by renoving an object. The
worlds notation has no nechanism for signifying the renoval of an
obj ect . In this case the value of the parts relationship, which

specifies the objects which exist as part of a higher |evel object, nust
be duplicated for the current world but omtting the reference to the
obj ect to be renpved

4.4 Sunmmary of nodel

The final nodel developed in |CAtect contains 93 objects, enabling
representation of information for a building and its structure, therma
properties and lighting systems as required by the design tools at the
School of Architecture.

The use of a franes system augnented with the worl ds concept provided a
powerful yet flexible nmethod to represent the information required by a
wi de range of design tools. The use of this system to represent the
bui | di ng nmodel in each of the design tools linked to | CAtect has all owed
much information about the design tools to be encapsulated inside the
| CAtect system This information proves invaluable when integrating the
design tools as described bel ow

Structuring the building nodel through the use of the abstraction
hi erarchy has given us a system which is very nodular, and proves to be
easily extendible for new application areas as they need to be added to
| CAt ect .

5. Integrating design tools

Havi ng devel oped the common buil di ng nodel to capture building designs,
it was necessary to develop an interface between this and each of the
tool s used. For each tool, |CAtect needs to be able to generate the
input to the tool in order to run it. |1CAtect also needs to be able to
read the output fromthe tool in order to interpret the results and add
information obtained to the know edge base. Finally if there are
existing data files for a particular tool, |CAtect needs to be able to
read these and construct the relevant parts of the building description
fromthem

To construct the data file required to drive a particular tool, |CAtect
has to be able to extract the necessary information for a building from
the conmon building nodel and format it in the appropriate way. It is
al so necessary for the user to be able to add other paraneters required
by the tool, such as the length of time over which to run the
simulation, where to find weather data, or what output options are
required. To read the output froma tool, or a data file for a tool, a
parser is needed that understands the structure of the file being read.
| CAtect then needs to be able to display the results in an appropriate
formand nake suitable entries in the know edge base.

The mapping process between the description of a building in the
know edge base and a data file produced by, or prepared as input for, a
specific tool, is perfornmed in two stages. The link between the two
stages is the franmes representation of the information in the tool’s
data file, giving the structure in Figure 6.

Tool - 1
/ \
Knowledge/ Input
Base
Tool - 1
\ Tool - 1
Output
o ° °
Common °
Knowledge o o o
Base ° °®
/ Tool - n
\
Knowledge / Input
Base
Tool -n
\ Tool -n
Output

Figure 6. Detailed structure of |CAtect system

The advantage of splitting the nmapping into two stages in this way is
that the distinct types of mapping are separated. The mappi ng between
t he know edge base and the frames representation for a particular file
is only concerned with the relationship between two know edge bases, not
with the syntactic format of the description |anguage for a particular
tool. The mapping between the frames representation and the data file
for a particular tool is only concerned with the information needed by
the tool and not with any ot her aspects of the conplete know edge base.

Splitting the mapping into two stages with an intermediate know edge
base for each design tool defines the attributes needed by a specific
tool. This is of enornbus benefit when the system has to determ ne what
extra information is required by the design tool to be used. Fromthe
intermedi ate representation, it is possible to ascertain what attributes
are needed by the design tool, where they cone from in the comon
buil ding nodel, and whether they are actually present in the common
bui | di ng nodel or have to be requested fromthe user

The initial approach to inplenmenting these interface mappi ngs has been
to wite specific prograns to perform the mappings required for each

t ool wused. These progranms, like the franmes system described earlier
are witten in Prolog. Wth exanple progranms which perform a mapping
between a certain type of data file and the common building nodel, it

shoul d be easy to incorporate tools of the sane type. Utimtely, these
interfaces could be generated automatically from descriptions of the
i nput and output formats and the know edge base.

5.1 Mapping between the CBM and an internediate
representation

Mappi ng between the CBM and the internediate representation for a
particular tool involves the nanipulation of structures of objects and
the combining or splitting of attributes. From the work to date this
appears to be the hardest part of the napping process.

Attributes needed by a tool but not in the common building nodel are
asked for at this stage of the mapping process. These values are only
required when noving data from the CBM to a tool’s internediate
representation, as the tool nust have all the data required to perform
its analysis. These values are not requested when noving data to the
CBM as the CBM can hold rmuch data which relates to different fields of
design, nmany of which will not be needed by the designer. The strategy
is to only ask for information from the user when it is absolutely
necessary.

VWhen information is nmapped between the CBM and an internediate
representation it is necessary to keep track (an audit trail) of what
nodel in the CBM is nmapped to what internediate representation, and
Vi ce-versa. This gives the designer sone information on where the
information is comng from and allows results from a particular
anal ysis to be incorporated back into the original nodel.

There are several different types of translations that can occur when
mappi ng objects and attributes. These are: a one to one mapping; nany
to one mapping; and a one to many nmapping of both attributes and
obj ect s. M xtures of these types of napping can prove difficult to
handle in a consistent notation, e.g., when several objects have sone
attributes which map into the same object in the new representation. At
present a mapping between two objects is represented by a set of
mappi ngs between attributes. A mapping between attributes can be a
straight one to one mapping, or it can map a set of attributes to a set
of attributes by a user defined procedure.

The generalised formof the ‘map’ predicate is shown in Figure 7. There
is a ‘map’ predicate defined for each set of attributes that has to be
transfered between two objects in different representations. Thi s
predi cate defines the napping between one object in a design tool and
one object in the CBM which is of a certain type, defined by
Mappi ng_Type. This can either define that a new object is created, or

the attributes are added to an existing object, or that the napping
denotes an object in a design tool which will be incorporated into an
object in the CBM through the reference of another object in a design
t ool .

map(Tool _CObj ect, CBM bj ect, Mapping_Type, [
Al mappi ngs between these objects
], Data_Mbdel, Tool Type).

Figure 7. General formof the ‘map’ predicate

To incorporate a mapping between the CBM and a tool's representation
requires a set of nmappings to be defined for each object in the tool's
nodel . Creating these mappings consists of analysing each object in a
tool's nodel and deciding where each attribute's data belongs in the
CBM A mapping procedure nust be selected for each attribute to be
mapped between representations. If it is a straight-forward mapping
then it is likely that there already exists a procedure which wll
handl e what is required. However, for mappings which require tool-
specific know edge, it will be necessary to hand-code mappi ng procedures
to performthe task required.

5.2 Mappi ng between a tool's internmediate representation

and a tool's data file

Mappi ng between the internediate representation and a tool's data file
i nvol ves parsing and pretty-printing the data files used by the various
t ool s. Much of the parsing work can be inplenented with the standard
parsi ng techni ques used in conpilers. It was hoped that it would be
possi ble to develop a standard nethod of parsing these data files into
their internediate representation. However, due to the range of data
file types and their conplexity, this does not seem feasible. The best
approach seens to be to devel op standard nethods of parsing particul ar
types of files, and provide as many services as possible to facilitate
the addition of new tools into the system To this extent a range of
parsers and pretty-printers have been developed that can handle the
majority of data file types that exist.

6. Current work

The discussion above describes ICAtect as at the tine of witing. As
was stated at the start of this paper, the developnent of |CAtect is
part of an on-going progranme of research. Further work is currently
being done in the foll ow ng areas:

6.1 bject-Oriented user interface

This is the final conmponent required to nake | CAtect truly usable. Wrk
is underway investigating the addition of an object-oriented user
interface based upon the objects defined in the comon buil di ng nodel.
This interface will allow users to perform the conplete design of a
buil ding through |ICAtect, and to analyse the results in a friendlier
environnent than the current text-based systemoffers.

6.2 Extending the design tools integrated
The nunber and types of design tools incorporated into | CAtect is being

expanded. This will, with the graphical user interface, enable an
evaluation of the usability of this type of system in a real working
environnent. It is envisaged that there will be five design tools from
the mpjor areas of structural, thermal and |ighting design integrated
into | CAtect before the systemis eval uated.

7. Concl usi on

The prototype |CAtect system developed provides proof that the
i ntegrated design tool environnent that was visualised can actually be
construct ed. It shows that it is possible to develop a nodel of a
buil di ng capable of holding the infornation required by a variety of
design tools, and denonstrates that by using an object-oriented conmmon
building nmodel it is possible to construct a system that can nove
i nfornmati on between several disparate design tools. The object-oriented
i nternediate representation of a tool's data file greatly sinplifies the
mappi ng between tools, and also sinplifies the addition of new tools.

The | CAtect system denonstrates that the use of an object-oriented
representation, that of a franmes system augnented with the worlds
concept, provides a powerful yet flexible representation nmethod for use
in representing know edge about a building. The building nodel
constructed has proved capable of holding the majority of infornmation
needed by a range of design tools from disparate areas of design. The
wor |l ds system devel oped allows the designer to exam ne nany different
options during the design of a building, with an ease that is not
possible with the state of the art design tools.

The technique of providing exanple nmethods for interfacing to the
| CAtect system seens the best way to approach the problem of interfacing
to design tool’s data files, given that a generalised interfacing system
seems to be out of contention. The nethods examined to date, cover all
the data file types that exist at the School of Architecture. Thi s
means that the addition of a new tool only requires nodifying the method
that matches the new data file type, not witing a parser from scratch.

Ref er ences

Amor, R, Goves, L. and Donn, M (1990a). Integrating Design Tools
for Building Design, ASHRAE Transactions, Volune 96, Part 2, pp.
501-507.

Armor, R, Goves, L. and Donn, M (1990b). An Augnented Frame

Representation for Building Designs, Proceedings of the 4th New
Zeal and Expert Systens Conference, Pal nerston North, New Zeal and.

Bj 6rk, B-C (1989). Basic structure of a proposed building product
nodel , Comput er - Ai ded Design, 21(2), March, pp. 71-78.

| GES (1986). Initial graphics exchange specification 3.0, National
Bureau of Standards, Gaithersburg, MD 20899, USA

KEE (Know edge Engineering Environnent) (1988). KEE Software
Devel opnent System User’s manual, Unisys, USA

M nsky, A (1975). A framework for representing know edge, The
psychol ogy of conputer vision, McGawH I, pp 211-277

Sonat a (1988). t2 Solutions Limted, The Teamwork Centre, Prince Edward
Street, Berkhansted, Hertfordshire, HP4 3AY, Engl and.

Vervoert, C. (1987). Intergraph’s Objects Based Architectural Design
and Production System NBS Data, Vol. 24, Septenber, pp. 39-59

Wnston, P. H (1977). Artificial Intelligence, Addison Wsley.

