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Abstract 
 
The problems of integrating design tools from the many disciplines in 
architectural design are well known.  Many approaches to solving this 
problem have been proposed, and much research has gone into attempts at 
solutions.  In this paper we present the approach used at Victoria 
University in the ICAtect project. 
 
ICAtect integrates several design tools commonly used in architectural 
design, through the use of an object-oriented model of a building based 
upon the frames and worlds systems developed from research into 
Artificial Intelligence.  The building model developed is structured so 
as to capture all the information required by a selection of design 
tools, as well as to provide a level of intelligence capable of ensuring 
only valid designs are described in the model. 
 
There were many problems encountered when integrating the various design 
tools with the building model in ICAtect.  The solutions to these 
problems are discussed, along with the value of the object-oriented 
approach in overcoming these problems. 
 
 
1.  Introduction 
 
In a world that expects its buildings to be one-off designs with 
increasing performance and reliability, the building design team is 
under great pressure to use as many tools for design analysis and 
building performance prediction as possible.  Numerous CAD systems, 
simulation programs, and, more recently, expert systems are being 
developed to assist the team with this analysis. 
 
Each of these tools requires a detailed description of the building or 
structure being modelled.  Preparing the data describing a building for 
use in a design analysis tool can take several days.  Even if the design 
tool is a computer program, constructing the description of the 
building, in a language understood by the design tool, takes a similar 
length of time.  When the same building is to be analysed by several 
different tools, similar base data has to be prepared for each tool, 
entailing considerable duplication of effort and many opportunities for 
error.  If a building is to be described for several design tools, 
updating the design or testing the performance changes resulting from 
design modifications requires changes to be made in all the descriptions 



of the building for all the design tools.  This duplication of data 
leads to possible inconsistencies of building versions between tools, 
which increases the likelihood of erroneous design decisions being made 
on the basis of design tool advice. 
 
Each design tool is generally designed to perform one particular type of 
analysis or simulation.  Few are designed with a view to interfacing 
with other tools.  This leads to a situation where many tools exist in 
isolation and there is little or no transfer of information between 
tools in different areas.  The exception to this is in CAD systems, 
where it has been realised that some sort of exchange protocol is needed 
to allow data to be moved from one CAD system to another.  This has led 
to several different protocols being defined by the major vendors.  Only 
recently has an ISO standard been defined for the exchange of data 
between CAD systems (IGES 1986). 
 
From the problems outlined above it was concluded that there was a need 
for a system that would allow a user to automatically transfer common 
building data between different design tools, i.e. translate between 
different building description languages.  This system should also 
enable the user to create building descriptions for different design 
tools without having to learn the command syntax and idiosyncrasies of 
each tool.  Writing translators to transfer data between all design 
tools would require approximately n2 translators (actually n(n-1)), 
where n is the number of design tools.  The huge number of translators 
required as the number of design tools increases can be reduced by 
creating a common building model (CBM) to hold all the information on a 
building.  With this common building model as the mid-point between 
translators, the number of translators required reduces to 2n. 
 
This is the approach that has been taken with ICAtect (see Figure 1 for 
the structure of ICAtect).  To hold the information on the building 
being designed there is a central representation of the building called 
the common building model.  This common building model represents all 
the information that may be required by any of the design tools 
integrated into ICAtect.  To move information between the various design 
tools and the common building model  a two stage mapping process has 
been defined.  At the centre of this mapping, for each design tool, is a 
model of the data described using the design tool’s building description 
language.  This intermediate representation models all the objects and 
attributes found in the tool’s data files including any defaults of the 
attributes, allowable ranges, methods for calculation, etc.  This 
greatly simplifies the mapping process by making one stage a direct 
translation between the tool’s data file and the intermediate 
representation, while the second stage becomes a purely manipulative 
process between the two different representations. 
 
To allow the designer to use the system, a separate user interface is 
provided.  It is designed to ease data entry to the common building 
model, and to present the output of the analytical tools. 
2.  The benefits of integration 
 
A system comprised of multiple integrated design tools allows the 
possibility that the user interface functions as a standard interface to 
all of the tools in the system.  This has the advantage that users need 
to learn only one method of entering information or conversing with the 
system, instead of the many complicated languages which need to be 
mastered to enter information to a range of different design tools, 
which is the case today.  The advantage to the users is that a single 
interface to many different performance analysis tools makes it easier 



to use these tools in design.  A single consistent language and thought 
process is used to access all the tools, reducing the distraction from 
the process of designing a building.  This system also allows the 
designer to devote more time to the actual design as it removes the need 
to re-enter information about the building each time a new design tool 
is used to analyse its performance. 
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Figure 1.  ICAtect’s structure 

 
The integrated approach offers the architect a way of developing better 
designs because it offers a means by which the design performance can be 
checked quickly by several different design analysis tools and expert 
systems.  The use of an object-oriented model of a building allows the 
data entry for each design tool to be checked as it is entered.  This 
can be used to catch simple placement errors in the design, by 
specifying requirements of connections between objects, e.g., doors must 
be placed inside a wall, windows must be placed inside a wall or door, 
etc.  It can also pick up gale force ventilation rates or a grossly 
over-sized heating plant. 
 
An integrated system helps with the consistency of the building 
description data.  As there is only one central model of the building 
being designed it is not possible to have inconsistent or outdated 
models of the building encoded in building descriptions for several 
design tools.  All changes happen to one model, and all analyses are 
derived from the same source of data. 
 
A well designed integrated system will be an open-ended solution, not 
locking the user into one or two packages by any particular company.  In 
the ICAtect system it is a relatively easy matter to add another design 
tool to the system by specifying the mapping between the design tools 
data file and the common building model in ICAtect, as described later 
in this paper.  This type of solution allows the designer to keep using 



design tools he or she is familiar with and understands. 
 
 
 
3. Problems encountered during integration 
 
There are several major problems that are encountered when considering 
the integration of design tools into a single system.  The quest for 
solutions to these problems are central to the research undertaken on 
the ICAtect system, and their solutions define the working system. The 
problems that were considered can be summarised under three headings: 
 
3.1  The construction of a common building model 
This is a problem in two parts, one being what to represent in such a 
model of a building, the other being how to represent the building 
model.  The solutions selected for each of these parts of the problem 
greatly influence the final form and performance of the integrated 
system.  For example, the information represented in the model 
determines what types of design tools can be integrated into the system, 
and the way the information is structured determines the ease of 
integrating new design tools into the system.  Also the method of 
representing the information determines how that information can be 
accessed by the system; the type of query needed, and the speed and 
efficiency of access are all affected. 
 
The representation method determines the types of information that can 
be represented in the system.  For example, there are many types of 
information that can be represented in an object-oriented data base that 
cannot easily be represent in a standard relational data base.  These 
types of information are: the notion of classes and inheritance of 
information between related classes; the representation of formulae 
describing how to calculate values for an attribute; the representation 
of code constraints as found in local and national building codes and 
standards. 
 
The selection of a representation method can even affect the building 
design process by driving the way in which the system runs.  The goal 
with ICAtect was to allow designers to be free to work at any level they 
chose, and not to force them to work in a pre-defined manner. 
 
 
 
3.2 Interfacing the common building model to existing design 
tools 
The problem is that all relevant information must be transferred between 
the design tool’s data file and the common building model, and vice-
versa.  It is also important that any tool-specific data can be 
requested from the user before the tool is invoked.  The ideal solution 
to this problem is for a system that could take the description of a 
design tool’s data files and automatically create the mappings required 
to transfer data between it and the common building model.  This can be 
difficult as many of the existing design tools were created before much 
research on parsing had been undertaken.  As a result the design tools’ 
building description languages have been structured in ways that do not 
allow standard parsing techniques to be used. 
 
3.3  Interfacing with the user 
It is widely accepted that most design tools in use today, especially 
CAD systems, work at too low a level of descriptive power to be truly 



usable by designers.  However, new methods of interaction with the 
designer are slowly being tested and adopted by some of the so-called 
2nd generation CAD systems.  The most common trend is to design the CAD 
system around an object based system (Sonata 1988; Vervoert 1987).  This 
is the approach being used in ICAtect.  It is also a major goal to 
ensure that the user interface will allow designers to work at any level 
they choose, keeping away from structured design and guided 
conversations in the system.  This extends to allowing users to define 
multiple views of their building design, and to allow them to easily 
design and test many alterations to a single building without major 
effort. 
 
 
4.  The Common Building Model 
 
The design criteria of ICAtect’s common building model were:  
 
• that it should be capable of modelling the objects, relationships 

and information used in any of the design tools examined. 
• that it should be easily modifiable to allow the addition of 

classes of objects without major modifications to its structure. 
• that the data captured in the model should only exist in one 

place, eliminating redundancy in the model. 
 
On top of these considerations of the model structure, there were the 
considerations of the design process, which can be affected by the 
method by which this information is represented. 
 
Consideration of the design process placed a number of constraints on 
the nature of the common building model.  The most severe constraint was 
provided by the goal of allowing ‘design freedom’: designers must be 
free to work at any level of detail they choose; they must be free to 
explore the performance impact of variations in their early concept 
design; and they must be able to test modifications to this design as a 
means of developing the best possible design. 
 
 
To help the decision of which representation to use for the building 
model, several possible categories of information used to describe a 
building were examined.  These categories were drawn from an examination 
of the different design tools and from general consideration of what 
categories could exist (see Amor et al. 1990b).  The resulting list of 
categories provided a way of ranking representation methods by 
determining which categories of information could be represented.  After 
evaluating the capabilities of the various representations (see Amor et 
al. 1990b), it was clear that the only two contenders for representing 
buildings were: object-oriented data base systems and frames systems.  
The frames approach was chosen, primarily because of the availability of 
software (the frames system is fairly easily implemented in Prolog) and 
the freedom for expansion or modification offered by a system 
implemented on site.  It was also noted that a frames system developed 
on site would be very flexible and easily modifiable to handle extra 
modelling capabilities as needed.  This proved useful when modelling 
design alternatives (see below). 
 
4.1  Structuring the common building model 
Defining the structure of the common building model was potentially a 
very complicated task.  It was greatly simplified by creating a database 
of the attributes and objects used in many of the design tools that 
exist at the School of Architecture.  This database now contains 



information on 17 design tools spanning the range of structural, thermal 
and lighting design, as well as information on weather file formats and 
CAD exchange representations.  It contains over 2,600 entries describing 
the attributes defining the building model in each of these design 
tools.  The database proved very useful for analysing the attributes 
required to represent an object in the common building model for many 
different types of applications. 
 
The major problem was one of defining the objects required in the common 
building model, and the relationships that could exist between the 
different objects.  From our analysis of the description languages for 
buildings, and from charts of objects and relationships defined in the 
design tools, it was apparent that a building should be described in a 
hierarchical manner.  The abstraction hierarchy developed splits objects 
into five levels (see Figure 2), much like the abstraction hierarchy in 
RATAS (Björk 1989).  The five parts of the abstraction hierarchy are: 
Building level:  This is the top level of the data structure.  There is 

only one building object for each building.  It contains only 
building-specific data, such as the location, orientation, number 
of floor, etc. 

System level: This level breaks up a building into its main functionally 
distinct systems.  For a building these would be: the spaces in a 
building, the structure, HVAC system, lighting system, lifts, 
power, communications, etc. 

Sub-system level: As the system level represents very high level 
concepts this level is used to break a system into its major 
functionally distinct components.  This allows the grouping of 
objects that have common functions.  Thus far, it has been used 
mainly in the description of the HVAC system, which is broken up 
into plant, distribution, and terminal sub-systems, and then 
further divided to represent all the major functions of the 
components in an HVAC system. 

Object level: This level represents each physical object in a building.  
All major components in a building are listed on this level.  The 
types of objects are walls, doors, windows, columns, boilers, 
chillers, fans, diffusers, etc. 

Part level: This level is used to represent the constituent parts of 
components at the object level.  For instance, a window at the 
object level is represented as a frame and panes at the part 
level.  The same applies for some plant equipment, e.g., fans, 
condensors, and cooling coils are parts of a chiller. 
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Figure 2.  Abstraction hierarchy 

 
4.2  The frames system 
Frames systems (Minsky 1975; Winston 1977) have evolved from the field 
of artificial intelligence as a method of embodying the types of 
knowledge humans have in their minds, and the methods they use to 
manipulate it.  As this is a very object-oriented concept, the power and 
representation capabilities of frames systems are very similar to 
object-oriented DBMS systems.  Frames systems can represent the 
following types of information: structured objects and their attributes; 
relationships between objects; classes of objects and the inheritance of 
information between them; formulae and in most cases whole programs 
inside an object. 
 
The major reason for developing the frames system in-house was that 
commercial frames systems suffer from restrictions on the types of 
facets on attributes and relationships between objects that are allowed.  
These constraints are coded by the developers, who aim their product for 
a set market and are less concerned with the wider applicability of a 
more open system.  Another major drawback for the purposes of this 
project was their scarcity in the market, and the price of those that 
exist.  However, as noted above, frames systems are relatively easy to 
implement in the languages used in artificial intelligence work, and 
most researchers end up implementing a system that suits their 
particular needs, as was the case in ICAtect. 
 
In keeping with the generalised concept of frames systems (Winston 
1977), ICAtect’s frames system is conceptualised in three levels.  These 
are: 
 
• Frame  Holds all attributes needed to define an object. 
• Attributes Attributes of an object (and their values). 
• Facet  Properties of an attribute (and their values). 



 
The frames system has been split into two semantically different 
segments: classes and instances (see Figure 3 for the Prolog 
representation of classes and instances).  Classes are further 
subdivided into two conceptually different segments: one for the common 
building model; and one for the design tools.  Due to the nature of the 
information held in a description of a design tool, some of the 
relationships and facets used are different from those in the common 
building model.  This information is mainly concerned with the format of 
attributes in a design tool’s data file, and constraints on the number 
of allowable objects of any one type. 
 
 Class structure 
 class(class_name, data_model, tool_type). 
 slot(slot_name, class_name, relationship, facets, data_model, 

tool_type). 
 
 Instance structure 
 frame(frame_name, data_model, instance_number). 
 slot(slot_name, frame_name, relationship, facets). 
 

Figure 3.  Class and instance structure 
 
Classes are used to describe the structure of the model or design tool.  
They include all objects that can appear in the model or design tool, 
all the attributes that can be associated with the objects, and facets 
of the attributes describing defaults, constraints, units, etc.  
Instances hold specific information on an individual building, they hold 
the actual values that describe the objects in a building.  The 
instances make use of the class definitions to determine what attributes 
can be attached to what objects, whether a value is valid and what 
objects it can be attached to. 
 
As ICAtect has to manipulate the information on one or more buildings in 
the common building model and several different design tools at the same 
time, it was important that the frames system could handle many 
representations simultaneously.  As the frames system is implemented in 
Prolog, which keys everything to a single global database, it was 
necessary to make explicit the tool to which a piece of information 
belongs (data_model  in Figure 3).  To this extent the frames system 
keys all the information in Prolog by the design tool name or the name 
‘Common Building Model’.  To cope with the possibility of many buildings 
being handled at any one time all the information is also keyed by a 
unique number denoting the building being modelled (instance_number  in 
Figure 3).  The design tools offer the added complication that many of 
them can accept the description of a building in different formats, in 
most cases using either imperial or metric units.  To handle this, all 
of the class information about a design tool is keyed with a number 
identifying which format of the building model is being described 
(tool_type  in Figure 3). 
 
It may be noticed in Figure 3 that each frame is described in two 
stages: first, the class or frame predicate detailing the object name 
and the design tool it belongs to; and second, the slot predicate 
describing the properties of a single attribute for the particular 
design tool.  This two part structure was derived from an earlier 
attempt to describe a frame as one predicate, with all attribute 
descriptions in a large list inside the frame predicate (much like the 
facets are in the slot predicate).  The single predicate frames system 
created very large data structures which involved a large amount of 
searching and list manipulation to extract the required information 



about an attribute.  Breaking the frame into two predicates makes Prolog 
do all the work and speeds up searches considerably.  As Prolog indexes 
each predicate in its data base, searching for a named predicate is very 
fast and requires no work on the programmer’s part.  This also reduced 
the amount of code for the frames system to about half of what was 
required previously. 
 
As can be seen in Figure 3, all attributes are classified by a 
relationship type.  This relationship type distinguishes the function of 
the attribute in the description of the object to which it belongs.  
This allows the selection of attributes of an object which perform a 
certain task, for example to find all attributes which describe the 
connection to another object.  This classification also gives the frames 
system some assistance in deciding how to handle the values for the 
attribute.  There are nine types of relationships defined in ICAtect.  
They are fully described in Amor et al. (1990a). 
 
The facet section of the attribute’s definition is a list defining all 
the facets applicable to the attribute.  There are nine types of facets 
defined in ICAtect, they were determined by what facets would be needed 
to describe the properties of attributes in such a system.  These 
properties can be used by the frames system to determine default values, 
the type of data expected, restrictions on the attribute, where the 
value was derived, a description of the function of the attribute, etc.  
The full list of facets is described in detail in Amor et al. (1990b). 
 
4.3  Augmenting frames:  Worlds 
The frames system is quite capable of modelling buildings and their 
components.  However, as a standard frames system is not capable of 
representing design alternatives, which is one of the major 
considerations for ICAtect’s building representation, the frames system 
has been augmented with a worlds system that allows this.  This system 
is based upon the concept of worlds as described in KEE (1988).  Worlds 
in KEE are used to explore alternative choices in an analysis and to 
maintain derived results.  KEE incorporates a truth maintenance system 
for tracking beliefs and their presence in various worlds, a facility 
not deemed necessary for ICAtect.  The addition of worlds to the frames 
system demonstrates the flexibility of the frames system in allowing 
modifications to suit a particular purpose. 
 
The worlds system allows the designer to take the model of a building 
constructed in the frames system and examine various  modifications to 
this base building without destroying the base building description, and 
without having to duplicate any of the data in the base building.  This 
concept is very similar to the layers systems in CAD packages, where a 
layer is like a sheet of clear plastic on which the designer draws a 
certain object.  If the sheet is laid over the rest of the CAD drawing 
the object is in the building, and the designer has a different view of 
the building without having duplicated the rest of the CAD drawing.  The 
worlds system is different from the layers system in that all 
modifications, or worlds, are recorded in a hierarchical tree.  This 
structure allows the designer to explore many different branches of 
thought, and with the hierarchical tree recording all the detours, 
provides a method of changing quickly from one view to another. 
 
The worlds system works by taking the concept of inheritance one step 
further than the inheritance of attributes between objects, to the 
inheritance of whole sets of objects, in this case comprising a whole 
building.  The worlds system is based upon a hierarchical tree of 
worlds, with each world inheriting all the modifications made further up 



the tree right back to the root world which is the original description 
of the building being examined. 
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Figure 4.  Worlds 
 
The example in Figure 4 shows four worlds.  The root world (world 0), 
describes the whole building which, for the purposes of this example, 
has a coal fired boiler and single glazed windows.  After analysing the 
base building, the designer decides to examine the effects of two 
changes.  First, the coal boiler is replaced with a gas fired boiler 
(world 1).  Second, all exterior windows are changed to double glazing 
and the coal fired boiler is replaced with an electric boiler (world 2).  
After further analysis of these two modifications the designer decides 
to test a gas fired boiler instead of the electric boiler in world 2 
(world 3).  Worlds 1 through 3 demonstrate the power of the worlds 
system.  With very little effort the designer is able to construct a new 
building, derived from the existing design, without duplicating any 
objects and adding only the changed systems.  The designer now has three 
variations of the base building, all with the detail of the base 
building without having to duplicate any of the base building data.  The 
designer can move between the different variations just by changing the 
world number he or she is working on. 
 
The actual implementation of the worlds system required remarkably 
little effort.  Representing an attribute’s value for the different 
worlds required only a small modification to the value facet of the 
frames structure.  The notation used for labelling worlds is that the 
root world (base building) is number zero, and all other worlds are 
numbered sequentially as they are created.  Keeping track of which world 
a value relates to is achieved by changing the value of the value facet 
to a list of values, each denoted by a world number.  In this way any 
number of worlds can be accommodated. 
 
e.g., in frames facet(value, 12.5) 
 with worlds facet(value, [world(0, 12.5), world(1, 8.7)]) 
 
The frames system was modified to handle worlds by the addition of a 
world_number parameter to all operators which deal with instance frames.  
This parameter is passed through to the low level operators for 
extracting, deleting or adding a value to a facet.  At this level the 



operators had to be re-written separately to handle a value facet, which 
is indexed by world numbers. 
 
The hierarchical tree of worlds is represented in a simple structure, 
representing the world number and its parent world for each building 
model.  Figure 5 shows the world hierarchical tree for Figure 4.  Using 
this structure when looking for a value for an attribute, the frames 
system will look for a value for the current world, for example world 3.  
If there is no value for that world it will look up the hierarchy, in 
this case world 2.  If there is no value for that world it will look at 
the next world up in the hierarchy, and so on, until it reaches the root 
world.  If there is still no value, or possibility of a default value, 
in the root world then it will fail. 
 
 world_tree(1, 0, “COMMON BUILDING MODEL”, 1, 1). 
 world_tree(2, 0, “COMMON BUILDING MODEL”, 1, 1). 
 world_tree(3, 2, “COMMON BUILDING MODEL”, 1, 1). 
 

Figure 5.  Worlds hierarchy representation 
 
There are only two inconveniences with this worlds representation, both 
involved with removing objects.  The first occurs when it is necessary 
to remove a whole world from the world hierarchy.  While it easy to 
restructure the hierarchical tree of worlds to accommodate this removal, 
if there are any worlds inheriting data from the world being removed it 
is necessary to find every value asserted for the world being removed 
and make it a value for the world or worlds under the one being removed, 
while checking that the value of the world being removed has not been 
superseded by a value in one of the lower worlds.  This change would 
have to be propagated down through every world right down the 
hierarchical tree from the one being removed.  For this reason worlds 
are not allowed to be removed in ICAtect.  The second occurs when the 
designer wants to modify the base building by removing an object.  The 
worlds notation has no mechanism for signifying the removal of an 
object.  In this case the value of the parts relationship, which 
specifies the objects which exist as part of a higher level object, must 
be duplicated for the current world but omitting the reference to the 
object to be removed. 
 
4.4  Summary of model 
The final model developed in ICAtect contains 93 objects, enabling 
representation of information for a building and its structure, thermal 
properties and lighting systems as required by the design tools at the 
School of Architecture. 
 
The use of a frames system augmented with the worlds concept provided a 
powerful yet flexible method to represent the information required by a 
wide range of design tools.  The use of this system to represent the 
building model in each of the design tools linked to ICAtect has allowed 
much information about the design tools to be encapsulated inside the 
ICAtect system.  This information proves invaluable when integrating the 
design tools as described below. 
 
Structuring the building model through the use of the abstraction 
hierarchy has given us a system which is very modular, and proves to be 
easily extendible for new application areas as they need to be added to 
ICAtect. 
 
 
5.  Integrating design tools 



 
Having developed the common building model to capture building designs, 
it was necessary to develop an interface between this and each of the 
tools used.  For each tool, ICAtect needs to be able to generate the 
input to the tool in order to run it.  ICAtect also needs to be able to 
read the output from the tool in order to interpret the results and add 
information obtained to the knowledge base.  Finally if there are 
existing data files for a particular tool, ICAtect needs to be able to 
read these and construct the relevant parts of the building description 
from them. 
 
To construct the data file required to drive a particular tool, ICAtect 
has to be able to extract the necessary information for a building from 
the common building model and format it in the appropriate way.  It is 
also necessary for the user to be able to add other parameters required 
by the tool, such as the length of time over which to run the 
simulation, where to find weather data, or what output options are 
required.  To read the output from a tool, or a data file for a tool, a 
parser is needed that understands the structure of the file being read.  
ICAtect then needs to be able to display the results in an appropriate 
form and make suitable entries in the knowledge base. 
 
The mapping process between the description of a building in the 
knowledge base and a data file produced by, or prepared as input for, a 
specific tool, is performed in two stages.  The link between the two 
stages is the frames representation of the information in the tool’s 
data file, giving the structure in Figure 6. 
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Figure 6.  Detailed structure of ICAtect system 
 
The advantage of splitting the mapping into two stages in this way is 
that the distinct types of mapping are separated.  The mapping between 
the knowledge base and the frames representation for a particular file 
is only concerned with the relationship between two knowledge bases, not 
with the syntactic format of the description language for a particular 
tool.  The mapping between the frames representation and the data file 
for a particular tool is only concerned with the information needed by 
the tool and not with any other aspects of the complete knowledge base. 



 
Splitting the mapping into two stages with an intermediate knowledge 
base for each design tool defines the attributes needed by a specific 
tool.  This is of enormous benefit when the system has to determine what 
extra information is required by the design tool to be used.  From the 
intermediate representation, it is possible to ascertain what attributes 
are needed by the design tool, where they come from in the common 
building model, and whether they are actually present in the common 
building model or have to be requested from the user. 
 
The initial approach to implementing these interface mappings has been 
to write specific programs to perform the mappings required for each 
tool used.  These programs, like the frames system described earlier, 
are written in Prolog.  With example programs which perform a mapping 
between a certain type of data file and the common building model, it 
should be easy to incorporate tools of the same type.  Ultimately, these 
interfaces could be generated automatically from descriptions of the 
input and output formats and the knowledge base. 
 
5.1  Mapping between the CBM and an intermediate 
representation 
Mapping between the CBM and the intermediate representation for a 
particular tool involves the manipulation of structures of objects and 
the combining or splitting of attributes.  From the work to date this 
appears to be the hardest part of the mapping process. 
 
Attributes needed by a tool but not in the common building model are 
asked for at this stage of the mapping process.  These values are only 
required when moving data from the CBM to a tool’s intermediate 
representation, as the tool must have all the data required to perform 
its analysis.  These values are not requested when moving data to the 
CBM as the CBM can hold much data which relates to different fields of 
design, many of which will not be needed by the designer.  The strategy 
is to only ask for information from the user when it is absolutely 
necessary. 
 
When information is mapped between the CBM and an intermediate 
representation it is necessary to keep track (an audit trail) of what 
model in the CBM is mapped to what intermediate representation, and 
vice-versa.  This gives the designer some information on where the 
information is coming from, and allows results from a particular 
analysis to be incorporated back into the original model. 
 
There are several different types of translations that can occur when 
mapping objects and attributes.  These are: a one to one mapping; many 
to one mapping; and a one to many mapping of both attributes and 
objects.  Mixtures of these types of mapping can prove difficult to 
handle in a consistent notation, e.g., when several objects have some 
attributes which map into the same object in the new representation.  At 
present a mapping between two objects is represented by a set of 
mappings between attributes.  A mapping between attributes can be a 
straight one to one mapping, or it can map a set of attributes to a set 
of attributes by a user defined procedure. 
 
The generalised form of the ‘map’ predicate is shown in Figure 7.  There 
is a ‘map’ predicate defined for each set of attributes that has to be 
transfered between two objects in different representations.  This 
predicate defines the mapping between one object in a design tool and 
one object in the CBM which is of a certain type, defined by 
Mapping_Type.  This can either define that a new object is created, or 



the attributes are added to an existing object, or that the mapping 
denotes an object in a design tool which will be incorporated into an 
object in the CBM through the reference of another object in a design 
tool. 
 
 map(Tool_Object, CBM_Object, Mapping_Type, [ 
  ... 
  All mappings between these objects 
  ... 
 ], Data_Model, Tool_Type). 
 

Figure 7.  General form of the ‘map’ predicate 
 
 
To incorporate a mapping between the CBM and a tool's representation 
requires a set of mappings to be defined for each object in the tool's 
model.  Creating these mappings consists of analysing each object in a 
tool's model and deciding where each attribute's data belongs in the 
CBM.  A mapping procedure must be selected for each attribute to be 
mapped between representations.  If it is a straight-forward mapping 
then it is likely that there already exists a procedure which will 
handle what is required.  However, for mappings which require tool-
specific knowledge, it will be necessary to hand-code mapping procedures 
to perform the task required. 
 
5.2  Mapping between a tool's intermediate representation 
and a tool's data file 
Mapping between the intermediate representation and a tool's data file 
involves parsing and pretty-printing the data files used by the various 
tools.  Much of the parsing work can be implemented with the standard 
parsing techniques used in compilers.  It was hoped that it would be 
possible to develop a standard method of parsing these data files into 
their intermediate representation.  However, due to the range of data 
file types and their complexity, this does not seem feasible.  The best 
approach seems to be to develop standard methods of parsing particular 
types of files, and provide as many services as possible to facilitate 
the addition of new tools into the system.  To this extent a range of 
parsers and pretty-printers have been developed that can handle the 
majority of data file types that exist. 
 
 
 
6.  Current work 
 
The discussion above describes ICAtect as at the time of writing.  As 
was stated at the start of this paper, the development of ICAtect is 
part of an on-going programme of research.  Further work is currently 
being done in the following areas: 
 
6.1  Object-Oriented user interface 
This is the final component required to make ICAtect truly usable.  Work 
is underway investigating the addition of an object-oriented user 
interface based upon the objects defined in the common building model.  
This interface will allow users to perform the complete design of a 
building through ICAtect, and to analyse the results in a friendlier 
environment than the current text-based system offers. 
 
6.2  Extending the design tools integrated 
The number and types of design tools incorporated into ICAtect is being 



expanded.  This will, with the graphical user interface, enable an 
evaluation of the usability of this type of system in a real working 
environment.  It is envisaged that there will be five design tools from 
the major areas of structural, thermal and lighting design integrated 
into ICAtect before the system is evaluated. 
 
 
 
 
7.  Conclusion 
 
The prototype ICAtect system developed provides proof that the 
integrated design tool environment that was visualised can actually be 
constructed.  It shows that it is possible to develop a model of a 
building capable of holding the information required by a variety of 
design tools, and demonstrates that by using an object-oriented common 
building model it is possible to construct a system that can move 
information between several disparate design tools.  The object-oriented 
intermediate representation of a tool's data file greatly simplifies the 
mapping between tools, and also simplifies the  addition of new tools. 
 
The ICAtect system demonstrates that the use of an object-oriented 
representation, that of a frames system augmented with the worlds 
concept, provides a powerful yet flexible representation method for use 
in representing knowledge about a building.  The building model 
constructed has proved capable of holding the majority of information 
needed by a range of design tools from disparate areas of design.  The 
worlds system developed allows the designer to examine many different 
options during the design of a building, with an ease that is not 
possible with the state of the art design tools. 
 
The technique of providing example methods for interfacing to the 
ICAtect system seems the best way to approach the problem of interfacing 
to design tool’s data files, given that a generalised interfacing system 
seems to be out of contention.  The methods examined to date, cover all 
the data file types that exist at the School of Architecture.  This 
means that the addition of a new tool only requires modifying the method 
that matches the new data file type, not writing a parser from scratch. 
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