
 
 
 
 
 
Integrating Design Tools for Building Design 
 

ROBERT W. AMOR, LINDSAY J. GROVES and MIKE R. DONN 
†Department of Computer Science, ‡School of Architecture 
Victoria University of Wellington 
Wellington, New Zealand 
 
Abstract  This paper examines the methods being devised at Victoria University to 
provide an intelligent, knowledge based interface to expert systems, simulation 
packages and CAD systems for architectural design. Currently a large amount of 
information is duplicated in describing a building to different design tools. To enable 
designers to use different design tools to evaluate a building design, without having to 
duplicate so much of their effort, we propose a system that uses a common building 
model to represent their knowledge of a building. On top of this building model we 
provide an interfacing mechanism to move information between the different design 
tools and the common building model. 
 
KEYWORDS: Computer, Research, Systems (Knowledge based system, knowledge 
representation, user interface, integrated design) 
 



 
 
 
 
 
 
 
 
 
ABSTRACT 
This paper examines methods being devised to provide an intelligent, 
knowledge-based interface to expert systems, simulation packages, and CAD 
systems for architectural design. Currently, a large amount of information is 
duplicated in describing a building for different design tools. To enable 
designers to use different design tools to evaluate a building design, without 
having to duplicate so much effort, we propose a system that uses a common 
building model to represent their knowledge of a building. On top of this 
building model, we provide an interfacing mechanism to move information 
between the different design tools and the common building model. 
 

INTRODUCTION 
In a world that expects its buildings to be one-off designs with increasing 
performance and reliability, the building design team is under great pressure to 
use as many of the available design analysis tools as possible. Numerous CAD 
systems, simulation programs, and, more recently, expert systems are being 
marketed to meet this demand. 
Each of these tools requires a detailed description of the building or structure 
being modeled. Constructing a description of a building for entry into a 
simulation program from existing plans can take several days. When the same 
building is to be analyzed by several different expert systems or simulators, 
similar base data have to be entered into each tool, so there is considerable 
duplication of effort and many opportunities for errors. 
Each tool is generally designed to perform one particular type of analysis or 
simulation. Few are designed with a view toward interfacing with other tools. 
This leads to a situation where many tools exist in isolation and there is little 
or no transfer of information between tools in different areas (see Figure 1).  
The exception to this is in CAD systems, where it is now realized that some 
sort of exchange protocol is needed to allow data to be moved from one 
system to another. This has lead to several different protocols from the major 
vendors, and only recently has an ISO standard been defined for the exchange 



of data between CAD systems (IGES 1986). 
R. W. Amor is a Masters Candidate, and L. J. Groves is a Senior Lecturer, 
Computer Science Department, Victoria University, Wellington; M. R. Donn 
is a Senior Lecturer, School of Architecture, Victoria University, Wellington. 



Further problems arise from the "black box" nature of many analytical 
programs. While it is relatively simple to encapsulate the mathematical 
expertise of a structural engineer in a program to calculate the load on a beam, 
it is far from simple to encode their expertise in the application of the 
mathematics. This means that a naive user requires assistance, not only to 
interpret the results, but also to enter the initial building data accurately. 
The problems outlined above suggest that there is a need for a system that 
allows a user to create building descriptions for different tools without having 
to learn the command syntax and other idiosyncrasies of each tool. The user 
should be able to transfer relevant data about a building from one system to 
another, instead of having to duplicate the effort. This situation is illustrated in 
Figure 2, where all tools can exchange information through a common 
building model.  These goals seem to be achievable with the current state of 
technology and we intend to show that such a system can be created.  
Internationally there has been considerable interest in projects of this nature, 
and we have gained from the experiences of Björk (1989b), Clarke et al. 
(1989), Howard and Rehak (1986), Levary and Lin (1988), Rehak et al. 
(1984), and Selkowitz et al. (1986). 

CADSIMULATION

EXPERT  SYSTEMS  
Figure 1.  Design tools: The current situation 

The system we are developing will allow a single description of a building 
design to be constructed and used to provide the necessary data for a variety of 
design tools.  To do this, we need a framework for representing a building 
design that can accommodate all the information required by the tools we are 
considering, and a method to represent this information. We also need a 
mechanism for interfacing the various tools, allowing the data required by 
each tool to be extracted from the central knowledge base and allowing data 
produced by each tool to be added.  Finally, we need an interface between the 
system and the user. 



BUILDING 
REPRESENTATION

EXPERT 
SYSTEMS

SIMULATION CAD

 
Figure 2.  Design tools: The future 

DESIGNING A COMMON REPRESENTATION FOR BUILDING 
DESIGNS 
In devising a framework for representing building designs, we have closely 
examined the description languages for a range of tools to determine the kinds 
of information they require. These tools were selected to cover a broad 
spectrum of building design issues, including structural analysis, lighting 
design, thermal design, and code checking (see Appendix A). 
We have also studied the draft product data exchange standard, integrating the 
STEP and PDES standards, which is being considered by ISO as a basis for an 
ISO standard (Wilson  and Kennicott 1987). 
From our analysis of the data base of attributes, and the structuring of objects 
in the tools, we determined that the building representation would have to 
satisfy three major criteria. It should be:  
 
Comprehensive:   The representation should be able to represent the types 

of information required by a reasonable range of the 
design tools. 

 
Modifiable:  The representation should be structured in such a way that new 

kinds of information required by new tools can be added 
without major modifications to the structure. Such 
additions should not require major changes to previously 
defined interfaces. 

Nonredundant: To minimize redundancy in the representation, any data 
captured in the description should only exist in one 
place. 

For the current project, we have restricted our attention to the building's 
structure; its heating, ventilating, and air-conditioning (HVAC) systems; and 
its lighting. While this decision has limited the range of tools that will be able 
to operate off this building representation, the building representation created 
will be easily extendable to encapsulate the knowledge needed for new design 



areas. 



Evaluation of the Tool's Attributes 
To determine the range of objects and attributes needed to represent a building 
and to ensure that the building representation we choose will encapsulate all 
the data needed for the different design tools being considered, we mapped out 
the objects and the relationships between objects used in these tools.  These 
charts allow us to compare the structures used by different tools to describe 
similar objects. 
To keep track of the massive number of attributes involved in the range of 
tools examined, we established a data base of all attributes in the tools.  For 
each attribute describing an object, there is one record in the data base. This 
record contains:  

-- the name of the tool of which this attribute is part  
-- the object in the tool of which the attribute is part  
-- the attribute's units 
-- default values for the attribute 
-- range of possible values for the attribute 
-- type of the attribute (e.g., real, integer, string) 
-- length of the attribute when written in the data file 
-- format of the attribute when written in the data file 
-- constraint on the cardinality of the object (i.e., number of objects 

allowed) 
-- a  description of the attribute and its use in representing the object. 
 

This data base has become invaluable for assimilating the range of attributes 
used by design tools to describe an object.  The data base can be queried to 
find all attributes needed by a range of tools to describe a particular object, 
such as a door.  The result of the query lists the various ranges, defaults, and 
units on the attributes. With this information, it is a simple task to choose the 
general attributes needed to describe an object and to define reasonable default 
values and ranges for these attributes. 
The description retained in the data base of an attribute proves especially 
useful when one might want to find all attributes that relate to a specific 
object. The description can identify all attributes of a specific object, even 
when different tools use different names or classes to describe that object.  The 
description also helps distinguish between attributes that seem to have the 
same meaning but are subtly different or to identify  common attributes 
between classes of objects.  This analysis helps identify the classes and 
subclasses of objects that are likely to be needed in the final structure of the 
building representation. 
Examining the data base has highlighted the problems that occur where  
different tools view a building from different perspectives.  For example, walls 



are often represented in different fashions (see Figure 3). One system may 
represent a wall as being the area enclosed by joining a set of points in 3-
dimensional space (Figure 3a); another package may represent a wall as 
having a bottom left corner at some point in 3-dimensional space and a height 
and length specified as an offset from this point and at a certain angle from 
north (Figure 3b); and another may represent a wall by approximating it to a 
column with a large width (Figure 3c).  These systems all represent the same 
type of wall but are representing it in very different manners. Our 
representation of classes must be flexible enough to handle many 
representations. 
The data base of attributes has helped ensure that the building representation 
conforms to the three criteria specified above. We can guarantee a 
comprehensive representation, as we define objects and their attributes in our 
building representation from a conglomeration of all the attributes held in the 
data base. The objects and classes that we choose are easily modifiable, as 
they have been selected as generalizations of the classes used by as wide a 
range of tools as possible. With the data base, it is also possible to identify 
which objects require similar information and to minimize redundancy by 
selecting classes to integrate similar objects. 

b) Height and Length c) Column with widtha) Set of Points  
Figure 3. Wall representations 

Abstraction Hierarchy 
From the description languages for the tools we studied and the data base of 
attributes of the objects, it was apparent that we should describe a building in a 
hierarchical manner, as a collection of systems, each consisting of a number of 
subsystems, etc. This hierarchy should provide classes of objects, 
corresponding to the systems and subsystems in buildings, each of which is 
described by a set of attributes.  It was also clear that this hierarchical 
representation should allow inheritance of values from higher levels in the 
structure to lower levels and should provide for defaults. 
We have defined an abstraction hierarchy that breaks the description of a 
building into five levels: building, system, subsystem, object, and part (see 
Figure 4). 
Building level: This is the top level of the data structure. There is only one 

building object for each building. It contains only building-specific 



data, such as the location, orientation, number of floors and gross area, 
height, etc. 

System level: This level breaks up a building into its main functionally 
distinct systems. For our purposes these are: the spaces in a building, 
the structure, HVAC system, lighting system, lifts, power, 
communications, etc. 



Building

ZonesSpaces Structure

Furniture Wall Column/Beam

NodeOverhang Sidefin Door Window

Frame Pane

Material

Building

System

Subsystem

Object

Part

 
Figure 4.  Abstraction hierarchy 

Subsystem level: This level is used to break a system into its major functional 
components. Thus far, we have used this level mainly in our 
description of the HVAC system that is broken up into plant, 
distribution, and terminal. These are further subdivided to represent all 
the major functions of the components in an HVAC system. For 
example, the plant subsystem is further divided into heat production, 
heat removal, humidity control, and storage. 

Object level: This level represents each physical object in its own generic 
class.  All definable objects are listed on this level.  The types of 
objects are walls, doors, windows, columns, boilers, chillers, fans, 
diffusers etc. 

Part level: This level is used to represent the constituent parts of components 
at the object level. For instance, a window at the object level is 
represented as a frame and panes at the part level. The same applies for 
some plant equipment, e.g., fans, condensers, and cooling coils are 
parts of a chiller. 

This hierarchy turns out to be very similar to the one proposed for the RATAS 
project in Finland (Björk 1988; Björk and Penttilä 1989a; Björk 1989b; 
Enkovaara et al. 1988; Hannus 1987), although their hierarchy represents 
different objects at different levels due to the goals of their project. 

REPRESENTING BUILDING KNOWLEDGE IN A FRAME 
The abstraction hierarchy described above could be implemented in a number 
of ways, for example, using a relational data base or an object-oriented 
programming language.  Given the need for inheritance and defaults and the 
need for flexibility, we have decided to use a frame system, implemented in 



Prolog.   We use four types of relations to describe the relationships between 
objects: ako, is-a, part-of,  and connected-to  (see Figure 5). 
Ako:  This relation describes the hierarchical structure among classes of 

objects. Each class in the ako  chain inherits the attributes of all classes 
above it and can introduce additional attributes.  This is useful where 
common attributes are shared by several classes of objects. A good 
example of this hierarchy arises in the description of walls, where the 
classes further down the hierarchy from the generic wall are distinct 
wall types (i.e., exterior wall, interior wall, structural wall, trombe 
wall, underground wall, and partition), all of which inherit the general 
attributes of a wall, such as position, height, width, tilt, surface 
coefficient, and solar absorptance fraction. 

Is-a:  This relation describes the relationship between classes of objects and 
instances of those classes.   An instance of a class inherits the attributes 
of that class.  The values of inherited attributes are also inherited, 
except where these are explicitly overridden.  

WALL

Exterior Structural Interior .  .  .

Ako

Part-of

Window Door

Wall

Is-a Wall Wall#2

Connected-to Space#57 Space#36

Wall#2  
Figure 5.  Frame relationships 

Part-of:  This relation describes the relationship between an object (or class 
of objects) and its components. These links correspond to the links in 
the abstraction hierarchy. For example, a window and a door are part-
of  a wall.  A portion of the part-of  relation is shown in Appendix B. 

Connected-to:  This relation describes connections between objects at the 
same level in the abstraction hierarchy. For example, a wall is 
connected-to  two spaces, one of which may be the exterior. 

In keeping with the frame systems semantics, we conceptualize our frame 



system in five levels. These are: 
-- Frame: Holds all attributes needed to define an object. 
-- Attribute: Name of an attribute of the object. 
-- Attribute value: Contains the value for the attribute. 
-- Facet: Name of a property of the attribute. 
-- Facet value: Contains the value for the facet. 

To simplify the implementation of the frames system from a programming 
point of view and to improve the speed of the system when looking through 
inheritance paths, we have split our frame level into three separate segments.  
These are: 
 Class frames: The definition of all classes needed for the common 

building representation. 
 Tool frames: The definition of objects available inside each tool. The 

attributes in these frames have additional facets over the class frame 
attributes to describe the formats and lengths of the attributes in the 
tools data file. 

 Instances: Instances of either of the frames defined above. 

Frame Attributes 
For each object in the abstraction hierarchy, we have specified the attributes 
required to describe that object. With the use of the data base of attributes in 
tools, we have guaranteed that the set of attributes used is sufficient to 
describe the objects in all tools that we have examined. 
In several cases,  we found that different tools aimed at the same area of 
design describe components of a building at different levels of detail.  For 
example, a material may be described just by its thermal resistance or by 
detailing its thickness, conductivity, density, and specific heat.  In such cases, 
we have used the most detailed attributes for a component and provided 
methods for calculating general attributes where appropriate. 
In designing our building representation, we have carefully considered the 
structures and attributes used in the tools defined in our data base and 
structured the is-a hierarchy to maximize the use of inherited attributes. 
To simplify the implementation of the system, we define nine separate sets of 
attributes and relationships that can hold in our frame system and split all 
attributes among these levels.  In addition to the relationships previously 
defined for the generic frames system, we have defined these levels: 
 Object-Cardinality: Defines the number of this object that can exist in 

the system.  Used mainly in tool's frames to record restrictions on 
objects posed by the maximum number of objects the tool can handle,  
i.e., maximum number of walls allowed in a particular design tool is 
40. 



 Comment: Description of the particular class or object being 
represented. Used to provide help to the user about the classes that are 
defined. When used with instances of an object, it can describe the 
general properties of the instance, i.e., aluminium sliding door with 
twin inset glass panels. 

 Values: The attributes relating specifically to this class or object, 
These attributes do not contain relationships between objects, as 
defined previously in the frames system, i.e., door height, width. 

 Parts: These are the constituent parts of this object, i.e., the parts of 
WALL#29 are DOOR#15, WINDOW#2, and WINDOW#17. 

 Subclasses: A list of return pointers to the subclasses defined below 
this class. This is the inverse of the Ako relationship, i.e., the 
subclasses of the class wall might be trombe wall, exterior wall, 
interior wall, etc. 

Facets on Attributes 
Attached to each attribute defined in the building model and the tool's classes 
are the facets that describe the properties of the attribute. These properties can 
be used to determine the values or restrictions on the attribute. The major 
facets defined for our frame system are: 
 Default: Contains the default value for the attribute. Is used to 

determine the value of the attribute if no value is supplied and the user 
requests the attribute's value, i.e., the default value for the attribute 
height for the class doors might be 2.2. 

 Units: Specifies the units in which the attribute is represented. For 
attributes in the common building representation, these are SI units. 
For attributes in the tool's frames, the unit is whatever unit the tool uses 
to represent the attribute in its representation. The mapping system 
provides automatic conversion of values between the units in the 
common building representation and the tool's representation. 

 Range:  A list defining the range of values between which an attribute 
can lie or the set of values an attribute can take. The type of range that 
is defined is dependent on the attribute type. 

 Length: The number of characters an attribute can occupy in the tool's 
data file. This facet also specifies the format of numbers, in terms of 
the number of digits before and after the decimal point. This is used 
only by tool's frames and specifies the format under which an attribute 
must be written. In many cases, it also restricts the range of values or 
accuracy of numbers represented, i.e., for the attribute height of the 
class door, the format for one simulation program might be 5.2 (5 
digits before the decimal point and 2 after). 

 Attribute-Cardinality: The number of values this attribute can take. 
This facet doubles as a required facet by specifying the minimum 



cardinality to be greater than zero. Mainly used in tool's frames to 
specify restrictions on numbers imposed by the tool and how much 
data it can handle. 

INTERFACING MECHANISMS 
Given the common representation for building designs discussed above, we 
need to be able to construct an interface between it and each of the tools we 
wish to use.  For each tool, we need to be able to generate the input to the tool 
in order to run it. We also need to be able to read the output from the tool in 
order to interpret the results and add information obtained to the knowledge 
base. Finally, if there are existing data files for a particular tool, we need to be 
able to read these and construct the relevant parts of the building description 
from them. This gives the interfacing system a structure as in Figure 6. It is 
important that interfaces for new tools can be added easily, since this will 
ultimately determine how successful our system is in practice. 

Common

Knowledge

Base

Knowledge

Base

Tool-1

Knowledge

Base

Tool-n

Tool-1 
Input 
 
 
Tool-1 
Output 
 
 
 
Tool-n 
Input 
 
 
Tool-n 
Output

Tool-1

Tool-n

 
Figure 6.  Mapping representation 

The Interfacing Mechanism 
To construct the data file required to drive a particular tool, the system needs 
to be able to extract the necessary information from the knowledge base and 
format it in the appropriate way. This can be viewed as a report-writing task, 
so it can clearly be done in a straightforward manner. It is also necessary for 
the user to be able to add other parameters required by the tool, such as the 
length of simulation, where to find weather data, or what output options are 
required.  To read the output from a tool, or a data file for a tool, we need a 
parser that understands the structure of the file being read. This then needs to 
be able to display the results in an appropriate form and make suitable entries 
in the knowledge base. 
To facilitate this process, we perform the mapping between the description of 



a building in the knowledge base and a data file produced by, or prepared as 
input for, a specific tool in two stages.  The link between the two stages is a 
frame representation of the information in the data file.  This representation 
mimics the structure of the tool's building description but also incorporates the 
assumptions about ranges and defaults that the tool makes about the building 
data. 
To construct a data file to run a tool, the user indicates via a simple interactive 
dialogue what information is required.  The relevant information is extracted 
from the knowledge base and combined with other parameters supplied by the 
user to form a description of the required file.  When this is complete, the file 
is written in the format required by the particular tool. 
To read a file produced by a tool, or an input file prepared for a tool, the 
process is reversed.  We first parse the file and construct a frame 
representation of it.  We then add this information to the knowledge base. 
The advantage of splitting the mapping into two stages like this is that it 
separates the distinct types of mapping.  The mapping between the knowledge 
base and the frame representation for a particular file is only concerned with 
the relationship  between two knowledge bases, not with the syntactic format 
of the description language for a particular tool.  The mapping between the 
frame representation for a particular tool and a data file for a particular tool is 
only concerned with the information that tool needs and not with any other 
aspects of the complete knowledge base. 
The splitting of the mapping into two stages also has the added bonus of 
defining the attributes needed by a specific tool. This is of enormous benefit to 
the system when we need to determine what extra information is required by 
the tool we wish to use. From the intermediate representation, we can ascertain 
what attributes are needed, where they come from in the common building 
model, and if they are actually present. 
Our initial approach to implementing these interface mappings will be to write 
specific programs to perform the mappings required for each tool we wish to 
use. These programs, like the frame system described earlier, will be written in 
Prolog. Ultimately, we would like these interfaces to be generated 
automatically from descriptions of the input and output formats and the 
knowledge base.  For constructing data files for a tool, we expect to use 
techniques similar to those used in implementing fourth generation languages.  
For analyzing the output from a tool (or an existing data file), we expect to use 
parsing techniques based on a formalism such as definite clause grammars or 
attribute grammars. 

USER INTERFACE 
On top of the system described so far, we intend to build an object-oriented 
graphical interface.  This will allow a description of a new building to be 
entered in a more intuitive manner than offered by current CAD packages. It 
will also allow the user to view the building being modeled and to enter 



information that has not previously been provided. 
For a system to draw at an object level, there has to be a break from the 
traditional, general purpose CAD systems. Allowing a system to draw at an 
object level is achieved in two ways: first, by letting designers create a 
building design using the objects that actually constitute a building, second, by 
giving the system some knowledge about the types of objects it is 
manipulating and the ways these objects fit together.  
We intend to follow the work in this area (Kharrufa et al. 1988; Bijl 1985; 
Szalapaj and Bijl 1984; Balachandran and Gero 1987; Barth 1986) and design 
a system based on the hierarchy defined in our building representation. This 
should give a very effective and fast way to enter information about a 
building, and provide an easy way to ask for missing information from the 
user. 
To this extent, our graphical interface will only allow the user to design with 
objects that are defined in our abstraction hierarchy. The system will use 
default values for most attributes of the objects being placed, based on the type 
of building being designed and the position of the object in the building, e.g., 
internal or external walls. The user will always see the frame for the object 
being pointed to or defined and will be able to change the attributes or the 
defaults for an object at any time. When the system needs a value for an 
attribute that hasn't been defined, it is envisaged that the user will be queried 
for the value by displaying the object and its surrounds and then prompting for 
the value.  This should help give the user a feel for the locality and use of the 
object. 
The user will also be able to design a building from scratch with this system. 
One of our goals in the design of the user interface is to make sure the 
designer is free to design the building in the manner they deem best. To this 
extent, our system will allow the user to design with objects from any level of 
the hierarchy. We try not to impose a design methodology on the designer. 
This also means that objects can be placed without specifying a large number 
of their attributes, leaving the attributes to default, or filling in values for 
attributes at a later stage as necessary. 
As results from different analyses of a building are stored in the same structure 
as the building representation, this allows them to be examined in the same 
way as one would examine the values for any object in the building. To make 
the results more useful to the designer, the user interface will allow the 
designer to perform simple statistical analysis of the output and to generate 
plots of the data from a simulation. The designer will also be able to compare 
and contrast the results of analyses of different buildings in this manner. 

FUTURE WORK 
There are many ways in which the kind of system we are developing could be 
extended.  We will briefly mention two particularly interesting directions for 
further development. 



Distributed Processing 
This type of system is begging to be distributed. It should be possible for the 
various design and analysis tools to run on different machines, all being 
controlled by our building description system. For example, a user might 
concurrently run: 

 • a finite element analysis of the building structure on a super computer, 
 • a thermal simulation on a local mainframe, and 
 • an analysis of the output of a code-checking expert system on a 

desktop PC. 
The changes to our system to enable it to handle a distributed environment 
would be fairly minor and would increase the usability of the system to a PC 
user, giving them access to much more power than afforded by the design 
tools now available on a PC. 

Learning 
An interesting extension to this system would be a learning component that 
would sit in the background and examine the input and the results from the 
different tools that are used in the design process. This learner would be set up 
to examine a limited range of attributes in the representation. For different 
design decisions in the input, it would look at the differing outputs from the 
tools and try to generalize from the results.  
This learning system could be an intelligent helper for the user, who could ask 
the system for some form of help in the design process. From what the learner 
had observed from cause-and-effect studies, it would offer some guesses at the 
type of changes to the system that would generate the result required, e.g., 
what suggestions can be made to help lower the heating kW while still 
maintaining the same comfort level in the building.  



CONCLUSION 
The system we are developing will allow the designer to examine many 
different options during the design of a building, with an ease that is not 
possible with the state of design tools at the current time. 
This system will serve several important functions. It will provide an interface 
between tools and allow movement of information back and forth between the 
tools and the building representation. It will reduce the effort required to use a 
new tool, as the user will not be required to learn the syntax and idiosyncrasies 
of the new tool.  
The system will provide a uniform method for entering data for an object, 
which will be independent of the method used by the tools in which the data 
will be used. For tools that do not offer a method to visualize the building 
being modeled, this system will offer a means of visualizing the building. In 
time it will act as an intelligent assistant to the user by being able to suggest 
changes to a design that would help meet a certain design goal. 

REFERENCES 
Balachandran, M., and J. S. Gero 1987. "A model for knowledge-based 

graphical interfaces." Artificial intelligence developments and 
applications, pp. 147-163.  

Barth, P. S. 1986. "An object-oriented approach to graphical interfaces." ACM 
Transactions on Graphics, 5(2), April, pp. 142-172. 

Bijl, A. 1986. "Logic modelling in computer-aided design." Planning and 
Design, 13(2), April, pp. 233-242. 

Björk, B-C. 1988.  RATAS - An object-oriented conceptual building model, 
Technical Research Centre of Finland, 16p. 

Björk, B-C., and H. Penttilä 1989a. "A scenario for the development and 
implementation of a building product model standard." Current 
research and development in integrated design, Construction and 
Facility Management, CIFE, Stanford University, California, 28-29 
March, 18p. 

Björk, B-C. 1989b. "Basic structure of a proposed building product model." 
Computer-Aided Design, 21(2), March, pp. 71-78. 

Clarke, J. A., J. H. Rutherford, and D. MacRandal 1989. An intelligent front-
end for computer-aided building design University of Strathclyde, 
Scotland. 

Enkovaara, E., M. Salmi, and A. Sarja 1988. RATAS Project - Computer-
aided design for construction Building Information Institute, Helsinki, 
Finland, 62p. 

Hannus, M. 1987. "Object oriented modelling in AEC applications." Proc. 
NBS/DATA Nordic Seminar "Neste generations datasystem i 
byggebransjen", 24 September, pp. 100-115. 



Howard, H. C., and D. R. Rehak 1986. "Expert systems and CAD databases." 
Knowledge engineering and computer modelling in CAD, September, 
pp.236-248. 

IGES. 1986.  Initial graphics exchange specification 3.0 National Bureau of 
Standards, Gaithersburg, MD 20899, USA. 



Kharrufa, S., A. Saffo H. Aldabbagh, and W. Mahmood 1988.  "Developing 
CAD techniques for preliminary architectural design." Computer-
Aided Design, 20(10), December, pp. 581-588. 

Levary, R., and C. Lin 1988. "Hybrid expert simulation system (HESS)." 
Expert Systems, 5(2), May, pp. 120-129. 

Rehak, D. R., H. C. Howard, and D. Sriram 1984. "Architecture of an 
integrated knowledge based environment for structural engineering 
applications." Knowledge engineering in computer-aided design, IFIP 
WG5.2 Conf., Budapest, Hungary, September, pp. 89-117. 

Selkowitz, S. E., K. M. Papamichael, and G. M. Wilde 1986. "A concept for 
an advanced computer-based building envelope design tool." 
International Daylighting Conference, November, Long Beach, CA, 
November, pp.496-502. 

Szalapaj, P. J., and A. Bijl 1984. "Knowing where to draw the line." 
Knowledge Engineering in Computer-Aided Design, September, pp. 
147-169. 

Wilson, P. R., and P. R. Kennicott 1987. STEP/PDES testing draft St. Louis 
edition ISO TC 184/SC4/WG1 Doc. N 165, September. 

APPENDIX A. Design Tools examined 
AutoCAD (1988).  Autodesk, Inc, Sausalito, CA 94965. 
DOE-2.1C (1981). Building Energy Simulation Group, Lawrence Berkeley 

Laboratories, University of California, Berkeley, California 94720. 
ESP (1982). Environmental Systems Performance, ABACUS, University of 

Strathclyde, 131 Rottenrow, Glasgow G4 ONG, Scotland. 
Fenestra (1986). A Personal Computer Aid for Window Design, School of 

Architecture, Victoria University of Wellington, Wellington. 
Hosking, J. G., Mugridge, W. B. and Buis, M. (1987). "FireCode: a case study 

in the application of expert-systems techniques to a design code", 
Planning and Design, 14(3), July, pp. 267-280. 

Lumen Micro (1987). Interior Lighting Analysis System, Lighting 
Technologies, 3060 Walnut St, Suite 209, Boulder, Colorado 80301. 

MicroSTRAN (1987).  Engineering Systems Pty Ltd, 27 Linden Ave, Pymble, 
NSW 2073, Australia. 

Sonata (1988).  t2 Solutions Limited, The Teamwork Centre, Prince Edward 
Street, Berkhamsted, Hertfordshire HP4 3AY, England. 

SUNCODE (1981).  Ecotope Group, 2812 E. Madison, Seattle, WA 98112. 
VersaCAD (1988).  Versacad corporation, 2124 Main St, Huntington Beach, 

CA 94965. 



APPENDIX B.  Sample portion of the part-of relation 
B

ui
ld

in
g

H
VA

C

P
la

nt
Te

rm
in

al

H
ea

t 
P

ro
du

ct
io

n
H

um
id

ity
 

C
on

tro
l

S
to

ra
ge

C
on

tro
l

M
ot

iv
e

D
is

tri
bu

tio
n 

M
et

ho
d

C
le

an
er

s
C

on
tro

l
U

ni
ta

ry
D

is
tri

bu
tio

n
H

ea
t 

R
em

ov
al

B
oi

le
r/ 

Fu
rn

ac
e

H
ea

t 
E

xc
ha

ng
er

S
ol

ar
 

C
ol

le
ct

or

H
ea

tin
g 

C
oi

l

C
oo

lin
g 

C
oi

l

C
hi

lle
r

C
oo

lin
g 

To
w

er

C
on

de
ns

or

H
um

id
ifi

er

D
eh

um
id

ify
in

g
 

C
oi

l

W
at

er
 

Ta
nk

s

R
oc

kb
in

s

D
am

pe
rs

Fa
ns

P
um

ps

D
uc

ts
P

ip
es

W
as

he
rs

Fi
lte

rs

E
le

ct
ro

st
at

ic

H
ea

te
r

Fa
n

A
ir 

C
on

di
tio

ne
r

R
ad

ia
to

r D
iff

us
er

C
on

tro
ls

Su
bs

ys
te

m

O
bj

ec
t

Sy
st

em

B
ui

ld
in

g

D
is

tri
bu

tio
n

 


