
1 INTRODUCTION

1.1 Problem statement
The specification of a semantically correct mapping
between any two standard data models used in the
A/E/C industries is an enormous task. Data models
have in the order of 500 entities and many thousands
of relationships and attributes (e.g., IFC 2.x, IAI
2004). The mere task of sitting down and describing
which entities are related to each other is daunting,
let alone managing to encompass the full semantic
coverage of the contents of each of these entities.
Yet without some definition of a mapping to be im-
plemented it is basically impossible to guarantee the
correctness of any implemented translator for a stan-
dard data model.

It is clear that human experts are needed to per-
form this task, knowledgeable in both schemas being
mapped between. Yet even for such experts the
management problem of describing a mapping over
such large schema forces a requirement for some
computerized support. This support comes in the
form of notations and environments to specify what
is equivalent between two schema in a form that can
then be used to generate the code to actually perform
the mapping.

In the last decade there was an active research
community developing approaches to mapping lan-
guages in engineering domains (Khedro et al 1996;
Verhoef et al 1995; Eastman 1999: Chapter 11).
Several of those efforts have been pursued in the de-

velopment of the ISO mapping standard EXPRESS-
X (Hardwick and Denno 2000), and in the develop-
ment of mapping tables (ISO 1993).

These mapping approaches are now being utilised
on a wide range of standard data models available
from ISO 10303 STEP, ISO 13584 Parts libraries
and catalogs, CIS/2 (Crowley and Watson, 2000)
and IAI’s IFCs (IAI 2002). However, every mapping
between two of these standard data models will be
duplicating the work of previous attempts. If it were
possible to specify a mapping in an easily compre-
hensible manner, and there were tools that industry
experts could use to agree on the correctness of the
defined mapping, then a consensus on major map-
pings between schema could be developed and pub-
lished in much the same way that standard schema
are published today. This paper examines what tools
would be required to reach this position.

2 A FRAMEWORK OF TOOLS

To manage the task of developing a mapping be-
tween two data models there is a requirement for a
range of support functions for the specifier. These
include:

• A graphical mapping notation to enable the
specifier to visually comprehend the map-
ping being described between subsets of the
data models.

• A mapping specification environment to en-
able navigation through, and partitioning of,

Supporting standard data model mappings

R.W. Amor
Department of Computer Science, University of Auckland, Auckland, New Zealand

ABSTRACT: Very little work has been done on specifying a standard mapping between the overlapping se-
mantic specifications in the standardized data models used in architecture, engineering and construction
(A/E/C, e.g., IAI-IFC and ISO-STEP standards). However, several companies have developed bespoke map-
pings from these standards into their design tools, and back out again. With this approach it is difficult to un-
derstand how complete their mappings are, and what assumptions are made in the development of the map-
pings. Yet for semantic mappings, as distinct from mappings over geometric representations, this has a
profound implication for the correctness of the resultant data. In this paper the development of a suite of map-
ping support tools is discussed to illustrate the level of support required to ensure semantically correct map-
pings across data models.

the space of mappings specified. Such a tool
can also determine what has, or has not, been
mapped between.

• Automated mapping support to enable a sig-
nificant proportion of the mappings required
between two schemas to be automatically de-
termined.

• A mapping interpreter to allow evolving
mappings to be tested on partial sets of data.

• A verifier to check the correctness of the de-
veloping mapping specification. Such a veri-
fier would offer support from basic syntactic
checking across the data models through to a
more comprehensive semantic analysis of the
proposed mapping.

The development of such a support environment
is described in the following sections. With this en-
vironment in place it is then possible to move on to
providing standard mappings between the major
standard schemas which exist in our domain.

3 MAPPING NOTATIONS

In order to describe the equivalences which exist be-
tween data structures in two different schema it is
necessary to have a notation for the specification. A
range of notations have been developed and utilised
ranging from straight specification within a standard
programming language (such as C or Java), through
ISO mapping tables (ISO 1993), and the evolving
ISO mapping language EXPRESS-X (Hardwick and
Denno 2000).

In many respects these approaches are analogous
to the use of the EXPRESS language to specify the
conceptual data structures for a schema for a particu-
lar domain. These approaches provide for a com-
plete and detailed specification of how the mapping
between portions of the schemas will have to be re-
alised.

However, they do not provide a way to gain an
overview of the mappings which have been devel-
oped between two schema or the completeness of
any particular mapping. Where schema have several
hundred classes in them this is of major concern to
the specifier. In the same way that EXPRESS-G is
used as a high-level notation for describing the basic
structures within a schema, and to view various sub-
sets of a schema, a graphical mapping formalism
will allow a high-level overview of the mapping be-
tween schemas to be presented.

A range of graphical formalisms have been de-
veloped at the University of Auckland to represent
mappings to different classes of users. Figure 1
shows a programmer level formalism for specifying
mappings between UML styled class diagrams in
two schema.

Figure 1. VML-G: a graphical mapping formalism.

The VML-G language (Amor 1997) shown in

Figure 1 uses a wiring approach to denote a mapping
between attributes, or classes, in a schema and an
icon representing that particular mapping. The map-
ping icon provides three areas in order to separate
general mappings between attributes and classes
from the specification of invariants, which direct
when the mapping is applicable, and initialisers,
which describe starting values for particular attrib-
utes of a newly created object. As can be seen in
Figure 1 the specification of the actual mapping is
hidden from view and presented as a classification to
either a straight equivalence (=), an equation (eqn), a
functional equivalence (func), or a procedurally de-
scribed equivalence (proc).

By examining such a graphical mapping specifi-
cation it is very easy to verify that all attributes are
being handled in the mapping, and by examining the
invariants across several mappings it is possible to
verify that all possible conditions are being mod-
elled. It also allows a high-level specification of the
equivalences between portions of a schema without
concentrating on the detail of how to achieve the
mapping.

The author contends that any textual mapping no-
tation needs to be supported by a graphical formal-
ism which allows for a high-level overview of the
mappings which are being specified.

4 MAPPING SPECIFICATION ENVIRONMENT

If a simple textual notation is used to describe a
mapping then it can be developed in any textual edi-
tor. However, if a graphical formalism is going to be
utilised to specify a mapping then it needs to be sup-
ported by a more comprehensive specification envi-
ronment. Such a specification environment must al-
low for both graphical and textual notations to be
viewed and the consistency between these views to
be maintained under edits to either view.

In Figure 1 the specification environment for
VML-G allows for classes from the related schema
to be viewed within a window, for a mapping icon to
be placed in the window, and for wiring from attrib-
utes and classes to be drawn to the mapping icon. In
this environment each window represents a particu-

lar mapping, and by navigating the various windows
a specifier can examine the full set of mappings de-
veloped. The specifier can also switch to a textual
view to see the full mapping specification and any
edits made to the textual view are propagated back
into the graphical view. From a programmer level
support perspective this is very useful, but it does
not tie to real data to help checking.

In Figure 2 a business level specification envi-
ronment is shown (Li et al 2002). Within this envi-
ronment the schemas being mapped between are
visualized as business forms and a wiring approach
is used to specify the mappings between various
fields in the forms. In this environment the specifier
can view not just the data schema in a format close
to its business use, but also exemplar data within
each of the fields. Tied to this is the ability to run
each of the partial mappings specified and hence to
view the result of the application of the specified
mappings in the other business form.

Figure 2. A business level mapping specification environment.

5 AUTOMATED MAPPING CREATION

While the tools highlighted in Figures 1 and 2
clearly provide for greater comprehension and
checking of the mappings which are being described
it is also clear that detailing the mappings between
schema which comprise several hundred classes is
going to take a long time.

In order to ease this workload it is useful to con-
sider approaches which will allow for the automated
specification of the mapping (or a portion of the
mapping) between two schema. This is an area of
ongoing research with many approaches being con-
sidered (see Rahm and Bernstein 2001 for a survey
of approaches).

This sort of tool is also useful to handle mapping
between versions of particular product models. For

example, the IAI have produced six versions of the
IFC in the last seven years and the CIS/2 LPM is
expected to be updated every year. The mapping be-
tween consecutive versions of a particular schema
tend to be fairly minor which make for an easier
problem when considering automated mapping crea-
tion. This problem is also closely related to that of
schema evolution in object-oriented databases
(Banerjee et al 1987, Lerner and Habermann 1990,
Eastman 1992, Deux 1990, Zicari 1992, and Atkin-
son et al 2000).

A previous student developed a hybrid mapper
utilizing structure and name comparison to automate
the creation of mappings for IFC versions (Amor
and Ge 2002). This demonstrated that approximately
80% of an IFC schema could be automatically
mapped to the next version.

An examination of points where this hybrid map-
per failed illustrated that different approaches to
identifying mappings performed well in different
settings. To explore how this might be utilized in
automated mapping creation there has been a project
(Bossung 2003) to develop an infrastructure to allow
multiple matchers to vote on their proffered mapping
for particular parts of an inter-schema mapping. Fig-
ure 3 shows a screen snapshot of this tool where
three matching tools (a Levenshtein matcher, a par-
tial name matcher, and a type matcher) bid for their
mapping for a partial structure match. With this tool
the user can examine the highest ranked mappings
for any portion of the schema and select between the
mappings being offered. Further work on this tool is
looking at re-matching mappings based on selections
(changes) made by the user of the tool.

Figure 3. Voting in an automated mapping tool.

6 MAPPING INTERPRETER AND CODE
GENERATOR

In order that the specified mappings can be enacted
it is necessary to generate code for each mapping.
Within a tool which supports visualization of
mapped exemplar data this has to take the form of an
interpreter for individual snippets of the mapping.
Every mapping tool must be able to generate the full
mapping specification in some target language.

With a high-level mapping specification lan-
guage, as demonstrated in Figures 1 and 2, the map-
ping code generator allows for the creation of code
in a number of target languages from bespoke lan-
guages such as VML (Amor 1997) and EXPRESS-X
(Hardwick and Denno 2000) through to generic
mapping languages such as XSLT and even straight
into programming languages such as C and Java.

7 MAPPING VERIFIER

As detailed in the introduction, developing a high-
level mapping provides the specifier with a way to
ensure that the semantics of the data in two schemas
is going to match. However, due to the size of the
schemas being developed this is still a difficult proc-
ess. The provision of a graphical formalism helps in
checking, as do support environments which map
exemplar data based on the developing mapping.
But, to ensure a correct mapping has been developed
requires a comprehensive testing regime based
around non-trivial exemplars.

While the IAI and ISO do have a certification
process and testing suites the approach is certainly
not as rigorous as would be expected in a field such
as software testing.

The author suggests that the testing of a round-
trip mapping should be considered as the main form
of verification for mapping specifications. While
implemented translators for geometric models (e.g.,
DXF, IGES, etc) are known, and assumed, to have
errors this is not such an issue as human interpreta-
tion is used to determine the semantics of a trans-
lated geometric model. However, for an object-
based model such errors are far more serious. A
round trip mapping which does not preserve indi-
vidual objects and their original parameters has
changed the specification of the building to almost
any tool which uses this data.

8 CONCLUSIONS

The development of mappings between two schema
is a large and very important process when develop-
ing translators for the various standard schemas be-
ing used in the construction industries. To ensure
correct specifications requires not just an expert in
the various schema being manipulated, but also a
range of support tools to help the specifier through
the process. A range of these support tools have
been developed and described briefly in this paper.

However, to take the industry to the next stage
where they can have confidence in the translators
and mappings which exist requires that further rigor
is injected into the mapping testing process. It is also
recommended that a range of certified mappings be
developed between the main “standard” schemas be-

ing developed for the industry as well as between
the various versions of the schema which have been
produced.

REFERENCES

Amor, R.W. & Ge, C.W. 2002. Mapping IFC Versions, Pro-
ceedings of the EC-PPM Conference on eWork and eBusi-
ness in AEC, Portoroz, Slovenia, 9-11 September, 373-377.

Amor, R. 1997. A Generalised Framework for the Design and
Construction of Integrated Design Systems, PhD thesis,
Department of Computer Science, University of Auckland,
Auckland, New Zealand, 350 pp.

Atkinson, M.P., Dmitriev, M., Hamilton, C. & Printezis, T.,
2000. Scalable and Recoverable Implementation of Object
Evolution for the PJama1 Platform. Persistent Object Sys-
tems, 9th International Workshop, POS-9, Lillehammer,
Norway, 6-8 September, 292-314.

Banerjee, J., Kim, W., Kim, H., & Korth, H. 1987. Semantics
and Implementation of Schema Evolution in Object-
Oriented Databases, Proceedings of the 1987 ACM SIG-
MOD international conference on Management of data.
San Francisco, USA, 311-322.

Bossung, S. 2003. Semi-automatic discovery of mapping rules
to match XML Schemas, Department of Computer Science,
The University of Auckland, New Zealand, 71 pp.

Crowley, A., & Watson, A. 2000. CIMsteel Integration Stan-
dards, Release Two, 5 Volumes, Steel Construction Institute
and Leeds University, UK.

Deux, O. 1990. The story of O2. IEEE Transactions on Knowl-
edge and Data Engineering (TKDE), 2(1), March, 91-108.

Eastman, C.M. 1999. Building Product Models, CRC Press,
Orlando, FL, USA.

Eastman, C.M. 1992. A data model analysis of modularity and
extensibility in building databases, Building and Environ-
ment, 27(2), 135-148.

Hardwick, M. & Denno, P. 2000. The EXPRESS-X Language
Reference Manual, ISO TC184/SC4/WG11 N117, 2000-06-
28.

IAI. 2002. International Alliance for Interoperability, web site
last accessed 18/6/2004, http://www.iai-international.org/.

ISO 1993. Guidelines for the documentation of mapping ta-
bles, ISO TC184/SC4/WG4 M105, 1993-09-10.

Khedro, T., Eastman, C., Junge, R., & Liebich, T. 1996. Trans-
lation Methods for Integrated Building Engineering, ASCE
Conference on Computing, Anaheim, CA, June.

Lerner, B.S. & Habermann, A.N. 1990. Beyond schema evolu-
tion to database reorganization, Object-Oriented Program-
ming, Systems, Languages, and Applications (OOPSLA),
Ottawa, Canada, October, 67-76.

Li, Y., Grundy, J.C., Amor, R. & Hosking, J.G. 2002. A data
mapping specification environment using a concrete busi-
ness form-based metaphor, In Proceedings of the 2002 In-
ternational Conference on Human-Centric Computing,
IEEE CS Press, 158-167.

Rahm E. & Bernstein, P.A. 2001. A survey of approaches to
automatic schema matching, The International Journal on
Very Large Data Bases (VLDB), 10(4), 334-350.

Verhoef, M., Liebich, T. & Amor, R. 1995. A Multi-Paradigm
Mapping Method Survey, CIB W78 - TG10 Workshop on
Modeling of Buildings through their Life-cycle, Stanford
University, California, USA, 21-23 August, 233-247.

Zicari, R. 1992. A Framework for schema updates in an object-
oriented database systems. Morgan Kaufmann Series In
Data Management Systems, 146-182

