
1 INTRODUCTION

There are a growing number of versions of IFC
(Industry Foundation Classes) data with the annual
release of IFC models by the IAI (International
Alliance for Interoperability). Currently, there are
three major IFC versions (IAI 2002) which are being
utilized in software products (1.5.1, 2.0, and 2.X).
With each progression of IFCs we can expect more
versions to be in use, and a growing number of
software products supporting different versions.
Given the current size of the IFC model (around 600
distinct classes and types), and the fact that it will
grow over time, it is clear that defining a mapping
between one version and the next is a major
undertaking. However, it is imperative that this is
accomplished as data will need to be moved between
the different versions supported by the different
design tools, and data stored in older IFC versions
should be able to be migrated to the newest version.

The fact that a new IFC version builds upon the
previous version reduces the complexity of the
mapping problem significantly. For example,
approximately 15~25% of classes are equivalent
between IFC versions. It is also clear that the
differences between many of the other classes are
fairly minor. This leads us to believe that it will be
possible to automatically examine two versions of
the IFC model and automatically produce a mapping
which can handle the majority of the data structures
in the two versions.

This paper examines the approach taken to
understand the complexity of mapping between IFC
versions and the progress made to produce mappings

(currently both EXPRESS-X and XSLT) for any two
versions of the IFC. Initial work has categorized the
potential differences that can be found between two
schema. This has led to a system which can examine
two schema and identify how many of each of the
mapping categories exist between the two schema.
The result of this analysis is fed into a generic
mapping generator which is capable of producing
mapping descriptions for any of the mapping
language models incorporated into it (currently just
EXPRESS-X and XSLT).

The paper details the analysis of mapping
categories between schema versions and shows
statistics of the correspondences between different
versions of the IFC models. The paper also details
the system created to analyze any two schema (in a
variety of notations, e.g., EXPRESS or XML-DTD)
for known mapping categories. The last section in
the paper describes ongoing work in generating the
required mapping specification in order to map data
between versions.

2 REQUIREMENTS FOR VERSION MAPPING

With the release of each new IFC version the total
number of ENTITYs and TYPEs increases by over
one hundred (see Table 1). The total number of
attributes in a schema and the relationships between
classes grows significantly between each version as
well. Currently, the IAI do not publish a
specification of the changes between versions in a
form which can be used to define a mapping.

mapping IFC versions

R.W. Amor & C.W. Ge
Department of Computer Science, University of Auckland, Auckland, New Zealand

ABSTRACT: In order to cope with the growing number of versions of IFC schema being utilized by design
tools in architecture, engineering and construction domains it is necessary to generate mappings between the
different versions. This paper describes a system which can interrogate two schema versions in the same
domain and automatically generate a mapping specification between them. The system supports refinement
by a domain expert, to complete mappings which could not be automatically determined, or to correct those
which were misidentified by the system. The categorization of mappings which are identified by the system
are described in the paper along with statistics for the system's use on major IFC versions.

Table 1. Number of ENTITY and TYPE declarations in
different IFC versions

IFC Version ENTITYs TYPEs
1.5.1 186 95
2.0 290 157
2.X 370 228

It is also clear that not all design tool developers will
be able to devote the development effort to update
their IFC interface to the newest versions when they
come out. Currently, a large number of design tools
still utilize IFC 1.5.1 interfaces (see Steinmann 2002
for the interfaces utilized by different design tools).

If design tool developers need to provide
interfaces for the different versions of IFCs, or a
translator between the different versions, then this is
clearly another major development cost for their
organization.

In this project we aim to reduce the effort
required to map between versions by automatically
generating as much of the mapping between two IFC
versions as possible. The main requirements we are
working towards are as follows:
− Being able to generate a skeleton mapping

between any two versions of related schema. This
aims to reduce the amount of human time
required to specify mappings between two
schema versions.

− Finding a generic representation of schemas to
ensure the mapping tool can work with schema
versions described in any formalism. For
example, schemas defined in EXPRESS, XML-
DTD, XML Schema, SQL, etc should all be able
to be manipulated by the system.

− Providing the user with a tool to augment, and
complete, the automatically defined mappings.
This tool must enable the user to cope with the
potentially large schemas being developed in
technical domains.

− Being able to generate mapping code in a range
of mapping languages (e.g. EXPRESS-X, XSLT,
or SQL) or even to generate straight
programming language code for a mapping (e.g.
C++ or Java). This will allow developers to select
mapping code compatible with their development
environment.

− Providing a tool which can map a data model
between two different versions of a schema. For
example, taking a SPF (STEP Physical File)
describing a building in IFC 1.5.1 and generating
the equivalent SPF for IFC 2.X.

3 TYPES OF MAPPINGS

The initial phase of this project concentrated on
examining three versions of the IFC (1.5.1, 2.0 and
2.X) to determine the main categories of mapping
that would be required to specify translations
between the versions. This analysis identified six

main categories of mappings which could be
automatically identified for both entities and types in
EXPRESS. These are:
− IDENTICAL: This describes an entity, or type,

from a source schema which is totally identical to
an entity, or type, in the target schema. Being
identical in this form requires all attribute names
and types to be identical, as well as INVERSE
attributes and WHERE clauses. It also requires
that all SUPERTYPEs are identical as well.

− RENAMED: This describes an entity, or type,
from a source schema which is totally identical to
an entity, or type, in the target schema as
described above except that the name of the
ENTITY, or TYPE, has been changed.

− EQUIVALENT: This describes an entity, or type,
from a source schema whose content is nearly
identical to an entity, or type, in the target schema
except that the name of the ENTITY, or TYPE,
has been changed.

− MODIFIED: This describes all other entities and
types in a schema which are not identical in any
of the forms described above, but where a
matching entity or type has been identified (e.g.
because it has the same name).

− ADDED: This describes an entity, or type, which
appears in the target schema but was not in the
source schema.

− REMOVED: This describes an entity, or type, in
the source schema which does not appear in the
target schema.
The mapping categoriser built as part of this

system will take any two schema and attempt to
identify what the correspondences are between their
entities and types. The outcome of this
categorization between IFC 1.5.1 and IFC 2.0 is
shown in Table 2.

Table 2. Identified relationships between IFC 1.5.1 and 2.0
Relationship ENTITYs TYPEs
IDENTICAL 24 43
RENAMED 0 1
EQUIVALENT 7 9
MODIFIED 146 19
ADDED 113 85
REMOVED 9 23

This is not a perfect categorization of the differences
between the two schema as a hand mapping
categorizes the entities and types in a slightly
different manner. However, this provides an initial
mapping between two schema which is relatively
complete.

After this initial categorization of mappings the
system re-examines all top level mapping
relationships as there is a range of more detailed
categories which can be recognized, either over the
whole entity and type or for individual attributes
within an entity. For entities and types these include:

Figure 1. Structure of the IFC version mapping system

− An entity, or type, in the source schema being

split into two (or more) entities, or types, in the
target schema.

− Two (or more) entities, or types, in the source
schema being merged into one entity, or type, in
the target schema.

− An entity in the source schema maps to a type in
the target schema.

− A type in the source schema maps to an entity in
the target schema.
Attributes are classified in a similar manner to

entities and types (i.e. identical, renamed, modified,
added, removed) along with the following
classifications:
− A change in the optional status of an attribute.

Either from optional to non-optional or vice
versa.

− An attribute in an entity being moved to one of its
SUPERTYPE entities, or vice-versa.
This classification is applied to all types of

attributes in an EXPRESS schema, including those
which are of a derived and inverse type. The
classification is also applied to WHERE rules within
an entity.

A full description of all of these categorizations

can be found in Ge (in prep.).

4 VERSION MAPPING SYSTEM FRAMEWORK

A system to generate and support mappings between
versions of a schema requires several fairly complex
components. Figure 1 shows the structure of the
system developed in this project. The five main
subsystems in this implementation are:
1 A parser generator to support the syntax of the

schema specification.
2 A comparator to examine the parsed

representation of two schemas and identify
similarities as described in section 3.

3 A graphical user interface to allow a mapping
expert to modify and add mapping specifications
on top of those identified by the comparator.

4 A mapping code generator which understands the
mapping specification generated in 2) and
augmented by the user in 3).

5 The data mapping subsystem which is generated
from the mapping code in subsystem 4).

(1)

EXPRESS
grammar

ANTLR class
library

 (2)

IFC Parser

IFC Comparator

Result of Comparison

 (3)

Visual
Mapping
Tool

Source IFC
Version

Target IFC
Version

 (4)

Report generator

Result processing

Mapping code
generator

Report of IFC version
mapping

IFC Source Data file
as input

IFC Target Data file
as output

 (5)

STEP EXPRESS-X tool
JAVA XSLT Tool …

Figure 2. User interface for managing mappings

4.1 The parser generator
A schema is described by a particular notation,
usually textual in nature. In order to generate
mappings between two versions of a schema it is
necessary to generate a representation of the
schemas which can be traversed and compared to
each other. In this project the ANTLR tool (ANTLR
2002), which is a generic parser generator, was used
to generate a parser for the EXPRESS language and
for the XML-DTD specification. Parsers for other
notations could be added at a future date, but these
two sufficed for the proof of concept for this system.

4.2 The schema comparator
This subsystem loads in the two versions of a
schema and builds an object-based representation of
each schema in a format which is neutral from the
syntax of the original schema. In this way the
comparator is independent of the original schema
specification language. The categories described in
section 3 are used to define correspondences
between the two schema. Each mapping between
entities, or types, in a schema is represented as a
separate mapping object holding a range of
information on the relationship between the entities,

or types. The comparator also creates separate
mapping objects to capture the relationship between
individual attributes within a mapped entity. Initial
tests of the comparator on major IFC versions shows
that approximately 65% of the mappings required
between any two versions can be generated
automatically.

4.3 The graphical user interface
The user interface (described in section 5) allows an
expert to view the generated mappings and to
redefine or fix the mappings which were generated.
The two schema versions are color coded by their
mapping type and both schemas can be navigated to
identify where they have been mapped to.

4.4 The mapping code generator
The mapping code generator takes the set of
mapping relationship descriptions and generates a
target mapping specification. As the mapping
relationship is schema language independent the
generator can be adapted to produce mapping code
for a range of target languages. Currently, the
EXPRESS-X (2002) and XSLT (2002) languages
are supported as they are the most commonly used
mapping specification languages in this domain.
This subsystem can also produce summary statistics

1

2

3

4

5

about the mapping between the schema versions in
the form of a report to the user.

4.5 The data mapping subsystems
The generated mappings are linked into existing
mapping support engines. Target mapping systems
in this project were the Java (2002) XSLT tool and
the EXPRESSO (2002) EXPRESS-X tool. This
enables the generated mappings to be tested with
data models in the most common formats utilized by
design tools in the area (e.g. SPF or XML
documents).

5 VERSION MAPPING INTERFACE

The user interface provides a visual mapping
environment for an expert in the domain to navigate
the generated mappings and to complete the
specification, or fix any errors created by the
automated mapping generation process. Figure 2
provides a snapshot of the major components within
the user interface. These include:
− The main navigation system (large window at the

back of all others). This allows the user to view
all entities, types, and functions in source and
target schemas (see label 2 for an example of the
full source view of an entity). The user can also
choose to see matching entities, or types, if they
choose ‘View Pair’ in this window.

− Individual entities and types are color coded to
indicate the mapping categorization they hold
(e.g. IDENTICAL, RENAMED, etc). The entities
and types displayed can be restricted to just those
categorized to a particular type (e.g. ADDED), to
reduce the number of entities or types in view at
any one time. The mapping between individual
entities, or types, can be opened in a separate
window where a wiring approach is utilized to
show the type of correspondence between
components in the entity or type. Label A shows
examples of this representation of the mappings.

− An ENTITY's SUPERTYPE can be visualized to
determine the mappings utilized in the higher
level entity description (see label 3).

− A library of functions can be built up for common
mapping problems. These can be called upon
when a new mapping is put together, to
complement the more normal specification of
equivalences and equations between attributes,
types and entities (see label 4).

− The mapping specification is automatically
regenerated whenever a change is made to the
stored mappings. The mapping specification can
be inspected at any time, and hand edited, if
required, prior to its use (see label 5).

6 CONCLUSIONS AND FUTURE WORK

This paper describes an approach to defining
mappings between versions of a schema based upon
recognizing a classification of the relationships
between entities and types in the relative schemas.
To demonstrate this approach a generic mapping
system was developed capable of handling schema
specifications in a range of formalisms and of
generating a mapping in a range of target mapping
languages. Recognizing that it is not possible to
automatically determine all mappings between
versions the system supports user specification and
modification of the generated mappings.

The developed system has been tested with
versions of the IFC schema. Initial indications are
that about 65% of the required mappings between
two versions of IFC schema can be generated by the
system. The final 35% of mappings and checking of
the automatically generated mappings is still a
human task, though supported by a GUI which
provides visual feedback on what is required to be
mapped.

The authors believe that a greater variety of
mapping types can be recognized by the system and
aim to determine further generic categories of
mappings for automated recognition.

The authors are also interested in further
extensions of the GUI to support the traversal and
specification of mappings by a user. Defining a
visual notation to quickly specify a mapping
between entities, types, and attributes is a
challenging task for schemas of the size being
released by the IAI.

REFERENCES

ANTLR. 2002. The ANTLR Translator generator, web site last
accessed 5/5/2002, http://www.antlr.org/.

EXPRESS-X. 2002. EXPRESS-X Reference Manual, ISO
10303, WG11, N088, web site last accessed 5/5/2002,
http://www.steptools.com/library/express-x/n088.pdf.

EXPRESSO. 2002. Express Engine, web site last accessed
5/5/2002, http://sourceforge.net/projects/exp-engine/.

Ge, C.W. 2002. A Semi-Automated Schema Version Mapping
Framework, MSc thesis in preparation, University of
Auckland, Auckland, New Zealand.

IAI. 2002. International Alliance for Interoperability, web site
last accessed 5/5/2002, http://www.iai-international.org/.

Java. 2002. Java Technology and XML, web site last accessed
5/5/2002, http://java.sun.com/xml/.

Steinmann, R. 2002. International Overview of IFC-
Implementation Activities, web site last accessed 5/5/2002,
http://www.iai.fhm.edu/ImplementationOverview.htm.

XSLT. 2002. The Extensible Stylesheet Language (XSL), web
site last accessed 5/5/2002, http://www.w3.org/Style/XSL/.

