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Abstract—We present a novel approach for multi-object tracking which considers object detection and spacetime trajectory

estimation as a coupled optimization problem. Our approach is formulated in a Minimum Description Length hypothesis selection

framework, which allows our system to recover from mismatches and temporarily lost tracks. Building upon a state-of-the-art object

detector, it performs multiview/multicategory object recognition to detect cars and pedestrians in the input images. The 2D object

detections are checked for their consistency with (automatically estimated) scene geometry and are converted to 3D observations

which are accumulated in a world coordinate frame. A subsequent trajectory estimation module analyzes the resulting 3D

observations to find physically plausible spacetime trajectories. Tracking is achieved by performing model selection after every frame.

At each time instant, our approach searches for the globally optimal set of spacetime trajectories which provides the best explanation

for the current image and for all evidence collected so far while satisfying the constraints that no two objects may occupy the same

physical space nor explain the same image pixels at any point in time. Successful trajectory hypotheses are then fed back to guide

object detection in future frames. The optimization procedure is kept efficient through incremental computation and conservative

hypothesis pruning. We evaluate our approach on several challenging video sequences and demonstrate its performance on both a

surveillance-type scenario and a scenario where the input videos are taken from inside a moving vehicle passing through crowded city

areas.

Index Terms—Object detection, tracking, model selection, MDL, Structure-from-Motion, mobile vision.
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1 INTRODUCTION

MULTI-OBJECT tracking is a challenging problem with
numerous important applications. The task is to

estimate multiple interacting object trajectories from video
input, either in the 2D image plane or in 3D object space.
Typically, tracking is modeled as some kind of first-order
Markov chain, i.e., object locations at a time step t are
predicted from those at the previous time step ðt� 1Þ and
then refined by comparing the object models to the current
image data, whereupon the object models are updated and
the procedure is repeated for the next time step. The
Markov paradigm implies that trackers cannot recover
from failure since, once they have lost track, the informa-
tion handed on to the next time step is wrong. This is a
particular problem in a multi-object scenario, where object-
object interactions and occlusions are likely to occur.

Several approaches have been proposed to work around

this restriction. Classic multitarget trackers such as Multi-

hypothesis Tracking (MHT) [39] and Joint Probabilistic

Data Association Filters (JPDAFs) [13] jointly consider the

data association from sensor measurements to multiple
overlapping tracks. While not restricted to first-order
Markov chains, they can, however, only keep a few time
steps in memory due to the exponential task complexity.
Moreover, originally developed for point targets, those
approaches generally do not take physical exclusion
constraints between object volumes into account.

The other main difficulty is to identify which image
parts correspond to the objects to be tracked. In classic
surveillance settings with static cameras, this task can often
be addressed by background modeling (e.g., [42]). How-
ever, this is no longer the case when large-scale background
changes are likely to occur or when the camera itself is
moving. In order to deal with such cases and avoid drift, it
becomes necessary to combine tracking with detection.

This has only recently become feasible due to the rapid
progress of object (class) detection [10], [31], [43], [46]. The
idea behind such a combination is to run an object detector,
trained either offline to detect an entire object category or
online to detect specific objects [1], [17]. Its output can then
constrain the trajectory search to promising image regions
and serve to reinitialize in case of failure. Going one step
further, one can directly use the detector output as a data
source for tracking (instead of, e.g., color information).

In this paper, we will specifically address multi-object
tracking both from static cameras and from a moving
camera-equipped vehicle. Scene analysis of this sort
requires multiviewpoint multicategory object detection.
Since we cannot control the vehicle’s path or the environ-
ment it passes through, the detectors need to be robust to a
large range of lighting variations, noise, clutter, and partial
occlusion. In order to localize the detected objects in 3D, an
accurate estimate of the scene geometry is necessary. The
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ability to integrate such measurements over time addition-
ally requires continuous self-localization and recalibration.
In order to finally make predictions about future states,
powerful tracking is needed that can cope with a changing
background.

We address those challenges by integrating recognition,
reconstruction, and tracking in a collaborative ensemble.
Namely, we use Structure-from-Motion (SfM) to estimate
scene geometry at each time step, which greatly helps the
other modules. Recognition picks out objects of interest and
separates them from the dynamically changing back-
ground. Tracking adds a temporal context to individual
object detections and provides them with a history
supporting their presence in the current video frame.
Detected object trajectories, finally, are extrapolated to
future frames in order to guide detection there.

In order to improve robustness, we further propose
coupling object detection and tracking in a non-Markovian
hypothesis selection framework. Our approach implements a
feedback loop, which passes on predicted object locations as a
prior to influence detection in future frames while at the same
time choosing between and reevaluating trajectory hypoth-
eses in the light of new evidence. In contrast to previous
approaches, which optimize individual trajectories in a
temporal window [2], [47] or over sensor gaps [22], our
approach tries to find a globally optimal combined solution
for all detections and trajectories while incorporating real-
world physical constraints such that no two objects can
occupy the same physical space nor explain the same image
pixels at the same time. The task complexity is reduced by
only selecting between a limited set of plausible hypotheses,
which makes the approach computationally feasible.

The paper is structured as follows: After discussing
related work in Section 2, Section 3 describes the SfM
system we use for estimating scene geometry. Section 4
then presents our hypothesis selection framework integrat-
ing object detection and trajectory estimation. Sections 5
and 6 introduce the baseline systems we employ for each of
those components, after which Section 7 presents our
coupled formulation as a combined optimization problem.
Several important implementation details are discussed in
Section 8. Section 9 finally presents experimental results.

2 RELATED WORK

In this paper, we address multi-object tracking in two
scenarios. First, we will demonstrate our approach in a
typical surveillance scenario with a single, static, calibrated
camera. Next, we will apply our method to the challenging
task of detecting, localizing, and tracking other traffic
participants from a moving vehicle.

Tracking in such scenarios consists of two subproblems:
trajectory initialization and target following. While many
approaches rely on background subtraction from a static
camera for the former (e.g., [2], [26], [42]), several recent
approaches have started to explore the possibilities of
combining tracking with detection [1], [17], [37], [46]. This
has been helped by the considerable progress of object
detection over the last few years [10], [31], [34], [43], [44],
[45], which has resulted in state-of-the-art detectors that are
applicable in complex outdoor scenes.

The second subproblem is typically addressed by classic
tracking approaches such as Extended Kalman Filters

(EKF) [15], particle filtering [21], or Mean-Shift tracking
[6], which rely on a Markov assumption and carry the
associated danger of drifting away from the correct target.
This danger can be reduced by optimizing data assignment
and considering information over several time steps, as in
MHT [9], [39] and JPDAF [13]. However, their combinator-
ial nature limits those approaches to considering either only
a few time steps [39] or only single trajectories over longer
time windows [2], [22], [47]. In contrast, our approach
simultaneously optimizes detection and trajectory estima-
tion for multiple interacting objects and over long time
windows by operating in a hypothesis selection framework.

Tracking with a moving camera is a notoriously difficult
task because of the combined effects of egomotion, blur,
and rapidly changing lighting conditions [3], [14]. In
addition, the introduction of a moving camera invalidates
many simplifying techniques we have grown fond of, such
as background subtraction and a constant ground plane
assumption. Such techniques have been routinely used in
surveillance and tracking applications from static cameras
(e.g., [2], [24]), but they are no longer applicable here. While
object tracking under such conditions has been demon-
strated in clean highway situations [3], reliable perfor-
mance in urban areas is still an open challenge [16], [38].

Clearly, every source of information that can help system
performance under those circumstances constitutes a valu-
able aid that should be used. Hoiem et al. [20] have shown
that scene geometry can fill this role and greatly help
recognition. They describe how geometric scene context can
be automatically estimated from a single image [19] and how
it can be used for improving object detection performance.
More recently, Cornelis et al. have shown how recognition
can be combined with SfM for the purpose of localizing static
objects [8]. In this paper, we extend the framework developed
there in order to also track moving objects.

Our approach integrates geometry estimation and
tracking-by-detection in a combined system that searches
for the best global scene interpretation by joint optimiza-
tion. Berclaz et al. [2] also perform trajectory optimization
to track up to six mutually occluding individuals by
modeling their positions on a discrete occupancy grid.
However, their approach requires multiple static cameras
and optimization is performed only for one individual at a
time. In contrast, our approach models object positions
continuously while moving through a 3D world and allows
us to find a jointly optimal solution.

3 ONLINE SCENE GEOMETRY ESTIMATION

Our combined tracking-by-detection approach makes the
following uses of automatically estimated scene geometry
information. First, it employs the knowledge about the
scene’s ground plane in order to restrict possible object
locations during detection. Second, a camera calibration
allows us to integrate individual detections over time in a
world coordinate frame and group them into trajectories
over a spacetime window. Such a calibration can be safely
assumed to be available when working with a static
camera, as in typical surveillance scenarios. However, this
is no longer the case when the camera itself is moving. In
this paper, we show that 3D tracking is still possible from a
moving vehicle through a close combination with SfM.
Taking as input two video streams from a calibrated stereo

1684 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 10, OCTOBER 2008



rig mounted on the vehicle’s roof, our approach uses SfM in

order to continually estimate the camera pose and ground

plane for every frame. This is done as follows.

3.1 Real-Time Structure-from-Motion (SfM)

Our SfM module is based on the approach in [7], [8], which

is highly optimized and runs at � 30 frames per second.

Feature points are extracted with a simple but extremely

fast interest point operator, which divides local neighbor-

hoods into four subtiles and compares their average

intensities. The extracted features are matched between

consecutive images and then fed into a classic SfM pipeline

[18], which reconstructs feature tracks and refines 3D point

locations by triangulation. A windowed bundle adjustment

is running in parallel with the main SfM algorithm to refine

camera poses and 3D feature locations for previous frames

and thus reduce drift.

3.2 Online Ground Plane Estimation

For each image pair, SfM delivers an updated camera

calibration. In addition, we obtain an online estimate of the

ground plane by fitting trapezoidal patches to the recon-

structed wheel contact points of adjacent frames and by

smoothing their normals over a larger spatial window (see

Fig. 1). Empirically, averaging the normals over a length of

3 m (or roughly the wheel base of the vehicle) turned out to

be optimal for a variety of cases. Note that using a constant

spatial window automatically adjusts for driving speed:

Reconstructions are more accurate at low speed, respec-

tively, high frame rate (once the 3D structure has stabilized

after initialization), so that smaller road patches are

sufficient for estimating the normal.
Fig. 2 highlights the importance of this continuous

reestimation step if later stages are to trust its results. In this

example, the camera vehicle hits a speed bump, causing a

massive jolt in camera perspective. Fig. 2 (top) shows the

resulting detections when the ground plane estimate from

the previous frame is simply kept fixed. As can be seen, this

results in several false positives at improbable locations and

scales. Fig. 2 (bottom) displays the detections when the

reestimated ground plane is used instead. Here, the

negative effect is considerably lessened.

4 APPROACH

4.1 MDL Hypothesis Selection

Our basic mathematical tool is a model selection frame-
work, as introduced in [32] and adapted in [28]. We briefly
repeat its general form here and later explain specific
versions for object detection and trajectory estimation.

The intuition of the method is that, in order to correctly
handle the interactions between multiple models required
to describe a data set, one cannot fit them sequentially
(because interactions with models which have not yet been
estimated would be neglected). Instead, an overcomplete
set of hypothetical models is generated and the best subset
is chosen with model selection in the spirit of the minimum
description length (MDL) criterion.

To select the best models, the savings (in coding length)
of each hypothesis h are expressed as

Sh � Sdata � �1Smodel � �2Serror; ð1Þ

where Sdata corresponds to the number N of data points,
which are explained by h, Smodel denotes the cost of coding
the model itself, Serror describes the cost for the error
committed by the representation, and �1, �2 are constants to
weigh the different factors. If the error term is chosen as the
log-likelihood over all data points x assigned to a
hypothesis h, then the following approximation holds:1

Serror ¼ � log
Y
x2h

pðxjhÞ ¼ �
X
x2h

log pðxjhÞ

¼
X
x2h

X1
n¼1

1

n
1� pðxjhÞð Þn� N �

X
x2h

pðxjhÞ:
ð2Þ

Substituting (2) into (1) yields an expression for the merit of
model h:

Sh � ��1Smodel þ
X
x2h
ð1� �2Þ þ �2pðxjhÞð Þ: ð3Þ

Thus, the merit of a putative model is essentially the sum
over its data assignment likelihoods, regularized with a
term which compensates for unequal sampling of the data.
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Fig. 1. Visualization of the online ground plane estimation procedure.
Using the camera positions from SfM, we reconstruct trapezoidal road
strips between the car’s wheel contact points of adjacent frames. A
ground plane estimate is obtained by averaging the local normals over a
spatial window of about 3 m travel distance.

Fig. 2. Illustration of the importance of a continuous reestimation of

scene geometry. The images show the effect on object detection when

the vehicle hits a speed bump (top) if using an unchanged ground plane

estimate and (bottom) if using the online reestimate.

1. This approximation improves robustness against outliers by mitigat-
ing the nonlinearity of the logarithm near 0, while providing good results
for unambiguous point assignments.



A data point can only be assigned to one model. Hence,
overlapping hypothetical models compete for data points.
This competition translates into interaction costs, which
apply only if both hypotheses are selected and which are
then subtracted from the score of the hypothesis combina-
tion. Leonardis et al. [32] have shown that if only pairwise
interactions are considered,2 then the optimal set of
models can be found by solving the Quadratic Boolean
Problem (QBP):

max
n

n>Sn; S ¼
s11 � � � s1N

..

. . .
. ..

.

sN1
� � � sNN

264
375: ð4Þ

Here, n ¼ ½n1; n2; . . . ; nN �> is a vector of indicator variables
such that ni ¼ 1 if hypothesis hi is accepted and ni ¼ 0
otherwise. S is an interaction matrix whose diagonal
elements sii are the merit terms (3) of individual hypoth-
eses, while the off-diagonal elements ðsij þ sjiÞ express the
interaction costs between two hypotheses hi and hj.

4.2 Object Detection

For object detection, we use the Implicit Shape Model (ISM)
detector from [28], [31], which utilizes the model selection
framework explained above. It uses a voting scheme based
on multiscale interest points to generate a large number of
hypothetical detections. From this redundant set, the subset
with the highest joint likelihood is selected by maximizing
n>Sn: The binary vector n indicates which detection
hypotheses shall be used to explain the image observations
and which ones can be discarded. The interaction matrix S
contains the hypotheses’ individual savings, as well as their
interaction costs, which encode the constraint that each
image pixel is counted only as part of at most one detection.
This module is described in detail in Section 5.

4.3 Trajectory Estimation

In [27], a similar formalism is also applied to estimate
object trajectories over the ground plane. Object detec-
tions in a 3D spacetime volume are linked to hypothetical
trajectories with a simple dynamic model and the best set
of trajectories is selected from those hypotheses by solving
another maximization problem m>Qm, where the interac-
tion matrix Q again contains the individual savings and the
interaction costs that arise if two hypotheses compete to fill
the same part of the spacetime volume (see Section 6).

4.4 Coupled Detection and Trajectory Estimation

Thus, both object detection and trajectory estimation can be
formulated as individual QBPs. However, as shown in [30],
the two tasks are closely coupled and their results can
mutually reinforce each other. In Section 7, we therefore
propose a combined formulation that integrates both
components into a coupled optimization problem. This
joint optimization searches for the best explanation of the
current image and all previous observations while allowing
bidirectional interactions between those two parts. As our
experiments in Section 9 will show, the resulting feedback

from tracking to detection improves total system perfor-
mance and yields more stable tracks.

5 OBJECT DETECTION

The recognition system is based on a battery of single-view
single-category ISM detectors [31]. This approach lets local
features, extracted around interest regions, vote for the
object center in a three-dimensional Hough space, followed
by a top-down segmentation and verification step. For our
application, we use the robust multicue extension from [29],
which integrates multiple local cues (in our case local Shape
Context descriptors [35] computed at Harris-Laplace, Hessian-
Laplace, and DoG interest regions [33], [35]).

In order to capture different viewpoints of cars, our system
uses a set of five single-view detectors trained for the
viewpoints shown in Fig. 3a (for training efficiency, we run
mirrored versions of the two semiprofile detectors for the
symmetric viewpoints). In addition, we use a pedestrian
detector trained on both frontal and side views of pedes-
trians. The detection module does not differentiate between
pedestrians and bicyclists here as those two categories are
often indistinguishable from a distance and our detector
responds well to both of them. We start by running all
detectors on both camera images and collect their hypoth-
eses. For each such hypothesis h, we compute two per-pixel
probability maps pðp ¼ figurejhÞ and pðp ¼ groundjhÞ, as
described in [31]. The rest of this section describes how the
different detector outputs are fused and how scene
geometry is integrated into the recognition system.

5.1 Integration of Scene Geometry Constraints

The integration with scene geometry follows the framework
described in [8], [27]. With the help of a camera calibration,
the 2D detections h are converted to 3D object locationsH on
the ground plane. This allows us to evaluate each hypothesis
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2. Considering only interactions between pairs of hypotheses is a good
approximation because their cost dominates the total interaction cost.
Furthermore, neglecting higher order interactions always increases inter-
action costs, yielding a desirable bias against hypotheses with very little
evidence.

Fig. 3. (a) Training viewpoints used for cars and pedestrians. (b) The
estimated ground plane significantly reduces the search volume for
object detection. A Gaussian size prior additionally “pulls” object
hypotheses toward the right locations. (c) The responses of multiple
detectors are combined if they refer to the same scene object.



under a 3D location prior pðHÞ. The location prior is split up
into a uniform distance prior for the detector’s target range
and a Gaussian prior for typical pedestrian sizes pðHsizeÞ �
N ð1:7; 0:22Þ [meters], similarly to [20].

This effective coupling between object distance and size
through the use of a ground plane has several beneficial
effects. First, it significantly reduces the search volume
during voting to a corridor in Hough space (Fig. 3b). In
addition, the Gaussian size prior serves to “pull” object
hypotheses toward the correct locations, thus also improv-
ing recognition quality.

5.2 Multidetector Integration

In contrast to [8], we fuse the outputs of the different single-
view detectors already at this stage. This is done by
expressing the per-pixel support probabilities pðp ¼ fig:jHÞ
by a marginalization over all image-plane hypotheses that
are consistent with the same 3D object H:

pðp ¼ fig:jHÞ ¼
X
j

pðp ¼ fig:jhjÞpðhjjHÞ: ð5Þ

The new factor pðhjjHÞ is a 2D/3D transfer function which
relates the image-plane hypotheses hj to the 3D object
hypothesis H. We implement this factor by modeling the
object location and main orientation of H with an oriented
3D Gaussian, as shown in Fig. 3c. Thus, multiple single-
view detections can contribute to the same 3D object if they
refer to a similar 3D location and orientation.

This step effectively makes use of symmetries in the
different single-view detectors in order to increase overall
system robustness. For example, the frontal and rear-view
car detectors often respond to the same image structures
because of symmetries in the car views. Similarly, a slightly
oblique car view may lead to responses from both the
frontal and a semiprofile detector. Rather than having those
hypotheses compete, our system lets them reinforce each
other as long as they lead to the same interpretation of the
underlying scene.

Finally, we express the score of each hypothesis in terms of
the pixels it occupies. Let I be the image and SegðHÞ be the
support region of H, as defined by the fused detections (i.e.,
the pixels for which pðp ¼ figurejHÞ > pðp ¼ groundjHÞ).
Then,

pðHjIÞ � pðIjHÞpðHÞ
¼ pðHÞ

Y
p2I

pðpjHÞ ¼ pðHÞ
Y

p2SegðHÞ
pðp ¼ fig:jHÞ:

ð6Þ

The updated hypotheses are then passed on to the
following hypothesis selection stage.

5.3 Multicategory Hypothesis Selection

In order to obtain the final interpretation for the current
image pair, we search for the combination of hypotheses that
together best explain the observed evidence. This is done by
adopting the MDL formulation from (1), similarly to [28],
[31]. In contrast to that previous work, however, we perform
the hypothesis selection not over image-plane hypotheses hi
but over their corresponding world hypotheses Hi.

For notational convenience, we define the pseudo-
likelihood

p�ðHjIÞ ¼ 1

As;v

X
p2SegðHÞ

ð1� �2Þ þ �2pðp ¼ fig:jHÞð Þ

þ log pðHÞ;
ð7Þ

where As;v acts as a normalization factor expressing the
expected area of an object hypothesis at its detected scale and
aspect. The term pðp ¼ fig:jHÞ integrates all consistent
single-view detections, as described in the previous section.

Two detections Hi and Hj interact if they overlap and
compete for the same image pixels. In this case, we assume
that the hypothesis Hk 2 fHi;Hjg that is farther away from
the camera is occluded. Thus, the cost term subtracts Hk’s
support in the overlapping image area, thereby ensuring
that only this area’s contribution to the front hypothesis
survives. With the approximation from (2), we thus obtain
the following merit and interaction terms for the object
detection matrix S:

sii ¼ � �1 þ p�ðHijIÞ;

sij ¼ �
1

2As;v

X
p2SegðHi\HjÞ

ð1� �2Þ þ �2pðp ¼ fig:jHkÞð Þ

� 1

2
log pðHkÞ:

ð8Þ

As a result of this procedure, we obtain a set of world
hypotheses fHig, together with their supporting segmenta-
tions in the image. At the same time, the hypothesis
selection procedure naturally integrates the contributions
from the different single-view single-category detectors.

6 SPACETIME TRAJECTORY ESTIMATION

In order to present our trajectory estimation approach, we
introduce the concept of event cones. The event cone of an
observation Hi;t ¼ fxi;t; vi;t; �i;tg is the spacetime volume it
can physically influence from its current position given its
maximal velocity and turn rate. Fig. 4 shows an illustration
for several cases of this concept. If an object is static at time t
and its orientation is unknown, all motion directions are
equally probable and the affected spacetime volume is a
simple double cone reaching both forward and backward
in time (Fig. 4a). If the object moves holonomically, i.e.,
without external constraints linking its speed and turn rate,
the event cone becomes tilted in the motion direction
(Fig. 4b). An example for this case would be a pedestrian at
low speeds. In the case of nonholonomic motion, as in a car
which can only move along its main axis and only turn
while moving, the event cones get additionally deformed
according to those (often nonlinear) constraints (Fig. 4c).

We thus search for plausible trajectories through the
spacetime observation volume by linking up event cones, as
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Fig. 4. Visualization of example event cones for (a) a static object with

unknown orientation, (b) a holonomically moving object, and (c) a

nonholonomically moving object.



shown in Fig. 6. Starting from an observation Hi;t, we follow
its event cone up and down the timeline and collect all
observations that fall inside this volume in the adjoining time
steps. Since we do not know the starting velocity vi;t yet, we
begin with the case in Fig. 4a. In all subsequent time steps,
however, we can reestimate the object state from the new
evidence and adapt the growing trajectory accordingly.

It is important to point out that an individual event cone is
not more powerful in its descriptive abilities than a
bidirectional Extended Kalman Filter since it is based on
essentially the same equations. However, our approach goes
beyond Kalman Filters in several important respects. First of
all, we are no longer bound by a Markov assumption. When
reestimating the object state, we can take several previous
time steps into account. In our approach, we aggregate the
information from all previous time steps, weighted with a
temporal discount �. In addition, we are not restricted to
tracking a single hypothesis. Instead, we start independent
trajectory searches from all available observations (at all time
steps) and collect the corresponding hypotheses. The final
scene interpretation is then obtained by a global optimization
stage that selects the combination of trajectory hypotheses
that best explains the observed data under the constraints
that each observation may only belong to a single object and
no two objects may occupy the same physical space at the
same time. The following sections explain those steps in more
detail.

6.1 Color Model

For each observation, we compute an object-specific color
model ai, using the top-down segmentations provided by
the previous stage. Fig. 5 shows an example of this input.

For each detection Hi;t, we build an 8� 8� 8 RGB color

histogram ai over the segmentation area, weighted by the

per-pixel confidence
P

k pðp ¼ fig:jhkÞpðhkjHi;tÞ in this

segmentation. The appearance model A is defined as the

trajectory’s color histogram. It is initialized with the first

detection’s color histogram and then evolves as a weighted

mean of all inlier detections as the trajectory progresses.

Similarly to that in [36], we compare color models by their

Bhattacharyya coefficient:

pðaijAÞ �
X
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aiðqÞAðqÞ

p
: ð9Þ

6.2 Dynamic Model

Given a partially grown trajectory Ht0:t, we first select the

subset of observations that fall inside its event cone. Using

the following simple motion models,

_x ¼ v cos �
_y ¼ v sin �
_� ¼ Kc

and
_x ¼ v cos �
_y ¼ v sin �
_� ¼ Kcv;

ð10Þ

for holonomic pedestrian and nonholonomic car motion on

the ground plane, respectively, we compute predicted

positions:

xptþ1 ¼ xt þ v�t cos �
yptþ1 ¼ yt þ v�t sin �
�ptþ1 ¼ �t þKc�t

and
xptþ1 ¼ xt þ v�t cos �
yptþ1 ¼ yt þ v�t sin �
�ptþ1 ¼ �t þKcv�t

ð11Þ

and approximate the positional uncertainty by an oriented

Gaussian to arrive at the dynamic model D:

D :
p

xtþ1

ytþ1

" # !
�N

xptþ1

yptþ1

" #
;�>

�2
mov 0

0 �2
turn

" #
�

 !
pð�tþ1Þ �N ð�ptþ1; �

2
steerÞ

: ð12Þ

Here, � is the rotation matrix, Kc the path curvature, and

the nonholonomic constraint is approximated by adapting

the rotational uncertainty �turn as a function of v.
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Fig. 5. Detections and corresponding top-down segmentations used to

learn the object-specific color model.

Fig. 6. Visualization of the trajectory growing procedure. (a) Starting from an observation, we collect all detections that fall inside its event cone in the

adjoining time steps and evaluate them under the trajectory model. (b) We adapt the trajectory based on inlier points and iterate the process both

forward and backward in time. (c) This results in a set of candidate trajectories which are passed to the hypothesis selection stage. (d) For efficiency

reasons, trajectories are not built up from scratch at each time step but are grown incrementally.



6.3 Spacetime Trajectory Search for Moving
Objects

Each candidate observation Hi;tþ1 is then evaluated under
the covariance of D and compared to the trajectory’s
appearance model A (its mean color histogram), yielding

pðHi;tþ1jHt0:tÞ ¼ pðHi;tþ1jAtÞpðHi;tþ1jDtÞ: ð13Þ

After this, the trajectory is updated by the weighted mean
of its predicted position and the supporting observations:

xtþ1 ¼
1

Z
pðHt:tþ1jHt0:tÞxptþ1 þ

X
i

pðHi;tþ1jHt0:tÞxi

 !
; ð14Þ

with pðHt:tþ1jHt0:tÞ ¼ e�� and normalization factor Z.
Velocity, rotation, and appearance model are updated in
the same fashion. This process is iterated both forward and
backward in time (Fig. 6b) and the resulting hypotheses are
collected (Fig. 6c).

6.4 Temporal Accumulation for Static Objects

Static objects are treated as a special case since their
sequence of prediction cones collapses to a spacetime
cylinder with constant radius. For such a case, a more
accurate localization estimate can be obtained by aggregat-
ing observations over a temporal window, which also helps
to avoid localization jitter from inaccurate detections. Note
that we do not have to make a decision whether an object is
static or dynamic at this point. Instead, our system will
typically create candidate hypotheses for both cases,
leaving it to the model selection framework to select the
one that better explains the data.

This is especially important for parked cars since our
appearance-based detectors provide a too coarse orienta-
tion to estimate a precise 3D bounding box. We therefore
employ the method described in [8] for localization: The
ground-plane locations of all detections within a time
window are accumulated and Mean-Shift mode estimation
[5] is applied to accurately localize the hypothesis. For cars,
we additionally estimate the orientation by fusing the
orientation estimates from the single-view detectors with
the principal axis of the cluster in a weighted average.

6.5 Global Trajectory Selection

Taken together, the steps above result in a set of trajectory
hypotheses for static and moving objects. It is important to
point out that we do not prefer any of those hypotheses
a priori. Instead, we let them compete in a hypothesis
selection procedure in order to find the globally optimal
explanation for the observed data. To this end, we express
the support (or utility) S of a trajectory Ht0:t reaching from
time t0 to t by the evidence collected from the images It0:t

during that time span:

SðHt0:tjIt0:tÞ ¼
X
i

SðHt0:tjHi;tiÞpðHi;ti jItiÞ

¼ pðHt0:tÞ
X
i

SðHi;ti jHt0:tÞ
pðHi;tiÞ

pðHi;ti jItiÞ

� pðHt0:tÞ
X
i

SðHi;ti jHt0:tÞpðHi;ti jItiÞ;

ð15Þ

where pðHi;tiÞ is a normalization factor that can be omitted
since the later QBP stage enforces that each detection can
only be assigned to a single trajectory. Further, we define

SðHi;ti jHt0:tÞ ¼SðHti jHt0:tÞpðHi;ti jHtiÞ
¼ e��ðt�tiÞpðHi;ti jAtiÞpðHi;ti jDtiÞ;

ð16Þ

that is, we express the contribution of an observation Hi;ti to
trajectory Ht0:t ¼ ðA;DÞt0:t by evaluating it under the
trajectory’s appearance and dynamic model at that time,
weighted with a temporal discount.

In order to find the combination of trajectory hypotheses
that together best explain the observed evidence, we again
solve a QBP maxmm

>Qmwith the additional constraint that
no two objects may occupy the same space at the same time.
With a similar derivation as in Section 4.1, we arrive at

qii ¼ � �1cðHi;t0:tÞ þ
X

Hk;tk
2Hi

ð1� �2Þ þ �2 gk;i
� �

qij ¼ �
1

2

X
Hk;tk

2Hi\Hj

ð1� �2Þ þ �2 gk;‘ þ �3 Oij

� �
gk;i ¼ p�ðHk;tk jItkÞ þ log pðHk;tk jHiÞ;

ð17Þ

where H‘ 2 fHi;Hjg denotes the weaker of the two
trajectory hypotheses, cðHt0:tÞ �#holes is a model cost that
penalizes holes in the trajectory, and the additional penalty
term Oij measures the physical overlap between the
spacetime trajectory volumes of Hi and Hj given average
object dimensions.

Thus, two overlapping trajectory hypotheses compete
both for supporting observations and for the physical space
they occupy during their lifetime. This makes it possible to
model complex object-object interactions such that two
pedestrians cannot walk through each other or that one
needs to yield if the other shoves.

The hypothesis selection procedure always searches for
the best explanation of the current world state given all
evidence available up to now. It is not guaranteed that this
explanation is consistent with the one we got for the previous
frame. However, as soon as it is selected, it explains the whole
past, as if it had always existed. We can thus follow a
trajectory back in time to determine where a pedestrian came
from when he first stepped into view, even though no
hypothesis was selected for him back then. Fig. 7 visualizes
the estimated spacetime trajectories for such a case.

Although attractive in principle, this scheme needs to be
made more efficient for practical applications, as explained
next.

6.6 Efficiency Considerations

The main computational cost in this stage comes from three
factors: the cost to find trajectories, to build the quadratic
interaction matrix Q, and to solve the final optimization
problem. However, the first two steps can reuse informa-
tion from previous time steps.

Thus, instead of building up trajectories from scratch at
each time step t, we merely check, for each of the existing
hypotheses Ht0:t�k, if it can be extended by the new
observations using (13) and (14). In addition, we start
new trajectory searches down the time line from each new
observation Hi;t�kþ1:t, as visualized in Fig. 6d. Note that this
procedure does not require a detection in every frame; its
time horizon can be set to tolerate large temporal gaps.
Dynamic model propagation is unidirectional. After find-
ing new evidence, the already existing part of the trajectory
is not readjusted. However, in order to reduce the effect of
localization errors, inevitably introduced by limitations of
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the object detector, the final trajectory hypothesis is
smoothed by local averaging and its score (15) is
recomputed. Also note that most entries of the previous
interaction matrix Qt�1 can be reused and just need to be
weighted with the temporal discount e��.

The optimization problem in general is NP-hard. In
practice, the time required to find a good local maximum
depends on the connectedness of the matrix Q, i.e., on the
number of nonzero interactions between hypotheses. This
number is typically very low for static objects since only a
few hypotheses overlap. For pedestrian trajectories, the
number of interactions may, however, grow quite large.

We use the multibranch gradient ascent method from
[41], a simple local optimizer specifically designed for
problems with high connectivity but a moderate number of
variables and sparse solutions. In our experiments, it
consistently outperforms not only simple greedy and Taboo
search, but also the LP-relaxation from [4] (in computer
vision, it is also known as QPBO [40]), while branch-and-
bound with the LP relaxation as convex underestimator has
unacceptable computation times. Alternatives which we
have not tested but which we expect to perform similarly to
QPBO are relaxations based on SDP and SOCP [23], [25].

7 COUPLED DETECTION AND TRAJECTORY

ESTIMATION

As shown above, both object detection and trajectory
estimation can be formulated as individual QBPs. How-
ever, the two tasks are closely coupled: The merit of a
putative trajectory depends on the number and strength of
the underlying detections fni ¼ 1g, while the merit of a
putative detection depends on the current object trajectories
fmi ¼ 1g, which impose a prior on object locations. These
dependencies lead to further interactions between detec-
tions and trajectories. In this section, we therefore jointly
optimize both detections and trajectories by coupling them
in a combined QBP.

However, we have to keep in mind that the relationship
between detections and trajectories is not symmetric:
Trajectories ultimately rely on detections to be propagated,
but new detections can occur without a trajectory to assign
them to (e.g., when a new object enters the scene). In
addition to the index vectors m for trajectories and n for

detections, we therefore need to introduce a list of virtual
trajectories v, one for each detection in the current image, to
enable detections to survive without contributing to an
actual trajectory. The effect of those virtual trajectories will
be explained in detail in Section 7.1. We thus obtain the
following joint optimization problem:

max
m;v;n
½m> v> n> �

eQ U V
U> R W
V > W> eS

24 35 m
v
n

24 35; ð18Þ

where the elements of V , W model the interactions between
detections and real and virtual trajectories, respectively,
and U models the mutual exclusion between the two
groups. The solution of (18) jointly optimizes both the
detection results for the current frame, given the trajectories
of the tracked objects, and the trajectories across frames,
given the detections.

Equations (6) and (15) define the support that is used to
build up our coupled optimization problem. This support is
split up between the original matrices Q, S and the
coupling matrices U , V , W as follows: The modified
interaction matrix eQ for the real trajectories keeps the form
from (17), with the exception that only the support from
previous frames is entered into eQ:

eqii ¼ ��1cðHi;t0:tÞ þ
X

Hk;tk
2Hi;t0:t�1

ð1� �2Þ þ �2 gk;i
� �

; ð19Þ

eqij ¼ � 1

2

X
Hk;tk

2ðHi\HjÞt0:t�1

ð1� �2Þ þ �2 gk;‘ þ �3 Oij

� �
: ð20Þ

The matrix R for the virtual trajectories contains simply the
entries rii ¼ ", rij ¼ 0, with " a very small constant. The
matrix U for the interaction between real and virtual
trajectories has entries uik that are computed similarly to
the real trajectory interactions qij:

uik ¼ �
1

2
ð1� �2Þ þ �2 gk;i þ �3 Oik

� �
: ð21Þ

The modified object detection matrix eS contains as diagonal
entries only the base cost of a detection and as off-diagonal
elements the full interaction cost between detections:

1690 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 10, OCTOBER 2008

Fig. 7. (a) Online 3D localization and trajectory estimation results of our system obtained from inside a moving vehicle. (The different bounding box

intensities encode our system’s confidence.) (b) Visualizations of the corresponding spacetime trajectory estimates for this scene. Blue dots show

pedestrian observations; red dots correspond to car observations.



esii ¼ ��1�2 � ð1� �2Þ; esij ¼ sij: ð22Þ

Finally, the interaction matrices V , W between trajectories
and detections have as entries the evidence a new detection
contributes toward explaining the image data (which is the
same as its contribution to a trajectory):

vij ¼
1

2
ð1� �2Þ þ �2p�ðHjjItÞ þ �2 log pðHjjHiÞ
� �

; ð23Þ

wjj ¼ max
i
½vij�: ð24Þ

Note that R, S, and W are all quadratic and of the same size
N �N and that R and W are diagonal matrices. As can be
easily verified, the elements of the submatrices indeed add
up to the correct objective function. Fig. 8 visualizes the
structure of the coupled optimization matrix.

7.1 Discussion

To illustrate this definition, we describe the most important
features of the coupled optimization problem in words:

1. A trajectory is selected if its score outweighs the
base cost in eqii.

2. If trajectory Hi is selected and a compatible
detection Hj is also selected, then Hj contributes to
the trajectory score through vij.

3. If a detection Hj is not part of any trajectory, but its
score outweighs the base cost in esjj, then it is still
selected, with the help of its virtual trajectory and
the contribution wjj.

4. If a detection is part of any selected trajectory, then
its virtual trajectory will not be selected due to the
interaction costs uij and the fact that the merit rjj of
a virtual trajectory is less than that of any real
trajectory.

5. Finally, while all this happens, the detections
compete for pixels in the image plane through the
interaction costs esij and the trajectories compete for
space in the object coordinate system through eqij.

Recapitulating the above, coupling has the following
effects: First, it supports novel object detections that are
consistent with existing trajectories. Equation (23) states
that existing trajectories impose a prior pðHjjHiÞ on certain
object locations that raises the chance of generating novel
detections there above the uniform background level U. We
model this prior as a Gaussian around the projected object
position using the trajectory’s dynamic model D, so that
pðHjjfHigÞ ¼ max½U;maxi½N ðxpi ; �2

predÞ��. Fig. 9 shows the

prior for a frame from one of our test sequences. Second,
the evidence from novel detections aids trajectories with
which those detections are consistent by allowing them to
count the new information as support.

7.2 Iterative Optimization

Optimizing (18) directly is difficult, since quadratic Boolean
optimization in its general form is NP hard. However, many
QBPs obey additional simplifying constraints. In particular,
the hypothesis selection problems for Q and S described
earlier are submodular3 and the expected solution is sparse
(only a few hypotheses will be selected), which allows one to
find strong local maxima, as shown in [41]. However, the new
QBP (18) is no longer submodular since the interaction
matrices V and W have positive entries.

We therefore resort to an EM-style iterative solution,
which lends itself to the incremental nature of tracking: At
each time step t, object detection is solved using the
trajectories from the previous frame ðt� 1Þ as prior. In the
above formulation, this corresponds to fixing the vector m.
As an immediate consequence, we can split the detection
hypotheses into two groups: those that are supported by a
trajectory and those that are not. We will denote the former
by another binary index vector nþ and the latter by its
complement n�. S ince , for f ixed m, the term
m>Qm ¼ const:, selecting detections amounts to solving

max
v;n

"
½ v> n> �

R W

W> S

� �
v

n

� �
þ 2m>½U V �

v

n

� �#
¼

max
v;n

v> n>
� � Rþ 2diagðU>mÞ W

W> S þ 2diagðV >mÞ

� �
v

n

� �
:

ð25Þ

The interactionsU>m by construction only serve to suppress
the virtual trajectories for the nþ. In contrast, V >m adds the
detection support from the nþ to their score, while the
diagonal interaction matrix W does the same for the n�,
which do not get their support through matrix V . We can
hence further simplify to

max
n

n> Rþ S þ 2diagðV >mÞ þ 2diagðW>n�Þ
� �

n
� �

: ð26Þ
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3. Intuitively, submodularity is something like a discrete equivalent of
convexity and means that the benefit of adding a certain element to a set
can only decrease, but never increase, as the set grows.

Fig. 8. Structure of the coupled optimization matrix (18).

Fig. 9. Influence of past trajectories on object detection. (a) Twenty-fifth
frame of sequence 2 and detected pedestrians. (b) Illustration of the
detection prior for the 26th frame. Top view showing trajectories
estimated in the last frame, predicted positions, and detection prior
(brighter color means higher probability).



The support W is only applied if no support comes from
the trajectories and if, in turn, the interaction cost U>m can
be dropped, which only served to make sure W is
outweighed for any nþ. The solution bn of (26) is the
complete set of detections for the new frame; the
corresponding virtual trajectories are v ¼ bn \ n�.

With the detection results from this step, the set of optimal
trajectories is updated. This time, the detection results ½v>n>�
are fixed and the optimization reduces to

max
m

m> Qþ 2diagðV nÞ þ 2diagðUvÞð Þm
� �

: ð27Þ

The third term can be dropped since virtual trajectories are
now superseded by newly formed real trajectories. The
second term is the contribution that the new detections
make to the trajectory scores. The two reduced problems
(26) and (27) are again submodular and can be solved with
the multibranch ascent method from [41].

8 IMPLEMENTATION DETAILS

The previous sections described the core components of our
combined detection and tracking approach. However, as is
often the case, several additional steps are required to
guarantee good performance in practical applications.

8.1 Hypothesis Pruning

Continually extending the existing hypotheses (while
generating new ones) leads to an ever-growing hypothesis
set, which would quickly become intractable. A conserva-
tive pruning procedure is used to control the number of
hypotheses to be evaluated: Candidates extrapolated
through time for too long without finding any new
evidence are removed. Similarly, candidates that have been
in the hypothesis set for too long without having ever been
selected are discontinued (these are mostly weaker hy-
potheses that are always outmatched by others in the
competition for space). Importantly, the pruning step only
removes hypotheses that have been unsuccessful over a
long period of time. All other hypotheses, including those
not selected during optimization, are still propagated and
are thus given a chance to find new support at a later point
in time. This allows the tracker to recover from failure and
retrospectively correct tracking errors.

8.2 Identity Management

The hypothesis selection framework helps to ensure that all
available information is used at each time step. However, it
delivers an independent explanation at each time step and
hence does not by itself keep track of object identities.
Frame-to-frame propagation of tracked object identities is a
crucial capability of tracking (as opposed to frame-by-frame
detection).

Propagating identity is trivial in the case where a
trajectory has been generated by extending one from the
previous frame. In that case, the hypothesis ID is simply
passed on, as in a recursive tracker. However, one of the
core strengths of the presented approach is that it does not
rely on stepwise trajectory extension alone. If at any time a
newly generated hypothesis provides a better explanation
for the observed evidence than an extended one, it will
replace the older version. However, in this situation, the
new trajectory should inherit the old identity in order to
avoid an identity switch.

The problem can be solved with a simple strategy based
on the associated data points: The identities of all selected
trajectories are written into a buffer, together with the
corresponding set of explained detections. This set is
continuously updated as the trajectories grow. Each time
a new trajectory is selected for the first time, it is compared
to the buffer and, if its set of explained detections EH ¼
fHijHi 2 Hg is similar to an entry EHk

in the buffer, it is
identified as the new representative of that ID, replacing
the older entry. If it does not match any known trajectory, it
is added to the buffer with a new ID. For comparing the
trajectory support, we use the following criterion:

jEH \ EHk
j

minðjEHj; jEHk
jÞ > � and k ¼ arg max

j
jEH \ EHj

j: ð28Þ

8.3 Trajectory Initialization and Termination

Object detection, together with the virtual trajectories
introduced above, yields a fully automatic track initializa-
tion. Given a new sequence, the system accumulates
pedestrian detections in each new frame and tries to link
them to detections from previous frames to obtain plausible
spacetime trajectories, which are then fed into the selection
procedure. After a few frames, the merit of a correct trajectory
exceeds its cost and an object track is started. Although
several frames are required as evidence for a new track, the
trajectory is, in hindsight, recovered from its beginning.

The automatic initialization, however, means that
trajectory termination needs to be handled explicitly: If an
object leaves the scene, the detections along its track still
exist and may prompt unwanted reinitializations. To
control this behavior, exit zones are defined in 3D space
along the image borders and are constantly monitored.
When an object’s trajectory enters the exit zone from within
the image, the object is labeled as terminated and its final
trajectory is stored in a list of terminated tracks. To keep the
tracker from reusing the underlying data, all trajectories
from the termination list are added to the trajectory set and
are always selected (inside a certain temporal window),
thus preventing reinitializations based on the same detec-
tions through their interaction costs. The list of terminated
tracks effectively serves as a memory, which ensures that
the constraint that no two objects can occupy the same
physical space at the same time survives after a hypothesis’
termination. An overview of the complete tracking algo-
rithm is shown in Algorithm 1.

Algorithm 1. High-level overview of the tracking algorithm.

Hprev  ; // (all H without index i denote sets of trajectories)

repeat

Read current frame I, compute geometry G. (Sec 3)

// Create detection hypotheses (Sec 5)

Compute location priors pðHÞ, pðHjHprevÞ. (Sec 5.1, 7.1)

fHig  getDetectionsðI;G; pðHÞ; pðHjHprevÞÞ (Sec 5.2)

Build matrices R, S, V , W using fHig and Hprev. (Sec7)

fHi;tg  solve QBPðR; S; V ;WÞ from (26).

// Create trajectory hypotheses (Sec 6)

Hextd  extendTrajectoriesðHprev; fHi;tgÞ (Sec 6)

Hstat  growStaticTrajectoriesðfHi;t0:tgÞ (Sec 6.6)

Hdyn  growDynamicTrajectoriesðfHi;t0:tgÞ (Sec 6.3)

Hall  fHend;pruneðHextd;Hstat;HdynÞg (Sec 6.4)
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Build matrices Q, U , V using fHi;tg and Hall. (Sec 7)

Hacc  solve QBPðQ;U; V Þ from (27).

// Identity Management (Sec 8.2)

for all trajectories Hi 2 Hacc do

CompareHi with stored trajectories fHjg and assign

identity.

// Check Termination (Sec 8.3)

for all trajectories Hi 2 Hacc do

Check if Hi entered exit zone; if yes, move Hi to

Hend.

// Propagate trajectories to next frame

Hprev  HallnHend.

until end of sequence.

9 EXPERIMENTAL RESULTS

In the following, we evaluate our integrated approach on
two challenging application scenarios. The first is a
classical surveillance setting with a single camera monitor-
ing a pedestrian crossing. Here, the task is to detect and
track multiple pedestrians over long time frames and
through occlusions.

The second application scenario addresses the task of
detecting and tracking other traffic participants from a
moving vehicle. This task is considerably more difficult
because of the combined effects of egomotion and a
dynamically changing scene. On the other hand, each object
will typically persist in the vehicle’s field of view only for a
few seconds. It is thus not as important to uniquely track a
person’s identity as in classic surveillance scenarios.

9.1 Tracking from a Static Surveillance Camera

For tracking from a static surveillance camera, we demon-
strate our approach on three test sequences. All sequences
were recorded with a public webcam at 15 fps, 320 � 240
pixels resolution, and contain severe MPEG compression
artifacts. Note that a camera calibration is available for this
setup as the camera is static. In all result figures, line width
denotes the confidence of the recovered tracks: Trajectories
rendered with thin lines have lower scores.

Fig. 10 visualizes our approach’s behavior on a short test
sequence of two pedestrians crossing a street. At the
beginning, they walk close together and the object detector
often yields only a single detection. Thus, the support only
suffices for a single trajectory to be initialized. However, as

soon as the pedestrians separate, a second trajectory is
instantiated that reaches back to the point at which both
pedestrians were first observed. Together, the two trajec-
tories provide a better explanation for the accumulated
evidence and are therefore preferred by the model selection
framework. As part of our optimization, both tracks are
automatically adjusted such that their spacetime volumes
do not intersect.

A more challenging case is displayed in Fig. 12. Here,
multiple people cross the street at the same time, meeting in
the middle. It can be seen that, caused by the occlusion, our
system temporarily loses track of two pedestrians, resulting
in identity switches. However, it automatically recovers
after a few frames and returns to the correct identities.
Again, this is something that classical Markovian tracking
approaches are unable to do. In addition, our approach is
able to detect and track the sitting person in the lower right
corner, which is indistinguishable from a static back-
ground. Relying on an object detector for input, we are,
however, limited by the quality of the detections the latter
can provide. Thus, our system will hypothesize wrong
tracks in locations where the detector consistently produces
false alarms.

For a quantitative assessment, we annotated every
fourth frame of this sequence manually. We marked all
image locations with 2D bounding boxes in which a person
was visible. We then derived similar bounding boxes from
the tracked 3D volumes and compared them to the
annotations. Following recent object detection evaluations,
we consider a box as correct if it overlaps with the ground-
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Fig. 10. Example tracking results visualizing the non-Markovian nature of our approach. At the beginning of the sequence, both pedestrians walk

close together and only one trajectory is initialized. However, when they separate sufficiently, a second trajectory is added that reaches back to the

moment when both were first observed, while the first trajectory is automatically adjusted to make room for it.

Fig. 11. Performance comparison of our coupled detection+tracking

system compared to various baselines.



truth annotation by more than 50 percent, using the
intersection-over-union criterion [12]. Only one bounding
box per annotation is counted as correct; every additional
one is counted as a false positive. Note that this compares
only localization accuracy, not person identities. Fig. 11
shows the result of our coupled system, compared to the
baselines delivered by the object detector before and after
QBP optimization (just matrix S) and to the baseline from a
tracker based on fixed detections (decoupled matrices Q
and S). Our approach improves on all three baselines and
results in increased localization precision.

Finally, Fig. 13 presents results on a very challenging
sequence with large-scale background changes from an
incoming tram, many static pedestrians, and frequent
occlusions. As can be seen from the result images, our
system can track many of the pedestrians correctly over
long periods despite these difficulties. Note especially the
group of people in the upper right image corner, which is

correctly resolved throughout most of the sequence, as well
as the pedestrian crossing the entire image width (shown in
blue). The results confirm that our approach can deal with
those difficulties and track its targets over long periods.

9.2 Tracking from a Moving Vehicle

For this task, we evaluate our approach on two challenging
video sequences. The first test sequence consists of 1,175
image pairs recorded at 25 fps and a resolution of 360 � 288
pixels over a distance of about 500 m. It contains a total of
77 (sufficiently visible) static cars parked on both sides of
the street, four moving cars, but almost no pedestrians at
sufficiently high resolutions. The main difficulties for object
detection here lie in the relatively low resolution, strong
partial occlusion between parked cars, frequently encoun-
tered motion blur, and extreme contrast changes between
brightly lit areas and dark shadows. Only the car detectors
are used for this sequence.
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Fig. 12. Tracking results on a pedestrian crossing scenario with occlusions and background changes.

Fig. 13. Results on a challenging sequence with many static pedestrians, frequent occlusions, and large-scale background changes.



The second sequence consists of 290 image pairs
captured over the course of about 400 m at the very sparse
frame rate of 3 fps and a resolution of 384 � 288 pixels. This
very challenging sequence shows a vehicle passage through
a crowded city center, with parked cars and bicycles on
both street sides, numerous pedestrians and bicyclists
traveling on the sidewalks and crossing the street, and
several speed bumps. Apart from the difficulties mentioned
above, this sequence poses the additional challenge of
detecting and separating many mutually occluding pedes-
trians at very low resolutions while simultaneously limiting
the number of false positives on background clutter. In
addition, temporal integration is further complicated by the
low frame rate.

In the following sections, we present experimental results
for object detection and tracking performance on both
sequences. However, it would clearly be unrealistic to expect
perfect detection and tracking results under such difficult
conditions, which may make the quantitative results hard to

interpret. We therefore also provide the result videos at
http://www.vision.ethz.ch/bleibe/pami08.

9.2.1 Object Detection Performance

Fig. 14 displays example detection results of our system on
difficult images from the two test sequences. All images
have been processed at their original resolution by SfM
and bilinearly interpolated to twice their initial size for
object detection. For a quantitative evaluation, we anno-
tated one video stream for each sequence and marked all
objects that were within 50 m distance and visible by at
least 30-50 percent. It is important to note that this includes
many cases with partial visibility. Fig 15a shows the
resulting detection performance with and without ground
plane constraints. As can be seen from the plots, both recall
and precision are greatly improved by the inclusion of
scene geometry, up to an operating point of 0.34 fp/frame
at 46-47 percent recall for cars and 1.65 fp/frame at
42 percent recall for pedestrians.
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Fig. 14. Example car and pedestrian detections of our system on difficult images from the two test sequences.

Fig. 15. (a) Quantitative comparison of the detection performance with and without scene geometry constraints (the crosses mark the operating

point for tracking). (b) Absolute and average number of annotated objects as a function of their distance. (c) Detection performance as a function of

the object distance.



In order to put those results into perspective, Fig. 15c
shows a detailed evaluation of the recognition performance
as a function of the object distance (as obtained from the
groundplane estimate). As can be seen from those plots,
both the car and pedestrian detectors perform best up to a
distance of 25-30 m, after which recall drops off. Conse-
quently, both precision and recall are notably improved
when only considering objects up to a distance of 25 m (as
again shown in Fig. 15a).

For cars, the distribution of false positives over distances
follows the distribution of available objects (shown in
Fig. 15b), indicating that most false positives are indeed
caused by car structures (which is also consistent with our
visual impression). For pedestrians, it can be observed that
most false positives occur at closer scales. This can be
explained by the presence of extremely cluttered regions
(e.g., bike racks) in the second sequence and by the fact that
many closer pedestrians are only partially visible behind
parked cars.

9.2.2 Tracking Performance

Fig. 16 shows the online tracking results of our system
(using only detections from previous frames) for both
sequences. As can be seen, our system manages to localize
and track other traffic participants, despite significant
egomotion and dynamic scene changes. The 3D localization
and orientation estimates typically converge at a distance of

15-30 m and lead to accurate 3D bounding boxes for cars
and pedestrians. A major challenge for sequence 2 is to
filter out false positives from incorrect detections. At 3 fps,
this is not always possible. However, false positives
typically get only low confidence ratings and quickly fade
out again as they fail to get continuous support.

10 CONCLUSION

In this paper, we have presented a novel approach for
multi-object tracking that couples object detection and
trajectory estimation in a combined model selection frame-
work. Our approach does not rely on a Markov assump-
tion, but can integrate information over long time periods
to revise its decision and recover from mistakes in the light
of new evidence. As our approach is based on continuous
detection, it can operate with both static and moving
cameras and cope with large-scale background changes.

We have applied this method to build an integrated
system for dynamic 3D scene analysis from a moving
platform. The resulting system fuses the output of multiple
single-view object detectors and integrates continuously
reestimated scene geometry constraints. Together with an
online calibration from SfM, it aggregates detections over
time to accurately localize and track a large and variable
number of objects in difficult scenes. As our experiments
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Fig. 16. The 3D localization and tracking results of our system from inside a moving vehicle.



demonstrate, the proposed approach is able to obtain an
accurate analysis of dynamic scenes, even at low frame rates.

A current limitation is the overall runtime of the
approach. Although many of the presented steps run at
several frames per second, the system as a whole is not yet
capable of real-time performance in our current implemen-
tation. We are currently working on speedups to remedy
this issue. Also, since the tracking framework operates in
3D, it is constrained to scenarios where either a camera
calibration or SfM can be robustly obtained.

In this paper, we have focused on tracking pedestrians
and cars. This can be extended to other object categories for
which reliable object detectors are available [12]. Also, we
want to point out that our approach is not restricted to the
ISM detector. It can be applied based on any detector that
performs sufficiently well, such as, e.g., the detectors in [45]
or [10] (in the latter case, taking an approximation for the
top-down segmentation). Other possible extensions include
the integration of additional cues such as stereo depth [11]
or the combination with adaptive background modeling for
static cameras.
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