Elektronische Informationsverarbeitung und Kybernetik
EIK 18 (1982) 3, 141 —151
(Journal of Information Processing and Cybernetics)

Shortest Path Algorithms for Graphs
of Restricted In-Degree and Qut-Degree

By Albrecht Hiibler, Reinhard Klette, and Giinter Werner ')

Abstract. The paper was stimulated by shortest path problems in binary image processing;
& binary image may be viewed as a graph of in-degree and out-degree less or equal to 4.
For graphs of restricted in-degree and out-degree solutions in linear worst case time are
discussed for several path problems (existence, construction, minimal paths, ete.).

Introduction

Assume a binary-valued two-dimensional array which represents a maze. The
value zero means a blocked path while the value one stands for an open position.
We want to develop an algorithm which begins at a set of starting positions in this
maze and tries to find a path to a set of final positions, i.e. to a certain exit of the maze.
Any path that satisfies these constraints is called a feasible solution. A feasible solution
+ that has minimal length is called an optimal solution. The problem to determine such
feasible or optimal solutions may appear in binary image processing (cp. [7]), e.g. for
image segmentation, where “binary image” and “maze” are synonyms.

Well-known methods of algorithm design may be applied to this problem, e.g.
backtracking for feasible solutions, or the greedy method as described in [6] for opti-
mal solutions “minimal paths”.

The aim of this paper is the presentation of some algorithms, developed by the
authors, which are connected with the maze problem as mentioned above. The general
problem we are to deal with in this paper may be characterized as follows:

Let ¢ = (V, H) be a digraph of restricted in-degree and out-degree where ¥ denotes
the set of vertices and B the set of edges. For a starting set S S V (the source) and
a final set F < V (the destination), paths from S to F' are to be analyzed, i.e., the
problem may be the decision about the existence of such paths or the determination
of feasible or optimal solutions, and so on.

In Section 1 both a precise formalization of these tasks and a brief review of related
results in literature will be given. It will be shown that a modification of Dijkstra’s
algorithm [5] may be used for efficient solutions of maze problems.

In Section 2 we shall discuss several path algorithms for binary images. In this
case the in-degree and out-degree of the graphs are less or equal to 4. The presented
algorithms can be applied in binary image processing; for digital image processing
reference is made to [10], [18], and [14].

Finally, in Section 8 a few concluding remarks are given.

1) Sektion Mathematik der Friedrich-Schiller-Universitéit Jena (Direktor: Prof. Dr. habil.
G. Sehlosser).

142 ' A. Hiibler, R. Klette, G. Werner

The computation model we shall refer to is that of a random access machine (RAM)
in the sense of [1]. The complexity of the algorithms is measured by the time com-
plexity in the worst case assuming the uniform cost criterion for RAM instructions.
For the representation of our algorithms we have chosen Pidgin ALGOL, see [1]. For
fundamental notions of graph theory or asymptotic notation see [6].

1. Path problems for graphs

Detailed treatments of algorithms for path problems in graph theory can be found,
e.g., in [1], [2], and [6]. Shortest path problems for graphs were dealt with in [3, 4,5,
8,9, 11, 15, 16] — just to cite a few. Applications of shortest path algorithms have
a very widespread literature. We shall consider some special variants of shortest path
problems which were partially originated by questions that arose from binary image
processing.

The vn-degree (out-degree) of a digraph G = (V, E) is the maximum taken over all
in-degrees (out-degrees) of vertices in V. For an undirected graph in-degree and out-
degree are equal. In Tig. 3 the graph possesses degree 4. For n = card V and b < »,
the graph G is called b-adjacent iff both the in-degree and the out-degree of G are less
or equal to b. '

Now, let @ = (V, E) be an unlabeled digraph. Assume that @ is b-adjacent, for
b independent of n = card V, and both a starting set § S V and a final set F S V
are given. For such a situation, we are interested in solutions of the following problems:

(P1) Decide if there exists a path from & to 7,

(P2) compute a path from 8 to F if such a path does exist;

(P3) find out the minimal length of paths from S to P, i.e., compute the length of
optimal solutions;

(P4) compute a minimal path from S to F ;

(P5) calculate the number of all different paths from 8 to F which have minimal
length;

(P6) compute all minimal paths from & to F;

(P7) determine the maximal cardinality of a set of pairwise disjoint paths!) from S
to F;

(P8) calculate a set of pairwise disjoint paths from § to ¥ which has maximal car-
dinality. '

These computational problems cannot be satisfactorily solved by direct application
of algorithms given in literature for solutions of such well-known shortest path
problems as:

(P9) Assume a weighting function c(e) for the edges e € H. The all pairs shortest path
problem is to determine an n X n matrix 4 such that A3, §) is the minimal cost
of a path from vertex ¢ to vertex j.

(P10) The single source shortest path problem is to determine paths with minimal costs
from v, to all the remaining vertices of G where v, is a fixed source vertex.

Usually both for (P9) and for (P10) it is supposed that all weights ¢(e) are non-
negative. For this case of nonnegative edges at present no known method for the all

1) T\vo paths vy, v, ..., v, and uy, u,, ..., % are disjoint iff v; & wyfor ¢ = 1, 2, ..., s and
7=12,..,¢

Shortest Path Algorithms 143

pairs shortest path problem uses less than Q(n3) worst case time, see [1, 2, 6, 8, 9, 11].
Spira [15] gives an O(n*(log n)?) expected time algorithm for solving (P9), cp. [3].
For the single source problem Dijkstra’s algorithm [6] computes the cost of minimal
paths from v, to each vertex and requires &(n?) worst case time. Dantzig’s algorithm
[4] does the same within O(n®) worst case time, but in practice, for some digraphg
with few arcs Dantzig’s algorithm may be faster. Both Dijkstra’s and Dantzig’s
algorithm can be extended to programs which compute not only the length of minimal
paths but also one minimal path for each vertex v <= vy, see [2]. Finally Joknson [8]
has proved that problem (P10) can be solved both in time Ofelog ») and in time
O(ke + kn!*1/%) for any fixed constant &, on a graph with e edges. and 7 vertices.

For a b-adjacent graph ¢ the number of edges is restricted by b n. Thus problem
(P 10) may be solved within time O(n log n) respectively O(kn!+/%) for any constant &,
on b-adjacent graphs @ for a fixed integer b.

Remark that for solving these shortest path problems efficiently, one important
key is given by the selection of the proper data structure for the considered digraphs,
For the above mentioned algorithms, adjacency lists are the common representations
for the input graphs.

To simplify our discussions of the problems (P1), ..., (P8) we shall use evident
relations between these problems as illustrated in Fig. 1. Here, a continuous line
represents the case that a solution for the upper problem may be used as a solution
for the lower problem, too. The pointed lines have nearly the same meaning: Adding
a certain counter to the solution process or at the end of this process for the upper
problem, the result of this counter may be used as a solution for the lower problem,

Fig. 1. Dependences between problems (P1), ..., (P8)

After these introductorily remarks, now we demonstrate that a modification of
Dijkstra’s algorithm may be used to solve problems (P3) and (P4) simultaneously.
To this end, first of all we start with an algorithm for a simplified version of problem
(P10) for undirected graphs. Then, in a short discussion we shall sketch the improve-
ment of this algorithm to the case of processing of directed graphs. Finally it will be
shown that problems (P3) and (P4) may be solved by a certain extension of the given
graph followed by the application of the discussed algorithm.

Algorithm 1. Solution to (P10) for unlabeled b-adjacent undirected graphs.

144 A. Hubler, R. Klette, G. Werner

Input. An unlabeled b-adjacent undirected graph G' = (V, E) represented by ad-
jacency lsts L(v) for v € V, a source vy € V.

Output. For each v ¢ V, the length I(v) of shortest paths from v, to » and a map-
ping ¢: V — V such that v, 8(v), ¢((v)), {(t(t())), ... , ¥, is & shortest path from v to v,,
forveV.

Method. Breadth first graph traversal is used. The array I(v) contains the length
of the current shortest path from v, to v passing only through vertices which were
already considered (i.e. in register 4). When the algorithm stops, the array ¢ permits
the shortest paths to be explicitly specified in the manner described above. The al-
gorithm is given in Fig. 2.

begin
U(vy) < 0;
for v € V — {v,} do U(v) < o od;
for v € L(vy) do t(v) < v, 0d;
1 place vertices in L(v,) in QUEUE; u < vg;
while QUEUE not empty do
2 for each v in L{u) do
I(v) <~ min{l(v), u) 4 1} and, if (v} actually changes value, also
set ‘
t(v) < u od;
3 for each v in L(u) do
for each w in L(v) do
delete v from L{w) od od;
4 move first element of QUEUE to wu;
5 add vertices in L(u) to QUEUE od
end

Fig. 2. Single source algorithm

Example 1. Consider the graph of Fig. 3. Let the vertex 6 be the source. Initially,
I({) = o0, for 1 =1,2,...,16 and 7 = 6, [(6) = 0, ¢(4) = 6, for +=3,5,7, 10 and
QUEUE contains vertices 3, 5, 7, 10 (all lists L(7) are assumed to be ordered). When
the algorithm stops, we get [I(1),%(2),...,1(16)] =[4,3,1,2,1,0,1,4,3,1,4,3, 2,
3, 6, 5] and [t(1), #2), .., #(16)] =[2,4,6,5,6,6, 6,9, 4, 6, 9, 13, 10, 13, 16, 11].

Fig. 3. A 4-adjacent graph

T

Shortest Path Algorithms 145

The proof that Algorithm 1 works correctly is by reduction to Dijkstra’s algorithm.
This is easily established once it is observed that the vertices in QUEUR are ordered
with increasing minimal path length (to vertex v,).

Lemma 1. Algorithm 1 requires O(b% « n) worst case time.

Proof. Let G = (V, E) be an undirected b-adjacent unlabeled graph with card
V = n, for a fixed integer b. Lines 1 and 5 of Fig. 2 require O(b) time, line 4 may be
done in constant time. The for-loop starting in line 2 requires @(b) time. The other
for-loop at line 3 requires @(b%) time where we assume an array LINK as described in
[1, Section 2.3].

Each vertex may appear in QUEUE at most once (with the exception of v, that
appears at most b times), thus the number of runs through the while-loop is restricted
by n. Hence Algorithm 1 is of complexity O(b2 - n).

As a practical matter, we note that Algorithm 1 should be used for b < n only.
Furthermore, by passing through the program given in Fig. 2 a few improvements
may be used as, e.g., to safeguard that vertex v, appears in QUEUE only once.

For directed graphs @ = (V, E) we suppose a representation by adjacency lists
Ly(v) and L,(v), for v € V, where L,(v) contains all vertices adjacent — from v, and
L,(v) all vertices adjacent — to v. Then, replacing the for-loop at line 3 in Algorithm 1
by

for each v in Ly(u) do

for each w in L (v) do
delete v from Ly(w) od od

and replacing L in lines 1, 2 and 5 by L,, we get an algorithm that solves (P10) for
unlabeled b-adjacent digraphs within @(n) time, for a fixed integer b. This algorithm
is denoted by Algorithm 1%,

Now we explain how Algorithm 1* may be used to solve problems (P3) and (P4)
simultaneously. At first assume that § = {v} and F = {v;}. This single source-
single destination problem may be solved by a simplified version of Algorithm 1*,
For card 8 = 2 or card F = 2 problems (P3) and (P4) are dealt with by the following
process, assuming b = 2:

i) Two trees are added to the given graph such that the leaves of these trees
coincide with the vertices in S and F given as lists, respectively, the originated graph
is also b-adjacent, and in each tree, all leaves are of the same depth.

(ii) Apply a simplified version of Algorithm 1* to that single source-single desti-
nation problem defined by the roots of the both trees added in (i).

Both step (i) and step (ii) may be done within time ©(n) where b is a fixed integer.
Theorem 1. Problems (P3) and (P4) may be solved in time O(n) where b is a fixed
integer.

Example 2. Consider the graph of Fig. 3. Assume S = {1, 8, 15} and F' = {7, 14}.
In step (i) we obtain a graph as shown in Fig. 4 where binary trees were used. In step
(ii) a possible result may be the path a, b, 1, 2, 4, 5, 6, 7, d. In such a result, all nodes
not in the original graph have to be deleted.

According to Fig. 1, problems (P1) and (P2) are also solvable in linear time. As
stated above this paper was originated by shortest path problems in binary image

10 RIK, Bd. 18, H. 3

146 A. Hiibler, BR. Klette, G. Werner

Fig. 4. Adding of two binary trees to the graph in Tig. 3

processing. Thus we shall renounce to deal with problems (P5), (P6), (P7), (P8) as
general as represented in this section.

2, Path algorithms for binary images

In this paper, a binary image is a pattern of 1’s on a background of 0’s, filling out

a scanning field of a certain size N X N. In the binary image
4 = (ayg)ij=1,2,.., 5

a; = 0 means that (7, j) is a background point, and a; = 1 that (7, j) is an object
point. In Fig. 5, background and object points are represented by black and white
squares, respectively. All object points of a binary image may be viewed as vertices of
an undirected unlabeled 4-adjacent graph where two vertices are connected by an
edge iff their represenfing object points are 4-neighbours. The 4-neighbourhood of
a point (1, j) is defined to be the set {(z,7 + 1), (2, — 1), @ -+ 1,4), & — 1, §)}.

For solving problems (P1), ..., (P8) for binary images

A = (ay),j=1,2,.., 5

considered as 4-adjacent graphs we shall use vector representations B = (b, by, v s
by:) of the binary images instead of adjacency lists or adjacency matrices,

b(i—l)N—f—j — Ay, for ’I:, 7 == 1, 2, ey N.

» ; | ‘

Fig. 5. Binary image to the graph in Tig, 3

Shortest Path Algorithms 147

Thus, the set of vertices V, the starting set S, and the final set F are subsets of
{1, 2, ..., N*}, where n = card V = O(N?).

In the sequel we shall assume that a question “v € F ¥’ may be answered in constant
time.

For example, a special problem may be that .S represents the white squares in the
leftmost and F the white squares in the rightmost column in the binary image. For
this left-to-right problem, questions ‘v € F'?” may be answered in constant time
without using any special data representation for F, and the number of points on
a minimal path from S to I" is greater or equal to N and less or equal to

(2 1)/2 if N = 1mod (2)
Nzj2 if N =2mod (4)
(V% - 2)/2 otherwise for N =1.

Thus, it seems to be clear that all problems (P1), ..., (P8) have time complexity
L(N?) in the worst case for this left-to-right problem. In fact, this can be proved
exactly. Furthermore, for this problem there exist binary images of size N X N with
28721 — 1 different minimal paths from S to F at least. For example, consider a binary
image 4 of size N X N where a; = 0 iff either ¢+ = 0 mod (2) and j = 3 mod (4),
or 1 = 1 mod (2) and j = 1 mod (4), for 4, = 1, 2, ... , N. Then from S to the point
(LN/2], N) € I, there are 21¥/21 — 1 different minimal paths exactly. Thus we have to
think about a proper data structure for solutions of problem (P6). We have chosen
that way that solutions of problem (P6) are represented by N x N matrices in
which each object point of the input binary image is labeled by an integer I = 2 iff
a minimal path from S to this point has length I — 2, and I — 2 is at most equal to the
length of a minimal path from S to F. Obviously, using this matrix any minimal path
from § to F may be traced back. In Fig. 7 this matrix is given for the left-to-right
problem for the binary image of Fig. 5 representing the solution to problem (P8) for
this special input.

Theorem 2. For binary ¥mages of size N X N, problem (P6) may be solved in time

O(n), where n = O(N?) and membership in the final set F may be answered in constant
time. /

The proof of this theorem is given by the following Algorithm.
Algorithm 2. Solution to (P6) for binary images.

Input. A binary image A4 = (ay),j=1,3,.., 5 represented by a vector B — (by, bgy vev
bNa) with b(i—l) N4j < g, for 7/., :7 =]., 2, ver s N, a starting set S g {1, 2, ver NZ} and
a final set F' < {1, 2, ..., N*} where membership in # may be answered in constant
time.

Output. Solution to (P6) as a matrix ag described above.

Method. As in Algorithm 1, breadth first graph traversal is used. Starting in S and
ending in F, object points of 4 between § and F on minimal paths will be labeled by
an integer / = 2 so that a minimal path from § to this point has length { — 2. The
algorithm is given in ¥ig. 6.

Algorithm 2 solves problem (P6) for binary images, in the manner as described,
within O(N?) steps because any object point of a given binary image may appear in
QUEUE at most once. Applying Algorithm 2 to the left-to-right problem for the binary
image in Fig. 5 yields the solution as shown in Fig, 7 where & = 7 at the end.
10+

148 A. Hibler, R. Klette, &. Werner

begin
1< 0; 1< 2; k<« N® ;
for all j € S do b; < 2 od;
move all elements of S into QUEUE H
while QUEUE not empty do
let g be the first element in QUEUE;
move ¢ from QUEUE to 4; "
if b; < & then . f’
if e F then & < [,,
else for all § such that b; = 1 and j represents a point in the 4- ~‘,'
neighborhood of point ¢ }'
do concatenate § to the end of QUEUE;
b, >1then <] + 14;
by <1-+1
od;
fi;
fi od;

end

Fig. 6. All minimal paths algorithm

2 J

Fig. 7. All minimal paths representation of the left-to-right problem for the
binary image of Fig. 5

Obviously, at the end of one run through Algorithm 2, & — 2 denotes the length
of a minimal path from S to I. Thus, Algorithm 2 may be used for solving problem
(P3), too. Furthermore, a small extension of .Algorithm 2 leads to a program for
solving (P5). To this end, at first Algorithm 2 is used. Then all minimal paths from §
to F' are traced back by the program given in Fig. 8. At the end of this Process there
is just one thing to do: to add all by’s with 7 € 8. The result is exactly the solution to
(P5), i.e., problem (P5) may be solved in time (¥ ?) for binary images of size N x N.

For the discussion of the problems (P7) and (P 8) we restrict ourselves to the left-
to-right problem for binary images. E.g., the bottom-up problem for binary images
may be dealt with analogously.

The following statement is obvious.

Shortest Path Algorithms 149

Lemma 2. For the left-to-right problem for binary images, two disjoint paths from S
to F' are lying one above the other.

begin
for j € F with b; = k do b; < 1; mark point § (say with a star) od;

while I = 2 do
place all unmarked points § with b; = 1 at the end of QUEUE 1;
while QUEUE 1 not empty do
move first element of QUEUE 1 to 4;
b; < X b; for all marked points § in the 4-neighborhood of point ¢;
place point ¢ at the end of QUEUE 2 od;
while QUEUE 2 not empty do
move first element of QUEUE 2 to ¢;
mark pont ¢ (with a star) od;
1<1—1od;
end

Fig. 8. Number of minimal paths algorithm

Thus, for solving (P8) for the left-to-right problem for binary images the following
abstract program may be applied. Remember object points in binary images are
labeled by 1.

Let pyy Pas oo« » P be the points in § ordered from up to down; 4 < 1 and § <- 2;
while 7+ < m do
it there exists a path of object points from p; to I
then label all points of the uppermost path of object points from p; to I
by 73
j<g+ L1
i<«4 -4 lod

This program may be viewed as a depth first traversal of the binary images where
it may be easily achieved that each object point of a given binary image will be con-
sidered at most once during the while-loop. The sorting of S at the beginning may be
done by bucket sort in linear time. Finally, all different paths from § to I found by
this program are labeled by § = 2,3, ..., OF jmax, Where jmaxy = m = card §. Alto-
gether, we have

Theorem 3. For binary wmages of size N X N, problem (P8) may be solved vn time
O(n), where n = O(N?) and S and I' contain all object povnts tn the leftmost and rightmost
column, respectively.

As a last remark, for the discussed input situation the explained program for solving
(P 8) may be used for solving (P7) immediately: the solution to (P7)is given by jmax— 1.

3. Coneluding remarks
The authors were interested in fast parallel algorithms for solving problems as

considered in this paper for binary images, cp. [7]. But, the parallel computing systems
so far considered did not offer asymptotic faster solution as stated above.

150 A. Hibler, R. Klette, G. Werner

Furthermore, the authors were in search of convenient preprocessing for the N x N
input binary images, e.g., a transformation in a quadtree data structure (see, e.g. [12]),
such that the following shortest path algorithm may be done faster as in time O(N?),
for certain problems (P1), (P2), ..., or (P8). As in the parallel processing case this
tield could be a fruitful area for further study.

Acknowledgement

The continued discussions with our colleague Dr. F. Creutzbury are gratefully
acknowledged, as is the help of Mrs. Ziemak in preparing this paper.
The authors are indebted to the referees for their remarks.

References

{11 Aho, A. V., J. B. Hopcroft, J. D. Ullman, The Design and Analysis of Computer
Algorithms. Addison Wesley, 1974,
[2] Berztiss, A. T., Data Structures. Second Fdition. Academic Press, New York 1975.
[3] Bloniarz, P. A., M. J. Fischer, A. R, Meyer, A note on the average time to compute
transitive closures. MIT/LCS/TM — 176 (1976), Laboratory for Computer Science,
Massachusetts Institute of Technology.
[4] Dantzig, G. B., W. O. Blatiner, M. R. Rao, All shortest routes from a fixed origin in
a graph. In: Proceedings Theory of Graphs, Rome, July 1966; pp. 85—90.
{61 Dijkstra, E. W., A note on two problems in connection with graphs. Numer. Math. 1
(1959), 269—271.
[6] Horowitz, H., S. Sahni, Fundamentals of Computer Algorithms. Computer Science
Press, Inc., Potomac 1978.
[7] Hiibler, 4., R. Klette, R. Lindner, Elementare Operationen auf Bindrbildern. Rostock.
Math. Kollog. 10 (1978), 563 —62,
(8] Johnson, D." B., Algorithms for shortest paths. Ph. D. Thesis, Dept. of Computer
Science, Cornell University, Ithaca, New York, 1973.
{91 Kleene, S. C., Representation of events in nerve nets and finite automata. In: Auto-
mata Studies (Eds.: 0. Shannon, J. MecCarthy); Princeton University Press, 1966;
pp. 3—40.
[10} Hosanesckuii B. A., MeTomsl ONTHMANBHEIX DellileHHil B PACIO3HABAHME H300-
paennit. Hayra, Mocksa 1976,
{11] Robert, P., J. Ferland. Généralisation de I’algorithme de Warshall. R.I.R.O. 2 (1968).
[12] Rosenfeld, A., Quadtrees for pattern recognition and image processing. In: Proceedings
5th Internat. Conf. on Pattern Recognition, Miami Beach, Florida, December 1 —4,
1980.
{13] Rosenfeld, A., A. C. Kak, Digital Picture Processing. Academic Press, New York
1976.
{14] Automatische Bildverarbeitung in Medizin und Biologie. Herausgeber: H. Simon,
K. D. Kunze, K. Vo, W. R. Herrmann, Verlag Theodor Steinkopf, Dresden 1975.
L16] Spira, P. M., A new algorithm for finding all shortest paths in a graph of positive arcs
in average time O(n? log n). SIAM J. Comput. 2 (1973), 28—32,
{[16] Spira, P. M., A. Pan, On finding and updating shortest paths and spanning trees. In:
IEEE 14th Annual Symposium on Switching and Automata Theory, 1973 ; pp. 82—84.

Kurzfassung

Der Artikel wurde durch Betrachtungen zu verschiedenen Aufgabenstellungen der
Analyse kivzester Pfade in Binérbildern initiiert. Ein Binérbild kann als Graph mit durch
4 beschrédnktem Ein- und Ausgangsgrad betrachtet werden. In der Arbeit werden zu
verschiedenen Aufgaben der Analyse kiirzester Pfade in Graphen mit beschrinktem
Bin- und Ausgangsgrad Loésungen diskutiert, fitr welche hdchstens lineare Zeit erforder-
lich ist.

o

Shortest Path Algorithms ' 151

Peswonme

B craree paccMoTpeHBl PasiivHbIE IOCTAHOBKH 3amad aHAIN3A KpaTYaiiImx ITyTei
B GUHAPHBEIX H306passennsx. BuHApHOe M300paKeHIIe MOKHO PACCMATPUBATE Kak Tpad
€O cTelleHBI0 BXOMA M BBIXOAA, He OpeBwlnamuleif 4. B crarbe 06CymuaoTcd TaRme
pellleHns pasnHYHBIX 3agad AHAJMSA Kpardalimux IyTeit B rpadax ¢ orpaHmuYeHHOMN
CTeNeHbI0 BXOJA 1 BBIXOJA, ANIA KOTOPHIX BPEMS DellieHHs JIMHEHHO 3aBHCHT 0T PasMepoB
nzodpasKenns.

(Received: First version March 9, 1981,
final version August 17, 1981)

Authors’ address:

Dr. A. Hiibler,
Dr. R. Klette,
Dr. G. Werner

Sektion Mathematik der
Friedrich-Schiller-Univergitét Jena
6900 Jena

Universitétshochhaus

German Democratic Republic

