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1 Introduction

There are many ways of representing numbers, with a comprehensive ac-
count given by Fraenkel[3]. The more familiar representations, and the only
ones relevant to the present discussion, represent an integer N as the scalar
product

N = D ·W

where D is the digit vector (the visible digits of the representation) and W is
a weight vector. To conform with normal conventions for displaying number
representations these vectors are written in the order

. . . wi, wi−1, . . . , w2, w1, w0

The weight vector is in turn derived from the base vector B by

wk =
k−1∏
i=0

bi

In the conventional uniform base number systems such as binary or decimal,
bi = b ∀ i and wk = bk, where the constant b is the base of the number
system. So a number such as 40 = 1 × 25 + 1 × 23 has the binary (base
2) representation 101000. For measurements in a mixed base system, the
base vector has an appropriate mixture of values. As an example for {miles,
yards, feet, inches}, the base vector is B = {1760, 3, 12, 1} and the weight
vector is W = {63360, 36, 12, 1} to give lengths in inches.
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But Zeckendorf has shown [8] that the Fibonacci numbers

Fn = . . . , 34, 21, 13, 8, 5, 3, 2, 1, 1 (least-significant weight on right)

can be used as the weight vector, in conjunction with a digit vector D
in which di ∈ {0, 1}, for a representation which resembles a binary number.
This gives what is now called the Zeckendorf representation of the integers;
we will denote the Zeckendorf representation of N as Z(N). The Zeckendorf
representation usually omits the redundant bit corresponding to F1 = 1, so
that the least-significant bit corresponds to F2 (which is also equal to 1). For
example as 30 = 21+8+1, Z(30) = 1010001. It has the important property
that the Zeckendorf representation of a positive integer will never have two
or more adjacent 1s; by the definition of its Fibonacci weights, any bit string
such as . . . 00110 . . . is equivalent to . . . 01000 . . ..

The Zeckendorf representations are of more than just intellectual interest.
For example, Apostolico and Fraenkel[1] and Fraenkel and Klein[4] show that
the Zeckendorf representations (although they do not call them by that name)
are the basis of a “variable length” representation of the integers. These
representations are important in coding theory, where a sequence of integers
must be represented as a stream of bits, such that the average length of
each integer in the bit stream is minimised, and the representations are self-
delimiting. By transmitting the Zeckendorf representation least-significant
bit first and following its most significant 1 by another 1, we get the illegal
sequence . . . 011 which can act as a terminating “comma”.

Here though, we are more interested in showing that it is possible to
perform arithmetic on integers in the Zeckendorf representation.

2 Arithmetic with Zeckendorf integers.

There is little prior work in this connection. Graham, Knuth and Patashnik[7]
discuss the addition of 1 in the Zeckendorf representation, but do not proceed
to actual arithmetic. Freitag and Phillips [6] discuss addition and multiplica-
tion, and refer to Filiponi [2] and their own earlier paper [5] for subtraction.
Thus no previous work discusses arithmetic as a coherent whole, covering all
of the major operations, including multiplication and division.

The emphasis of this paper is frankly pragmatic, developing practical
algorithms to perform the arithmetic operations. All have been implemented
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and tested on a computer. Most of the algorithms are developed by analogy
with conventional arithmetic methods, supplemented as necessary by the
requirements and constraints of the Zeckendorf representation. For example,
multiplication will be performed by the addition of suitable multiples of the
multiplicand, selected according to the bit pattern of the multiplier. Division
will use a sequence of trial subtractions, as in normal long division.

2.1 Addition

We start addition by adding each pair of bits as separate numbers, giving
an initial sum whose digits are di ∈ {0, 1, 2}, where each di corresponds to
its Fibonacci number Fi. We then sweep over the whole representation until
there is no further change, applying the following rules to eliminate the 2s
(which are illegal digits) and consecutive 1s. The representation must be
extended by one place to include as a trailing digit the d1 term which is
usually omitted.

Removal of ‘2’ digits From the fundamental relation that Fn = Fn−2 +
Fn−1, it is readily shown that 2Fn = Fn+1 + Fn−2. In digit patterns,
we replace . . . 00200 . . . by . . . 01001 . . ., subtracting the 2 and adding
the two 1’s to the nearby positions. Equivalently, a digit pattern x2yz
transforms to (1 + x)0y(1 + z). A least-significant digit pattern of
. . . 20 clearly overflows beyond the least significant bit. We handle this
by temporarily extending the representation by one place to include
the d1 digit so that the original . . . 020 converts to . . . 1001. (This rule
does not apply to the d2 and d1 terms with weights of 1; this is covered
by the special case below.)

Removal of adjacent 1s Again using the fundamental relation Fn = Fn−2+
Fn−1, we can replace two adjacent non-zero digits by a more-significant
1. This step should be performed by a left-to-right scan through the
representation to avoid a “piling up” of the left-propagating carry with
long runs of 1s.

Least-significant 1s The first rule fails if we have a 2 in the least-significant
(F2) digit, because there is nowhere to receive the rightward carry prop-
agation. In this case we restore the F1 term and replace the least-
significant . . . 20 by . . . 11, which has the same numeric value. If the
extended bit pattern is now . . . 111, the first two 1s may be eliminated
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Addition Fibonacci weights Fi+1 Fi Fi−1 Fi−2

Consecutive 1s x y 1 1
becomes x y + 1 0 0

Eliminate a 2 here x ≥ 2 w x y z
becomes w + 1 x− 2 y z + 1

Add, right bits F3 F2 F1

d2 ≥ 2 here x ≥ 2 x 0
becomes x− 1 1

d2 ≥ 2 (alternate) w x 0
becomes w + 1 x− 2 0

d1 = 1 0 1
becomes 1 0

Subtraction Fibonacci weights Fi+2 Fi+1 Fi Fi−1 Fi−2

eliminate -1 1 0 0 0 -1
becomes 0 1 1 0 -1

and again 0 1 0 1 0

Table 1: Adjustments and corrections in addition and subtraction

by the “adjacent 1s” rule. If the F3 bit is a 0, bit pattern . . . 011, we can
immediately transform to . . . 100 (still extended), and then eliminate
the extension bit. It may in turn be replaced by . . . 100, by the rule for
consecutive 1s. (This rule could be eliminated entirely by an extension
of the representation to include d0 with a non-standard weight w0 = 1.)

Remove the temporary d1 term If at any stage, d2 = 0 and d1 = 1 we
can set d2 = 1 and set d1 = 0 (the two bits have the same weight),
which is equivalent to discarding the d1 term which was introduced.
Setting d2 = 1 may force a removal of adjacent 1s.

Zeckendorf addition has two carries, one going one place left to higher
significance and one two places right to lower significance. The first is entirely
analogous to the carry of conventional binary arithmetic, while the second
reflects the special nature of the Zeckendorf representation.

These adjustments and corrections are summarised in Table 1, which also
includes the sign-fill from subtraction (Section 2.2). Note that in all cases
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augend 1 0 0 0 0 1 0 1 = 38
addend 1 0 0 0 0 1 0 = 23
initial sum 1 1 0 0 0 1 1 1 = 61
consecutive 1s 1 0 0 0 0 1 0 0 1 = 61
result 1 0 0 0 0 1 0 0 1 = 61
Check – 38 + 23 = 61

augend 1 0 0 0 1 0 = 15
addend 1 0 0 0 0 1 0 = 23
initial sum 1 1 0 0 0 2 0 = 38
carries 1 1 0 0 1 0 0 1 = 38
consecutive 1s 1 0 0 0 0 1 0 0 1 = 38
remove F1 bit 1 0 0 0 0 1 0 1 = 38
result 1 0 0 0 0 1 0 1 = 38
Check – 15 + 23 = 38

Figure 1: Two addition examples, (38 + 23) and (15 + 23)

which show a 1 being inserted, the real action is to add the 1 to the previous
value of that digit; eliminating one 2 may very well change another 1 to a 2,
which must in turn be corrected. The removal of a 2 is likewise performed
as a subtraction, rather than a simple deletion.

The addition may be compared with conventional binary addition. Binary
addition (or decimal, or in any other polynomial number system) has a single
carry which propagates to more-significant digits. If we start the add from the
least-significant end we need only a single pass and the carry management
is readily included in the standard simple algorithm. The two carries of
Zeckendorf addition make the operation much more complicated and seem
to necessitate multiple passes to absorb carries.

To illustrate, Figure 1 shows the addition of 38+23 = 10000101+1000010
and 15+23 = 100010+1000010. Both display the decimal value to the right
of each line to emphasise that the correction and redistribution of bits does
not affect the value. One example shows the temporary extension of the
Zeckendorf representation to include the F1 term. Each line presents the
representation and value after the operation given at the start of the line.
The various rules of Table 1 may be applied in any order, possibly changing
the intermediate values but not the final result.
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subtrahend 1 0 1 0 0 0 0 1 = 48
minuend 1 0 0 0 0 1 0 0 = 37
subtract digit-by-digit 1 0 0 -1 0 1 = 11
rewrite 1000 1 1 -1 0 1 = 11
rewrite 0110, cancelling −1 1 0 0 1 1 = 11
rewrite adjacent 1s 1 0 1 0 0 = 11
Result 1 0 1 0 0 = 11

Figure 2: Example of subtraction – (48− 37)

2.2 Subtraction

For subtraction say X−Y → Z, where X is the minuend, Y the subtrahend
and Z the difference, we start with a digit-wise subtraction xi − yi → zi,
giving zi ∈ {−1, 0, 1}. The two values 0 and 1 pose no problem, as they are
valid digits in Z(Z).

The case zi = −1 is rather more difficult. From where zi = −1 we scan to
its left looking for the next most-significant 1 bit. Then rewrite this bit by
the Fibonacci rule 100 . . .→ 011 . . ., and then repeat rewriting the rightmost
1-bit of the pair of 1s

1000 . . .→ 0110 . . .→ 001011 . . .→ 00101011 . . .

until one of the two rightmost 1 bits coincides in position with the −1 of
the result and cancels it, leaving a 0 result. (There may of course be no
more significant 1. This corresponds to a negative result; we introduce a
suitable large Fn and proceed from there, producing an “Fn complement”
as discussed later.) The scan for digits zi = −1 should be performed from
most-significant to least-significant digits. This action is included in Table 1
earlier.

The preceding rule eliminates all of the digits whose value is −1, but
often introduces other digits greater than 1, or pairs of adjacent 1s. All of
these situations must be handled by the rules already introduced for addition.
Subtraction is therefore an extension of addition.

Figure 2 shows an example, subtracting 37 from 48. As with addition,
the various rewriting rules may be applied in any order; changing that order
will change the finer details of the subtraction.
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Note that we cannot easily propagate a borrow left from the place where
zi = −1. The rewriting rule steps two positions at each step and without
knowing the distance to the next-significant 1 we know neither the alignment
of the 01 bits which are introduced nor which of the two final 11 bits will
be finally cancelled. (Conventional binary subtraction rewrites, for example,
10000 as 01100 + 100 → 01110 + 10 → 01111 + 1; the final +1 is cancelled
against the 1 of the subtrahend. Each stage proceeds by only one place and
there is no ambiguity in reversing the process for the conventional right-to-
left borrow propagation.)

2.3 Complementing

Subtraction quickly leads to negative numbers and their representations.
Computer designers now prefer the 2s complement representation in which a
number and its complement, added as unsigned quantities, total 2n.

By analogy we can represent a negative value by its Fn complement. Also
by analogy we say that a value is negative if its representation has its most-
significant bit a 1. But this immediately introduces a major problem. An Fn

complement representation has Fn−2 values with a leading 1 and Fn−1 values
with a leading 0; there are about 1.6 times as many positive values as negative
and about 38% of all positive values have no complement! (Complementing
seemed almost incomprehensible until its asymmetrical range was realised.
By analogy with binary numbers it was expected that there would be similar
numbers of positive and negative values but there was no simple way of
differentiating signed integers.)

If a positive number N requires n bits, then N < Fn+1. The signed
number −N requires at least n + 2 bits and must use at least the Fn+3

complement. (Numbers of this precision will require at least the original
n bits, place space for the sign. The “sign” of a negative number is, by
definition, a ‘1’ bit, but this 1 must be followed by a 0 for a valid Zeckendorf
representation.)

Complementing is most easily handled by subtraction from zero; there
seems to be no simple complementing rule. In comparison with binary arith-
metic it is complicated considerably by the bi-directional carries and by the
“sign-fill” pattern of 101010 . . ., whose alignment with respect to the signifi-
cant bits is not easily decided.

Some complements are shown in Table 2. We see that a negative number
is characterised by a leading 1010 . . . bit pattern, rather than the 1111 . . .
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N Z(N) F (8) comp F (9) comp F (10) comp F (11) comp
1 1 101010 1010101 10101010 101010101
2 10 101001 1010100 10101001 101010100
3 100 101000 1010010 10101000 101010010
4 101 100101 1010001 10100101 101010001
5 1000 100100 1010000 10100100 101010000
6 1001 100010 1001010 10100010 101001010
7 1010 100001 1001001 10100001 101001001
8 10000 100000 1001000 10100000 101001000
9 10001 – 1000101 10010101 101000101
10 10010 – 1000100 10010100 101000100
11 10100 – 1000010 10010010 101000010

Table 2: Illustration of Fibonacci F (n) complements

usually associated with binary numbers. The 1010 . . . pattern has two align-
ments with respect to the bits of the value being complemented; these two
alignments and interactions with the “numerically significant” bits lead to
two different bit patterns in the complement. In the example, Z(7) = 1010
and the two patterns are . . . 0001 for n even and . . . 01001 for n odd.

2.4 Multiplication

In the introduction we discussed the representation of an integer N as the
scalar product

N = D ·W
where D is the digit vector (the visible digits of the representation) and W is
a weight vector. We now develop multiplication by analogy with conventional
multiplication, building on this representation. Only positive values will be
considered for both multiplication and, later, division.

To calculate the product Z ← X × Y , we first write X (the multiplier)
as X ·W, giving

Z ← X ·W × Y

whence
Z ←

∑
xi · wi · Y =

∑
xi · (wi · Y )

The product is the sum of appropriately weighted multiples of the mul-
tiplicand Y , each multiple in turn multiplied by the multiplier digit xi. In a
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multiplicand 1 0 0 1 0 1 = 17
multiplier 1 0 1 0 0 = 11
Make Fibonacci Multiples of multiplicand
F3 multiple 1 0 0 0 0 0 0 0 = 34
F4 multiple 1 0 1 0 0 1 0 1 = 51
F5 multiple 1 0 1 0 1 0 0 0 1 = 85
F6 multiple 1 0 1 0 1 0 0 0 0 0 = 136
Accumulate appropriate multiples
add F4 multiple 1 0 1 0 0 1 0 1 = 51
add F6 multiple 1 0 1 0 1 0 0 0 0 0 = 136
product = 1 0 0 1 0 0 1 0 0 0 1 = 187
Check that 17× 11 = 187

Table 3: Example of Zeckendorf multiplication (17× 11)

uniform base number system the scaling is easily done by “left shifting”, or
appending 0s to the right of Y, as in standard long multiplication.

With Fibonacci arithmetic, the scaling must mirror the generation of
the Fibonacci numbers themselves; we can no longer use simple shifts or
inclusion of 0s. The weight vector W is now the Fibonacci numbers; given a
multiplicand Y , we generate its Fibonacci multiples Mn as –

M1 = M2 = Z(Y ), M3 = M1 + M2, . . . , Mk = Mk−1 + Mk−2, . . .

and then add these weighted by the bits of Z(X). (All arithmetic is of
course done using the Zeckendorf addition of Section 2.1.)

An example of multiplication given in Table 3. It shows first the two
factors, then the multiples of the multiplicand, and finally the steps of the
multiplication proper.

3 Division

Division is, as might be expected, the reversal of multiplication. The pro-
cedure is precisely that of conventional “long division”, but adapted to use
the Fibonacci multiples of multiplication rather than the scaled multiples of
conventional arithmetic. Starting with the dividend, we try to subtract suc-
cessively decreasing Fibonacci multiples of the divisor, entering quotient bits
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dividend 1 0 0 1 0 0 0 1 0 1 0 1 = 300
divisor 1 0 0 1 0 1 = 17
Make Fibonacci Multiples of divisor
F2 multiple 1 0 0 1 0 1 = 17
F3 multiple 1 0 0 0 0 0 0 0 = 34
F4 multiple 1 0 1 0 0 1 0 1 = 51
F5 multiple 1 0 1 0 1 0 0 0 1 = 85
F6 multiple 1 0 1 0 1 0 0 0 0 0 = 136
F7 multiple 1 0 1 0 1 0 0 0 0 0 1 = 221
F8 multiple 1 0 1 0 1 0 0 0 0 0 0 1 = 357
F9 multiple 1 0 1 0 1 0 0 0 0 0 0 1 0 = 578
Trial subtractions
F9 overdraw
F8 overdraw
F7 residue = 1 0 1 0 0 0 1 0 0 = 79
F5 overdraw
F4 residue = 1 0 0 1 0 1 0 = 28
F2 residue = 1 0 1 0 0 = 11
quotient = 1 0 0 1 0 1 = 17
remainder = 1 0 1 0 0 = 11
Check - 300÷ 17 = 17 (+rem = 11)

Table 4: Example of Zeckendorf division (300÷ 17)

as appropriate, a 0 for an unsuccessful subtraction and a 1 for a successful
subtraction. Again, we restrict ourselves to positive inputs.

Table 4 shows an example of Zeckendorf division. Note here that the divi-
dend, assumed unsigned, must be extended by at least 2 bits to accommodate
the negative values which arise during division.

We then enter the cycle of trial subtractions. At each stage, if the residue1

is negative (“unsuccessful” subtraction), we enter a 0 bit in the quotient and
restore the previous residue. If the residue is positive (“successful” subtrac-
tion), we enter a quotient bit of 1 and use the new residue for the next trial

1There is no generally accepted term for the working value from which divisor multiples
are subtracted during division. While some authors use “partial remainder” or “partial
dividend”, the preference here is for “residue”.
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subtraction. As an optimisation with a successful subtraction, we can avoid
the next multiple completely, going immediately from say Mi to Mi−2. The
subtraction with the Mi−1 multiple cannot succeed because that would give
two consecutive 1s in the quotient.

4 Conclusions

Although we have demonstrated the main arithmetic operations on Zeck-
endorf integers, this arithmetic is unlikely to remain more than a curiosity.
It is much more complex than normal binary arithmetic based on powers of
2 and the Zeckendorf representations are themselves more bulky than the
corresponding binary representations.

Another problem lies in the representation of fractions. Powers of 2 ex-
tend naturally to negative powers and fractional values. Extending the Fi-
bonacci numbers Fn for n < 0 repeats the values for positive n, but with
alternating sign; they provide no way of representing fractions.
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