
Evaluating the Seeding Genetic Algorithm

Ben Meadows1, Pat Riddle1, Cameron Skinner2, and Mike Barley1

1 Department of Computer Science, University of Auckland, NZ
2 Amazon Fulfillment Technologies, Seattle, WA

Abstract. In this paper, we present experimental results supporting
early work on the Seeding Genetic Algorithm. We evaluate the algo-
rithm’s performance with various parameterisations, making compar-
isons to the Canonical Genetic Algorithm, and use these as guidelines
as we establish reasonable parameters for the seeding algorithm. We dis-
cuss how experimental results complement and confirm aspects of the
theoretical basis, such as the exclusion of the deleterious mutation oper-
ator from the new algorithm. We report on experiments on GA-di�cult
problems which demonstrate the Seeding Genetic Algorithm’s ability to
overcome local optima and systematic deception.

Keywords: genetic algorithms, evolutionary algorithms, seeding genetic
algorithm

1 Introduction

Although the field of evolutionary computation has been around for over 30
years, it is still poorly understood. Evolutionary algorithms’ behaviour, including
the low-level interaction of their constituent parts, is often counter-intuitive.
For example, Forrest and Mitchell[1] described the e↵ects of hitchhiking on the
genetic algorithm (GA). Hitchhiking is where suboptimal parts of an individual
tend to be copied along with parts that contribute to high fitness. They also
demonstrated that a naive selection scheme can lead to reduced performance by
causing extinction of the fundamental building blocks that appear in the solution.

An analysis by Wu, Lindsay and Riolo [2] concluded that while the crossover
operator is capable of propagating building blocks as intended, and is good at
recombining building blocks, crossover’s capacity for recombination is very of-
ten stunted by low building block diversity. The mutation operator is better at
discovering new building blocks but at the cost of being more destructive to
existing building blocks. While mutation is often considered to be the operator
that discovers new building blocks, and investigations such as that of Wu et al.
claim that mutation is better than crossover at constructing building blocks,
there may be an even better mechanism for fulfilling this role. Operators that
are good at discovery are also likely to be highly disruptive (for example, ran-
dom search). It should be possible to explicitly treat building block discovery
and combination as separate phases of the algorithm and optimise them inde-
pendently. It should also be possible to adjust our selection scheme to reduce or
even preclude building block extinction without unduly reducing performance.



In making these claims we build on preliminary work[3–5] on a seeding op-
erator that significantly outperforms mutation on the task of building block
discovery, dramatically reduces extinction events, and is able to navigate local
optima. Skinner[5] mentions that it should be possible to run a more flexible
‘standard’ GA: one that performs well to a predictable degree without the need
for fine-tuning. He wants to determine why the genetic algorithm fails in some
situations where it is expected to do well, and adjust it so it does well in those
situations. Exploring the degree to which he has succeeded with the Seeding
Genetic Algorithm (SGA) will comprise a significant part of this paper.

We conduct a series of experiments to examine how the genetic algorithm
behaves on a number of problems. We investigate several well-known fixed-length
problems with integer fitness functions and known building block structure, on
the basis that the GA’s power arguably[6] comes from its ability to combine
di↵erent building blocks from multiple parents. In particular we are interested
in the ability of the algorithm to discover new building blocks and to select pairs
of parents that have some hope of producing highly fit o↵spring. We also aim
to establish more precisely where seeding succeeds or fails. We extrapolate from
the SGA’s ability to solve various parametrisations of di�cult problems. The
SGA adds several new parameters to the already quite complex regular genetic
algorithm; our testing will therefore be quite multivariate. We aim to establish
the best and most generalisable parameters for this new algorithm, and show
that the goal of a more flexible GA operator has been met.

2 The Genetic Algorithm

The GA first appeared in the literature in 1975 [7]. There have been many refine-
ments, to the extent that we suspect that the fundamental or canonical GA is
seldom used in practise today other than on a few known problems with ‘reason-
able’ parameters established by trial and error [8]. Perhaps the core problem for
the GA, aside from lack of foreknowledge about the best parametrisation for a
particular instance, is maintaining population diversity [9]. Numerous techniques
have been demonstrated to combat early convergence, including crowding [10],
clearing and speciation [11], niching and fitness sharing [12], the island model
[13], and spatially distributed populations [14]. However, few of them provide a
strong guarantee that they will indefinitely prevent premature convergence.

Skinner’s seeding algorithm [4, 5] makes such a guarantee. We consider this
work groundbreaking in that it systematically confronts questions such as

1. How does a GA actually work, rather than how should it work? and
2. Given the observed failings of the GA, how can we remodel the way it works

to improve it?

3 Discovery vs Combination

We have already suggested that there is an important trade-o↵ between discov-
ery and combination [3–5]. As building blocks become more di�cult to discover



(i.e. as the number of bits in each block increases), having a high discovery
rate becomes more important. Skinner’s results show that more disruptive op-
erators are better at discovery. Unfortunately, this means that high discovery
ability comes with a high probability of building block destruction. For exam-
ple, uniform crossover is the best crossover operator for discovery. In the case of
the mutation operator, a mutation rate of 1 (equivalent to performing random
search with replacement) is best for discovery. The results imply that for the GA
to perform well in the discovery phase (i.e. to make sure that building blocks
that are not currently in the population are available for the next generation),
random search is more e↵ective than mutation and crossover.

Skinner’s extensive analysis of the performance of the Canonical Genetic Al-
gorithm (CGA) concludes that, in general, it is almost incapable of discovering
new building blocks after just a few generations [5]. The CGA essentially has
two phases: a brief, rapid combination of building blocks in the initial popula-
tion, and then a long, slow discovery of the remaining building blocks, one at a
time. Skinner goes on to evaluate the discovery and destruction potential of the
most common genetic operators, and finds that mutation and crossover perform
poorly. Mutation is only ever able to discover new blocks when there is a high
prior probability that local search will be useful. In the cases tested, mutation
destroys more than 99% of the blocks it discovers [5].

The problem is not lack of diversity, but that the genetic operators are sim-
ply inappropriate for the way the algorithm is meant to function[5]. However,
continued building block supply is vital – especially since the GA is almost guar-
anteed to rapidly complete when the requisite blocks are present somewhere in
the population in each generation[5]. In practise, existing blocks become extinct
with disturbing frequency. Random search outperforms the common genetic op-
erators in many circumstances [5]. What little discovery does occur in the CGA
is largely due to crossover rather than mutation; mutation is largely detrimental
to building block retention. It is also di�cult to design a selection scheme that
reliably chooses parents that are likely to have di↵erent sets of building blocks.

These results led to the Seeding Genetic Algorithm, which divides the func-
tionality of the genetic algorithm into selection, discovery and combination. The
SGA does away with mutation. It uses random search at a single initial stage
coupled with ongoing sampling from a resulting ‘seed pool’ to perform building
block discovery. It is this seeding operator which we wish to focus on.

3.1 Seeding

The design of the Seeding Genetic Algorithm is based on the observation that
random search is at least as good as any other technique for discovering lowest
level building blocks. The SGA draws from a seed pool of selected randomly
generated individuals. This pool is generated by presampling the search space:
generating a number of random individuals, measuring their fitness, and estimat-
ing the underlying average fitness of the space. Those random individuals that
have fitness greater than the average are used to populate the seed pool. The



seed pool is thus initialised with a subset of (or possibly all of, if the presample
size is su�ciently large) the lowest level building blocks in the problem.

When the SGA is run, candidates from the seed pool have a chance to be
inserted into the main population via seeding during the crossover step. Each
selected parent is replaced by a random individual drawn from the seed pool
with some probability p. Seeding serves two purposes: when a particular building
block has become extinct in the main population the seed pool will still retain a
copy that can then be incorporated into the population via recombination; and
those parts of seed pool individuals’ genomes that do not contribute to fitness
will be copied into the main population along with the building blocks, providing
a useful diversity boost and helping prevent early convergence.

4 Problem Sets

We used several di↵erent problem sets in our analysis; we present three of them
here.

The Royal Road problem3 is a classic case study, designed as a GA-easy
problem, but discovered to be unusually di�cult [16, 17]. The Royal Road lacks
deception, has a single solution, features discrete building blocks upon which an
appropriate fitness function can be directly based, and can be readily solved by
other optimisation techniques such as hill-climbing. A hierarchical variant [16]
adds higher-order blocks, composed of lower-level ones, to the mix.

The Hierarchical If-And-Only-If problem4 is used by Skinner [5] as a more
“interesting” problem with multiple global optima. Described by Watson and
Pollack [18], Hierarchical If-And-Only- If is a recursive problem: the bit-string
is separated iteratively into halves, and rewarded with a score equal to the com-
bined length of the two halves if all the bits in a half are homogeneous. This
is a di�cult problem: there are 254 blocks of six di↵erent lengths, with ex-
tremely strong interdependence. There are also two possible maximally di↵erent
solutions; the fitness landscape is therefore a fractal of local optima. For each
optimum, whether it is global or local, there are two less-fit optima equidistant
from it. This is very di�cult for a hill-climbing algorithm to solve [5].

The Deceptive Trap problem5 is also designed to make optimisation algo-
rithms such as gradient descent fail; Deceptive Trap does so at the building
block level. In this deceptive problem, described by Goldberg[19], each block
decreases in fitness as it comes closer to its complete form. Incremental im-
provements for a block lead the algorithm towards a local maxima. A complete
inversion is required to go from the trapped state to the maximum for that block.
Any hill-climbing type search will lead directly away from the global maximum.

3 Our implementation of this problem, RR, following Mitchell and Forrest [15], is a
64-bit Royal Road consisting of eight adjacent, coherent blocks of eight bits each.

4 We implement a Hierarchical If-And-Only-If problem, HIFF , of length 64.
5 Our implementation, DT , is a 60-bit string consisting of 12 traps of length 5 each
(following Skinner [5]).



Table 1. Mean number of generations required for the SGA to solve the RR problem
with (–M) and without (+M) mutation. 2-, 5- and 32- tournament selection, rank selec-
tion, and fitness proportional selection are compared (columns) using seed probabilities
of 0.1, 0.2, and 0.3 (rows). ‘N/A’ indicates cases where no runs found a solution.

2-tourn. 5-tourn. 32-tourn. Rank Fit. Pr.

-M +M -M +M -M +M -M +M -M +M

CGA 491.1 257.3 249.2 451.8 615.9

SGA

s=0.1 203.0 N/A 98.6 100.6 117.1 94.7 177.7 314.3 417.2 523.7
s=0.2 708.0 N/A 75.5 166.9 79.2 89.3 379.6 N/A 624.4 N/A
s=0.3 N/A N/A 193.1 472.7 76.9 96.8 N/A N/A N/A N/A

5 Initial Seeding Tests

What are reasonable parameters for the SGA? In these sections, we employ the
bootstrap test for statistical significance described in Cohen and Kim[20]. This
usage is motivated by our having censored data (not all runs of the algorithm
complete). The bootstrap test draws many “bootstrap samples” from the com-
bined results of two algorithms A and B to establish whether the di↵erence in
their means is significantly di↵erent from the 0 predicted by the null hypothesis.
We set p < 0.05 to determine statistical significance.

5.1 Seeding Probability against Mutation Rate

We first apply an experimental framework to the question of whether there is any
point to retaining mutation alongside seeding; the theoretical work of Skinner
determined mutation to be ine↵ectual as a discovery operator, but did not test
this. In order to determine whether mutation is genuinely unhelpful in practice,
we ran tests on RR with 2-point crossover, a presample size of 1000, and seed pool
size of 50. We took the mean of 100 runs each time, testing various combinations
of parameters. The results given in Table 1 are fairly typical.

The SGA (with lower seed probabilities of 0.1 to 0.2) usually performs sig-
nificantly better than the CGA. Mutation typically worsens its performance,
although there are some anomalies. We found that a seed probability of 0.15
was best without mutation, while a higher probability of 0.2 was better with
minimal (1/1024) mutation, or a lower probability of 0.1 with normal (1/64)
mutation. This suggests there is some level of interference between the mutation
and seeding operators. As use of the mutation operator with the SGA is, indeed,
not particularly helpful overall, we discard it for the remainder of our tests.

5.2 Seeding with Random Individuals

These results seem to bear out Skinner’s [5] assertion that the usefulness of
seeding lies in introducing ‘superior’ genetic material (building blocks). However,
we wish to determine how much of the benefit of seeding comes from it preventing



Table 2. Mean number of generations to complete, standard deviation, and number
of runs completing, over 1000 runs of the random-seeding SGA on the RR problem.
Each column describes a di↵erent seed probability. The CGA is given as a baseline.

CGA SGA

(s=0) s=0.1 s=0.15 s=0.2 s=0.25 s=0.3

Generations 257.3 600.0 555.7 555.9 587.5 685.0
Std. Deviation 134.5 246.1 249.7 237.5 225.9 288.7
Number completing 1000 430 606 676 398 3

early convergence by introducing ‘fresh’ genetic material. We separate this from
building block based utility by comparing the CGA with a form of the SGA
that seeds with randomly generated individuals. The test was run on RR with
5-tournament, 2-point crossover, and other standard parameters.

We are e↵ectively comparing the power of the mutation operator in the CGA
and the power of the seeding operator in the SGA to prevent early convergence.6

The results are shown in Table 2. In every instance, either the CGA significantly
outperformed the random-seeding SGA or the SGA only succeeded in a small
number of runs. Since seeding with random individuals is harmful,7 we conclude
that the benefit of the seed pool comes from its introduction of building blocks.

Seeding is doing more than simply enforcing diversity; it is providing the
building blocks upon which the algorithm depends. We will now investigate the
various parameters of the SGA. We aim to find good seed pool sizes, seeding
probabilities, and strategies for e�cient and e↵ective seed pool creation.

6 Presample Size and Seed Probability

We tested the SGA by varying the seeding probability against the mutation
rate, aiming to establish a ‘reasonable’ seeding probability. Skinner [5] used a
presample size of 1000, and chose the probability 1

3 so that approximately half
of the crossover operations would involve replacement of at least one parent. We
conducted experiments varying the size of the presample from 500 to 750000. We
tested seeding probabilities in the range 0.1 to 0.35, using typical parameters,
including 5-tournament selection, 2-point crossover, and seed pool size n = 50.

For the remainder of this paper, we normalise the results of the SGA to com-
pensate for the primary cost involved: seed pool generation.8 We can calculate
the cost of seed pool generation by assuming that the computational bottleneck

6 The chance of the mutation operator introducing a new block is remote; mutation
has an expected discovery rate of <0.001. Similarly, seeding with random individuals
could technically introduce new blocks, but the chance that a random individual con-
tains a block is 0.031, and the higher the prevalence of blocks in the main population,
the less chance the o↵spring of a seed individual will be fit enough to survive.

7 However, we do observe an e↵ect whereby low levels of seeding can help by acting
as a macro-mutation operator, crudely mimicking a ‘normal’ GA.

8 Note that an arbitrarily large presample will otherwise always be ‘best’ in the sense
that at some point, the presample will actually include a solution string.



Table 3. Mean generations to complete for the RR problem; comparing presample size
(rows) and seed probabilities (columns). The best value is given in bold. Values worse
than those for the CGA are given in italics. Numbers presented here are normalised
for the cost of seed pool generation.

0.1 0.15 0.2 0.25 0.3

500 363.7 315.7 323.4 342.2 506.1
1000 221.7 181.8 169.7 196.7 394.8
2000 126.2 99.1 91.5 107.1 235.9
5000 122.9 98.5 95.1 96.4 229.9
10000 123.3 94.9 88.2 101.4 199.3
20000 118.6 99.9 97.9 103.8 189.6
30000 124.6 106.6 107.4 111.4 177.3
40000 128.6 112.5 111.8 118.5 165.5
50000 135.5 122.4 119.9 125.4 167.2
100000 189.6 185.8 182.9 188.2 206.3
125000 225.2 220.4 220.8 222.9 238.6
150000 265.2 258.9 258.4 260.9 275.6
200000 342.3 336.2 336.1 338.7 354.0

is the number of fitness evaluations performed [5]. The canonical GA makes N
fitness calculations per generation, depending on the population size, selection
type, and number of children generated per crossover event. A presample size
of N is then equivalent to running one extra generation of the CGA, and so a
presample of size X has an additional cost of X/N .

6.1 Royal Road

The CGA completed RR with 2-point crossover in a mean 256.6 generations.
The seeding algorithm proved able to reduce this by as much as 233 generations
(90%), or by 168 generations (66%) after normalisation. Consider Table 3. The
‘best’ values are a presample size around 10,000 and a seed probability near 0.2.
Note that the seeding algorithm still significantly outperforms the CGA with a
seed probability as low as 0.1 or as high as 0.3, and continues to do so until it hits
diminishing returns with a presample size S = 150,000 or higher, from which
point we measured no significant improvement up to S = 500,000. The SGA
performed comparably in variations of the task including use of 32-tournament
selection and hierarchical versions of the royal road problem.

6.2 Hierarchical If-And-Only-If

The HIFF problem has prominent, massively interdependent building blocks,
with two (n� 1)-value fitness peaks flanking every (n)-value peak. The CGA is
essentially unable to solve this problem: one in 1000 runs succeeded with 2-point
crossover; the “weaker” selection operators (rank selection and 2-tournament)
performed very slightly better, as they are better at escaping local optima.

The SGA was able to solve HIFF fairly easily. Early tests indicated higher
seed probabilities than those for our simpler problems. However, even with a



Table 4. Tests on deceptive problems: HIFF (left) and DT (right). Each value is a
mean over 100 runs to a maximum of 20,000 generations. Rows are di↵erent presample
sizes; columns are di↵erent seed probabilities. The best value for each problem is given
in bold. Numbers presented here are normalised for the cost of seed pool generation.

0.2 0.25 0.3 0.35 0.1 0.15 0.2

100 8016.4 3932.5 7794.6 N/A 100 3182.8 4279.3 4684.1
500 5029.7 2860.9 6794.4 N/A 500 1458.9 1623.0 1566.1
1000 6521.5 2149.4 6301.2 10152.0 1000 1063.0 1251.1 966.7
5000 5781.4 2261.7 4318.8 8800.1 5000 585.0 563.0 556.2
10000 4239.2 1774.0 3087.8 9409.9 10000 513.6 386.3 458.0
50000 3309.3 1291.0 2019.4 6071.1 25000 401.9 394.8 331.5
100000 3505.3 1480.9 1109.4 4404.2 50000 372.0 282.8 307.4
200000 1734.1 1126.4 1257.7 2981.6 75000 355.6 332.9 325.5
300000 2845.7 1467.7 1084.5 2365.3 100000 371.0 360.1 356.5
400000 3397.8 1394.7 1099.4 2379.8 150000 492.3 397.6 417.5
500000 2505.6 1336.9 1101.9 2232.5 200000 491.4 479.5 481.1
600000 2980.7 1534.6 1306.1 2074.4 500000 930.3 913.6 939.3

presample size of 500,000, 10% of the runs did not complete in the best case.
We therefore ran a set of experiments with the maximum number of generations
increased from 1000 to 20,000, using higher seed probabilities of 0.2, 0.25, 0.3,
and 0.35. These tests consisted of 100 runs rather than 1000.

The CGA was run with the same parameters as a baseline; it was unable
to find the solution. According to Table 4 (left), a seed probability of 0.3 and
presample size around 300,000 are our best values after normalisation.9 While a
‘good’ presample size is many times that for RR, even a relatively small one is
clearly still useful; all runs found a solution for the three smaller seed probabil-
ities with presamples of at least 10,000.

6.3 Deceptive Trap

DT was expected to be the hardest problem: although it has four fewer bits than
the other problems, it has deception built in at the building block level (12 ‘trap’
blocks of length 5). The CGA cannot solve DT: it did not succeed once in over
15,000 tests we ran for various parameterisations. Remarkably, the SGA solves
DT even more easily than it does HIFF. With a presample size of 500,000, the
SGA is su�ciently powerful to solve the DT problem 100% of the time.

However, for more reasonably-sized presamples, not all runs completed. There-
fore, as with HIFF, we ran additional tests to 20,000 generations. The CGA
continued to fail completely on these longer tests. In contrast, the SGA was able
to find a solution 100% of the time with all tested seed probabilities with a pre-
sample of at least 25,000. Table 4 (right) suggests that the SGA had a ‘spread’

9 The seeding probability is rather sensitive in this problem: the algorithm becomes
steadily more e↵ective with higher probabilities before dropping o↵ suddenly between
0.3 and 0.35. Note that the 0.3 value represents a close to 50% chance that at least
one parent in a reproduction event will be replaced by a seed individual.



Table 5. Tests for seed pool size on the RR problem. Each value is a mean over 1000
runs to a maximum of 1000 generations. Rows are di↵erent presample sizes; columns
are di↵erent seed pool sizes. The best value is given in bold. Values worse than those
for the CGA are given in italics. Numbers are normalised for the cost of seed pool
generation.

Presample size 5 25 50 100 500 1000

1000 496.7 134.8 169.7 247.3 422.7 N/A
5000 403.5 134.9 95.1 78.0 187.4 285.6
10000 359.3 124.7 88.2 83.9 113.1 191.4
50000 329.9 118.4 119.9 126.1 136.5 139.2
100000 428.8 189.8 182.9 191.9 211.6 214.6

of generally good performance for presamples ranging from tens of thousands to
hundreds of thousands. Even when a seed pool of 50 was drawn from a presam-
ple of 100, the SGA was su�ciently robust to solve DT more than two-thirds
of the time. This is despite the fact that such a seed pool would be filled with
individuals containing blocks in various ‘deceptive’ states.

7 Presample Size and Seed Pool Size

To find the best seed pool size for given presample sizes, we varied the size of
the seed pool from n = 5 to n = 1000. The seed probability for each experiment
is fixed at its previously discovered best level. We expected to see either (a) a
pattern specific to each experiment whereby good results would correlate with
seed pool size as a particular fraction of the presample, or (b) a fixed ‘best’ seed
pool size for each problem class, given some minimum presample size.10

We ran experiments on RR with a seed probability of 0.2. Judging by Table 5,
our initial seed pool size of 50, following Skinner [5], was a good choice; 100
appears to be slightly better, but not to a statistically significant level. The
viable seed pool size increases with the presample size, but the optimal size is
fairly consistent. The SGA was able to improve on the performance of the CGA
(256.6 generations) with as small a seed pool as 25.

Recall that the CGA was essentially unable to solve the HIFF problem. Using
the previously-determined ‘good’ seed probability of 0.3, we achieved the results
summarised in Table 6 (left). We found that the algorithm performs well with a
seed pool size around 25 to 50.

We ran the same experiments on the DT problem, using the ‘good’ seed
probability 0.175. The results are given in brief in Table 6 (right). We see a
trend towards a larger seed pool size than we have encountered so far. As we
increase the presample size, the first seed pool size on which all runs completed
was 1000; the second was 500. The low values in the first column are a statistical
artifact: fewer than 5% of runs with a seed pool of 5 solved DT, so the ones that

10 The former is more likely prima facie: an arbitrarily large presample will populate
the seed pool with the same number of ‘bad’ individuals as a small one if the same
fraction is used in both cases. However, a small seed pool will also have less diversity.



Table 6. Tests for seed pool size on deceptive problems: HIFF (left) and DT (right).
Each value is a mean over 1000 runs to a maximum of 1000 generations. Rows are
di↵erent presample sizes; columns are di↵erent seed pool sizes. The best value for each
problem is given in bold (but see text). Numbers are normalised for the cost of seed
pool generation.

Presample HIFF: varying seed pool sizes DT: varying seed pool sizes
size 5 25 50 100 500 1000 5 25 50 100 500 1000

1000 592.3 510.1 550.6 510.1 440.7 N/A 309.6 534.8 544.1 580.5 722.6 N/A
5000 393.6 514.5 501.7 514.5 531.5 464.0 312.4 432.4 414.5 408.3 528.5 631.4
10000 414.6 518.9 489.6 518.9 553.0 528.0 274.4 394.6 358.7 351.3 442.8 532.3
50000 399.9 401.7 467.3 519.2 567.9 584.6 428.8 355.6 305.7 305.1 363.2 415.0
100000 426.3 409.1 537.2 559.3 652.0 640.3 419.5 422.5 356.9 342.0 393.6 438.8

did complete likely had exceptionally high-value individuals in their seed pools.
The bold values for the size 50 and 100 seed pools represent cases where 98.8 -
99.9% of runs completed, so are more legitimate ‘best’ choices.

8 Conclusions

We have confirmed that the Seeding Genetic Algorithm can be considerably
more e↵ective than the Canonical Genetic Algorithm, solving the main problem
of the latter by maintaining a continual supply of all building blocks somewhere
in the population. When combined with a suitable selection scheme this can lead
to a significant reduction in number of fitness evaluations required. We have seen
an 80% or greater reduction in the di�culty of problems the GA struggles with,
such as the Royal Road, and overcoming problems of local optima and deception
in the case of Hierarchical If-And-Only-If and Deceptive Trap, which the CGA
is not equipped at all to deal with. We have found that the ideal seed pool size is
not a simple fixed fraction of the presample size. It is important both to perform
seeding with high-quality individuals, and to have a high enough ratio between
presample and seed pool to ensure we fill the pool with useful genetic material.
However, the ‘best’ size appears to be modulated by problem-dependent factors.

We have obtained an initial set of ‘reasonable’ SGA parameters; in the pro-
cess, we have run more than 1,300 experiments, involving over 1,200,000 runs of
the genetic algorithm. But if the SGA is to be used in a real-world domain, we
cannot initialise it with the ‘best’ parameters, since these are almost certainly
not known in advance. How close do they have to be to the best settings for
the SGA to function? The majority of tested combinations actually give better
results than the CGA. Default parameters of 2-point crossover, 0.9 crossover
rate, 0.2 seed probability, a seed pool of 50 and a presample of 100,000 will work
considerably better than the CGA on any of our problems. We do not claim
that these parameters will be universally appropriate: they may not necessar-
ily carry over to wider domains or more complex building block situations, but
we are hopeful. We have added several more parameters to the already change-
sensitive genetic algorithm; the seeding probability in particular may require
fine-tuning on a case-by-case basis. In some domains it may be appropriate to
run “exploratory tests” to narrow the parameters down.



Many extensions to the ‘canonical’ GA have addressed the failings we over-
came here. The utility of the seeding operator lies in its ability to prevent early
convergence and overcome local optima and solve deceptive problems. Note that,
the fraction of individuals in the next generation with some new (high quality)
genetic material is equal to those cases where both parents are seeded, plus those
where one parent is seeded and crossover occurs, plus half those where one par-
ent is seeded and crossover does not occur. This is a fixed rate, the same from
generation 1 to generation 1000. This gives the SGA an advantage over other GA
extensions (such as geographically distributed populations or the island model),
which delay early convergence rather than guaranteeing its prevention.

9 Future Research

Work on the seeding algorithm has been quite preliminary, but has raised many
avenues of inquiry. The relationship between selection pressure and the best
seed probability needs explored further. The design of our selection operator
could be refined (i.e., possibly made more aggressive) taking advantage of the
SGA’s strengths. Finally, these results, although promising, only use a naive
implementation of seeding. Exploring more sophisticated mechanisms will likely
be of considerable interest. The replacement strategy (random replacement), too,
is naive. There appears to be a correlation between selection pressure and the
best seed replacement probability, and this warrants further investigation.11

The SGA could be refined. It may be possible to infer the relative merits of
seeding at each point in the algorithm, allowing us to dynamically ‘throttle’ the
seeding probability to an appropriate level. We could experiment with creating
the first generation of the primary population entirely from seed pool individu-
als, or injecting seed individuals into the population only when the fitness of the
o↵spring or parents in some crossover event fall below some threshold. Di↵er-
ent policies for generating the seed pool should also be explored. For example,
choosing those presample individuals that have a fitness value that is more than
one standard deviation above the underlying average fitness. Finally, the way to
truly prove the worth of the SGA is to run it on more complex problems. If the
algorithm succeeds on real-world domains, we can say without reservation that
it has succeeded as an innovation in the field of evolutionary algorithms.

References

1. Forrest, S., Mitchell, M.: Relative building-block fitness and the building-block
hypothesis. In Whitley, L., ed.: Foundations of genetic algorithms. (1993) 109–126

11 At the beginning of a GA run there are many building blocks that have not been
combined into one individual, whereas later in the run most individuals contain
similar blocks, so a replacement scheme that varies the probability throughout the
run is likely to work better than a fixed probability. Even better would be to examine
the set of possible parents and detect when a given pair of parents is likely or unlikely
to contain di↵erent blocks (e.g., use domain knowledge to detect siblings or cousins).



2. Wu, A.S., Lindsay, R.K., Riolo, R.L.: Empirical observations on the roles of
crossover and mutation. In B̊ack, T., ed.: Proc. 7th International Conference on
Genetic Algorithms. (1997) 362–369

3. Skinner, C., Riddle, P.: Expected rates of building block discovery, retention and
combination under 1-point and uniform crossover. In: Parallel Problem Solving
from Nature-PPSN VIII, Springer (2004) 121–130

4. Skinner, C., Riddle, P.: Random search can outperform mutation. In: IEEE
Congress on Evolutionary Computation (CEC 2007). (2007)

5. Skinner, C.: On the discovery, selection and combination of building blocks in
evolutionary algorithms. PhD thesis, Citeseer (2009)

6. Jansen, T.: Real royal road functions—where crossover provably is essential. In:
GECCO: Proceedings of the Genetic and Evolutionary Computation Conference,
Morgan Kaufmann Pub (2001) 375–382

7. Holland, J.: Adaptation in artificial and natural systems. Ann Arbor: The Uni-
versity of Michigan Press (1975)

8. Srinivas, M., Patnaik, L.M.: Adaptive probabilities of crossover and mutation in
genetic algorithms. IEEE Transactions on Systems, Man and Cybernetics 24(4)
(1994) 656–667

9. Luke, S., Balan, G.C., Panait, L., Cio�-Revilla, C., Paus, S.: Mason: A java multi-
agent simulation library. In: Proceedings of Agent 2003 Conference on Challenges
in Social Simulation. Volume 9. (2003)

10. De Jong, K.A.: Analysis of the behavior of a class of genetic adaptive systems.
PhD thesis, University of Michigan Ann Arbor, MI, (1975)

11. Pétrowski, A.: A clearing procedure as a niching method for genetic algorithms.
In: Proceedings of IEEE International Conference on Evolutionary Computation.
(1996) 798–803

12. Darwen, P., Yao, X.: Every niching method has its niche: Fitness sharing and
implicit sharing compared. In: Parallel Problem Solving from Nature—PPSN IV.
Springer (1996) 398–407

13. Whitley, D., Rana, S., Heckendorn, R.B.: The island model genetic algorithm: On
separability, population size and convergence. Journal of Computing and Informa-
tion Technology 7 (1999) 33–48

14. Sarma, J., De Jong, K.: An analysis of local selection algorithms in a spatially
structured evolutionary algorithm. In: Proceedings of the Seventh International
Conference on Genetic Algorithms. (1997) 181–186

15. Mitchell, M., Forrest, S.: B. 2.7. 5: Fitness landscapes: Royal road functions.
Handbook of evolutionary computation (1997)

16. Mitchell, M., Forrest, S., Holland, J.H.: The royal road for genetic algorithms:
Fitness landscapes and ga performance. In: Proceedings of the first european
conference on artificial life, Cambridge: The MIT Press (1992) 245–254

17. Mitchell, M., Holland, J.H., Forrest, S.: When will a genetic algorithm outperform
hill climbing? Advances in neural information processing systems (1994) 51–51

18. Watson, R.A., Pollack, J.B.: Recombination without respect: Schema combination
and disruption in genetic algorithm crossover. In: Proceedings of Genetic and
Evolutionary Computation Conference (GECCO). (2000) 112–119

19. Goldberg, D.E.: Simple genetic algorithms and the minimal, deceptive problem.
Genetic algorithms and simulated annealing 74 (1987)

20. Cohen, P., Kim, J.: A bootstrap test for comparing performance of programs when
data are censored, and comparisons to Etzioni’s test. Technical report, University
of Massachusetts (1993)


