

Overview

We will study structures from computability theory under the following aspects.

- Automorphism bases
- ullet Biinterpretability with $\mathbb N$ in params, prime model question
- \emptyset -definable subsets

Automorphism bases

Definition 0.1 A subset B of a structure A is an automorphism base

the only automorphism of A fixing B pointwise is the identity.

Example. $B \subseteq (\mathbb{Q}, <)$ is a-base

B dense in \mathbb{Q} .

Structures based on \leq_m

• \mathcal{D}_m : all m-degrees

• A_m : m-degrees of arithmetical sets

• \mathcal{R}_m : c.e. m-degrees

All three structures can be characterized as distributive usl's with a saturation property.

Theorem 0.2 The minimal degrees do not form an a-base of \mathcal{D}_m , or of \mathcal{A}_m .

Corollary 0.3 $Aut(\mathcal{D}_m)$, $Aut(\mathcal{A}_m)$ are not simple

Proof. $\{\pi \in \operatorname{Aut}(\mathbf{A}) : \pi\}$

fixes the minimal degrees} is a proper normal subgroup.

A-bases of \mathcal{R}_T

Theorem 0.4 (Ambos-Spies) For each $c \in \mathcal{R}_T$, $c \neq o$, [o, c] is an automorphism base.

A modified proof of this result [N98] uses the following general method to show that B is an a-base of A: provide a definable (relative to B)

$$H: \mathbf{A} \mapsto \tau B$$
,

where τB is the collection of objects of type τ constructed from B.

τ -maps

Let $\hat{x} := [\mathbf{o}, x]$. Example of such a map:

- $B = \hat{c}$
- $H(x) = {\widehat{y} \cap \widehat{c}, \widehat{z} \cap \widehat{c} : y \lor z = x}.$

In general:

• For each formula $\varphi(x)$, we have

$$H_{\varphi}(\boldsymbol{x}) = \{ \boldsymbol{x} \in B : \varphi(\boldsymbol{x}) \}$$

• If we have H_1, \ldots, H_n , for each fmla $\varphi(x, y_1, \ldots, y_n)$ have also $H(\mathbf{x}) = \{(H_1(\mathbf{y}_1), \ldots, H_n(\mathbf{y}_n)) : \varphi(\mathbf{x}, \mathbf{y}_1, \ldots, \mathbf{y}_n)\}.$

A-bases of \mathcal{R}_m

Theorem 0.5 Each definable $D \subseteq \mathcal{R}_m$, $D \not\subseteq \{\mathbf{0}, \mathbf{1}\}$ forms an a-base of \mathcal{R}_m .

Proof. Do it only for the set Min of minimal degrees in \mathcal{R}_m . Let

 $\gamma(e) \equiv \forall q[e \not\leq q \Rightarrow \exists m \in Min (m \leq e \& m \not\leq q)]$

If $\hat{e} \cong \mathcal{R}_m$ effectively, then $\gamma(e)$. Let

$$H(\boldsymbol{x}) = \{ [\boldsymbol{0}, \boldsymbol{y}] \cap Min : \boldsymbol{y} \geq \boldsymbol{x} \ \& \ \gamma(\boldsymbol{y}) \}$$

- If $z \not\leq x$, then using Denisov's characterization, there is $y \geq x, y \not\geq z$ such that $\gamma(y)$.
- Then, if H(z) = H(x), there must be an $u \ge z$, $\gamma(u)$, s.t. $[\mathbf{o}, u] \cap Min = [\mathbf{o}, y] \cap Min$, contradiction.

Question 1 What is the structure of $Aut(\mathcal{R}_m)$? Is it a simple group?

From $\mathcal{R}_m - \{\mathbf{1}\} \cong \text{the } \Delta_2^0 \text{ m-degrees (Denisov)},$ we can infer the existence of an automorphism of order 2.

 \mathcal{R}_T

The property $\gamma(e)$ plays a role similar to Ambos-Spies' "downward splitting property": let $DSP(a) \Leftrightarrow$

$$\forall b \not\leq a \ \forall c \not\leq b \lor a[\widehat{c} \cap \widehat{a} \neq \widehat{c} \cap \widehat{b}].$$

To prove $\widehat{\boldsymbol{c}}$ is an a-base, use as $H(\boldsymbol{x})$ a complex object built up from ideals $\widehat{\boldsymbol{c}} \cap \widehat{\boldsymbol{a}}$, where $DSP(\boldsymbol{a})$: for $\boldsymbol{x} \in NC$, let $H(\boldsymbol{x}) =$

$$\{\{\langle\{\widehat{\boldsymbol{c}}\cap\widehat{\boldsymbol{a}}:\boldsymbol{a}\in\widehat{\boldsymbol{p}}_0\cap\mathrm{DSP}\},\{\widehat{\boldsymbol{c}}\cap\widehat{\boldsymbol{a}}:\boldsymbol{a}\in\widehat{\boldsymbol{p}}_1\cap\mathrm{DSP}\}\rangle:$$

 $\boldsymbol{p}_0\vee\boldsymbol{p}_1=\boldsymbol{p},\boldsymbol{p}_i\in\mathrm{NC}\},$

$$\{ \langle \{\widehat{\boldsymbol{c}} \cap \widehat{\boldsymbol{a}} : \boldsymbol{a} \in \widehat{\boldsymbol{q}}_0 \cap \mathrm{DSP} \}, \{\widehat{\boldsymbol{c}} \cap \widehat{\boldsymbol{a}} : \boldsymbol{a} \in \widehat{\boldsymbol{q}}_1 \cap \mathrm{DSP} \} \rangle :$$

$$q_0 \vee q_1 = q, q_i \in NC$$
:

$$p \lor q = x, p, q \in NC$$

A-bases of \mathcal{E}^*

Theorem 0.6 $Max = \{M^* : M\}$

maximal} is an a-base.

Proof. H(x) =

$$\{[y_0, 1] \cap \text{Max}^*, [y_1, 1] \cap \text{Max}^* : y_0 \lor y_1 = x\}.$$

Since each maximal element of \mathcal{E}^* is determined by its recursive subsets, it follows that Rec* is an a-base.

Also the creative sets are (each infinite c.e. set is the union of two creative ones).

Question 2 Is each orbit of \mathcal{E}^* an a-base ?

Part II: BI with \mathbb{N} in params

Definition 0.7 A copy of \mathbb{N} coded in \boldsymbol{A} with params is a structure

$$\mathbf{M} = (D, R_+, R_\times) \cong \mathbb{N}$$

such that D and the relations R_+, R_\times are param-definable in \mathbf{A} .

Use the letter M for such coded structures.

Definition 0.8 A is biinterpretable with \mathbb{N} in params

 $\exists M \exists f : A \mapsto M[f \ 1-1, param-def].$

Known for $\mathcal{D}(\leq \emptyset')$ (Slaman/Woodin).

Consequences

- Can define a copy $N(\mathbf{A})$ of \mathbb{N} without params
- A is a prime model and and a minimal model of $\operatorname{Th}(A)$. In fact, for $B, C \equiv A$,

$$\boldsymbol{B} \prec \boldsymbol{C} \Leftrightarrow N(\boldsymbol{B}) \prec N(\boldsymbol{C}).$$

- Arithmetical \Leftrightarrow param-definable
- Each $\pi \in \text{Aut}(\mathbf{A})$ is arithmetical. Finite a-base.

(Recall: \mathbf{A} prime \Leftrightarrow each n-orbit definable, and \mathbf{A} minimal \Leftrightarrow there is no proper elementary submodel.)

 $|\mathcal{R}_m|$

BI fails for \mathcal{R}_m . In fact,

- $|\operatorname{Aut}(\mathcal{R}_m)| = 2^{\omega}$
- $\exists e[\mathbf{o}, e) \prec \mathcal{R}_m \{\mathbf{1}\}]$

Question 3 Is \mathcal{R}_m prime?

Theorem 0.9 \mathcal{R}_m prime $\Rightarrow \exists k \ [each \ realized \ type \ is \ principal \ via \ a \ \Sigma_k^0 \text{-}formula]$

Theorem 0.10 The arithmetical m-degrees form a prime model.

The BI-conj	ecture for	\mathcal{R}_T
-------------	------------	-----------------

Question 4 Is \mathcal{R}_T biinterpretable with \mathbb{N} in params?

Weaker:

Question 5 Is \mathcal{R}_T prime ? ω -homogeneous ? Minimal ?

An approx to BI without params

Theorem 0.11 (with Shore, Slaman) There is a \emptyset -definable

$$f: \mathcal{R}_T \mapsto N(\mathcal{R}_T)$$

such that

$$x^{(2)} \neq y^{(2)} \Rightarrow f(x) \neq f(y).$$

Using a-bases

Suppose $B \subseteq \mathcal{R}_T$ is param-definable, $H: \mathcal{R}_T \mapsto \tau B$ is 1-1, definable. Then to show BI it suffices to produce M and a 1-1 param-definable $g: B \mapsto M$:

$$\mathcal{R}_T \stackrel{H}{\mapsto} \tau B \stackrel{\tau g}{\mapsto} \tau \mathbf{M} \mapsto \mathbf{M}.$$

Even if no H is known, we still obtain a finite a-base: the params for M, g.

Separating sequences

Definition 0.12 A sequence $(g_i)_{i \in \omega}$ separates B from

- $below \Leftrightarrow \forall x, y \in B$ $x \not\leq y \Rightarrow \exists i (g_i \leq x, g_i \not\leq y),$
- from above $\Leftrightarrow \forall x, y \in B$ $x \not\leq y \Rightarrow \exists i (x \not\leq g_i, y \leq g_i).$

M separates B if the sequences $(i^{M})_{i\in\omega}$ does. In this case, obtain a 1-1 param-definable $g: B\mapsto M$: e.g. for downward sep. M, $g(\boldsymbol{x})=$ arithm. index for $\{i:i^{M}\leq\boldsymbol{x}\}.$

Final segments

- Theorem 0.13 (Shore, Slaman) There is a finite injury construction for M, b < 1 s.t. M separates [b, 1].
 - M exists for each promptly simple degree b.

It follows that the finite sets of ps degrees are unif'ly definable. The domain of M is a SW-set:

$$M = \{ x \le c \text{ minimal :}$$

 $q \le x \lor p \}.$

Question 6 Is there a nontrivial final segment of \mathcal{R}_T which forms an a-base?

Question 7 Is there a u.c.e. antichain which forms an a-base?

Definable antichains

Other ways to define antichains:

- $\{x \le c \text{ maximal}: q \not\le x \lor p\}$ (Harrington, Shelah; Harrington, Slaman)
- maximum *a*-cappable; only known to yield arbitrarily large finite a-chains (A-Sp, Shore, Hirschfeld) but works in all intervals
- $\{x \le c, d \text{ max}:$ $x \text{ not top of a diamond}\}$ (A-Sp, Soare; Lempp,N)

Initial segments

- Have to separate upward
- Problem: the constructions yield u.c.e. antichains.

Proposition 0.14 If (g_i) is a u.c.e. sequence of nonzero degrees and $c \neq 0$, then

$$\exists v < u \leq c \ \forall i [u \lor g_i = v \lor g_i].$$

Possible solutions:

- Find a more flexible construction of a definable a-chain
- ullet use different types of interaction of $m{M}$ and $[m{o}, m{c}]$
- forget it.

Approximations

Theorem 0.15 (N,?) There is

- $c \neq \mathbf{o}$
- $X \subseteq \hat{c}$
- $f: X \mapsto M$ 1-1

such that

$$\forall \mathbf{u} \le \mathbf{c}, \mathbf{u} \ne \mathbf{o} \exists \mathbf{x} \in X$$
$$[\mathbf{x} \ne \mathbf{o} \& \mathbf{x} \le \mathbf{u}]$$

Proof.

- Construct c.e. sets C, D
- Let X = degrees of c.e. set splits of C
- Construct M separating X from above. Domain of M is a SW set.

The advantage of set splits U: control size of U changes in reaction to C changes.

If, in addition, we make C nonbounding, we obtain a strictly descending definable sequence (\boldsymbol{b}_i) s.t.

$$\forall x \leq c [x \neq \mathbf{o} \Rightarrow \exists i \ b_i \leq x].$$

Part III: Ø-definability

Examples of interesting \emptyset -definable subsets of \mathcal{R}_T :

- Promptly simple degrees (A-Spies e.a.)
- L_n, H_{n-1} for $n \geq 2$ (N, Shore, Slaman)
- Contiguous degrees (Downey, Lempp)

Question 8 Is there a \emptyset -definable ideal except the cappable degrees and the noncuppable degrees?

Weaker, but still interesting: proper ideals generated by a definable set.

Theorem 0.16 The ideal generated by NB is properly contained in CAP.

Local structure of d'ble sets

Question 9 (Li-Ansheng) Is there a \emptyset -definable D and an interval a, b such that $a, b \notin D$ and $|[a, b] \cap D| = 1$?

Good candidates for D: contiguous; sup of a minimal pair. Note: probably solved by Cholak, Downey and Walk

 \emptyset -d'ty of a copy of \mathbb{N}

Can we define a copy $N(\mathbf{A})$ of $(\mathbb{N}, +, \times)$ in \mathbf{A} without params?

- Possible for \mathcal{R}_m [N95], \mathcal{R}_T [N,Shore, Slaman 96] and for \mathcal{R}_{wtt} [Nta].
- Fails for \mathcal{E}^* .
- Unknown for \mathcal{R}_Q , \mathcal{R}_{tt}