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Two questions motivated the present research

1. In work of Demuth in the 1980s, and then papers dating
from 2009 onwards, several “almost everywhere” theorems
from real analysis have been aligned with algorithmic
randomness notions.

Can we align these theorems with
axioms from reverse maths instead?

2. Many algorithmic randomness notions can be defined in
the weak setting of RCA0.

Can we prove the well known characterization and
separation theorems about them in RCA0?

The talk will give one sample answer to each question.
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PART I: Lebesgue’s theorem on
a.e. differentiability in reverse maths

The reverse mathematics of theorems of Jordan and Lebesgue,

JSL 2021, with Marcus Triplett and Keita Yokoyama
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Lebesgue’s theorem
We wish to determine the axiomatic strength over RCA0 of
the following classical result.

Theorem (Lebesgue, 1909)

Each nondecreasing function f : [0, 1]→ R is differentiable
almost everywhere.

▶ We will need an interpretation of “differentiable at x” that
works within RCA0.

▶ This will be “pseudo-differentiable” (Demuth), saying that
the slopes around x converge as one zooms in.

▶ In this way we avoid asserting that the value of the
derivative exists in the model (which is equivalent to ACA0)
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WWKL and MLR

▶ WWKL is “weak weak Königs lemma”, saying that each
binary tree of positive measure has an infinite path. It
was introduced by Simpson and Yu, 1990.

▶ In the setting of RCA0 a ML-test relative to X is given
by an X-computable sequence of trees ⟨Ti⟩i∈N such that
µ(Ti) ≥ 1− 2−i, where µ(Ti) denotes limn 2

−n|T=n
i |.

▶ It describes the usual ML-test
〈
2N − [Ti]

〉
i∈N

▶ MLR is the axiom saying that for each X there is a
ML-random relative to X

▶ Essentially by Kucera’s work, RCA0 ⊢ MLR↔ WWKL.
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A version of Lebesgue’s theorem equivalent to

WWKL

Theorem (N. Triplett Yokoyama, 2021 (2015, actually...) )

The following are equivalent over RCA0.

(A) WWKL

(B) every rationally presented nondecreasing function is
pseudo-differentiable almost everywhere

▶ We refer to an encoding of functions via its values on the
rationals, to be detailed shortly.

▶ We also need to say how to interpret “almost everywhere”
in the limited setting of RCA0.
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Define pseudo-differentiability

Let f :⊆ [0, 1]→ R with domain containing [0, 1]Q.

The slope of f at distinct reals a, b in its domain is

Sf (a, b) =
f(b)− f(a)

b− a
.

The h-derivative of f at x ∈ [0, 1], for a given h > 0, is the
set of reals defined by

Dhf(x) = {Sf (a, b) : a, b ∈ [0, 1]Q ∧ a ≤ x ≤ b ∧ 0 < b−a < h}.

f is pseudo-differentiable at x ∈ (0, 1) if

lim
h→0+

diam(Dhf(x)) = 0.
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Define rationally presented
A function g : [0, 1]Q → R \Q has a set Z ⊆ [0, 1]Q ×Q as a
rational presentation if

▶ g(p) < q ⇒ (p, q) ∈ Z

▶ g(p) > q ⇒ (p, q) /∈ Z.

Note that g = gZ where gZ(p) = inf{q ∈ Q : (p, q) ∈ Z}.

Fact (RCA0)

For each f : [0, 1]Q → R there is α ∈ R such that f + α has
a rational presentation.

Fact (RCA0)

For each continuous function h : [0, 1]→ R there is α ∈ R
such that h+ α (restricted to [0, 1]Q) has a rational
presentation.
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Explain “almost everywhere” in RCA0 (1)

▶ A set S ⊆ 2<ω is considered to be a code for the open
set [[S]].

▶ Let TS := {σ ∈ 2<ω : ∀n < |σ|(σ ↾ n /∈ S)}.
▶ This forms a tree, which we view as a code of the

complement of U .

▶ Define

µ(S) := 1− µ(T ) = 1− lim
n→∞

|{σ ∈ T : |σ = n}|
2n

.

▶ While the (downward) limit may fail to exist in a
model of RCA0, one can still express that µ(S) ≤ a or
µ(T ) ≥ a by Π0

1-formulas.
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Explain “almost everywhere” in RCA0 (2)

▶ We define the measure for an open set U ⊆ 2N as

µ̂(U) := sup{µ(S) | U = [[S]]}.
▶ Note µ̂(∅) = 0.

▶ π : 2N → [0, 1] defined by π(Z) =
∑

n∈Z 2−n.

▶ For an open set U ⊆ [0, 1] let µ̂(U) := µ̂(π−1(U)).

Definition (Pseudo-differentiable a.e.)

Let f :⊆ [0, 1]→ R with domain containing [0, 1]Q.
Say that f is pseudo-differentiable a.e. if:
µ̂(U) = 1 for any open set U ⊆ [0, 1] that contains every
point of pseudo-differentiability of f .

This implies pseudo-differentiable somewhere over RCA0.
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Theorem

The following are equivalent over RCA0.

(A) WWKL

(B) every rationally presented, nondecreasing function is
pseudo-differentiable a.e.

(B) →(A)

Assume ¬(A). We first construct an open set U ⊆ [0, 1] such
that µ̂(U) < 1 and [0, 1] \ U only contains rationals. Next

▶ let {qi}i∈N be an enumeration of [0, 1]Q

▶ define a function f : [0, 1]Q → R by f(p) =
∑

qi<p 2
−i

▶ some vertical shift of f has a rational presentation

▶ f is nondecreasing and not pseudo-differentiable at any
rational. So ¬(B).
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Theorem (again)

The following are equivalent over RCA0.

(A) WWKL

(B) every rationally presented nondecreasing function g is
pseudo-differentiable a.e.

(A) →(B)

▶ We adapt the proof of the result of Brattka/Miller/N.
2016: a nondecreasing computable function is differentiable
at each computably random.

▶ They relied on the infinite pigeonhole principle RT1
<∞ in

one important place, which is equivalent to BΣ2; we
needed to circumvent that by changing the argument.
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Functions of bounded variation
A function f : [a, b]→ R has bounded variation (BV) if the
variation V (f) is finite. Here

V (f) = sup
∑n−1

i=0 |f(ti + 1)− f(ti)|
where the sup is taken over all partitions
a = t0 ≤ t1 ≤ . . . ≤ tn = b.

Let f : [0, 1]→ R be a BV function. Jordan 1870s proved
that f = g0 − g1 for some gi that are nondecreasing. Here
g0(x) is simply the variation of f restricted to [0, x].

In the same paper (NTY 2021) we prove that over RCA0, the

version of Jordan’s Theorem for continuous functions is ↔ ACA

(also Kreutzer for “←”), and the version for r.p. functions on

[0, 1]Q is ↔WKL. This required modelling constructions of

Greenberg, Miller, N. (IJM 2021) in RCA0.
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Theorem

The following are equivalent over RCA0.

(A) WWKL

(C) every continuous BV function f is
pseudo-differentiable a.e.

(D) every continuous BV function g is pseudo-differentiable
somewhere.

(D) →(A)

▶ If WWKL fails, then there is a tree T ⊆ 2<N such that
[T ] = ∅ but µ(T ) ≥ δ for some δ > 0.

▶ Use this T as a base for a construction of a continuous
BV function g that is a sum of finer and finer sawtooth
functions.

▶ We can even make g absolutely continuous, and
effectively uniformly continuous.
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Theorem

The following are equivalent over RCA0.

(A) WWKL

(C) every continuous BV function f is pseudo-diff’ble a.e.

(A)→ (C)

▶ Take a model (M,S) of WWKL0. Can assume f is r.p.

▶ Take an open U such that µ̂(U) < 1. We need to find
z ̸∈ U such that f is pseudo-differentiable at z.

▶ There is a model (M, Ŝ) of WKL0 such that S ⊆ Ŝ,

and for each A ∈ Ŝ there is Z ∈ S in MLR in A.
(Simpson and Yokoyama).

▶ In (M, Ŝ) we have f = g0 − g1 for nondecreasing r.p.
gi. There is Z ∈ S with Z MLR in g0 ⊕ g1 ⊕ U .

▶ We may assume Z ̸∈ U by taking tails a la Kucera.

▶ gi are pseudo-diff’ble at real z corresponding to Z.
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PART II:

2-randomness and incompressibility

Randomness notions and reverse mathematics,

JSL 2020, with Paul Shafer (who also contributed some

presentation material)
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Formalize 2-randomness in Z without using Z ′

▶ A code for a Σ0,Z
2 class W is a sequence of trees

(Tn : n ∈ N) ≤T Z such that T0 ⊆ T1 ⊆ T2 ⊆ · · · .
▶ Define X ∈ W if ∃n (X ∈ [Tn]).

▶ For q ∈ Q, define µ(W) ≤ q if ∀n ([Tn] ≤ q).

▶ A uniform sequence of Σ0,Z
2 classes (Wn)n∈N is coded

by a double-sequence of trees (Tn,i)n,i∈N ≤T Z.

▶ A 2-test relative to Z is a uniform sequence of Σ0,Z
2

classes (Wn)n∈N such that ∀n (µ(Wn) ≤ 2−n).

▶ X is 2-random relative to Z if X /∈
⋂

n∈NWn for every
2-test relative to Z.

2-RAN is the statement “for each Z there is X that is
2-random relative to Z” (Avigad et al., 2012).
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The strength of 2-RAN
2-RAN+BΣ2 is equivalent 2-WWKL, as well as a version of the

dominated convergence theorem for Borel measures on compact

Polish spaces (Avigad, Dean, and Rute, APAL 2012).

Let CΣ2 say that the range of a Σ2 injection is unbounded;
this is between BΣ2 and IΣ1.

The first-order consequences of RCA0 + 2-RAN are strictly
between those of RCA0 +BΣ2 and RCA0:

▶ RCA0 + 2-RAN ⊢ CΣ2 (Conidis and Slaman, JSL 2013).

▶ RCA0 + 2-RAN ̸⊢ BΣ2 (Slaman, unpubl.).

▶ There’s now a better upper bound on the first-order
consequences of RCA0 + 2-RAN (Belanger, Chong,
Wang, Wong, and Yang, TAMS 2021).
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Plain complexity and incompressibility

Let C(σ) denote the plain Kolmogorov complexity of a
string σ ∈ 2<ω.

▶ Fix a universal oracle Turing machine U (computing a
partial function 2<ω → 2<ω for each oracle).

▶ Define C(σ) to be |τ | for a shortest τ such that
U(τ) = σ.

▶ RCA0 can prove that this exists (because any
nonempty Σ0

1 set has a least element).

Definition

X is infinitely often CZ-incompressible if

∃b ∃∞m CZ(X ↾ m) ≥ m− b.
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Characterizing 2-randomness in terms of

incompressibility

Theorem (N., Stephan, and Terwijn 2005; J. Miller 2004
independently for the harder implication ⇒)

X is 2-random relative to Z ⇔
X is infinitely often CZ-incompressible.

We will show that this is provable in RCA0.

Problem: The original proofs think of 2-random in Z as
ML-random in Z ′:

▶ J. Miller’s proof uses prefix-free complexity relative
to Z ′.

▶ Nies, Stephan, and Terwijn’s proof uses the low basis
theorem and MLR-relative-to-Z ′.

20/27



Nonetheless...

Theorem (N. and Shafer, 2020)

RCA0 ⊢ ∀Z ∀X [X is 2-MLR relative to Z ↔
X is infinitely often CZ-incompressible]

▶ This is nice because it is straightforward to formalize
the right hand side in second-order arithmetic via a Σ0

4

formula.

▶ Study the first-order consequences of 2-RAN via its
equivalent version in terms of i.o. incompressibility?
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The proof of ←

Theorem (N. and Shafer, 2020)

RCA0 ⊢ ∀Z ∀X [X is 2-MLR relative to Z ↔
X is infinitely often CZ-incompressible]

▶ If X fails a 2-test relative Z, we need to show the i.o.
compressibility.

▶ The original proof uses prefix free descriptive
complexity K relative to ∅′. We need to avoid this.

▶ Instead, we follow an alternative proof given in
Bienvenu et al., 2010.

▶ We formulate a parameterized version of the machine
existence theorem for plain machines within RCA0, and
use it to get the compressing machine from the 2-test.
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The proof of →

Theorem (N. and Shafer, 2020)

RCA0 ⊢ ∀Z ∀X [X is 2-MLR relative to Z ↔
X is infinitely often CZ-incompressible]

Main problem: Avoid using BΣ2. It is often applied in
arguments about computations relative to Z ′.
Secondary consideration: Give a direct proof in terms of
2-tests.

As usual prove the contraposition:

X a.e. CZ-compressible → X not 2-random in Z.
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a.e. compressible → not 2-random,

according to Bauwens

▶ Let Ub,i = {Y : C(Y ↾ i) < i− b} and note that
µ(Ub,i) ≤ 2−b by counting descriptions.

▶ Suppose that for each b, the initial segment X ↾ i is
eventually compressible by b. That is,

X ∈
⋃

N∈N
⋂

i≥N Ub,i.

▶ Bauwens used a general covering lemma of Conidis
(2012) which now provides a Σ0

1(∅′) class Vb such that
µ(Vb) ≤ 2−b+1 and

⋃
N∈N

⋂
i≥N Ub,i ⊆ Vb.

▶ By the uniformity of Conidis’ lemma, we have a
ML(∅′) test (Vb+1)b∈N capturing X.

It suffices to prove a version of Conidis’ lemma in RCA0

where the covering sets are ΣZ
2 , i.e. encoded by sequences

of trees as defined above.
24/27



Conidis’ lemma in RCA0

Lemma (RCA0; N. and Shafer)

Let b ∈ N and let (Un : n ∈ N) be uniformly Z-r.e. sets such
that ∀n (µ([[Un]]) ≤ 2−b). Uniformly in b and this sequence,
there is a Σ0,Z

2 class V such that

µ(V) ≤ 2−b+1 and ∀N
⋂
i≥N

[[Ui]] ⊆ V .

The basic idea is:

replace
⋃
N∈N

⋂
i≥N

[[Ui]] with V =
⋃
N∈N

bN⋂
i=N

[[Ui]]

for an appropriate sequence b0 < b1 < b2 < · · · .
Z ′ can compute the bi’s, but we want to avoid using Z ′.
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Further alleyways to explore

1. Formulate and prove other equivalences from
randomness theory in RCA0. For instance, try (without
asserting that Ω exists) to show

Z is 2-random ⇔ Z is ML-random and low for Ω.

2. In RCA0 show directly that

∀Z∃X [X is infinitely often CZ-incompressible]
implies CΣ2.
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