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Computability theory
▶ a subfield of mathematical logic
▶ founded by Gödel, Turing, Church, Kleene in the 1930s
▶ studies (relative) computability in principle, without

considering resource bounds.

Fundamental notions and facts of computability theory

▶ Computable set of natural numbers (formalized via Turing

machines)

▶ computable function on the natural numbers

▶ recursively enumerable (r.e.) set

▶ preorderings such as ≤m to compare the complexity of sets

▶ The halting problem K (goes a given TM halt?) is

undecidable.

▶ In fact it is ≤m-complete for the class of r.e. sets. 2 / 1



The spectral gap problem undecidable

Cubitt et al. 2015 (Nature); Bausch et al. 2020
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It is undecidable whether there is a spectral gap for spin square

lattices.

▶ Announced in 2015 by Cubitt, Perez Garcia and Wolf

(Undecidability of the Spectral Gap, Nature 528, 2015, 6

pages)

▶ The full paper has only appeared in 2022 in the top journal

Forum Mathematics Pi, 102 pages.

It is undecidable whether there is a spectral gap for abstract spin

chains. Proved by Bausch, Cubitt, Lucia and Perez Garcia (Phys.

Review X.10, 2020, 20 pages), building on many of the results in

the long paper posted in 2015.
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Spin chains and spin lattices
Spin chains were introduced to understand magnetism. A classical

spin chain consists of N dipoles arranged linearly:

↑ ↓ ↓ ↑ . . . ↑︸ ︷︷ ︸
N

Higher-dimensional arrangements of dipoles have also been studied,

in particular square lattices.
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Ising model in 1D: Hamiltonian

The 1D Ising model is due to Lenz (1920), and was “solved” by his

student Ising in his thesis (1925).

The positions i = 1, . . . , N in a spin chain are called sites.

The energy of a state of the system is given by a Hamiltonian.

For the 1D Ising model with N sites, the Hamiltonian is

HN = −1
2

∑N
k=1[sσk + Jσkσk+1]

▶ σi = 1 for spin ↑ at site i, and σi = −1 for spin ↓ at site i

▶ periodic boundary conditions: σN+1 = σ1

▶ s is the strength of the external magnetic field

▶ J is the interaction strength between neighbours.
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Quantum setting: Heisenberg (1928) model
▶ n-chain, each site contains a spin 1/2 particle (e.g., electron).

▶ state is unit vector in (C2)⊗n

▶ Spins in x, y, z directions, corresponding to observables given

by the Pauli matrices σx, σy, σz.

▶ Let I denote the identity 2× 2 matrix. For α = x, y, z let

σα
k = I⊗(k−1) ⊗ σα ⊗ I⊗(n−k) ∈ L((C2)⊗n).

The Hamiltonian is now a Hermitian operator on (C2)⊗n:

H = −1

2

n∑
k=1

[sσz
k +

∑
α=x,y,z

Jασ
α
kσ

α
k+1].

The Jα ∈ R are called coupling constants.
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Abstract spin chains

For d ≥ 2 (sometimes suppressed), a qudit is a unit vector in

d-dimensional Hilbert space Cd.

▶ An abstract spin chain is a system of n qudits,

arranged linearly. The positions are referred to as sites.

▶ The state of such a system is given by a vector in the

dn-dimensional Hilbert space (Cd)⊗n.

One also considers higher dimensional arrangements of qudits, e.g.

square lattices.
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Local Hamiltonians
Let Mn(C) denote the algebra of n× n complex matrices.

As in the case of the Ising and Heisenberg chains, the behaviour of

an abstract spin chain is described by local Hamiltonians.

Let h(1) ∈Md(C) and h(2) ∈Md2(C) be Hermitian matrices, where

▶ h(1) describes the one-site “interactions”, and

▶ h(2) describes the nearest-neighbour interactions.

The global Hamiltonian of a spin chain of n qudits is given by

shifting and adding up these interactions as the indices vary:

Hn =
n∑

k=1

h
(1)
k +

n−1∑
k=1

h
(2)
k,k+1.
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Asymptotic spectral gap

The spectral gap of a nontrivial Hamiltonian H acting on a

finite-dimensional Hilbert space is ∆(H) = γ1(H)− γ0(H), the

difference between its least two eigenvalues.

When writing a sequence ⟨Hn⟩n∈N we will assume that Hn is a

Hamiltonian on the dn-dimensional Hilbert space.

The asymptotic spectral gap of such a sequence can be defined as

∆⟨Hn⟩ = lim infn ∆(Hn).

(The ground energy γ0(Hn) might increase with n.)
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Gapped and gapless sequences of Hamiltonians

Intuitively, the system is gapped if ∆⟨Hn⟩ is positive, and gapless

otherwise. Cubitt et al. (2015) and then Bausch et al. (2020) use

definitions making both the gapped and the gapless case more restricted,

so that some sequences have neither property.

⟨Hn⟩ is gapped if ∆⟨Hn⟩ = lim infn ∆(Hn) is positive; moreover, for

sufficiently large n, the least eigenvalue λ0(Hn) is non-degenerate.

Physically the additional condition means that there is a unique

ground state of the system (up to phase).

⟨Hn⟩ is gapless if there is some c > 0 such that for each ε > 0, for

all sufficiently large n, each point in the interval

[λ0(Hn), λ0(Hn) + c] is ε-close to some eigenvalue of Hn.
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(a) ⟨Hn⟩ is gapped if ∆⟨Hn⟩ = lim infn ∆(Hn) is positive and for

sufficiently large n, the least eigenvalue λ0(Hn) is non-degenerate.

(b) ⟨Hn⟩ is gapless if there is some c > 0 such that for each ε > 0, for all

sufficiently large n, each point in the interval [λ0(Hn), λ0(Hn) + c] is

ε-close to some eigenvalue of Hn.

From Cubitt et al., Nature 2015
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1D case due to Bausch et al.
Even in the 1-dimensional case, it has now been shown to be

undecidable whether there is a spectral gap by Bausch, Cubitt,

Lucia and Perez Garcia 2020. Given a Turing machine M , they

determine a (fairly large) dimension d. Then, given an input η ∈ N
to M they compute local Hamiltonians h(1) ∈Md(C) and
h(2) ∈Md2(C) as above such that

▶ if M(η) halts then the sequence ⟨Hn(η)⟩ (defined as above by

shifting the local interactions) is gapless,

▶ otherwise the sequence ⟨Hn(η)⟩ is gapped.
They fully rely on the methods of Cubitt et al. (2015) who showed that

the spectral gap problem is undecidable in the 2D case, using square

lattices of qudits. The definitions there are similar, except that there are

two types of nearest-neighbour interactions, for rows and for columns.
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Remarks

1. In the 2D case, the relationship between machines and

Hamiltonians is the other way round: if M(η) halts then the

sequence is gapped, else gapless.

2. The entries of the Hamiltonians are easy “complex” numbers:

▶ Let R be the subring of C generated by

Q ∪ {
√
2} ∪ {exp(2πiθ) : θ ∈ Q}.

▶ The entries of the local Hamiltonians, and hence of the Hn(η),

are all in R.

▶ So the undecidability of the spectral gap is not an artefact of

the well-known fact that equality of two computable reals is

undecidable.
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Elements of the proofs in 2D and 1D

In 2 dimensions:

▶ quantum Turing machines (Bernstein and Vazirani)

▶ history state Hamiltonian T−1/2
∑T−1

t=0 |t⟩|ψt⟩ due to

Feynman/Kitaev

▶ Gottesman and Irani (FOCS 2013): The ground state encodes

the whole computation of a quantum TM up to stage T ;

here the quantum TM is not related to M ; rather, it is related

to the phase estimation algorithm (e.g. Nielsen/Chuang)

▶ Quasi-periodic Wang tiling due to Robinson 1971.

In 1 dimension:

the Wang tiling, for which the second spatial dimension in the

lattice was needed, is replaced by a “marker Hamiltonian”.
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Infinite spin chains, and

the quantum SMB theorem
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Von Neumann entropy of a density matrix

▶ Mn is the algebra of 2n × 2n complex matrices. M∞ is the

CAR algebra, a C∗ algebra that is some kind of limit of the

Mn’s.

▶ The von Neumann entropy of a density matrix S ∈Mn is

H(S) = −tr(S log2 S).

▶ This is the usual entropy of the distribution that S induces on

its eigenvectors.

▶ Its maximum value is n, when the distribution is uniform.
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Effective SMB theorem
▶ A 1950s theorem due to Shannon, McMillan and Breiman says that

the (global) entropy of an ergodic measure µ on {0, 1}N equals the

empirical entropy − limn
1
n log2 µ[Z ↾ n] for µ-almost every bit

sequence Z.

▶ If µ is computable, and Z is ML-random w.r.t. µ, then its

empirical entropy determines the entropy of µ (Hochman, 2009).

▶ Bjelakovic, Krueger, Siegmund and Szkola (2004) proved a version

of the Shannon-McMillan theorem for ergodic quantum lattice

systems. Since there is no notion of null set of states, they use an

ad hoc, finitary definition of “for almost”.

▶ We present a conjecture that attempts to remedy this, using that

quantum Martin-Loef-tests are a quantum analog of effective null

sets of bit sequences.
18 / 1



Effective quantum SMB theorem?
▶ A state µ on M∞ is called ergodic if it is an extreme point on

the convex set of shift invariant states.

▶ h(µ) = limn
1
n
H(µn) is the von Neumann entropy of µ.

Conjecture (with Marco Tomamichel, Nies Logic Blogs 2017, 2020)

Suppose that for some D > 0, for each n, the diagonal entries of µn

are bounded below by 2−nD. Let ρ be a state that is quantum

Martin-Loef random with respect to µ. Then

h(µ) = − lim
1

n
tr(ρn log2 µn).

This is known when µ is a diagonal state. See Logic Blog 2020

Prop 9.3 (arxiv.org/abs/2101.09508).
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