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Computability theory

I a subfield of mathematical logic

I founded by Gödel, Turing, Church, Kleene in the 1930s

I studies (relative) computability in principle, without

considering resource bounds.

Fundamental notions of computability theory

I Computable set, computable function on the natural numbers

I recursively enumerable (r.e.) set

I reduction procedures such as ≤m and ≤T
I The halting problem K is undecidable.

I In fact it is ≤m-complete for the class of r.e. sets.
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The spectral gap problem undecidable

Cubitt et al. 2015; Bausch et al. 2020
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Cubitt, Perez-Garcia and Wolf (Undecidability of the Spectral Gap,

Nature 528, 2015, 6 pages) showed that whether there is a spectral

gap is undecidable for spin square lattices.

The full proof has last been updated on arXiv in 2020

(1502.04573v4), and now stands at 126 pages.

Later on, Bausch, Cubitt, Lucia and Perez-Garcia (Phys. Review

X.10, 2020, 20 pages) showed that the existence of a spectral gap is

undecidable for abstract spin chains.
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Spin chains and spin lattices
Spin chains were introduced to understand magnetism. A classical

spin chain consists of N dipoles arranged linearly:

↑ ↓ ↓ ↑ . . . ↑︸ ︷︷ ︸
N

Higher-dimensional arrangements of dipoles have are also studied,

in particular square lattices.
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Ising model in 1D: Hamiltonian

The 1D Ising model is due to Lenz (1920), and was “solved” by his

student Ising in his thesis (1925).

The positions i = 1, . . . , N in a spin chain are called sites.

The energy of a state of the system is given by a Hamiltonian.

For the 1D Ising model with N sites, the Hamiltonian is

HN = −J
∑N−1

i=1 σiσi+1 − h
∑N

j=1 σj

I J is the interaction strength between neighbours,

I h is the strength of the external magnetic field,

I σi = 1 for spin ↑ at site i, and σi = −1 for spin ↓ at site i.
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Quantum setting: Heisenberg (1928) model

I n-chain, each site contains a spin 1/2 particle (e.g., electron).

I state is unit vector in (C2)⊗n

I Spins in x, y, z directions, corresponding to observables given

by the Pauli matrices σx, σy, σz.

I Write ~σ = (σx, σy, σz) and ~σk = I2⊗ . . .⊗ I2⊗~σ⊗ I2⊗ . . .⊗ I2,
where the ~σ is in position k.

The Hamiltonian is now a Hermitian operator on (C2)⊗n:

H =
∑n−1

i=1 h
(2)
i,i+1 where h

(2)
i,i+1 = J

4
(~σi · ~σi+1 − I⊗n);

J ∈ R is a coupling constant, and the local Hamiltonians h
(2)
i,i+1

describe the interaction of neighbouring sites.
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Abstract spin chains

For d ≥ 2 (sometimes suppressed), a qudit is a unit vector in

d-dimensional Hilbert space Cd.

I An abstract spin chain is a system of n qudits,

arranged linearly. The positions are referred to as sites.

I The state of such a system is given by a vector in the

dn-dimensional Hilbert space (Cd)⊗n.

One also considers higher dimensional arrangements of qudits, e.g.

square lattices.
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Local Hamiltonians
Let Mn(C) denote the algebra of n× n complex matrices.

As in the case of the Ising and Heisenberg chains, the behaviour of

an abstract spin chain is described by local Hamiltonians.

Let h(1) ∈Md(C) and h(2) ∈Md2(C) be Hermitian matrices, where

I h(1) describes the one-site “interactions”, and

I h(2) describes the nearest-neighbour interactions.

The global Hamiltonian of a spin chain of n qudits is given by

shifting and adding up these interactions as the indices vary:

Hn =
n∑
i=1

h
(1)
i +

n−1∑
i=1

h
(2)
i,i+1.
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Asymptotic spectral gap

The spectral gap of a nontrivial Hamiltonian H acting on a

finite-dimensional Hilbert space is ∆(H) = γ1(H)− γ0(H), the

difference between its least two eigenvalues.

When writing a sequence 〈Hn〉n∈N we will assume that Hn is a

Hamiltonian on the dn-dimensional Hilbert space.

The asymptotic spectral gap of such a sequence can be defined as

∆〈Hn〉 = lim infn ∆(Hn).

(Note that the ground energy γ0(Hn) might increase with n.)
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Gapped and gapless sequences of Hamiltonians

Intuitively, the system is gapped if ∆〈Hn〉 is positive, and gapless

otherwise. Cubitt et al. (2015) and then Bausch et al. (2020) use

definitions making both the gapped and the gapless case more restricted,

so that some sequences have neither property.

〈Hn〉 is gapped if ∆〈Hn〉 = lim infn ∆(Hn) is positive; moreover, for

sufficiently large n, the least eigenvalue λ0(Hn) is non-degenerate.

Physically the additional condition means that there is a unique

ground state of the system (up to phase).

〈Hn〉 is gapless if there is some c > 0 such that for each ε > 0, for

all sufficiently large n, each point in the interval

[λ0(Hn), λ0(Hn) + c] is ε-close to some eigenvalue of Hn.
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(a) 〈Hn〉 is gapped if ∆〈Hn〉 = lim infn ∆(Hn) is positive and for

sufficiently large n, the least eigenvalue λ0(Hn) is non-degenerate.

(b) 〈Hn〉 is gapless if there is some c > 0 such that for each ε > 0, for all

sufficiently large n, each point in the interval [λ0(Hn), λ0(Hn) + c] is

ε-close to some eigenvalue of Hn.

From Cubitt et al., Nature 2015
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1D case due to Bausch et al.

Even in the 1-dimensional case, whether there is a spectral gap was

shown to be undecidable (Bausch et al., 2020). Given a Turing

machine M , they determine a (fairly large) dimension d. Then,

given an input η ∈ N to M they compute local Hamiltonians

h(1) ∈Md(C) and h(2) ∈Md2(C) as above such that

I if M(η) halts then the sequence 〈Hn(η)〉 (defined as above by

shifting the local interactions) is gapless,

I otherwise the sequence 〈Hn(η)〉 is gapped.

They rely on the methods of Cubitt et al. (2015) who showed that the

spectral gap problem is undecidable in the 2D case, using square lattices

of qudits. The definitions there are similar, except that there are two

types of nearest-neighbour interactions, for rows and for columns.
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Remarks

1. In the 2D case, the relationship between machines and

Hamiltonians is the other way round: if M(η) halts then the

sequence is gapped, else gapless.

2. The entries of the Hamiltonians are easy “complex” numbers:

I Let R be the subring of C generated by

Q ∪ {
√

2} ∪ {exp(2πiθ) : θ ∈ Q}.
I The entries of the local Hamiltonians, and hence of the Hn(η),

are all in R.

I So the undecidability of the spectral gap is not an artefact of

the well-known fact that equality of two computable reals is

undecidable.
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Elements of the proofs in 2D and 1D

In 2 dimensions:

I quantum Turing machines (Bernstein and Vazirani)

I history state Hamiltonian T−1/2
∑T−1

t=0 |t〉|ψt〉 due to Feynman

I Gottesman and Irani (FOCS 2013): The ground state encodes

the whole computation of a QTM up to stage T .

I The quantum TM is not related to M ; rather, it is related to

the phase estimation algorithm (e.g. Nielsen/Chuang)

I Quasi-periodic Wang tiling due to Robinson 1971.

In 1 dimension:

the Wang tiling, for which the second spatial dimension in the

lattice was needed, is replaced by a “marker Hamiltonian”.
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Defining quantum Martin-Löf randomness

for infinite “sequences” of qubits

I Nies and Scholz, Martin-Löf random quantum states, JMP

2019, https://arxiv.org/abs/1709.08422
I Tejas Bhojraj 2021 thesis at UW Madison under Joe Miller’s

and my supervision, arxiv 2106.14280

16 / 1



Some terminology and notation
I The state |ψ〉 of a system of n qubits is a linear superposition

of vectors |a1 . . . an〉 where ai ∈ {0, 1}. E.g., the EPR state is
1√
2
|00〉+ 1√

2
|11〉.

I A mixed state has the form
∑2n

i=1 αi|ψi〉〈ψi| where 0 ≤ αi ≤ 1

and
∑

i αi = 1. It corresponds to a density matrix.
I Md denotes the C∗-algebra of d× d matrices over C.
I The trace of A ∈M2d is tr(A) =

∑
iAii. Also τ(A) = tr(A)/d.

I Partial trace operation Tn : M2n+1 →M2n . For A a density

matrix, think of Tn(A) as A with the last qubit erased.
I There is a natural embedding M2n →M2n+1 via

A→ A⊗ I2 =

(
A 0

0 A

)
.

I The C∗-algebra M∞ is the operator norm completion of⋃
nM2n .
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States on M∞ are sequences of density operators

S(M∞) denotes the space of sequences (ρn)n∈N of density matrices

in M2n that are coherent in that Tn(ρn+1) = ρn for each n.

I This is the set of states ρ (i.e., positive linear functionals of

norm 1) on the C∗-algebra M∞, via

ρ(A) = tr(ρnA) for A ∈M2n .

I A classical bit sequence Z turns into (ρn)n∈N where the bit

matrix B = ρn ∈M2n satisfies bσ,τ = 1⇐⇒ σ = τ = Z � n.

I If all the ρn are diagonal matrices, we describe a measure on

Cantor space {0, 1}N.
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Martin-Löf’s test notion for bit sequences = reals

I A Martin-Löf test is an effective

sequence (Um)m∈N of open sets

in [0, 1] such that the Lebesgue

measure of Um is at most 2−m.

I Intuitively, Um is an attempt to

approximate a bit sequence (or

real) Z with accuracy 2−m.

I Z passes the test if

Z is not in all Um.

I Z is called Martin-Löf random if

it passes all ML-tests.

0 1

...

U0
U1
U2
U3
U4
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Projections and measurements of states

I A projection in M2n is a Hermitian matrix p such that p2 = p.

I A special projection in M2n is a projection with matrix entries

in Calg, the field of algebraic complex numbers.

The expression tr(η p), where η is a density matrix in M2n and p a

projection in M2n , is the expected squared length of projecting η

onto the range of p.

We can view ρ(pn) as a measurement of state ρ ∈ S(M∞) with the

observable pn. So ρ(pn) = tr(ρnpn) is the probability that ρ is “in”

pn. In the classical case this is simply 1 (in) or 0 (out).
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Quantum ML randomness (N. and Scholz, 2019)

I A test component G is given by a computable ascending

sequence of special projections 〈pn〉n∈N where pn ∈M2n .

I For ρ ∈ S(M∞) let ρ(G) = supn ρ(pn).

I In particular, τ(G) = supn 2−ntr(pn).

I A quantum Martin-Löf test is an effective sequence 〈Gr〉r∈N of

test components such that τ(Gr) ≤ 2−r for each r.

I ρ passes the test if infr ρ(Gr) = 0.

I ρ is quantum ML random if it passes each quantum ML test.

Think of the 〈Gr〉r∈N as forming a sequence of measurements, with

asymptotic value infr ρ(Gr) at ρ. If all the pieces are classical we

re-obtain the usual definition of Martin-Löf tests.
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Tracial state is random according to this definition

I A probability measure on Cantor space can be seen as a state

of the form ρ = (ρn)n∈N where all the ρn are diagonal matrices.

I The tracial state τ corresponds to the usual Lebesgue measure.

This is the case where each diagonal entry of τn is 2−n.

I This state is random according to our definition, because

τ(Gm)→ 0 for each qML test (Gm).

I This is compatible with our intuition because each τn is a fully

mixed state, so has no structure.
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Facts about quantum Martin-Löf randomness

One of Martin-Löf’s results was the construction of a universal test

for bit sequences.

Proposition

There is a universal quantum ML-test.

If one wants to test classical bit sequences, the additional power of

quantum ML-tests doesn’t help.

Theorem

Suppose Z ∈ {0, 1}N. Then Z is ML-random ⇐⇒
Z viewed as an element of S(M2∞) is qML-random.
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Quantum Solovay test
Definition (Quantum Solovay randomness)

I A quantum Solovay test is an effective sequence 〈Gr〉r∈N of

quantum Σ0
1 sets such that

∑
r τ(Gr) <∞.

I We say that the test is restricted if the Gr are given as

projections; that is, from r we can compute nr and a matrix of

algebraic numbers in M2nr describing Gr.

I We say that ρ is [weakly] quantum Solovay-random if

limr ρ(Gr) = 0 for each [restricted] quantum Solovay test

〈Gr〉r∈N.

Theorem (Bhojraj, 2021)

Quantum Martin-Löf random ⇐⇒ quantum Solovay random.

The Solovay definition implies that the set of qML states is convex.
24 / 1



Descriptive QK complexity and weak Solovay rd.
Levin-Schnorr theorem: an infinite bit sequence is ML-random iff

each of its initial segment is incompressible in the sense of prefix

free Kolmogorov complexity K. We seek analogs for infinite qubit

sequences. The first was in Nies/Scholz 2019. This one is new:

Definition (Bhojraj, 2021)

Let α be a density matrix in M2n . For ε > 0, define

QKε(α) = min{K(p) + log |p| :
p ∈M2n is special projection ∧ tr(α p) > ε}.

Here |p| is the dimension of the range of p.

Theorem (Bhojraj, 2021)

A state ρ = 〈ρn〉 passes all restricted Solovay tests ⇐⇒
for each ε, limnQK

ε(ρn)− n =∞.
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Initial segment characterizations

Bhojraj showed quantum Schnorr randomness is equivalent to

incompressibility w.r.t. a restricted version of QK where the

decompression is carried out by computable measure machines.

Diagram of some of the results in his JMP and TCS papers:

q-ML rd. ks
JMP

+3

��

q-Sol. rd.

��
QK-incompr.

��

ks
TCS
+3 q-weak Sol. rd.

q-Schnorr rd. ks
TCS

+3 QKC-incompr.
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An initial segment condition for randomness,

based on entropy
I The von Neumann entropy of a density matrix S ∈Mn is

H(S) = −tr(S log2 S).

I This is the usual entropy of the distribution that S induces on

its eigenvectors.

I Its maximum value is n, when the distribution is uniform.

Theorem (Bhojraj, Thesis, UW Madison 2021, Thm. 5.4)

Let ρ be a state on M∞. Suppose there is a constant b ∈ N such

that H(ρn) ≥ n− b for infinitely many n.

Then ρ is quantum ML-random.

For instance, this applies to the tracial state τ ; but Bhojraj

constructs further examples. The converse fails.
27 / 1



Effective SMB theorem
I A 1950s theorem due to Shannon, McMillan and Breiman says that

the (global) entropy of an ergodic measure µ on {0, 1}N equals the

empirical entropy − limn
1
n log2 µ[Z � n] for µ-almost every bit

sequence Z.

I If µ is computable, and Z is ML-random w.r.t. µ, then its

empirical entropy determines the entropy of µ (Hochman, 2009).

I Bjelakovic, Krueger, Siegmund and Szkola (2004) proved a version

of the Shannon-McMillan theorem for ergodic quantum lattice

systems. Since there is no notion of null set of states, they use an

ad hoc, finitary definition of “for almost”.

I We present a conjecture that attempts to remedy this, using that

quantum ML-tests are a quantum analog of effective null sets of bit

sequences.
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Effective quantum SMB theorem?
I A state µ on M∞ is called ergodic if it is an extreme point on

the convex set of shift invariant states.
I h(µ) = limn

1
n
H(µn) is the von Neumann entropy of µ.

I Define qML-randomness relative µ as before, but with the

condition µ(Gr) ≤ 2−r when defining tests.

Conjecture (with Marco Tomamichel, Nies Logic Blogs 2017, 2020)

Suppose that for some D > 0, for each n, the diagonal entries of µn
are bounded below by 2−nD. Let ρ be a state that is quantum

ML-random with respect to µ. Then

h(µ) = − lim
1

n
tr(ρn log2 µn).

This is known when µ is a diagonal state. See Logic Blog 2020

Prop 9.3 (arxiv.org/abs/2101.09508).
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Conclusions
I We have seen that notions from computability theory and

algorithmic randomness interact meaningfully with the study of

finite and infinite abstract spin chains.

I We’ve discussed two papers showing that the existence of a

spectral gap is undecidable.

I We have defined infinite qubit sequences, and extended Martin-Löf

randomness for classical bit sequences to the quantum setting.

I To find connections between the two approaches to spin chains, one

would have to first formulate a version of the Cubitt et al. results

for infinite qudit chains.

I Hamiltonians have been studied in this case, but they are usually

not bounded, and only defined on a dense Hilbert subspace. See

papers and books by Nachtergaele, Naaijkens, Sims, also Bjelakovic

et al.
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