
Computability for totally disconnected locally

compact groups

André Nies

Joint work with Alexander Melnikov

APM, Russia, November, 2021

1 / 34

What is

a totally disconnected locally compact group?

2 / 34

T.d.l.c. groups

All topological groups will be separable.

Note that each open subgroup U of a topological group G is

also closed. If G is compact then U has finite index in G.

A topological space is called totally disconnected if the clopen

subsets form a basis.

Van Dantzig’s 1936 theorem says that if a totally disconnected

group G is locally compact, then the identity of G has a

neighbourhood basis consisting of compact open subgroups.

One can use this to show that each t.d.l.c. group is

topologically isomorphic to a closed subgroup of the

symmetric group Sym(N): let G act by left translation on the

compact open cosets.

3 / 34

T.d.l.c. groups in recent times

Some research is analogous to the study of Lie groups, but in

the disconnected setting.

E.g. work on p-adic Lie groups: group theoretic

characterization by Lazard (1965).

T.d.l.c. groups G are frequently studied since the 1990s, e.g.

by George Willis and his co-workers.

There are important native notions, such as the scale function

sG(x) = {min |V : x�1V x \ V | : V is compact open subgroup}.

4 / 34

Examples of t.d.l.c. groups
(Qp,+) for a prime p

This is the additive group of the p-adic numbers.

The proper open subgroups are compact, and are all of the form

prZp for some r 2 Z.

Aut(Ld) for d � 3.

An undirected tree is a connected graph with no cycles.

G = Aut(Ld) is the group of automorphism of the undirected tree

Ld where each vertex has degree d (Tits, 1970).

Each proper open subgroup of G is compact.

Each compact subgroup of G is contained in the stabilizer of a

vertex, or in the stabilizer of an edge. 5 / 34

Generalizing the computability notion for discrete,

and for profinite groups

I The class of t.d.l.c groups contains both the profinite, and the

countable discrete groups.

I For each of those subclasses, a generally accepted notion of

computability exists.

I Can we generalize both of them simultaneously to the t.d.l.c.

groups?

6 / 34

How to define computability for uncountable

structures?

Broadly speaking, one uses a computable, countable “structure” of

approximations to elements. Need to say what it means to

approximate an element.

(R,+,⇥) is computable as the completion of (Q,+,⇥) w.r.t.
the Euclidean metric.

(Qp,+,⇥) is computable, as the completion of (Q,+,⇥) w.r.t.
the p-adic metric.

7 / 34

Computability for profinite groups

For profinite groups, a definition of computability not directly

involving a metric has been studied since it was introduced by La

Roche 1981, Smith 1981.

A profinite group G is computable if G = lim �(Ai, i) for a

computable sequence (Ai, i)i2N of finite groups and

morphisms i : Ai+1 ! Ai which are onto.

Concretely, this inverse limit is the closed subgroup of
Q

i Ai2N

consisting of the functions f such that i(f(i+ 1)) = f(i) for

each i 2 N.
These functions f form the paths on a computable tree where

at level i there are | ker i| many branchings.

8 / 34

Two definitions of computability for t.d.l.c.

groups G that are equivalent.

Recall that in the uncountable setting, to define computability one

needs a computable countable approximation structure.

The first definition is by viewing G as a closed subgroup of

Sym(N) and use a tree of finite injections as the

approximation structure. This is natural if G is given as a

group of automorphisms, e.g. Aut(Ld).

The second definition is via the ordered groupoid of compact

open cosets of G as an approximation structure. This is

natural e.g. for (Qp,+).

9 / 34

Definition 1 of computable t.d.l.c. groups:

via closed subgroups of Sym(N)

10 / 34

Some tree terminology

N⇤ denotes the tree of strings with natural number entries.

Let T ✓ N⇤ be a computable subtree without dead ends.

Let [T] be the set of paths. Note that

[T] is compact () each level of T is finite.

For � 2 T let [�]T = {X 2 [T] : � � X}, the paths extending �.

Consider strings �i 2 N⇤, i = 0, 1 of the same length N 1.

By �0 � �1 we denote the string of length 2N which alternates

between �0 and �1.

E.g. �0 = (1, 3), �1 = (4, 0), yields (1, 4, 3, 0).

11 / 34

A computable presentation of Sym(N)
Sym(N) is the group of permutations of N.

The approximation structure for Sym(N) is the computable tree

Tree(Sym(N)) = {� � ⌧ :

�, ⌧ are 1-1 ^ �(⌧(k)) = k ^ ⌧(�(i)) = i whenever defined}.

The paths of Tree(Sym(N)) can be viewed as the

permutations of N, paired with their inverses:

[Tree(Sym(N))] = {f � f�1 : f 2 Sym(N)}.

The operations of Sym(N) are given by computable functions

on Tree(Sym(N)), such as � � ⌧ 7! ⌧ � � for the inverse.

12 / 34

Computable closed subgroups of Sym(N)
Recall that Sym(N) is viewed as the set of paths of

T = Tree(Sym(N)) = {� � ⌧ :

�, ⌧ are 1-1 ^ �(⌧(k)) = k ^ ⌧(�(i)) = i whenever defined}.

Definition (Essentially Greenberg, Melnikov, N., Turetsky 2019)

A closed subgroup G of Sym(N) is computable if its corresponding

tree, namely Tree(G) = {⌘ 2 Tree(Sym(N)) : [⌘] \G 6= ;} is

computable.

The closed subgroups of Sym(N) are just the automorphism groups

G of structures M with domain N.

If one can decide whether a finite injection on M can be extended

to an automorphism, such a group G is computable.

E.g., G = Aut(Q, <) is computable because one can decide

whether a finite injection preserves the ordering.
13 / 34

Definition (Computably locally compact trees)

We say that a computable tree T without leaves is computably

locally compact if

{� 2 T : [�]T is compact} is decidable, and

there is a computable function h(�, i) such that:

if [�]T is compact and ⇢ 2 T extends �, then

⇢(i) h(�, i) for each i < |⇢|.

That is, [�]T is compact in an e↵ective way.

Definition (First definition of computably t.d.l.c. groups)

Let G be a computable closed subgroup of Sym(N) that is t.d.l.c.
We say that G computably t.d.l.c. if Tree(G) is computably locally

compact.

14 / 34

Some t.d.l.c. groups that are computable

according to this definition

Let d � 3. The t.d.l.c. group G = Aut(Ld) is computably t.d.l.c..

One can decide whether a finite injection ↵ on Ld can be

extended to an automorphism: check whether it preserves

distances. Each ⌘ 2 Tree(Sym(N)) corresponds to such an

injection. So one can decide whether ⌘ 2 Tree(G).

[⌘]Tree(G) is compact for every nonempty such string ⌘:

If ⌘ maps x to y, then it maps a ball Bn(x) in Ld to Bn(y).

This yields a computable bound h(⌘, i) as required.

Thus, Tree(G) is computably locally compact.

15 / 34

Computable N-valued functions on computably

t.d.l.c. groups

Definition

A function s : G! N is computable if there is an oracle Turing

machine that using a path X 2 [Tree(G)] on its oracle tape (and

the empty string as input) halts with output s(X).

Intuitively, the machine can use as much of its oracle X as it likes,

but it has to eventually come up with a value s(X), using only an

initial segment of X.

16 / 34

Scale function
The scale function on G (Willis, 1994) is defined by

sG(x) = {min |V : x�1V x \ V | : V is compact open subgroup}.
This tells us how much at least conjugation by x “moves” a compact

open subgroup. Willis (1994) has shown that the scale function is

continuous. This is a necessary condition for being computable.

Scale function is trivial if there is a compact open normal

subgroup, e.g. for discrete, and profinite groups.

Scale function is computable for Aut(Ld):

If x fixes a vertex, or inverts an edge , the scale is 1.

If x translates along a geodesic then s(g) = (d� 1)` where ` is

the translation distance.

sG is computably approximable from above, by going through

the possible V and reducing the approximation when

necessary. 17 / 34

Can the scale function be noncomputable?

Question (Open at this stage)

Is there a computably t.d.l.c. group G such that the scale function

sG is noncomputable?

An example would likely consist of a computably t.d.l.c. group

G and a uniformly computable sequence (hi)i2N of elements of

G such that the function i! sG(hi) is noncomputable.

G can’t be discrete, or profinite.

18 / 34

Definition of computable t.d.l.c. groups 2:

via approximation groupoids

19 / 34

Approximation groupoids

Groupoid: small category where each morphism has an inverse.

Equivalently, usual group axioms but the group operation is partial.

Let G be t.d.l.c.. Define a groupoid W(G) that is also a lower

semilattice. Domain: the open compact cosets of G, and ;.

A,B,C denote such cosets. U, V,W denote compact open subgroups.

A : U ! V means that A is a right coset of U and a left coset of V .

If A : U ! V and B : V ! W then A · B : U ! W .

(W(G), ·) is a groupoid. E.g., if A : U ! V then A�1 : V ! U .

(W(G),✓, ;) is a lower semilattice with least element ;, since
the intersection of two cosets is empty, or again a coset.

W(G) satisfies the axioms of “inductive groupoids”;

see e.g. Lawson’s 1998 book Inverse semigroups. 20 / 34

Provenance of approximation groupoids

The notion of approximation groupoids goes back to an idea of

Tent, that appeared in a paper with Kechris and Tent in J.

Symb. Logic 2018.

The idea was further elaborated in a paper with Tent and

Schlicht on the complexity of the isomorphism problem for

oligomorphic groups that has just appeared in J. Math. Logic

2021. There we introduced the term “coarse group”.

Coarse groups are given by a ternary relation on open cosets,

saying that AB ✓ C, where A,B,C are cosets.

We will see that for the applications to computable structure

theory we have in mind, it is necessary to have the groupoid

and lower semilattice structure explicitly.

21 / 34

Computable t.d.l.c. groups (Def. 2)

Recall that the approximation groupoid of a t.d.l.c. group G is the

countable structure (W(G), ·,✓,\, ;) on the compact open cosets

together with ;.
An l.s.l.-groupoid is called computable if

the relation {hx, yi : x · y is defined} is computable, and

the operations ·,\ are computable.

Definition (Definition 2 of computably t.d.l.c. groups)

Let G be a t.d.l.c. group. We say that G is computably t.d.l.c. if

its approximation groupoid W(G) has a computable copy s. t.

the function mapping a pair of subgroups U, V 2W(G) to

|U : U \ V | is computable.

22 / 34

Qp is computable in this sense

Show that G = (Qp,+) is computable t.d.l.c. in the sense of

Definition 2.

The open proper subgroups are of the form Ur = prZp for

some r 2 Z. Note Qp/Ur
⇠= Cp1 (Prüfer group).

So each compact open coset has the form Cr,a = Ur + a, where

r 2 Z, a 2 Cp1 , and a is the canonical coset representative

of a.

Cr,a · Cs,b = Cr,a+b if r = s, and undefined else.

Cr,a ✓ Cs,b i↵ r � s and pr�sb = a.

Cr,a \ Cs,b = ; unless one is contained in the other.

For r s, we have |Ur : Us| = ps�r.

23 / 34

Theorem (Uniform equivalence of the two definitions)

G is computably t.d.l.c. in the sense of closed subgroups of Sym(N)

()

G is computably t.d.l.c. in the sense of approximation groupoids.

Proof, “)”: Suppose G c Sym(N). Tree(G) is the tree for G.

Each compact open subset of G is of the form KD =
S

⌘2D[⌘]Tree(G)

for finite D. We can decide whether KD is compact.

Encode such finite sets D by natural numbers; use as

inputs/outputs.

We can decide whether KD ✓ KE .

We can compute KD · KE and (KD)
�1.

Hence we can decide whether KD is a subgroup, and whether it is

a coset.

So we obtain a computable copy of W(G) such that the index function

U, V 7! |U : U \ V | on subgroups is computable.

24 / 34

Theorem (recall)

G computably t.d.l.c. in sense of closed subgroups of Sym(N) ()
G computably t.d.l.c. in sense of approximation groupoids.

Proof, “(”:

Let W be a computable copy of the approximation groupoid of G.

Let eG denote the group of permutations p that preserve the

✓-relation on W , and p(A) ·B = p(A ·B) whenever A ·B is defined.

First we verify that � : G ⇠= eG where �(g) is the left translation

action of g, i.e. A 7! gA for A 2W.

Then we show that eG is computably t.d.l.c. as a closed subgroup

of Sym(N). E.g., we have to decide whether the finite injection ↵

given by � � ⌧ 2 Tree(Sym(N)) can be extended to some p 2 eG.

Suppose � sends Ai to Bi and ⌧ sends Ai to Ci, where i < |�| and
the Ai, Bi, Ci are cosets. Then ↵ can be extended i↵T

i<nBiA
�1
i \AiC

�1
i 6= ; in W, which is decidable. 25 / 34

The countable case
Corollary

A countable discrete group G has a computable t.d.l.c. copy ()
G has a computable copy H in the usual sense.

“)”.

The approximation groupoid W(G) has a computable copy.

Since G is discrete, U = {1} is an element of W(G).

Consider H = the left cosets of U . Since U is normal, this is a

group under the restriction of the groupoid operation to H.

Clearly it is computable, and isomorphic to G.

“(”. W(G) consists of finite cosets. So its operations and the index

function are computable.
26 / 34

The most intuitive definition of computably presented. t.d.l.c.

group is perhaps: the domain is an e↵ectively locally compact,

totally disconnected space on which the group operations are

computable.

Definition (Generalizes Def. 1 of computability for t.d.l.c. groups)

G is computably t.d.l.c. if G ⇠= ([T],Op, Inv) (called a computable

Baire presentation) where T is a computably locally compact tree,

and Inv : [T]! [T] and Op: [T]⇥ [T]! [T] are given by Turing

functionals.

Somewhat surprisingly, this is not more general than the definition

based on closed subgroups of Sym(N):
Proposition

If G is computably t.d.l.c. in this sense, then W(G) has a

computable copy. Moreover, there is a bicomputable � : G ⇠= eG
where eG is the group of “left automorphisms” of W(G). 27 / 34

Some algebraic groups over Qp

Using this kind of presentations, we have shown

Example

SL2(Qp) is computably t.d.l.c.

28 / 34

Autostability

We say that computably t.d.l.c. G is autostable if for any

computable Baire presentations ([T],Op, Inv) and ([T 0],Op0, Inv0)

of G, there is a bicomputable group homeomorphism [T]! [T 0].

Proposition

Let G be computably t.d.l.c. Then G is autostable i↵ W(G) is.

Using this one can show that (Qp,+) is autostable.

29 / 34

Computable t.d.l.c. abelian groups

30 / 34

Conditions for computability in the abelian case
By van Dantzig, if G is abelian t.d.l.c., there is a compact open K G

and L = G/K is discrete. So the sequence 0! K ! G! L! 0 is

exact; G is a topological extension of L by K.

Theorem (Lupini, Melnikov and N.)

Let G be abelian t.d.l.c. group. The following are equivalent.

(1) G is computable t.d.l.c.

(2) G ⇠= lim �(Ai,�i) for a computable diagram (Ai,�i) where

the Ai are abelian discrete groups,

�i : Ai ! Ai�1 (i > 0) are epimorphisms with finite kernels

from i can compute a bound for the elements in the kernel.

(3) There are a computable profinite group K and a computable

discrete group L such that G is an extension of L by K via a

computable co-cycle c : L⇥ L! K.
31 / 34

Pontryagin-van Kampen duality
Let G be an abelian locally compact group. The dual bG is the

group of characters of G, with the compact open topology.

Pontryagin-van Kampen theorem: the natural embedding G! bbG
mapping g 2 G to ��.�(g) 2 bbG is a topological isomorphism. E.g

the dual of Z is the unit circle, whose dual is Z again.

G bG
compact discrete

compact connected discrete torsion free

compact totally disconnected discrete torsion

0! K ! G! L! 0 0 bK bG bL 0

The duals of t.d.l.c. groups are thus the extensions of torsion

discrete groups by profinite groups.
32 / 34

In what sense does duality hold computably?

Theorem (Lupini, Melnikov and N., 2021)

Suppose G is an abelian t.d.l.c. group.

If G is computable then bG is computably metrized Polish.

(That is, bG is the completion of a dense computable subgroup D with a

computable metric. E.g. G = Z, bG the unit circle, D the rational unit

circle.)

If G is an extension of a torsion discrete group by a profinite group

(i.e., bG is t.d.l.c. as well), then

G is computable () bG is computable.

33 / 34

References:
Kechris, N. and Tent, The complexity of topological group isomorphism,

The Journal of Symbolic Logic, 83(3), 1190-1203. Arxiv: 1705.08081

N., Schlicht and Tent, Coarse groups, and the isomorphism problem for

oligomorphic groups. J. Math Logic, in press, Arxiv: 1903.08436.

Lupini, Melnikov and N. Computable topological abelian groups.

Submitted. Arxiv: 2105.12897

Melnikov and N. Computable totally disconnected locally compact

groups. In preparation.

34 / 34

