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Three questions

Progress on three open questions.

e (Reimann, Terwijn) Does every set of positive effective

dimension compute a Martin-Lof-random set?

e (Stephan 2004) Is each K-trivial set Turing below an

incomplete Martin-Lofrandom?

e (Kucera 2004) Is K-trivial the same as Martin-Lof

non-cuppable?

All are in the open questions paper by Miller/N (to appear in BSL).



Part 1: Effective dimension

K denotes prefix free Kolmogorov complexity.
Schnorr’s Theorem:

Z is Martin-Lof random iff for some ¢, Vn K(Z [ n) > n — c.

Example of a ML-random set:

Q = ZU(O‘)l 2_|0-|7
where U is a universal prefix free machine.

How about sets where K(Z | n) is somewhat large? To quantify
this, let

K(Z) =liminf,, K(Z | n)/n.

This is an effective version of the Hausdorflf dimension of the class
{Z}. If Z is ML-random then K(Z) = 1, but the converse fails.



Examples

Here are two examples of sets Z of effective dimension 1/2. They
can be generalized to a rational a € (0,1).

e Let Y be ML-random, and let Z = 0yy0y10y> .. ..

e the Tadaki number
Ql/Q = ZU(O’)l 2—2|O’|‘



The question

Reimann and Terwijn (independently) observed that each of the
known examples compute a ML-random set. So they asked the
following:

Question 1 If A has positive effective dimension, is there a
ML-random set Z <p A?



This fails for wtt

Theorem 2 (with Reimann) For each rational o € |0, 1] there is
a set A <yt 0V such that

e K(A)=a«a and
o K(Z) < a for each Z <y A.

The result was also announced by Hirschfeldt and Miller.

If « <1, then no Z <y A is ML-random.



o Let P be the IIY-class given by
P=AZ:VYn>ngK(Z | n)>|an]|},
where ng is chosen so that pP > 1/2.

e Let (Ps) be an effective approximation by clopen classes,

namely, P =, Ps.

We provide a lemma saying that the opponent has to invest a lot

into the universal machine to completely remove a clopen class C
from P.

Lemma 3 Let C be a clopen class such that C C Py and CN P, = )
for stages s < t. Then 2 — Qg > (uC)®.

For instance, if & = 1/2, he has to spend 1/4 to remove a class of
measure 1/16.



The setting

e Build A on P to ensure K(A) > «

o If W, is the e-th wtt reduction and Z = \Ilf, then, for each
rational 8 > «, we have to satisty

Rj:3r=>jK(Z[r)<pr,

where j > 0 codes (e, ).



Strategy for IR,

Let mo = 0. R;, 7 > 0, defines a number m; and controls A in the

interval [m;_1,m;).

e First choose r; large. Wait for the use bound t.(r;) to
converge and set m; to be this use bound. (We may assume m;

is large enough, in particular > m;_;.)

e The intent now is to define A in a way that we can compress
r = Z | rj. At stage s look for a large set C C P; of strings of
length m; all computing the same x. Compress x appropriately.

o If C falls off P, then by the Lemma, the opponent has spent a
lot. We can account our investment (to give a short description
of x) against his, gaining the right to choose a new .



Testing for totality

o z exist if WY is defined for all relevant strings of length m;. For
in that case, if we partition this set of ¢’s into 2”7 pieces

depending on what W¢ is, one piece must be large enough.

e In a first phase, before we even start to look for the right x, we
try to choose 0 = A | m; in a way that \Iffe4 is partial. We need
the fact that W, is wtt in order to make the number of changes

in this first phase finite.
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Part 2: Subclasses of the

K-trivial sets

A set A is K-trivial if there is ¢ € N such that
Vn K(An) < K(n)+c
(Chaitin, 1975).

e By Schnorr’s theorem, Z is ML-random if for each n, K(Z | n)
is near its maximal value n + K(n).

e To be K-trivial means to be far from ML-random, because
K(A | n) is minimal (all up to constants).
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Cost function construction

Downey, Hirschfeldt, Nies, Stephan 2001 gave a short “definition”
of a (promptly) simple K-trivial set, which had been anticipated by
various researchers (Kummer, Zambella). We use the “cost

function”

c(x7 3) — Zx<y<s 2_Ks(y) .
This determines a non-computable set A:

As=As 1 U{x:Je

WesNAs_1 = we haven’t met e-th simplicity requirement
x € We s we can meet it, via x

x > 2e make A co-infinite

c(z,s) < 27(F21 | ensure A is K-trivial.
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Properties of

The K-trivial sets form an ideal K in the A} Turing degrees. It has
the following properties (N, “Lowness properties and randomness”,

2003):
e /C is the downward closure of its c.e. members

e [ is Y. Hence it is contained in [0, b]
for some c.e. low, b: this is true for any >9 ideal in the c.e.
degrees (N ta, also see Downey/Hirschfeldt book)

e cach A € IC is super-low: A’ < (.
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A story that repeats

A lowness property of a set A says that A is computationally weak,

in a particular sense.

The following has happened 3 times, so far.

e A research group introduces a lowness property C, and shows
there is a non-computable c.e. set A € C. (Usually, A is even

promptly simple.)

e C turns out to be the same as K.
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1. Low for K

For instance, Andrej A. Muchnik (1999) defined A to be low for K
if

Yy K(y) < K*(y) + O(1),
and proved that there is a c.e. noncomputable A that is low for K.

e Low for K = K-trivial is easily seen.

e Hirschfeldt and N, modifying the proof in (N 2003) that I is
closed downwards, proved the converse direction.
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2. Low for ML-random

The same happened in the case of low for MLrandom sets A (i.e.,
MLRand“* = MLRand, a property implied by low for K.)

e Kucera, Terwijn 1998 showed existence

e N 2003 showed coincidence with low for K.
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3. Bases for ML-randomness

Kucera (APAL, 1993) studied sets A such that
A <t Z for some Z € MLRand”.

That is, A can be computed from a set random relative to it.

We will call such a set a basis for ML-randomness. Each low for
ML-random set A is a basis for ML-randomness.

e There is a c.e. non-computable basis for ML-randomness
(Kucera 1993).

e Each basis for ML-randomness is low for K (Hirschfeldt, N,
Stephan, “Using random sets as oracles”, ta).
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Getting rid of K

Is there a characterization of K-trivial independent of randomness
and K7

Figueira, N, Stephan have tried the following strengthening of

super-lowness:

For each computable nondecreasing unbounded function h, A’ has

an approximation that changes at most h(x) times at x.

They build a c.e. noncomputable such set, via a construction that
resembles the cost function construction. No relationship to

K -trivial is known.
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Subclasses of IC

Does K have natural proper subclasses, or even subideals?

I will mostly restrict myself to the c.e. K-trivials. This is a minor
restriction here, since there is a c.e. K-trivial set Turing above any
K-trivial set.

One (not very convincing) example is
IC N Cap,

the cappable K-trivials.

How about better examples? They should rather be defined by a
single, natural property. I will discuss candidates. So far none of
them are known to be proper subclasses.
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Candidate 1:

low for II5-random

7 is I19-random (or weakly 2-random) if Z is in no II§ null class.
Each such Z is ML-random.

A is low for II9-random if

I19-random relative to A = II9-random.

Theorem 4 (Downey,N,Weber,Yu 2005)
o There is a promptly simple low for I1IS-random set

e cach low for II-random set is low for K.
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Candidate 2:
ML-coverable

A set A is ML-coverable if there is a ML-random Z such that
A<y Z <7 0.
If A is also c.e., then Z is ML-random relative to A (H,N,S ta).

Hence A is a basis for ML-randomness, so K-trivial.

Theorem (Kuceral985) Let 7 be AY and ML-random. Then
there is a promptly simple set A <, Z.

Taking Z low, we obtain a low promptly simple ML-coverable set A.

Question 5 (hard) If a (c.e.) set A is K-trivial, is A
ML-coverable?
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Candidate 3:
ML-noncuppable

A AY set A is ML-cuppable if
A® 7 =7 () for some ML-random Z < (.
Many sets are ML-cuppable: If A is not K-trivial, then

o A Zr Q4 (else A is a basis for ML-randomness, so K-trivial),

and
o A, =T QA@AZT (Z)/.

If A is also low, then Z = Q4 <4 (/, so A is ML-cuppable. This
shows for instance that each c.e. non-K-trivial set A is
ML-cuppable, since one can split it into low c.e. sets, A = Ay U A,
and one of them is also not K-trivial.
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Existence

Theorem 6 (N, 2005) There is a promptly simple set which is
not ML-cuppable.

The proof combines cost functions with the priority method. In
fact I proved a stronger theorem, which implies the previous one by
letting Y = ().

Theorem 7 Let Y € AY be Martin-Lof-random. Then there is a
promptly simple set A such that, for each Martin-Lof-random set
R,

Barmparlias (ta) removed the hypothesis that Y be ML-random.
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A common subclass

By recent work of Hirschfeldt and N, there is natural ideal £ which
is a subclass of both the ML-coverable and the ML-non-cuppable

sets.

Key is the following notion. B is almost complete if ()’ is K-trivial
relative to 5. That is, there is ¢ € N such that

Vn KB | n) < KP(n)+c
Such a set is super-high: () <, B’.

I observed in the 2003 lowness properties paper that
Jockusch-Shore inversion, applied to the c.e. operator W given by
the cost function construction yields an incomplete but almost

complete c.e. set.
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Inverting a c.e. operator

Theorem 8 (Jockusch/Shore 1983) For each c.e. operator W
there is a c.e. set C such that

WC@CET @/.

Theorem 9 (NN 2006) The conclusion of the theorem also holds
for “C' ML-random”.

The proof combines
e methods of the Low Basis Theorem (to ensure W& € AY) with

e methods of the Kucera-Gacs theorem (to ensure

0 <t WCea® ).

Corollary 10 There is a ML-random almost complete AY-set.
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The class L

Let

L={A: VZ (Z ML-random, almost complete = A <, Z}.

e Hirschfeldt proved that there is a promptly simple set in L.

e By the previous corollary, each A € £ is ML-coverable, and
hence K-trivial.

e L is an ideal.
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L C ML-noncuppable

The reason for this inclusion is that each potential ML-random

cupping partner Z of a K-trivial A is almost complete:
0V <pr AdZ, Ac K, Z ML-random = Z almost complete.

This takes a 4-line proof involving the van Lambalgen Theorem
(Hirschfeldt 2005).
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Comments on L

Unless the unlikely coincidence £ = IC holds, £ is an ideal of the

type we were looking for.

The existence proof for £ was simplified and generalized.

Theorem 11 (Hirschfeldt, Miller) Let C be a X9 null class.
Then there is a promptly simple A such that A <p Z for each
ML-random Z € C.

The proof is a simple cost function argument. (If C is the IIY class
{Z}, for a ML-random AJ set Z, then the proof turns into

Kucera’s proof.)

Apply this to the X null class C = almost complete in order to
obtain a promptly simple A € L.
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