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Three questions
Progress on three open questions.

• (Reimann, Terwijn) Does every set of positive effective
dimension compute a Martin-Löf-random set?

• (Stephan 2004) Is each K-trivial set Turing below an
incomplete Martin-Löfrandom?

• (Kučera 2004) Is K-trivial the same as Martin-Löf
non-cuppable?

All are in the open questions paper by Miller/N (to appear in BSL).
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Part 1: Effective dimension
K denotes prefix free Kolmogorov complexity.

Schnorr’s Theorem:

Z is Martin-Löf random iff for some c, ∀n K(Z ! n) ≥ n− c.
Example of a ML-random set:

Ω =
∑

U(σ)↓ 2−|σ|,

where U is a universal prefix free machine.

How about sets where K(Z ! n) is somewhat large? To quantify
this, let

K(Z) = lim infn K(Z ! n)/n.

This is an effective version of the Hausdorff dimension of the class
{Z}. If Z is ML-random then K(Z) = 1, but the converse fails.
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Examples
Here are two examples of sets Z of effective dimension 1/2. They
can be generalized to a rational α ∈ (0, 1).

• Let Y be ML-random, and let Z = 0y00y10y2 . . ..

• the Tadaki number

Ω1/2 =
∑

U(σ)↓ 2−2|σ|.
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The question
Reimann and Terwijn (independently) observed that each of the
known examples compute a ML-random set. So they asked the
following:

Question 1 If A has positive effective dimension, is there a
ML-random set Z ≤T A?

5



This fails for wtt

Theorem 2 (with Reimann) For each rational α ∈ [0, 1] there is
a set A ≤wtt ∅′ such that

• K(A) = α and

• K(Z) ≤ α for each Z ≤wtt A.

The result was also announced by Hirschfeldt and Miller.

If α < 1, then no Z ≤wtt A is ML-random.
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• Let P be the Π0
1-class given by

P = {Z : ∀n ≥ n0 K(Z ! n) ≥ 'αn(},
where n0 is chosen so that µP ≥ 1/2.

• Let (Ps) be an effective approximation by clopen classes,
namely, P =

⋂
s Ps.

We provide a lemma saying that the opponent has to invest a lot
into the universal machine to completely remove a clopen class C
from P.

Lemma 3 Let C be a clopen class such that C ⊆ Ps and C ∩ Pt = ∅
for stages s < t. Then Ωt − Ωs ≥ (µC)α.

For instance, if α = 1/2, he has to spend 1/4 to remove a class of
measure 1/16.
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The setting

• Build A on P to ensure K(A) ≥ α

• If Ψe is the e-th wtt reduction and Z = ΨA
e , then, for each

rational β > α, we have to satisfy

Rj : ∃r ≥ j K(Z ! r) ≤ βr,

where j > 0 codes 〈e,β〉.
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Strategy for Rj

Let m0 = 0. Rj , j > 0, defines a number mj and controls A in the
interval [mj−1,mj).

• First choose rj large. Wait for the use bound ψe(rj) to
converge and set mj to be this use bound. (We may assume mj

is large enough, in particular > mj−1.)

• The intent now is to define A in a way that we can compress
x = Z ! rj . At stage s look for a large set C ⊆ Ps of strings of
length mj all computing the same x. Compress x appropriately.

• If C falls off P, then by the Lemma, the opponent has spent a
lot. We can account our investment (to give a short description
of x) against his, gaining the right to choose a new x.
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Testing for totality

• x exist if Ψσ
e is defined for all relevant strings of length mj . For

in that case, if we partition this set of σ’s into 2rj pieces
depending on what Ψσ

e is, one piece must be large enough.

• In a first phase, before we even start to look for the right x, we
try to choose σ = A ! mj in a way that ΨA

e is partial. We need
the fact that Ψe is wtt in order to make the number of changes
in this first phase finite.
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Part 2: Subclasses of the

K-trivial sets
A set A is K-trivial if there is c ∈ N such that

∀n K(A ! n) ≤ K(n) + c

(Chaitin, 1975).

• By Schnorr’s theorem, Z is ML-random if for each n, K(Z ! n)
is near its maximal value n + K(n).

• To be K-trivial means to be far from ML-random, because
K(A ! n) is minimal (all up to constants).
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Cost function construction
Downey, Hirschfeldt, Nies, Stephan 2001 gave a short “definition”
of a (promptly) simple K-trivial set, which had been anticipated by
various researchers (Kummer, Zambella). We use the “cost
function”

c(x, s) =
∑

x<y≤s 2−Ks(y) .

This determines a non-computable set A:

As = As−1 ∪ {x : ∃e

We,s ∩As−1 = ∅ we haven’t met e-th simplicity requirement

x ∈ We,s we can meet it, via x

x ≥ 2e make A co-infinite

c(x, s) ≤ 2−(e+2)} ensure A is K-trivial.
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Properties of K
The K-trivial sets form an ideal K in the ∆0

2 Turing degrees. It has
the following properties (N, “Lowness properties and randomness”,
2003):

• K is the downward closure of its c.e. members

• K is Σ0
3. Hence it is contained in [, b]

for some c.e. low2 b: this is true for any Σ0
3 ideal in the c.e.

degrees (N ta, also see Downey/Hirschfeldt book)

• each A ∈ K is super-low: A′ ≤tt ∅′.
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A story that repeats
A lowness property of a set A says that A is computationally weak,
in a particular sense.

The following has happened 3 times, so far.

• A research group introduces a lowness property C, and shows
there is a non-computable c.e. set A ∈ C. (Usually, A is even
promptly simple.)

• C turns out to be the same as K.
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1. Low for K
For instance, Andrej A. Muchnik (1999) defined A to be low for K

if

∀y K(y) ≤ KA(y) + O(1),

and proved that there is a c.e. noncomputable A that is low for K.

• Low for K ⇒ K-trivial is easily seen.

• Hirschfeldt and N, modifying the proof in (N 2003) that K is
closed downwards, proved the converse direction.

15



2. Low for ML-random
The same happened in the case of low for MLrandom sets A (i.e.,
MLRandA = MLRand, a property implied by low for K.)

• Kučera, Terwijn 1998 showed existence

• N 2003 showed coincidence with low for K.
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3. Bases for ML-randomness
Kucera (APAL, 1993) studied sets A such that

A ≤T Z for some Z ∈ MLRandA.

That is, A can be computed from a set random relative to it.

We will call such a set a basis for ML-randomness. Each low for
ML-random set A is a basis for ML-randomness.

• There is a c.e. non-computable basis for ML-randomness
(Kučera 1993).

• Each basis for ML-randomness is low for K (Hirschfeldt, N,
Stephan, “Using random sets as oracles”, ta).
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Getting rid of K
Is there a characterization of K-trivial independent of randomness
and K?

Figueira, N, Stephan have tried the following strengthening of
super-lowness:

For each computable nondecreasing unbounded function h, A′ has
an approximation that changes at most h(x) times at x.

They build a c.e. noncomputable such set, via a construction that
resembles the cost function construction. No relationship to
K-trivial is known.
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Subclasses of K
Does K have natural proper subclasses, or even subideals?

I will mostly restrict myself to the c.e. K-trivials. This is a minor
restriction here, since there is a c.e. K-trivial set Turing above any
K-trivial set.

One (not very convincing) example is

K ∩ Cap,

the cappable K-trivials.

How about better examples? They should rather be defined by a
single, natural property. I will discuss candidates. So far none of
them are known to be proper subclasses.
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Candidate 1:

low for Π0
2-random

Z is Π0
2-random (or weakly 2-random) if Z is in no Π0

2 null class.
Each such Z is ML-random.

A is low for Π0
2-random if

Π0
2-random relative to A = Π0

2-random.

Theorem 4 (Downey,N,Weber,Yu 2005)

• There is a promptly simple low for Π0
2-random set

• each low for Π0
2-random set is low for K.
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Candidate 2:

ML-coverable
A set A is ML-coverable if there is a ML-random Z such that

A ≤T Z <T ∅′.

If A is also c.e., then Z is ML-random relative to A (H,N,S ta).
Hence A is a basis for ML-randomness, so K-trivial.

Theorem (Kučera1985) Let Z be ∆0
2 and ML-random. Then

there is a promptly simple set A ≤T Z.

Taking Z low, we obtain a low promptly simple ML-coverable set A.

Question 5 (hard) If a (c.e.) set A is K-trivial, is A

ML-coverable?
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Candidate 3:

ML-noncuppable
A ∆0

2 set A is ML-cuppable if

A⊕ Z ≡T ∅′ for some ML-random Z <T ∅′.

Many sets are ML-cuppable: If A is not K-trivial, then

• A 2≤T ΩA (else A is a basis for ML-randomness, so K-trivial),
and

• A′ ≡T ΩA ⊕A ≥T ∅′.

If A is also low, then Z = ΩA <T ∅′, so A is ML-cuppable. This
shows for instance that each c.e. non-K-trivial set A is
ML-cuppable, since one can split it into low c.e. sets, A = A0 ∪A1,
and one of them is also not K-trivial.
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Existence

Theorem 6 (N, 2005) There is a promptly simple set which is
not ML-cuppable.

The proof combines cost functions with the priority method. In
fact I proved a stronger theorem, which implies the previous one by
letting Y = Ω.

Theorem 7 Let Y ∈ ∆0
2 be Martin-Löf-random. Then there is a

promptly simple set A such that, for each Martin-Löf-random set
R,

Y ≤T A⊕R ⇒ Y ≤T R.

Barmparlias (ta) removed the hypothesis that Y be ML-random.
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A common subclass
By recent work of Hirschfeldt and N, there is natural ideal L which
is a subclass of both the ML-coverable and the ML-non-cuppable
sets.

Key is the following notion. B is almost complete if ∅′ is K-trivial
relative to B. That is, there is c ∈ N such that

∀n KB(∅′ ! n) ≤ KB(n) + c

Such a set is super-high: ∅′′ ≤tt B′.

I observed in the 2003 lowness properties paper that
Jockusch-Shore inversion, applied to the c.e. operator W given by
the cost function construction yields an incomplete but almost
complete c.e. set.
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Inverting a c.e. operator
Theorem 8 (Jockusch/Shore 1983) For each c.e. operator W

there is a c.e. set C such that

WC ⊕ C ≡T ∅′.

Theorem 9 (N 2006) The conclusion of the theorem also holds
for “C ML-random”.

The proof combines

• methods of the Low Basis Theorem (to ensure WC ∈ ∆0
2) with

• methods of the Kučera-Gacs theorem (to ensure
∅′ ≤T WC ⊕ C).

Corollary 10 There is a ML-random almost complete ∆0
2-set.
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The class L
Let

L = {A : ∀Z (Z ML-random, almost complete ⇒ A ≤T Z}.

• Hirschfeldt proved that there is a promptly simple set in L.

• By the previous corollary, each A ∈ L is ML-coverable, and
hence K-trivial.

• L is an ideal.
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L ⊆ ML-noncuppable
The reason for this inclusion is that each potential ML-random
cupping partner Z of a K-trivial A is almost complete:

∅′ ≤T A⊕ Z, A ∈ K, Z ML-random ⇒ Z almost complete.

This takes a 4-line proof involving the van Lambalgen Theorem
(Hirschfeldt 2005).
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Comments on L
Unless the unlikely coincidence L = K holds, L is an ideal of the
type we were looking for.

The existence proof for L was simplified and generalized.

Theorem 11 (Hirschfeldt, Miller) Let C be a Σ0
3 null class.

Then there is a promptly simple A such that A ≤T Z for each
ML-random Z ∈ C.

The proof is a simple cost function argument. (If C is the Π0
2 class

{Z}, for a ML-random ∆0
2 set Z, then the proof turns into

Kučera’s proof.)

Apply this to the Σ0
3 null class C = almost complete in order to

obtain a promptly simple A ∈ L.
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