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The leading question

We study ideals in the c.e. Turing degrees.
The leading question is the following.

Let I be a proper ideal with a certain type of effective
presentation.

What can we say about upper bounds of I in the c.e. degrees?
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The ideal lattice of an usl U

• Let (U,≤ ∨) be an uppersemilattice (usl).
• A set I ⊆ U is an ideal if I is closed downwards an under the

join operation ∨.
• An upper bound of an ideal I is a degree b such that

I ⊆ [0, b].

Some Facts:
• The set of ideals of U is a lattice, where the meet of I, J is the

intersection, and the join of I, J is the ideal generated by I ∪ J.
• An ideal I is called proper if I 6= U.
• Each u ∈ U determines the ideal {x : x ≤ u}, called a

principal ideal.
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Effective presentations of ideals

There are two interrelated approaches to effectively presenting
an ideal I in the c.e. degrees.
(a) Require that I is generated by a uniformly c.e. sequence

(possibly with further conditions).
We say that I is uniformly generated.

(b) Describe the index set ΘI = {e : the degree of We is in I}
within the arithmetical hierarchy.
If ΘI is Σ0

k etc. we say that I is a Σ0
k ideal.

Basic Facts:
• The class of uniformly generated ideals is closed under join

of ideals.
• Each principal ideal is Σ0

4.
• For k ≥ 4, the Σ0

k ideals form a lattice.
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Classes of ideals

For ideals, we have the implications

Σ0
3 =⇒ uniformly generated =⇒ Σ0

4.

It is not hard to show that the converse implications fail.
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Definability and global properties

• Several natural ideals came out of the intrusion of
randomness-related concepts into computability: K -trivial,
strongly jump traceable, ...
• Earlier investigations of ideals focussed on their definability,

and on the global properties of ideal lattices.
• A few proper ideals are known to be first-order definable

without parameters in the c.e. degrees: the cappable
degrees, and its subideal, the non-cuppable degrees.
• Nies (2001) showed that a definable set generates a

definable ideal.
• Applying this, Yang Yue, Yu Liang, and Wang Wei found a

few more examples of definable ideals: for instance, the ideal
generated by the non-bounding degrees.
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Back to the leading question

• By the Thickness Lemma every proper u.g. ideal has an
incomplete upper bound.
• The Π0

4 ideal of cappable degrees has no incomplete upper
bound.
• What can we say about upper bounds of a proper Σ0

3 ideal?
• How about a proper Σ0

4 ideal?
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Bounds for proper Σ0
3 ideals

Theorem

Each proper Σ0
3 ideal I in the c.e. degrees has a low2 upper

bound

• We first prove that each uniformly c.e. subsequence of a
proper Σ0

3 ideal is uniformly low2.
• This uniform low2-ness allows us to code all of I into an

upper bound, while keeping this bound low2.
• We have a ∅′′ construction with a tree of strategies to read a

low2-ness index of the upper bound off the true path.

Corollary
There is a low2 c.e. degree above all the K -trivials.
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Bounds for proper Σ0
4 ideals

Theorem

Each proper Σ0
4 ideal I in the c.e. degrees has an incomplete

upper bound.

.
• The proof uses that there is a high c.e. set H of

non-cuppable degree (Harrington and Miller 1981).
• We may assume that the degree of H is in I.
• The construction now works because I is only Σ0

3(H).
• It is a ∅′′ construction, but no explicit tree of strategies is

needed. It suffices to use hat computations.
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Prime ideals

The cappable degrees form a Π0
4 prime ideal.

We can now answer a question of Calhoun (1990).

Corollary

No proper Σ0
4 ideal is prime.

For, there is a minimal pair of degrees, none of which are below
the upper bound of the ideal (Welch 1981).
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Density of partial orders of ideals

Each principal ideal [0, b], where b 6= 0, has a maximal
subideal that is ∆0

4(b).
Choosing b low, this shows that the lattice of Σ0

4 ideals is not
dense.
In contrast, we have:

Theorem

The partial order of Σ0
3 ideals in the c.e. degrees is dense.

In fact if I is a proper Σ0
3 ideal in the c.e. degrees, then each

degree d /∈ I splits in the quotient usl.
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Some open questions on ideals

• Is every Σ0
4 ideal I the intersection of the principal ideals it is

contained in? (This would strengthen our result that I has an
incomplete upper bound.)
• For k ≥ 4, is the class of principal ideals definable in the

lattice of Σ0
k ideals?

• Let K be the ideal of K -trivial degrees. Are there c.e. degrees
a, b such that K = [0, a] ∩ [0, b]?
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