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Two aspects of a set of natural numbers

• We study sets of natural numbers. We refer to them simply as sets.
• We consider two aspects of a set, the randomness and the

computational complexity aspect.

Given set A

Randomness aspect Computational 
complexity aspect

absolute relative
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Principal Thesis

The two aspects of sets,

• randomness
• computational complexity,

are very closely related.
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A little history

• Up to the year 1998 or so, the randomness aspect received little
attention from computability theorists.

• It was confined to very good but isolated work such as Solovay’s
manuscript (1975), Kurtz’ thesis (1981), Kautz’ thesis (1990),
little-known work by Demuth, and Kučera’s 1985-1993 papers.

• More recently, it has become widely known that randomness-related
concepts enrich computability theory.

• For instance, they help us to understand properties saying a set is
very close to being computable.
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Important work 1999-2003

• ‘Lowness for the class of random sets” (1999) by Kučera and
Terwijn;

• “R.e. reals and Chaitin Omega numbers” by Calude, Hertling,
Khoussainov, Wang (2001); subsequent paper “Randomness and
recursive enumerability” by Kučera and Slaman (2001);

• “Trivial reals” by Downey, Hirschfeldt, Nies, Stephan (2003).

• “Lowness properties and randomness” by Nies (published 2005).
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The plan for Lecture 1

We provide background.

• We review some important concepts from computability. We clarify
the computational complexity aspect of a set.

• We define descriptive complexity of strings x , introducing the
complexity measure K (x).

Also today, we consider the classical interaction,
from computability to randomness.

• We use algorithmic tools to introduce a hierarchy of mathematical
randomness notions.

• We study these notions, again with algorithmic tools.
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The interaction from randomness to computability

• In the Lectures 2 and 3, we apply randomness to understand the
computational complexity of sets.

• More generally, we show how randomness-related concepts enrich
computability theory.

Lecture 3 also covers some connections to effective descriptive set
theory.
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Some references

Calibrating randomness by Downey, Hirschfeldt, N, Terwijn. BSL 12
(2006), 411-491.
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My book “Computability and Randomness”,
Oxford University Press, 447pp, Feb. 2009.

Forthcoming book “Algorithmic randomness and complexity” by
Downey and Hirschfeldt.

These slides.

Further material:
Recent talk “New directions in computability and randomness”
(open questions); recent workshop tutorials “Cost functions”,
“Randomness via effective descriptive set theory” all on my web
site.
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Part I

Computability and its application to randomness
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1 Background from computability theory

2 Descriptive string complexity

3 Randomness for infinite objects

4 Studying randomness notions via computability
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Oracle computations

• All concepts in computability are ultimately based on (Turing
machine) computations.

• Equipping the machine with an oracle X , we get a version of the
concept relative to X .

• For instance, “A is computable” becomes “A is computable in X ”,
written A ≤T X .
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Turing functionals

• Let (Me)e∈N be an effective listing of all oracle Turing machines.
Let (Φe)e∈N be the corresponding effective list of Turing functionals.
ΦX

e is the partial function determined by Me with oracle X .

• Thus, A ≤T X ⇐⇒ ∃e [A = ΦX
e ]. (Here we identify the set A ⊆ N with

its characteristic function N → {0,1}.)

• A ≤tt X if in addition, the running time is computably bounded in the
input. (This is called truth-table reducibility because the oracle
computations can be viewed as evaluating an effectively determined
Boolean function on the answers to oracle queries.)
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The Turing jump

• JX (e) is a universal Turing functional.
For instance, let JX (e) ' ΦX

e (e).

• X ′ = {e : JX (e) is defined} is the halting problem relative to X .

• X ′ is computably enumerable relative to X , and X ′ >T X .

• ∅′ is the usual halting problem.

• A ≤T B implies A′ ≤T B′.

• A is ∆0
2 ⇐⇒ A ≤T ∅′.
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The Shoenfield Limit Lemma

• A is ∆0
2 ⇐⇒ A(x) = lims f (x , s) for some computable {0,1}-valued

function f . Often, we don’t name such an approximating function
explicitly, and rather write As(x) instead of f (x , s).

• A ≤tt ∅′ if in addition, the number of changes in some computable
approximation is computably bounded in x .
(Such a set is called ω-c.e.)
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Lowness properties and highness properties

• A lowness property specifies a sense in which a set is close to
computable. It is closed downwards under ≤T .

• A highness property specifies a sense in which a set almost
computes ∅′. It is closed upwards under ≤T .

Example
A ⊆ N is low if A′ ≤T ∅′, and A is high if ∅′′ ≤T A′.

∅'High sets

computable sets Low sets
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Lowness, highness, domination

By the Limit Lemma, A′ ≤T ∅′ ⇐⇒ there is a computable 0,1-valued
approximation f (x , s) to the question whether x ∈ A′. That is,

A′(x) = limsf (x , s).

Highness ∅′′ ≤T A′ can be characterized via domination.

Theorem (Martin 1966)
A is high ⇐⇒ some function f ≤T A dominates each computable
function (on almost all arguments).

A set can be complex in one sense, and computationally weak in
another sense. For instance, there is a high set of minimal Turing
degree (Cooper).
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Conventions

• x , y , z, σ, τ denote strings from {0,1}∗.

• We can identify strings with numbers via a computable bijection
{0,1}∗ ↔ N (related to the binary presentation).

• The capital letters A,B,C,X ,Y ,Z denote sets of natural numbers.
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Cantor Space
Sets are identified with infinite sequences of 0,1. They form the
Cantor space 2N, which is equipped with the product topology.

• [σ] = {X : σ ≺ X} is the class of sets extending the string σ.
The [σ] form a basis of clopen classes for the topology.

• Thus, an open class (or set) has the form
⋃

σ∈C [σ].

• Such a class is computably enumerable, or Σ0
1, if one can choose

C computably enumerable.

• The complements of c.e. open classes are called Π0
1 classes.

• A Π0
1 class is given as the set of paths through a computable binary

tree.

• It is easy to construct a non-empty Π0
1 class without a computable

member.
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Basis Theorems for Π0
1 classes

Definition
A is computably dominated ⇐⇒ each function f ≤T A is dominated
by a computable function.

This lowness property is incompatible with being low in the usual
sense. In fact, the only computably dominated ∆0

2 sets are the
computable sets.
A basis theorem (for Π0

1 classes) says that each non-empty Π0
1 class

has a member with a particular property (often, a lowness property).

Theorem (Jockusch and Soare 1972)

Let P be a non-empty Π0
1 class.

P has a low member.

P has a computably dominated member.
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1 Background from computability theory

2 Descriptive string complexity

3 Randomness for infinite objects

4 Studying randomness notions via computability
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Prefix free machines

• Let {0,1}∗ be the strings over {0,1}. A machine is a partial
recursive function M : {0,1}∗ 7→ {0,1}∗.

• If M(σ) = x we say that σ is an M-description of x .

• We say that M is prefix free if no M-description is a proper initial
segment of any other M-description.
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The universal prefix free machine, and K (x)

• Let (Md)d∈N be an effective listing of all prefix free machines. We
define a universal prefix free machine U by

U(0d1σ) ' Md(σ).

• Given string x , the prefix free descriptive string complexity K (x)

is the length of a shortest U-description of x :

K (x) = min{|σ| : U(σ) = x}.
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Some facts about K

Let “≤+ denote “≤” up to a constant. (For instance, 2n + 5 ≤+ n2.)
Let |x | ∈ {0,1}∗ denote the length of a string x , written in binary.
The following bounds are proved by constructing appropriate prefix
free machines.
• For each computable function f we have

K (f (x)) ≤+ K (x).

In particular, we have the lower bound K (|x |) ≤+ K (x).
• We have the upper bound

K (x) ≤+ |x |+ K (|x |).

• Also K (|x |) ≤+ 2 log |x |, so the upper bound is not far beyond |x |.
• If K (x) ≥+ |x | we think of x as incompressible. This formalizes the

intuitive notion of randomness for strings.
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Quiz 1

(1) Can a high set be computably dominated?

(2) Is “not low”, i.e A′ 6≤T ∅′, a highness property?

(3) Define a prefix free machine showing that K (x) ≤+ |x |+ K (|x |).
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1 Background from computability theory

2 Descriptive string complexity

3 Randomness for infinite objects

4 Studying randomness notions via computability
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Degree of randomness for sequences of bits

(a) 00000000 00000000 00000000 00000000 0000. . .

(b) 10100100 01000010 00001000 00010000 0001. . .

(c) 00100100 00111111 01101010 10001000 1000 . . .

(d) 10010100 00010001 11110100 00101101 1111 . . .

(e) 11101101 01111010 10101111 11001110 1110 . . .

(a) Only zeros

(b)
∏

i 0i1

(c) π − 3 in binary

(d) Coin tossing

(e) Coin tossing
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Quantum random number generator
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Mathieu Hoyrup: random continuous functions

0 1

0 1

0 1
0 1
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Reminder: computational complexity

We have given some formal treatment of the computational complexity
aspect of a set A.

absolute complexity: the
membership of A in classes
of similar complexity, such as
lowness, or highness;

relative complexity:
comparing A to other sets via
reducibilities such as ≤T

or ≤tt.

Given set A

Randomness aspect Computational 
complexity aspect

absolute relative

Can we do the same for the randomness aspect?
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Measure

• The product measure λ on Cantor space 2N is given by

λ[σ] = 2−|σ|

for each string σ.

• If G ⊆ 2N is open then λG =
∑

σ∈B 2−|σ| where B is a prefix free set
of strings such that G =

⋃
σ∈B[σ].

• C ⊆ 2N is null if C is contained in some Borel B such that λB = 0.
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Null classes and randomness

The intuition: an object is random if it satisfies no exceptional
properties.
Here are some examples of exceptional properties of a set Y :
• Having every other bit zero:

∀i Y (2i) = 0.

• Having at least twice as many zeros as ones in the limit:

2/3 ≤ lim inf |{i < n : Y (i) = 0}|/n.

We would like to formalize “exceptional property” by “null class”.

The examples above are null classes, so they should not contain a
random set.

The problem: if we do this, no set Z is random, because {Z}
itself is a null class!
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The solution: effective null classes

• Using algorithmic tools, we introduce effective null classes, also
called tests.

• To be random in an algorithmic sense, Z merely has to avoid these
effective null classes, that is, pass those tests.
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Tests

Fact
The class C ⊆ 2N is null ⇐⇒ C ⊆

⋂
Gm for some sequence (Gm)m∈N

of open sets such that λGm → 0.

We obtain a type of effective null class (or test) by adding effectivity
restrictions to this condition characterizing null classes.

(1) Require an effective presentation of (Gm)m∈N;

(2) possibly, require fast convergence of λGm → 0.

By (1) there are only countably many effective null classes. Their union
is still a null class and contains all non-random sets in this sense. So
each effective randomness notion has measure 1.
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Martin-Löf’s randomness (1966)

Definition

• A Martin-Löf test is a uniformly computably enumerable sequence

(Gm)m∈N

of open sets in 2N such that

λGm ≤ 2−m for each m.

• A set Z is Martin-Löf random if Z passes each ML-test, in the
sense that Z is not in all of the Gm.

The previous examples (every other bit is zero/ in the limit at least
twice as many zeros as ones) are effective null classes in this sense.
So a ML-random set cannot have these properties.
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Chaitin’s halting probability

We identify coinfinite sets with real numbers in [0,1).
• Consider the halting probability of the universal prefix free

machine U,

Ω =
∑

U(σ) halts

2−|σ|.

• Note that this sum converges because U is prefix free.
• Ω is Martin-Löf random (Chaitin).
• The left cut {q ∈ Q : q < Ω} is computably enumerable.
• Ω ≡T ∅′.
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Characterization via the initial segment complexity

Given Z and n ∈ N, let Z �n denote the initial segment Z (0) . . .Z (n−1).

Schnorr’s Theorem says that Z is ML-random ⇐⇒ each initial
segment is incompressible.

Theorem (Schnorr 1973)
Z is ML-random ⇐⇒ there is b ∈ N such that ∀n K (Z �n) ≥ n − b.

Levin (1973) proved the analogous theorem for monotone string
complexity.
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A universal Martin-Löf test

Schnorr’s Theorem yields a universal ML-test:
• Let Rb = {X : ∃n [K (X �n) < n − b]}.

• Rb is uniformly c.e. open, because the relation “K (x) < r ” is Σ0
1.

• One shows that λRb ≤ 2−b.

• With this notation, Schnorr’s Theorem says that
Z is ML-random ⇐⇒ Z passes the test (Rb)b∈N.

• So, the single test (Rb)b∈N is enough!
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ML-random sets with lowness properties

• Consider the complement of R1:

{X : ∀n K (X �n) ≥ n − 1}.

This is a Π0
1 class of measure ≥ 1/2.

• By Schnorr’s Theorem, it consists entirely of ML-random sets.
• So we can apply the Jockusch-Soare basis theorems to obtain

random sets with lowness properties:

Example

There is a low ML-random set.

There is a computably dominated ML-random set.
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Schnorr randomness

Schnorr critized that Martin-Löf-randomness is too strong to be
considered algorithmic. He proposed a restricted test notion where we
know more about the tests.

• A Schnorr test is a ML-test (Gm)m∈N such that λGm is a
computable real uniformly in m.

• Z is Schnorr random if Z 6∈
⋂

m Gm for each Schnorr test (Gm)m∈N.

It suffices to consider the tests (Gm)m∈N where λGm = 2−m.
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Schnorr randoms in each high degree

Theorem (Nies, Stephan, Terwijn, 2005; Downey, Griffiths, 2005)
For each high set A there is a Schnorr random set Z ≡T A.

• Schnorr random sets satisfy all statistical criteria for randomness,
such as the law of large numbers.

• They do not satisfy all computability-theoretic criteria.
• For instance, there is a high minimal Turing degree, hence a Schnorr

random set Z of minimal degree.

If Z0 is the bits in even position, and Z1 the bits in odd position,
then both Z0,Z1 are incomputable.
Hence Z0 ≡T Z1.
Note that such a set Z is not ML-random.
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Theory of Schnorr randomness

• The theory of Schnorr randomness parallels the theory of
ML-randomness.

• This is surprising because there is no universal Schnorr test.

• We will see more parallels when we get to the lowness notions.

• The actual results are quite different.
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Characterization via the initial segment complexity

A prefix free machine M is called computable measure machine if its
halting probability ΩM =

∑
M(σ) halts 2−|σ| is a computable real number.

For instance, define M by M(0n1) = n in binary. Then ΩM = 1.

• Recall Z is Martin-Löf random ⇐⇒ for some b, ∀n K (Z �n) ≥ n − b.
• The following is an analog for Schnorr randomness. Since there is

no universal computable measure machine, we have to quantify over
all of them.

• For a prefix free machine M,

KM(x) = length of a shortest M-description of x .

Theorem (Downey, Griffiths, 2005)
Z is Schnorr random ⇐⇒ for each computable measure machine M,
for some b, ∀n KM(Z �n) ≥ n − b.
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Weak 2-randomness

One can also argue that ML-randomness is too weak.
For instance, the ML-random real Ω has a computably enumerable left
cut, and computes the halting problem. These properties may
contradict our intuition of randomness.
Recall: a ML-test is a uniformly computably enumerable sequence
(Gm)m∈N of open sets such that λGm ≤ 2−m for each m.

• If the condition “λGm ≤ 2−m for each m” is removed (and we only
retain the basic condition limmλGm = 0), we obtain a test concept
equivalent to null Π0

2 classes.
• We say that Z is weakly 2-random if Z is in no null Π0

2 class.

If Z is ∆0
2 then {Z} is a Π0

2 class. Thus, no ∆0
2 set is weakly 2-random.

This rules out Ω as weakly 2-random.
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2-randomness

Finally, Z is called 2-random if Z is ML-random relative to ∅′.
We have the proper implications

2-random ⇒ weakly 2-random ⇒ Martin-Löf ⇒ Schnorr.

2-randomness can be characterized by strong incompressibility of
infinitely many initial segments.
Let C(x) denote the plain Kolmogorov complexity of a string x . Note
that C(x) ≤+ |x |.

Theorem
Z is 2-random
⇐⇒ C(Z �n) =+ n for infinitely many n (N,S,T, 2005; Miller, 2005)
⇐⇒ K (Z �n) =+ n + K (n) for infinitely many n (Miller, 2008).

No initial segment characterization is known for weak 2-randomness.
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1 Background from computability theory

2 Descriptive string complexity

3 Randomness for infinite objects

4 Studying randomness notions via computability
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Randomness enhancement via lowness properties
A randomness enhancement result has the form

Weaker randomness notion & lowness property ⇒
stronger randomness notion.

Intuitively speaking, if Z is random in the weaker sense, then being
computationally less complex implies being more random.

Randomness notion

computationally 
less  complex

implies
more random
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Enhancing Schnorr randomness

Theorem (Nies, Stephan, Terwijn 2005)
Let Z be Schnorr random and not high. Then Z is already ML-random.

Recall that Z is computably dominated ⇐⇒ each function f ≤T Z is
dominated by a computable function.

Theorem (Nies, Stephan, Terwijn 2005; Yu Liang)
Let Z be Schnorr random and computably dominated. Then Z is
already weakly 2-random.

Proof. Suppose Z ∈
⋂

m Gm where (Gm)m∈N is uniformly c.e. and
λGm → 0. Let Gm,s be the clopen set approximating Gm at stage s. Let

f (m) the least s such that Z ∈ Gm,s.

Then f ≤T Z , so there is a computable function h dominating f .
Now Z fails the Schnorr test (Gm,h(m))m∈N. �
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Enhancing Martin-Löf randomness
Here, the randomness notion stronger than ML-randomness actually
implies the lowness property. So we have characterization :
Martin-Löf randomness =⇒

lowness property ⇐⇒ stronger randomness notion.

Theorem (Hirschfeldt, Miller 2006)

Let Z be ML-random. Then every ∆0
2 set Turing below Z is computable

⇐⇒ Z is weakly 2-random

“⇐” extends the fact that a weakly 2-random is not ∆0
2.

“⇒” relies on the cost function method of Lecture 2. �

We say that Z is low for Ω if Chaitin’s Ω is ML-random relative to Z .

Theorem (Nies, Stephan, Terwijn 2005)
Let Z be ML-random. Then
Z is low for Ω ⇐⇒ Z is 2-random.

This uses a theorem of van Lambalgen on relative ML-randomness.
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Summary of Part 1:
(1) the computational complexity aspect of sets

• The absolute computational complexity of a set is given by
membership in classes, such as low, high, computably dominated.

• Lowness properties don’t form a hierarchy; they can exclude each
other (outside the computable sets).

• The relative computational complexity is given by reducibilities such
as ≤T .

∅'High sets

computable sets Low sets
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Summary of Part 1:
(2) the randomness aspect of sets

• The intuitive notion of randomness of a set corresponds to a
hierarchy of mathematical randomness notions.

2-random ⇒ weak 2-random ⇒ Martin-Löf ⇒ Schnorr

• The central notion is Martin-Löf-randomness.
• Schnorr and weak 2 randomness can be seen as variants.

2-randomness is the relativization to ∅′.
• All the notions except weak 2-randomness have been characterized

by incompressibility of initial segments.
• By and large, if a set already satisfies a randomness notion, being

computationally less complex implies being more random.
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Quiz 2

(1) Which one holds? Schnorr’s Theorem is about
I Schnorr randomness
I Martin-Löf randomness
I cats.

(2) Give an example of a 2-random set. Give examples showing that
the implications are proper:

2-random ⇒ weak 2-random ⇒ Martin-Löf ⇒ Schnorr.

Note here that no 2-random set is computably dominated (Kurtz,
1981).

(3) Suppose A is computable. If Z satisfies a randomness notion,
show that Z∆A satisfies the same notion.
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Part II

Lowness properties within the ∆0
2 sets
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The plan for Part 2

• We introduce lowness properties within the ∆0
2 sets.

• We investigate them using randomness notions.

• We introduce the K -trivial sets which are far from random.

• The cost function method is used to build ∆0
2 sets with lowness

properties.
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Lowness paradigms

A lowness property specifies a sense in which a set is close to
computable. There are several paradigms:

1. Weak as an oracle.
Examples: lowness A′ ≤T ∅′; being computably dominated (each
function f ≤T A is dominated by a computable function).

2. Easy to compute. The class of oracles computing A is large in
some sense.
We’ll see examples shortly, such as sets computed by random
oracles.

3. For a ∆0
2 set: Approximable with a small total of mind changes.
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How low is the property A′ ≤T ∅′?

Definition
The coinfinite computably enumerable set A is called simple if it has a
non-empty intersection with each infinite c.e. set.

Such a set is incomputable as its complement is not c.e.

Some existence results for low sets:

(1) The Low Basis Theorem (Jockusch and Soare 1972).

(2) There is a low simple set (1957). This provides a solution to Post’s
1944 problem whether some c.e. set is neither computable nor
Turing complete.

(3) There are disjoint low c.e. sets A0,A1 such that ∅′ = A0 ∪ A1.
(Sacks Splitting Theorem,1962.)

By (3), lowness does not necessarily mean very close to computable.
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Superlowness

Definition (Bickford and Mills 1982; Mohrherr 1986)
A is called superlow if A′ ≤tt ∅′. That is, one can approximate A′(x)

with a computably bounded number of mind changes.

Recall the existence results for lowness:

(1) Low Basis Theorem.

(2) There is a low simple set.

(3) There are disjoint low c.e. sets A0,A1 such that ∅′ = A0 ∪ A1.

• The proofs of (1) and (2) actually yield superlowness.
• In contrast, (3) fails for superlowness.
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Building a low simple set A
To make A simple we meet the simplicity requirements

Se : |We| = ∞⇒ A ∩We 6= ∅.

To make A low, we meet the lowness requirements

Li : JA(i) is defined at infinitely many stages ⇒ JA(i) converges.

Let We[s] be the finite set of numbers that have entered We by stage s.

Constraint construction I
At stage s, if Se is not satisfied yet,
look for an x , 2e ≤ x < s, such that x ∈ We[s] and

Constraint:
for each i ≤ e, if the computation JA(i) is defined,
then x > q for each query q to the oracle A asked in
that computation.

If so, put x into A. (This satisfies Se.)
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Injury

• Injury to a lowness requirement Li at a stage s means: JA(i) is
defined at s, and A(q) changes, for an oracle query q in that
computation.

• The construction for building a low simple set, and Sacks Splitting,
have injury to lowness requirements.

• In the construction of a low simple set, injury to Li is caused by
requirements Se, e < i , enumerating numbers into A.
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The amount of injury

• To show lowness, at stage s we guess that

i ∈ A′ if JA(i) is defined at this stage.

• The priority ordering of requirements is L0, S0, L1, S1, . . ..
• Since Se acts at most once, Li can be injured at most i times. Hence

the guess goes wrong at most i times, and A is in fact superlow.
• In Sacks Splitting, the number of injuries to lowness requirements is

not computably bounded. In fact we know that the sets cannot both
be superlow.

• Our intuition: when we build a c.e. set, the less injury we have, the
closer to computable will the set be. The next theorem gives further
evidence for this principle:

• we use ML-randomness to provide a solution to Post’s problem
without injury. We will see later on that the resulting set A is much
closer to being computable than the previous examples.
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Kučera’s 1985 Theorem (in fact, a special case)

Theorem
Let Y be ∆0

2 and ML-random. Then there is a simple set A ≤T Y .

Now let Y be the bits of Ω in the even positions. Then an easy direct
proof shows that Y is low and ML-random (N,S, T 2005). Therefore:

Corollary
We can build without injury a low simple set A.

Proof of the theorem: A Solovay test G is given by an effective
enumeration of strings σ0, σ1, . . ., such that∑

i 2−|σi | <∞.

If Y is ML-random, then for almost all i , σi 6� Y .
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Proof of Kučera’s theorem
As before, we meet the simplicity requirements

Se : |We| = ∞⇒ A ∩We 6= ∅.

Constraint construction II
At stage s, if Se is not satisfied yet,
look for an x , 2e ≤ x < s, such that x ∈ We[s] and

(Constraint) ∀t [x < t < s → Yt �e= Ys �e].

If so, put x into A. Put the string σ = Ys �e into Solovay test G.

x

x enters W  and AeY |e is stable

s
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x

x enters W  and AeY |e is stable

st
Yt |x = Y |x

Each Se is met, so A is simple.
G is a Solovay test, as its total is at most

∑
e 2−e.

To see that A ≤T Y , choose s0 such that σ 6� Y for any σ
enumerated into G after stage s0.
Given an input x ≥ s0, using Y as an oracle, compute t > x such
that Yt �x= Y �x . Then x ∈ A ↔ x ∈ At .
For, if we put x into A at a stage s > t for the sake of Se, then
x > e, so we list σ in G where σ = Ys �e= Y �e;
this contradicts the fact that σ 6� Y .
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K -trivial ⇐⇒ low for ML-randomness

Recall: K (x) = length of a shortest prefix free description of string x .

A set A is K -trivial if each initial segment of A has prefix free
complexity no greater than the one of its length. That is, there is
b ∈ N such that, for each n (written in binary),

K (A�n) ≤ K (n) + b

(Chaitin, 1975).

A is low for ML-randomness if each ML-random set is already
ML-random relative to A (Zambella, 1990).

We will see that these two concepts are equivalent.
The harder implication is K -trivial ⇒ low for ML-randomness. It will be
sketched in Lecture 3 (hopefully).
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More concepts

Low for K

Low for ML-randomness

Base for ML-randomness

Further lowness properties have been introduced:

Base for ML-randomness (Kučera, APAL 1993)

Lowness for K (Muchnik jr., in a Moscow seminar, 1999).

Each time, the existence of a simple set with the property was shown.

André Nies The University of Auckland () Applying randomness to computability ASL meeting, Sofia, 2009 67 / 143



Lowness for K

• In general, enhancing the computational power of the universal
machine by an oracle A should decrease K (y).

• A is low for K if this is not so. In other words,

∀y K (y) ≤+ K A(y).

• Exercise in next quiz: low for K ⇒ K -trivial.

Theorem (Muchnik, 1999)
Some simple set is low for K .

Fact

If A is low for K then A is generalized low, namely, A′ ≤T A⊕ ∅′.
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Lowness for ML-randomness

Let MLR denote the class of Martin-Löf-random sets.

Because an oracle A increases the power of tests, MLRA ⊆ MLR.

A is low for ML-randomness if MLRA = MLR (Zambella, 1990).

Theorem (Kucera and Terwijn, 1997)
Some simple set is low for ML-randomness.
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An easy implication

Fact
Lowness for K implies lowness for ML-randomness.

Proof. Schnorr’s Theorem relative to A states:
Z is Martin-Löf random in A ⇐⇒ for some b, ∀n K A(Z �n) ≥ n − b.

Thus,

MLR can be characterized in terms of K , and

MLRA can be characterized in terms of K A.

So, if A is low for K , i.e. K =+ K A, then MLR = MLRA. �
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Oracles computing an incomputable set

• For each incomputable A, the class of oracles computing A is small
in the absolute sense, namely, a null class (de Leeuw et al. 1956;
Sacks 1963).

• However, this class always contains a ML-random set (Kučera-Gács
Theorem).

• When is this class large enough to contain a set that is even
ML-random relative to A itself? (This would be the Lowness
Paradigm “computed-by-many”.)
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Bases for ML-randomness

We will call such a set A a base for ML-randomness:

A ≤T Z for some Z ∈ MLRA.

They were studied by Kučera (1993).

• If A is low for ML-randomness then A is a base for ML-randomness.
• For, there is a ML-random Z such that A ≤T Z .
• Then Z is ML-random relative to A.
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Two theorems

(1) There is a simple base for ML-randomness (Kučera, 1993)

(2) Each base for ML-randomness is low for K . (Hirschfeldt, N,
Stephan, 2007)

• We have already seen the easy
implications

low for K ⇒ low for ML ⇒ base for ML.

• Then, by Theorem (2), all three
classes are the same.

• Later on we will see that this common
class is a rather small subclass of the
superlow sets.

Low for K

Low for ML

Base for ML

easy

easy

Thm (2)
easy

K-trivial
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(1) There is a simple base for ML-randomness

We combine two facts. (The first was mentioned earlier.)

Kučera’s 1985 Theorem
Let Y be ∆0

2 and
ML-random. Then there is
a simple set A ≤T Y .

Lemma (H, N, S 2007)
Suppose Y <T ∅′ is ML-random and
A ≤T Y is c.e. Then Y is already
ML-random relative to A.

• It is now sufficient to pick as Y in Kučera’s 1985 Theorem a low set
that is ML-random.

• Then A is a base for ML-randomness via Y .
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(2) Each base for ML-randomness is low for K

Theorem (Hirschfeldt, N, Stephan 2007)
Each base for Martin-Löf-randomness is low for K .

• Recall that less injury in constructions produces sets that are closer
to computable.

• The theorem shows now that the set Kučera built for his injury free
solution to Post’s problem is indeed very close to computable.
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Intuition on K -triviality

Recall: a set A is K -trivial if, for some b ∈ N

∀n K (A�n) ≤ K (n) + b,

namely, the K complexity of all the initial segments is minimal.
This notion is opposite to ML-randomness:

Z is ML-random iff all K (Z �n) are near the upper bound n + K (n);

Z is K -trivial if the K (Z �n) have the minimal possible value K (n)

(all within constants).
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Counting theorems of Chaitin, 1976

Counting Theorem for STRINGS

For each b, at most O(2b) strings of length n satisfy K (x) ≤ K (n) + b.

Counting Theorem for SETS

(i) For each b, at most O(2b) sets are K -trivial with constant b.
(ii) Each K -trivial set is ∆0

2.

For the proof of the second theorem, note that
A is K -trivial via the constant b ⇐⇒
A is a path on the ∆0

2 tree of strings z such that

K (x) ≤ K (|x |) + b for each x � z.
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Closure under effective disjoint union
A⊕ B is the set which is A on the even bit positions and B on the odd
positions.

The counting theorem for strings is used to prove:

Theorem (Downey, H,N , Stephan 2003)
If A and B are K -trivial via b, then A⊕ B is K -trivial via 3b + O(1).

• Idea: it is sufficient to describe each A⊕B �2n with K (n) + 3b + O(1)

bits.
• We have to describe n only once; if we have a shortest description

we also know its length r = K (n);
• The set of strings x of length n such that K (x) ≤ r + b has size

O(2b);
• so, we only need b + O(1) bits each to describe the positions of A�n

and B �n in its enumeration.
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Application to Scott classes

Definition
S ⊆ 2N is a Scott class if S is closed downwards under Turing
reducibility, closed under joins, and each infinite binary tree T ∈ S has
an infinite path in S.

Scott classes are the standard systems of models of Peano arithmetic.
They also occur in reverse mathematics as the ω-models of WKL0.

Question of H. Friedman and
McAllister
Can the Turing degrees of a Scott
class look like this?
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No! Scott classes are rich

Theorem (Kučera, Slaman, 2007)
Let S be a Scott class. Then, for each
incomputable X ∈ S, there is Y ∈ S
such that Y ,X are Turing
incomparable.

Proof.

• Since the complement of RX
1 is a Π0

1 class relative X , we can choose
Y ∈ S that is ML-random in X .

• Clearly Y 6≤T X .
• If also X 6≤T Y we are done.
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Scott classes are rich

Theorem of Kučera, Slaman, 2007
Let S be a Scott class. Then, for each
incomputable X ∈ S, there is Y ∈ S
such that Y ,X are Turing
incomparable.

Proof continued
• Now assume X ≤T Y . Then X is a base for ML-randomness, hence

low for K , and hence K -trivial.
• In that case, build an infinite computable tree T such that no set

Z ∈ Paths(T ) is K -trivial. Then Z 6≤T X as the K -trivials are closed
downward under ≤T (we show this later).

• Further, ensure that Z 6≥T X for each Z ∈ Paths(T ). Since X is ∆0
2,

one can apply the Sacks preservation strategy here.
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Quiz 3

(1) Why is there a low c.e. set that is not superlow?

(2) Show that each ∆0
2 set that is low for Ω is already low for

ML-randomness.

(3) Verify that each set that is low for K is K -trivial.

(4) Weak truth table reducibility ≤wtt is Turing reducibility with a
computable bound on the maximal oracle query. Show that the
K -trivial sets are closed downward under ≤wtt.

(5) How do we define a Scott class consisting only of low sets?
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Cost functions: the story

• The constructions of c.e. sets with strong lowness properties looked
all very similar: building a set that is low for ML-randomness, a
K -trivial, and even a simple set below a given ∆0

2 ML-random.

• The cost function method arose to uniformize these constructions.

• Nowadays cost functions are becoming the primary tool to
understand the class of K -trivials and its subclasses.

• They can be used to measure the total of changes in a computable
approximation of a ∆0

2 set (taken over all numbers).

• Lowness Paradigm 3:
a ∆0

2 set is close to computable if it can be approximated with a
small total amount of changes.
This is a kind-of formal version of our intuition that less injury to
requirements means closer to computable.
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Definition of cost functions

Definition
A cost function is a computable function

c : N× N → {x ∈ Q : x ≥ 0}.

• When building a computable approximation of a ∆0
2 set A, we view

c(x , s) as the cost of changing A(x) at stage s.

• We want to make the total cost of changes, taken over all x , small.
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Obeying a cost function

Recall the Limit Lemma: A is ∆0
2 iff A(x) = lims As(x) for some

computable approximation (As)s∈N.

Definition

The computable approximation (As)s∈N obeys a cost function c if

∞ >
∑

x ,s c(x , s) [[x < s & x is least s.t. As−1(x) 6= As(x)]].

We write A |= c (A obeys c) if some computable approximation of A
obeys c.

Usually we use this to construct some auxiliary object of finite “weight”,
such as a bounded request set (aka Kraft-Chaitin set), or a Solovay
test.
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Basic existence theorem
We say that a cost function c satisfies the limit condition if

limx supsc(x , s) = 0.

Theorem (Kučera, Terwijn 1999; D,H,N,S 2003; . . .)

If a cost function c satisfies the limit condition, then some simple set A
obeys c.

As before we meet the Se : |We| = ∞⇒ A ∩We 6= ∅.

Constraint construction III
At stage s, if Se is not satisfied yet,
look for an x , 2e ≤ x < s, such that x ∈ We[s] and

(Constraint) c(x , s) ≤ 2−e.

If so, put x into A.
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Does this construction have injury?

NO. One can view this construction as injury-free because c is given in
advance.

In a more complicated variant, for instance the direct construction of a
set that is low for K (Muchnik), the cost function c is only defined
during the construction (i.e., c(x , s) depends on As−1).
In such a case c can be used to emulate at stage s the restraint of
individual lowness requirements (which also depends on As−1). This is
like having injury.
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A cost function cK such that A |= c ⇒ A is K -trivial

x

A i

A

• Recall: a set A is K -trivial if ∃b ∈ N
∀n K (A�n) ≤ K (n) + b.

• To ensure this, we build a prefix free
machine M; if A(x) changes then, for all i
such that s ≥ i > x , the initial segment A�i

needs a new M-description.

• Let cK(x , s) =
∑s

i=x+1 2−Ks(i)

(Ks(x) is the value at stage s)
• If A(x) changes at stage s then the measure

of the new M descriptions is c(x , s).
• So, if A obeys cK with total cost ≤ 1 we can

build the machine.
• If the total cost is ≤ 2d , we make the

M-descriptions longer by d .
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Proving Kučera’s Theorem via a cost function

Kučera’s 1986 Theorem
Suppose Y is a ML-random ∆0

2 set. Then some simple set A is Turing
below Y .

The proof can be phrased in the language of cost functions. Define cY

such that, if Y �e is stable from x to s, then cY (x , s) < 2−e.

x

 

Y |e is stable

s

c (x,s) < 2 -eY
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Fact (Greenberg and N; Hirschfeldt and Miller)

If the ∆0
2 set A obeys cY , then A ≤T Y with use function bounded by

the identity.

Since Y is ∆0
2, the cost function cY satisfies the limit condition.

Hence some simple A obeys cY . So A ≤T Y .
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Summary of Lecture 2

• We have studied lowness properties of ∆0
2 sets A via randomness

concepts.
• The usual lowness A′ ≤T ∅′ turns out to be a rather large class,

which has interesting subclasses.
• In building a c.e. set, the less injury, the closer the set ends up to

being computable.
• Kučera’s injury-free construction produces a base for

ML-randomness.
• Bases for ML-randomness coincide with the sets that are low for K ,

and the sets that are low for ML-randomness.
• K triviality is a property saying “far from random”. If a set is low for K

then it is K -trivial. The K -trivials are closed under ⊕.
• We introduced cost functions and used them to provide a direct

construction of a simple K -trivial set, and to reprove Kučera’s
theorem.
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Part III

Set theory, traceability, decanters
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9 Some connections with effective descriptive set theory
Randomness via effective descriptive set theory
Randomness relative to other measures on 2N, and never
continuously random sets

10 Traceability
Characterizing lowness for Schnorr randomness via traceability
Schnorr randomness and computable measure machines
Strong jump traceability

11 Each K -trivial is low for K
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A version of ML-randomness based on Π1
1 sets

• Π1
1 sets of numbers are a high-level analog of c.e. sets, where the

steps of an effective enumeration are recursive ordinals.
• Hyperarithmetical sets are the higher analog of computable sets.

X is hyperarithmetical ⇐⇒
both X ,N− X are Π1

1 ⇐⇒
X ≤T ∅(α) for some computable ordinal α.

Hjorth and Nies (2005) have studied the analogs, based on Π1
1-sets, of:

string complexity K (written K ), and ML-randomness.

The analog of Schnorr’s Theorem holds. (The proof takes extra
effort because of stages that are limit ordinals.)

Some Π1
1 set of numbers is K -trivial and not hyperarithmetical.

André Nies The University of Auckland () Applying randomness to computability ASL meeting, Sofia, 2009 97 / 143



The lowness properties are different now

Theorem (Hjorth and Nies, 2005)

If A is low for Π1
1-ML-randomness, then A is already hyperarithmetical.

• First we show that ωA
1 = ωCK

1 .
• This is used to prove that A is in fact K -trivial at some η < ωCK

1 ,
namely for some b

∀n K η(A�n) ≤ K η(n) + b.

(Here K α(x) is the value at stage α.)
• Then A is hyperarithmetical, since the collection of Z which are

K -trivial at η with constant b form a hyperarithmetical tree of width
O(2b).

• This is similar to Chaitin’s argument to show each K -trivial is ∆0
2.
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Randomness relative to a computable measure

Definition
A measure µ on 2N is called continuous if µ{X} = 0 for each point X .

• Let µ be a continuous measure on 2N such that its representation,
namely the function [σ] → µ([σ]), is computable.

• A typical example would be given by tossing a “biased coin”, where
the outcome 1 (heads) has probability 2/3.

• We have a notion of µ-Martin-Löf-test (Gm)m∈N:

- the open set Gm is uniformly c.e.
- µGm ≤ 2−m for each m.
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Getting back to the uniform measure within the same
truth-table degree

By the following, changing the measure will make little difference for
the interaction of ML-randomness with computability.

Theorem (Demuth)
Let µ be a computable continuous measure.
Let Z be ML-random with respect to µ.
Then there is Ẑ ≡tt Z such that Ẑ is ML-random in the usual sense.

To prove this, one defines a total invertible Turing functional Γ such that
µ is the preimage of the uniform measure λ under Γ. Now let Ẑ = Γ(Z ).
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“Far from random” in a strong sense:
Never Continuously Random

• We consider continuous measures µ without the computability
restriction.

• In this more general case, in a µ-Martin-Löf test (Gm)m∈N, the open
set Gm is uniformly c.e. in the representation of µ. We now require
that µGm ≤ 2−m for each m.

• (Reimann and Slaman) Let NCR be the class of sets that are not
random with respect to any continuous µ. That is, for each
continuous µ the set fails some µ=Martin-Löf test.
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NCR sets: existence and limitations

If P is a countable Π0
1 class, then µ(P) = 0 for any continuous µ.

This is used to prove:

Fact (Kjos and Montalban 2005)

Each member of a countable Π0
1 class is never continuously random.

In particular, ∅′ is NCR. More generally, for each computable ordinal α,
the iterated jump ∅(α) is NCR.
If a set is far from random in this sense, it is hyperarithmetical by the
following surprising result.

Theorem (Reimann and Slaman,2006)
Each never continuously random set is hyperarithmetical.
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Intuition on traceability

The idea of traceability: the set A is computationally weak because

for certain functions ψ computed with oracle A, the possible
values ψ(n) lie in a finite set Tn of small size.

The sets Tn are obtained effectively from n (not using A as an
oracle).

Traces for functions ω → ω also appear in combinatorial set theory,
especially forcing results related to cardinal characteristics. They are
called slaloms there, and were introduced by Bartoszynski.
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Computable traces

An order function is a function h : N → N that is computable,
nondecreasing, and unbounded.
Example: h(n) = blog2 nc.

Definition
A computable trace with bound h is a sequence (Tn)n∈N of
non-empty sets such that

• |Tn| ≤ h(n) for each n
• given input n, one can compute (a strong index for) the finite set Tn.

(Tn)n∈N is a trace for the function f : N → N if f (n) ∈ Tn for each n.
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Computable traceability

The following says A is computationally weak because it only
computes functions with few possible values.

Definition
We say that A is computably traceable if there is a fixed h such that
each function f ≤T A has a computable trace with bound h.

• Terwijn and Zambella showed that the actual choice of order
function h is irrelevant (as long as it is fixed). This uses that only
total functions are traced.

• Each computably traceable set is computably dominated (see next
Quiz).

• Terwijn and Zambella proved that there are continuum many
computably traceable sets.
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Lowness for Schnorr randomness

A is low for Schnorr randomness if each Schnorr random set is
already Schnorr random relative to A.

Theorem (Terwijn, Zambella, 2001; Kjos-Hanssen, Nies,
Stephan, 2005)
A is computably traceable ⇐⇒ A is low for Schnorr randomness.

Terwijn, Zambella characterized lowness for Schnorr tests by
computable traceability;
Kjos, N, Stephan extended the result to lowness for the randomness
notion.
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Computable measure machines, again

Recall that for a prefix free machine M,

KM(x) = length of a shortest M-description of x .

Recall also that a prefix free machine M is called computable
measure machine if its halting probability ΩM =

∑
M(σ)↓ 2−|σ| is a

computable real number.
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Lowness for computable measure machines

The following is a “Schnorr analog” of being low for K . The definition is
more complicated here because there is no universal computable
measure machine.

Definition
A is low for computable measure machines if for each computable
measure machines MA relative to A, there is a computable measure
machines N such that

∀x KN(x) ≤+ KMA(x).

Theorem (Downey, Greenberg, Mihailovich, Nies 2005)
A is computably traceable ⇐⇒ A is low for computable measure
machines.
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Comparing implications: Martin-Löf vs. Schnorr

Low for K

Low for ML

Base for ML

N, Hirschfeldt, 
Stephan 2005 

Low for c.m.m.

Low for Schnorr

Base for Schnorr
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Strongly jump traceable sets

• A computably enumerable trace with bound h is a uniformly
computably enumerable sequence (Tx)x∈N such that |Tx | ≤ h(x) for
each x .

• Recall that JA(x) is the value on input x of a universal A-partial
computable function.

• The set A is called strongly jump traceable if for each order
function h, there is a c.e. trace (Tx)x∈N with bound h such that,
whenever JA(x) is defined, we have JA(x) ∈ Tx . This notion was
introduced by Figueira, N, Stephan 2004.

• Unlike the case of computable traceability, here it matters that we
require each order function h as a bound for some trace.
Jump traceability, where one merely requires that the tracing
works for some bound h, is a much weaker notion.
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Comparing K -trivial and SJT within the c.e. sets
The c.e. strongly jump traceable sets form a proper subclass of the
c.e. K -trivial sets by Cholak, Downey, Greenberg 2006.

• Both classes are closed downward under ≤T .
• Both classes are closed under ⊕.
• The c.e. K -trivials have a Σ0

3 index set;
the c.e. SJTs have a Π0

4-complete index set (Selwyn Ng).

K-trivial

SJT

Computable

Superlow

c.e. sets
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Theorem (Figueira, N, Stephan 2004)
There is a simple strongly jump traceable set.

• Recall the construction of a low simple set: a simplicity requirement
Se can only injure a lowness requirement Li if e < i .

• This yields a trace (Ti)i∈N with bound i + 1: the computation JA(i)
becomes undefined for at most i times; let Ti be the set of its values
during the construction.

• To obtain smaller traces, we allow much less injury to the Li .
• Let h be a function that is computably approximable from above,

unbounded, and dominated by all order functions g.
• At stage s, requirement Se can only injure Li if hs(e) < i .
• Then, for each order function g, there is a trace with bound g for JA.
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Do we need the injury at all?

• Can we build a strongly jump traceable c.e. set without any lowness
requirements and injury to them?

• Given the SJTs are even closer to computable than the K -trivials,
we would expect so.

• By definition, the SJTs are weak as oracles. To answer the question,
we need to characterize the SJT’s via the “few-changes”, and via the
“computed-by-many” lowness paradigms.
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SJT’s and the “few-changes” paradigm

Recall: a cost function is a computable function
c : N× N → {x ∈ Q : x ≥ 0}.
• We say c is monotonic if c(x , s) is nonincreasing in x and

nondecreasing in s.
• A monotonic cost function c is benign if there is a computable

bound g(n) on the length of any sequence x0 < x1 < . . . such that
c(xi , xi+1) ≥ 2−n for each i .

• For instance, the cost function for K -triviality is benign via g(n) = 2n.

Theorem (Greenberg and Nies, to appear)
Let A be c.e. Then
A is strongly jump traceable ⇐⇒ A obeys each benign cost function.

In particular, SJT implies K -trivial for c.e. sets (C,D,G 2006).

André Nies The University of Auckland () Applying randomness to computability ASL meeting, Sofia, 2009 119 / 143



Quiz 4

(1) Show that computably traceable ⇒ computably dominated.

(2) Show the implication is proper.

(3) Show that the standard cost function cK is benign.
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SJT’s and the “computed-by-many” paradigm

• Recall that Y is ω-c.e. if Y is ∆0
2 with a computably bounded number

of mind changes.
• It is easy to obtain a ML-random ω-c.e. set: for instance Chaitin’s

number Ω, or a superlow ML-random.
• The following theorem says that a c.e. set A is strongly jump

traceable iff it is computed by many ML-random oracles.

Theorem (Greenberg, Hirschfeldt and Nies, to appear)
Let A be c.e. Then A is strongly jump traceable
⇐⇒ A is Turing below each ω-c.e. ML-random set.

“⇒” follows from the previous result: if Y is ω-c.e. then its associated
cost function cY is benign. Since A |= cY and Y is ML-random, we
obtain A ≤T Y .
“⇐” is harder.
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Lower bounds for null Σ0
3 classes of random sets

Theorem (Hirschfeldt/Miller)

For each null Σ0
3 class H of ML-random sets, there is a simple set A

such that A ≤T Y for each Y ∈ H.

• If H consists of a single ML-random ∆0
2 set we have Kučera’s 1986

Theorem.
• The general theorem is proved by defining a cost function cH with

the limit condition.
• Whenever a c.e. set A obeys cH, then A ≤T Y for each Y ∈ H.
• Recall that some simple set A obeys cH. �

Building an SJT without injury
• Now let H be the countable Σ0

3 class of ω-c.e. ML-randoms.
• The simple lower bound A must be SJT. It was constructed without

injury. So we have built an SJT without injury.
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SJT’s and randomness

Recall that Z is superlow if Z ′ ≤tt ∅′. Dually, we say that Z is
superhigh if ∅′′ ≤tt Z ′.

A random set can be superlow (low basis theorem). It can also be
superhigh but Turing incomplete (Kučera coding).

Via randomness we can characterize the c.e. strongly jump traceable
sets in various ways.

Theorem (Greenberg, Hirschfeldt and Nies, to appear)
A c.e. set A is strongly jump traceable
⇐⇒ A is Turing below each superlow ML-random set
⇐⇒ A is Turing below each superhigh ML-random set .
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Comparing K -trivial and SJT sets, again

• Both classes have characterizations via all three lowness paradigms
(for SJT sets, so far this only works in the c.e. case).

• The K -trivials form the smallest known subclass of the ∆0
2 sets we

can get to via a “low-for-something” definition.

• It is a persistent open question whether each K -trivial is below a
Turing incomplete ML-random set. (Informally, we don’t know
whether Kučera’s injury free solution to Post’s problem is equivalent
to building a K -trivial.)

• In contrast, each c.e. SJT is below each superlow ML-random.

• This suggests that SJT is a very small subclass of the K -trivials.
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Lowness paradigms for K -trivial and SJT

Let H♦ = the c.e. sets A Turing below each ML-random set in H.

Few Weak as Computed by
changes: an oracle: many oracles:

K -trivial obeying the low for K ; Base for ML-
standard cost low for ML-rd; randomness
function cK low for weak 2-rd;

strongly for c.e. sets: the very for c.e. sets:
jump- obeying all definition (ω-c.e.)♦;
traceable benign cost superlow♦;

functions superhigh♦;
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Remaining implication: K -triviality ⇒ lowness for K

Theorem
Each K -trivial set is low for K .

Low for K

Low for ML

Base for ML

easy

easy

very hard;
non-uniform

 K-trivial

easyharder

This extends the result of D,H,N,S (2003) that K -trivials are Turing
incomplete. The theorem was obtained by Hirschfeldt and Nies (2005), via a
modification of Nies’ previous result that the K -trivial sets are closed
downward under ≤T .
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The Machine Existence Theorem

We use this tool:

A c.e. set L ⊆ N× {0,1}∗ is a bounded request set if

1 ≥
∑

r ,y 2−r [[〈r , y〉 ∈ L]].

From a bounded request set L, one can obtain a prefix free
machine M such that

〈r , y〉 ∈ L ⇒ M(σ) = y for some σ such that |σ| = r .
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wtt-incompleteness

The downward closure of the class K of K -trivials under ≤wtt was an
exercise in Quiz 3. Since the wtt-complete set Ω is not K –trivial, no
K –trivial set A satisfies ∅′ ≤wtt A. We first give a direct proof of this.
Suppose ∅′ ≤wtt A for K -trivial A.

We build a c.e. set B, and by the Recursion Theorem we can
assume we are given a total wtt-reduction Γ such that B = ΓA,
whose use is bounded by a computable function g.

We build a bounded request set L. Thus we enumerate requests
〈r ,n〉 and have to ensure

∑
r 2−r is at most 1. By the recursion

theorem, we may assume the coding constant d for L is given in
advance. Then, putting 〈r ,n〉 into L causes K (n) ≤ r + d and
hence K (A�n) ≤ r + b + d , where b is the triviality constant.
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The number of levels

The construction has k levels, where

k = 2b+d+1

Let n = g(k) (the use bound). We wait till ΓA(k) converges, and
put the single request 〈r ,n〉 into L, where r = 1. Our total
investment is 1/2.

Each time the “opponent” has a description σ of length
≤ r + b + d such that U(σ) = A�n , we force A�n to change, by
putting into B the largest number ≤ k which is not yet in B.

If we carry out k + 1 such A changes, then the opponent’s total
measure of descriptions σ is

(k + 1)2−(1+b+d) > 1,

contradiction.
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Turing-incompleteness

Consider the more general result that K -trivial sets are
T-incomplete (Downey, Hirschfeldt, N, Stephan, 2003). There is no
computable bound on the use of ΓA(k).

The problem now is that the opponent might, before giving a
description of As �n, move this use beyond n. This deprives us of
the possibility to cause further changes of toA�n.

The solution is to carry out many attempts in parallel, based on
computations ΓA(m) for different m.

Each time the use of such a computation changes, the attempt is
cancelled. What we placed in L for this attempt now becomes
garbage. We have to ensure that the weight of the garbage does
not build up too much, otherwise L is not a bounded request set.
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More details: j-sets

The following is a way to keep track of the number of times the
opponent had to give new descriptions of strings As �n.
Technical detail: we only consider stages (italics) at which A looks
K -trivial with constant b up to the previous stage.

• At stage t , a finite set E is a j-set if for each n ∈ E

first we put a request 〈rn,n〉 into L, and then
for j times at stages s < t the opponent had to give new
descriptions of As �n of length rn + b + d .

• A c.e. set with an enumeration E =
⋃

Et is a j-set if Et is a j-set at
each stage t .
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The weight of a k -set

The weight of a set E ⊆ N is
∑

2−rn [[n ∈ E ]].

Fact
If the c.e. set E is a k-set, k = 2b+d+1 as defined above, then the
weight of E is at most 1/2.

The reason for this: k times the opponent has to match
our description of n, which has length rn, by
a description of a string As �n that is by at most b + d longer.
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Procedures

Assume A is K -trivial and Turing complete. As in the wtt-case, we
attempt to build a k -set Fk of weight > 1/2 to reach a contradiction.

• Procedure Pj ( 2 ≤ j ≤ k ) enumerates a j-set Fj .
• The construction begins by calling Pk , which calls Pk−1 many times,

and so on down to P2, which enumerates L (and F2).

Each procedure Pj has rational parameters q, β ∈ [0,1].

The goal q is the weight it wants Fj to reach.

The garbage quota β is how much garbage it can produce
(details on garbage later).

When a procedure reaches its goal it returns.
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Decanter model

• We visualize this construction by a machine consisting of decanters

Fk ,Fk−1, . . . ,F0.

At any stage Fj is a j set. Fj−1 can be emptied into Fj .
• The procedure Pj(q, β) wants Fj to reach a weight of q.

It fills Fj−1 up to q and then returns, by emptying it into Fj .
The emptying is done by enumerating mj into B and hence adding
one more A-change.

• The emptying device is a hook (the γA(m)-marker). It is used on
purpose when we put mj into B.

• It may go off finitely often by itself when A-changes “prematurely”.
• When Fj−1 is emptied into Fj then Fj−2, . . . ,F0 are spilled on the

floor.
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The decanter machine in action

Emptying 
device F3

F0

F1

F2
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• The recursion starts by calling Pk with goal 1.
• It calls Pk−1 etc down to P0.
• Thus, wine is first poured into the highest decanter F0 (and goes

into the left domain of L).
• We want to ensure that at least half the wine we put into F0

reaches Fk .

Here is a key feature to achieve this:

• When we have to cancel a run Pj(q, β) because of a premature
A-change, what becomes garbage is not Fj−1, but rather what the
sub-procedures called by this run were working on.

• For the set Fj−1 already is a j − 1-set, so all we need is another
A-change, which is provided here by the cancellation itself as
opposed to being caused actively once the run reaches its goal.

This concludes the case of Turing incompleteness.
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Each K -trivial set is low

We now want to computably approximate whether JA(e)↓.
For j < k , a procedure Pj(q, β) is called by Pj+1 when JA(e) newly
converges. Its goal q is α2−e, where α is the garbage quota of the
procedure of type Pj+1.

Procedures Pj run in parallel for different e. So we now have a
tree of decanters.

There is no emptying device: we cannot change A actively any
more. To achieve lowness, we are happy if it doesn’t.

However, this creates a new type of garbage, where Pj(q, β)

reaches its goal, but no A change happens after, which would be
needed to empty an Fj−1 into Fj . The total garbage weighs at
most

∑
e 2−eα, which is ok.
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The golden run

The initial procedure Pk never returns, since it has goal 1, while a
k -set has weight at most 1/2.

So there must be a golden run of a procedure Pj+1(q, α):
it doesn’t reach its goal, but all the subprocedures it calls either
reach their goals, or are cancelled by a premature A change.

The golden run shows that A is low:
When the run of the subprocedure Pj based on a computation
JA(e) returns, then we guess that JA(e) converges.
If A changes then Pj+1 receives the fixed quantity 2−eα. In this
case we change the guess back to “divergent”.
This can only happen 2eq/α times, else Pj+1 reaches its goal.
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Superlowness, and non-uniformity

The argument actually shows that A is superlow: the number of
mind changes in the approximation of A′ is computably bounded.

The lowness index (i.e. Turing reduction for A′ ≤T ∅′) is not
obtained effectively in the index for A and the constant for
K -triviality. To obtain this index, we needed to know which run is
golden.

This non-uniformity is necessary by Downey, Hirschfeldt, N,
Stephan 2003.

K -trivial ⇒ low for K is non-uniform for the same reason. We can’t
compute the constant for lowness for K from and index for A and
the K -triviality constant.

This may be why attempts at giving “combinatorial”, half-page
proofs have failed so far.
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Proving the full result

We now show that K -trivial ⇒ low for K .

For j < k a procedure Pj(q, β) is started when UA(σ) = y newly
converges. Its goal q is α2−|σ|.

We call, in parallel, procedures based on different inputs σ. So we
again have a tree of decanters.

Via a golden run Pj+1, we show that A is low for K . When Pj(q, β)

associated with UA(σ) = y returns, we have the right to enumerate
a request 〈|σ|+ c, y〉 into a set W (c is some constant).

Every A change means useless weight in W , since we issued
request for a wrong computation UA(σ). The fact that Pj+1 does
not reach its goal implies that the total weight is bounded. Hence
W is a bounded request set.
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Cost function characterization of the K -trivials

Recall: the cost function cK for K -triviality is given by

cK(x , s) =
∑s

i=x+1 2−Ks(i).

Theorem (Nies 05)
A is K -trivial ⇐⇒
some computable approximation of A obeys cK.

We have already done “⇐”. For “⇒” one uses the golden run.

Corollary
For each K -trivial A there is a c.e. K -trivial set D ≥tt A.

D is the change set {〈x , i〉 : A(x) changes at least i times}. One
verifies that D obeys cK as well.
Actually, this works for any cost function in place of cK.
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Summary of Lecture 3

• We have studied versions of ML-randomness and K based on Π1
1

sets.
• We have defined the NCR sets, a further notion of being far from

random.
• Traceability is a meta-concept leading to interesting lowness

properties.
• Computable traceability characterizes lowness for Schnorr

randomness.
• The c.e. strongly jump traceable sets form an interesting, very small

subclass of the c.e. K -trivial sets. They can be naturally
characterized via the “computed-by-many” paradigm.

• The decanter method shows each K -trivial is Turing incomplete.
Adding the non-uniform golden run method shows that each K -trivial
is in fact low for K .
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