Quasi-finitely axiomatizable groups

André Nies

The University of Auckland

December 5, 2004

Describing f.g. groups

We want to describe f.g. infinite groups by a finite amount of information. As many of them as possible.

If a finite, or even recursive, presentation exists, this does it.

I will discuss another way, based on first-order logic.

First-order logic

- The first-order language of groups consists of formulas built up from equations
 t(x₁,...,x_k) = 1, using ¬, &, ∨, →, ∃x, ∀x.
- A **sentence** is a formula which has only bound variables.
- For a group G, Th(G) is the set of sentences which hold in G.

Examples (let [x,y] denote $x^{-1}y^{-1}xy$).

- The sentence $\forall x \forall y \ [x, y] = 1$ expresses that the group is abelian.
- The sentence

$$\forall u, v \exists r, s, t \ [u, v] = r^2 s^2 t^2$$

holds for all groups.

(Let $r = u^{-1}v^{-1}$, $s = vuv^{-1}$, t = v).

G versus $\mathbf{Th}(G)$

Th(G) contains the information whether G

- is nilpotent
- is torsion-free

But, many properties are not formalizable in first–order logic. For instance:

finitely generated, maximum condition (every subgroup is f.g.), simple...

Why first-order?

- A f.o. property of G is *intrinsic*. One does not have to go beyond G to verify it.
- Toolbox for first-order logic- compactness theorem, etc. There are fewer tools for more expressive languages.
- Th(G) is an interesting "invariant".

QFA

Another way to describe f.g. infinite groups by a finite amount of information:

G is said to be **quasi-finitely axiomatizable** (QFA) if there is a first order sentence φ such that G is, up to isomorphism, the only f.g. group satisfying φ .

Examples: Fix $m \ge 2$. Then the solvable Baumslag-Solitär group

 $\langle a,d\,|\,d^{-1}ad=a^m\rangle$

is QFA. More on this later.

F.g. groups

Let G be finitely generated (f.g.) infinite. To what extent is G determined by Th(G)?

By basic model theory:

- At the very least, one needs to require that G be countable. (There is some uncountable model of Th(G), since G is infinite.)
- There is in fact some other *countable* model. (Let n be the rank of G. Then Th(G) has infinitely many n + 1-types and thus cannot be countably categorical.)

But, maybe, G is the only **f.g.** model of Th(G)?

Quasi-axiomatizable

Definition. An infinite f.g. group G is **quasi-axiomatizable** if, whenever H is a f.g. group with the same theory as G, then $G \cong H$.

All f.g. abelian groups G are quasi-axiomatizable. For instance, if $G = \mathbb{Z}^n$, G is the only f.g. group such that

- G abelian, torsion free
- $|G/2G| = 2^n$.

These properties can be captured by an infinite axiom system.

Nilpotent groups

- Let Z(G) denote the center of G
- class-1 nilpotent \Leftrightarrow abelian
- G is nilpotent of class $c + 1 \Leftrightarrow$ G/Z(G) is nilpotent of class c.

QA for nilpotent groups

Theorem 1 (Hirshon (1977) and Oger (1990))

- Each f.g. torsion-free class-2 nilpotent group is quasi-axiomatizable.
- There are f.g. torsion-free class-3 nilpotent groups G, H such that Th(G) = Th(H), but G ≇ H.

Oger's part was: for f.g. nilpotent G, H,

 $\operatorname{Th}(G) = \operatorname{Th}(H) \iff G \oplus \mathbb{Z} \cong H \oplus \mathbb{Z}.$

The direction \Leftarrow is actually true for any groups G, H.

Hirshon (1977) had asked for which groups A can \mathbb{Z} be cancelled from a direct product $A \oplus \mathbb{Z}$:

$$A \oplus \mathbb{Z} \cong B \oplus \mathbb{Z} \implies A \cong B.$$

- True for any group A which is f.g. torsion free **class-2** nilpotent,
- not always when A is f.g. torsion free **class-3** nilpotent.

QFA groups

We consider f.g. groups G where a single axiom, along with the information that G is f.g., suffices.

Definition 2 An infinite f.g. group G is quasi-finitely axiomatizable (QFA) if there is a first-order sentence φ such that

- $G \models \varphi$
- If H is a f.g. group such that $H \models \varphi$, then $G \cong H$.

Thus the axiom provides a characterization of Gamong the f.g. groups, using only elementary properties of G.

I will look at this property in various classes of groups: abelian, nilpotent, metabelian, and particular type of permutation groups.

Abelian groups are not QFA

- By quantifier elimination for the theory of abelian groups, each φ which holds in an abelian group G also holds in G ⊕ Z_p, for almost all primes p.
- If G is f.g. then $G \not\cong G \oplus \mathbb{Z}_p$, so G is not QFA.

Thus one *needs* an infinite axiom system to describe G.

An algebraic characterization

Sabbagh and Oger gave a beautiful algebraic characterization of QFA for infinite nilpotent groups G. Informally, G is QFA iff G is far from abelian. Let

- $G' = \langle [x, y] : x, y \in G \rangle$
- $\Delta(G) = \{x : \exists m > 0 \ x^m \in G'\}$ (least N such that G/N is torsion free abelian).

Theorem 3 (Sabbagh and Oger, 2004) G is $QFA \Leftrightarrow Z(G) \subseteq \Delta(G)$.

The direction \Rightarrow holds for all f.g. groups.

For abelian G, Z(G) = G and $\Delta(G)$ is the (finite) torsion subgroup. So $Z(G) \not\subseteq \Delta(G)$ (we assume G is infinite).

Heisenberg group

$$\mathrm{UT}_3^3(\mathbb{Z}) = \begin{pmatrix} 1 & \mathbb{Z} & \mathbb{Z} \\ 0 & 1 & \mathbb{Z} \\ 0 & 0 & 1 \end{pmatrix}$$

is torsion free,
$$Z(G) = G' = \begin{pmatrix} 1 & 0 & \mathbb{Z} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

So $UT_3^3(\mathbb{Z})$ is QFA by Oger/Sabbagh. I had proved this first via a proof using an interpretation of $(\mathbb{N}, +, \cdot)$ due to Mal'cev.

All non-abelian UT groups over \mathbb{Z} , and all free nilpotent non-abelian groups are QFA.

$Z(G) \subseteq G'$ is not enough

Fix $m \ge 2$. Let $G = \begin{pmatrix} 1 & m\mathbb{Z} & \mathbb{Z} \\ 0 & 1 & \mathbb{Z} \\ 0 & 0 & 1 \end{pmatrix}$ Z(G) as before, but $G' = \begin{pmatrix} 1 & 0 & m\mathbb{Z} \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

G' doesn't include Z(G), but $\Delta(G) = Z(G)$. The group is QFA.

Oger has shown that nilpotent & QFA is closed under subgroups of finite index. Also direct products.

Metabelian QFA groups

For groups G, A, C one writes $G = A \rtimes C$ if

 $AC = G, A \triangleleft G, \text{ and } A \cap C = \{1\}.$

Give examples of QFA groups that are split extensions $A \rtimes C$, A abelian, $C = \langle d \rangle$ infinite cyclic.

Theorem 4 (N) • For each $m \ge 2$, the group $H_m = \langle a, d | d^{-1}ad = a^m \rangle$ is QFA (one-relator group)

 For each prime p, the restricted wreath product Z_p ≥ Z is QFA (not finitely presented)

Francis Oger has further examples of this type. This time A is f.g.

Structure of those groups

- H_m is a split extension of $A = \mathbb{Z}[1/m] = \{zm^{-i} : z \in \mathbb{Z}, i \in \mathbb{N}\}$ by $\langle d \rangle$, where the action of d is $u \mapsto um$.
- By the definition, $\mathbb{Z}_p \wr \mathbb{Z}$ is a split extension $A \rtimes C$, where
 - $-A = \bigoplus_{r \in \mathbb{Z}} \mathbb{Z}_p^{(r)}, \mathbb{Z}_p^{(r)}$ is a copy of \mathbb{Z}_p
 - $C = \langle d \rangle$ with d of infinite order
 - -d acts on A by shifting

QFA proofs

The proofs that those groups are QFA follow the same scheme. The group A is given by a first-order definition. One writes a list $\psi(d) = P1 \& \ldots \& Pk$ of first-order properties of an element d in a group G so that the axiom $\exists d \, \psi(d)$ shows that the group in question is QFA. Let C be the centralizer of d, namely $C = \{x : [x, d] = 1\}$. In the following, u, v denote elements of A and x, y elements of C.

- (P1) The commutators form a subgroup (so G' is definable)
- (P2) A and C are abelian, and $G = A \rtimes C$
- (P3) $C \{1\}$ acts on $A \{1\}$ without fix points. That is, $[u, x] \neq 1$ for each $u \in A - \{1\}$, $c \in C - \{1\}$.

(P4) $|C:C^2| = 2$

- To specify H_m one uses the definition $A = \{g : g^{m-1} \in G'\}$, and requires in addition that
- (P5) $\forall u \, d^{-1} u d = u^m$,
- (P6) The map $u \mapsto u^q$ is 1-1, where q is a fixed prime not dividing m

(P7)
$$x^{-1}ux \neq u^{-1}$$
 for $u \neq 1$

 $(P8) |A:A^q| = q$

• To specify $\mathbb{Z}_p \wr \mathbb{Z}$, one uses the definition $A = \{g : g^p = 1\}$, and requires in addition that |A : G'| = p and no element in $C - \{1\}$ has order < p.

QFA higher up

A set $S \subseteq \omega$ is called an **arithmetical singleton** if there exists a formula $\varphi(X)$ in the language of arithmetic extended by a new unary predicate symbol X that for each $P \subseteq \mathbb{N}$, $\varphi(P)$ is true in the standard model of arithmetic if and only if P = S. Examples: all arithmetical sets; $\operatorname{Th}(\mathbb{N}, +, \cdot)$

Theorem 5 (Morozov, Nies) For each arithmetical singleton $S \subseteq 3\mathbb{N}$, there exists a 3-generated QFA-group G_S whose word problem W(G) has the same complexity as S (namely, $S =_T W(G)$).

 G_S is a subgroup of the permutations of \mathbb{Z} generated by successor, (0, 1) and

```
\prod_{k \in S} (k, k+1, k+2).
```

Prime groups

A notion from model theory:

- G is **prime** if G is an elementary submodel of each H such that Th(G) = Th(H).
- For f.g. groups, this is equivalent to: there is a generating tuple \overline{g} whose orbit (under the automorphisms of G) is definable by a first order formula.
- Uniquely determined by theory

Various theories fail to have one: $\operatorname{Th}(\mathbb{Z}, +, 0), \operatorname{Th}(F_2).$

Prime vs QFA

Oger and Sabbagh showed that for nilpotent f.g. G:

G is QFA \Leftrightarrow G is prime.

Theorem 6 (N) There are uncountably many non-isomorphic f.g. groups that are prime. (The class consists of the f.g. groups satisfying a sentence α .)

In particular, not all prime are QFA. The permutation groups G_S as above provide those examples (for sets S whose elements are sufficiently far apart).

Question 7 Is each QFA group prime?

Theory of classes of groups

Let \mathcal{E} be a class of groups. The theory $\operatorname{Th}(\mathcal{E})$ is the set of first-order sentences which hold for all members of \mathcal{E} .

If $\mathcal{C} \subseteq \mathcal{D}$, then $\operatorname{Th}(\mathcal{C}) \supseteq \operatorname{Th}(\mathcal{D})$. One can gauge the expressiveness of first-order logic in group theory by asking:

for which proper inclusions $\mathcal{C} \subset \mathcal{D}$ of natural classes are the theories different?

QFA Criterion. If there is a QFA group G in $\mathcal{D} - \mathcal{C}$ then $\operatorname{Th}(\mathcal{C}) \supset \operatorname{Th}(\mathcal{D})$.

This is because the negation of the axiom for G is in $\operatorname{Th}(\mathcal{C}) - \operatorname{Th}(\mathcal{D})$.

As an example, consider C = "finite", D = "f.p. with solvable WP". Let $G = \mathbb{Z}[1/2] \rtimes \mathbb{Z}$.