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Describing f.g.

groups

We want to describe f.g. infinite groups by a finite
amount of information. As many of them as
possible.

If a finite, or even recursive, presentation exists,
this does it.

I will discuss another way, based on first-order
logic.
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First–order logic

• The first–order language of groups consists of
formulas built up from equations
t(x1, . . . , xk) = 1, using ¬,&,∨,→, ∃x, ∀x.

• A sentence is a formula which has only
bound variables.

• For a group G, Th(G) is the set of sentences
which hold in G.

Examples (let [x,y] denote x−1y−1xy).

• The sentence ∀x∀y [x, y] = 1 expresses that
the group is abelian.

• The sentence

∀u, v∃r, s, t [u, v] = r2s2t2

holds for all groups.

(Let r = u−1v−1, s = vuv−1, t = v).
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G versus Th(G)

Th(G) contains the information whether G

• is nilpotent

• is torsion-free

But, many properties are not formalizable in
first–order logic. For instance:

finitely generated, maximum condition (every
subgroup is f.g.), simple...
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Why first–order?

• A f.o. property of G is intrinsic. One does
not have to go beyond G to verify it.

• Toolbox for first–order logic- compactness
theorem, etc. There are fewer tools for more
expressive languages.

• Th(G) is an interesting “invariant”.
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QFA

Another way to describe f.g. infinite groups by a
finite amount of information:

G is said to be quasi-finitely axiomatizable
(QFA) if there is a first order sentence ϕ such
that G is, up to isomorphism, the only f.g. group
satisfying ϕ.

Examples: Fix m ≥ 2. Then the solvable
Baumslag-Solitär group

〈a, d | d−1ad = am〉
is QFA. More on this later.
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F.g. groups

Let G be finitely generated (f.g.) infinite. To
what extent is G determined by Th(G)?

By basic model theory:

• At the very least, one needs to require that G
be countable. (There is some uncountable
model of Th(G), since G is infinite. )

• There is in fact some other countable model.
(Let n be the rank of G. Then Th(G) has
infinitely many n+ 1–types and thus cannot
be countably categorical.)

But, maybe, G is the only f.g. model of Th(G)?
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Quasi-axiomatizable

Definition. An infinite f.g. group G is
quasi-axiomatizable if, whenever H is a f.g.
group with the same theory as G, then G ∼= H.

All f.g. abelian groups G are quasi-axiomatizable.
For instance, if G = Z

n, G is the only f.g. group
such that

• G abelian, torsion free

• |G/2G| = 2n.

These properties can be captured by an infinite
axiom system.
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Nilpotent groups

• Let Z(G) denote the center of G

• class-1 nilpotent ⇔ abelian

• G is nilpotent of class c+ 1 ⇔
G/Z(G) is nilpotent of class c.
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QA for nilpotent

groups

Theorem 1 (Hirshon (1977) and Oger (1990))

• Each f.g. torsion-free class-2 nilpotent group
is quasi-axiomatizable.

• There are f.g. torsion-free class-3 nilpotent
groups G,H such that Th(G) = Th(H), but
G 
∼= H.
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Oger’s part was: for f.g. nilpotent G,H,

Th(G) = Th(H) ⇔ G⊕ Z ∼= H ⊕ Z.

The direction ⇐ is actually true for any groups
G,H.

Hirshon (1977) had asked for which groups A can
Z be cancelled from a direct product A⊕ Z:

A⊕ Z ∼= B ⊕ Z ⇒ A ∼= B.

• True for any group A which is f.g. torsion free
class-2 nilpotent,

• not always when A is f.g. torsion free class-3
nilpotent.
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QFA groups

We consider f.g. groups G where a single axiom,
along with the information that G is f.g., suffices.

Definition 2 An infinite f.g. group G is
quasi-finitely axiomatizable (QFA) if there is a
first–order sentence ϕ such that

• G |= ϕ

• If H is a f.g. group such that H |= ϕ, then
G ∼= H.

Thus the axiom provides a characterization of G
among the f.g. groups, using only elementary
properties of G.

I will look at this property in various classes of
groups: abelian, nilpotent, metabelian, and
particular type of permutation groups.
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Abelian groups are

not QFA

• By quantifier elimination for the theory of
abelian groups, each ϕ which holds in an
abelian group G also holds in G⊕ Zp, for
almost all primes p.

• If G is f.g. then G 
∼= G⊕ Zp, so G is not
QFA.

Thus one needs an infinite axiom system to
describe G.
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An algebraic

characterization

Sabbagh and Oger gave a beautiful algebraic
characterization of QFA for infinite nilpotent
groups G. Informally, G is QFA iff G is far from
abelian. Let

• G′ = 〈[x, y] : x, y ∈ G〉
• ∆(G) = {x : ∃m > 0 xm ∈ G′}

(least N such that G/N is torsion free
abelian).

Theorem 3 (Sabbagh and Oger, 2004)
G is QFA ⇔ Z(G) ⊆ ∆(G).

The direction ⇒ holds for all f.g. groups.

For abelian G, Z(G) = G and ∆(G) is the (finite)
torsion subgroup. So Z(G) 
⊆ ∆(G) (we assume G
is infinite).
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Heisenberg group

UT3
3(Z) =




1 Z Z

0 1 Z

0 0 1




is torsion free, Z(G) = G′ =




1 0 Z

0 1 0

0 0 1




So UT3
3(Z) is QFA by Oger/Sabbagh. I had

proved this first via a proof using an
interpretation of (N,+, ·) due to Mal’cev.

All non-abelian UT groups over Z, and all free
nilpotent non-abelian groups are QFA.

15



Z(G) ⊆ G′ is not

enough

Fix m ≥ 2. Let G =




1 mZ Z

0 1 Z

0 0 1




Z(G) as before, but G′ =




1 0 mZ

0 1 0

0 0 1




G′ doesn’t include Z(G), but ∆(G) = Z(G). The
group is QFA.

Oger has shown that nilpotent & QFA is closed
under subgroups of finite index. Also direct
products.
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Metabelian QFA

groups

For groups G,A,C one writes G = A� C if

AC = G, A � G, and A ∩ C = {1}.

Give examples of QFA groups that are split
extensions A� C, A abelian, C = 〈d〉 infinite
cyclic.

Theorem 4 (N) • For each m ≥ 2, the group

Hm = 〈a, d | d−1ad = am〉
is QFA (one-relator group)

• For each prime p, the restricted wreath
product Zp � Z is QFA (not finitely presented)

Francis Oger has further examples of this type.
This time A is f.g.

17



Structure of those

groups

• Hm is a split extension of
A = Z[1/m] = {zm−i : z ∈ Z, i ∈ N} by 〈d〉,
where the action of d is u �→ um.

• By the definition, Zp � Z is a split extension
A� C, where

– A =
⊕

r∈Z
Z

(r)
p , Z

(r)
p is a copy of Zp

– C = 〈d〉 with d of infinite order

– d acts on A by shifting
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QFA proofs

The proofs that those groups are QFA follow the
same scheme. The group A is given by a
first-order definition. One writes a list
ψ(d) = P1 & . . .&Pk of first-order properties of
an element d in a group G so that the axiom
∃dψ(d) shows that the group in question is QFA.

Let C be the centralizer of d, namely
C = {x : [x, d] = 1}. In the following, u, v denote
elements of A and x, y elements of C.

(P1) The commutators form a subgroup (so G′ is
definable)

(P2) A and C are abelian, and G = A� C

(P3) C − {1} acts on A− {1} without fix points.
That is, [u, x] 
= 1 for each u ∈ A− {1},
c ∈ C − {1}.

(P4) |C : C2| = 2
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• To specify Hm one uses the definition
A = {g : gm−1 ∈ G′}, and requires in
addition that

(P5) ∀u d−1ud = um,

(P6) The map u �→ uq is 1-1, where q is a fixed
prime not dividing m

(P7) x−1ux 
= u−1 for u 
= 1

(P8) |A : Aq| = q

• To specify Zp � Z , one uses the definition
A = {g : gp = 1}, and requires in addition
that |A : G′| = p and no element in C − {1}
has order < p.
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QFA higher up

A set S ⊆ ω is called an arithmetical singleton
if there exists a formula ϕ(X) in the language of
arithmetic extended by a new unary predicate
symbol X that for each P ⊆ N, ϕ(P ) is true in the
standard model of arithmetic if and only if P = S.

Examples: all arithmetical sets; Th(N,+, ·)
Theorem 5 (Morozov, Nies) For each
arithmetical singleton S ⊆ 3N, there exists a
3–generated QFA–group GS whose word problem
W (G) has the same complexity as S (namely,
S =T W (G)).

GS is a subgroup of the permutations of Z

generated by successor, (0, 1) and
∏

k∈S(k, k + 1, k + 2).
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Prime groups

A notion from model theory:

• G is prime if G is an elementary submodel of
each H such that Th(G) = Th(H).

• For f.g. groups, this is equivalent to: there is
a generating tuple g whose orbit (under the
automorphisms of G) is definable by a first
order formula.

• Uniquely determined by theory

Various theories fail to have one:
Th(Z,+, 0),Th(F2).
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Prime vs QFA

Oger and Sabbagh showed that for nilpotent f.g.
G:

G is QFA ⇔ G is prime.

Theorem 6 (N) There are uncountably many
non-isomorphic f.g. groups that are prime. (The
class consists of the f.g. groups satisfying a
sentence α.)

In particular, not all prime are QFA. The
permutation groups GS as above provide those
examples (for sets S whose elements are
sufficiently far apart).

Question 7 Is each QFA group prime?
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Theory of classes of

groups

Let E be a class of groups. The theory Th(E) is
the set of first–order sentences which hold for all
members of E.

If C ⊆ D, then Th(C) ⊇ Th(D). One can gauge
the expressiveness of first–order logic in group
theory by asking:

for which proper inclusions C ⊂ D of natural
classes are the theories different?

QFA Criterion. If there is a QFA group G in
D − C then Th(C) ⊃ Th(D).

This is because the negation of the axiom for G is
in Th(C) − Th(D).

As an example, consider C = “finite”, D= “f.p.
with solvable WP”. Let G = Z[1/2] � Z.
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