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Part 1 :
The interaction of

computability and randomness
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The complexity aspect of a set

We study sets of natural numbers A ⊆ N (simply called sets).
We want to understand their computational complexity.

• Absolute complexity: we introduce classes such as

computable ⊂ low ⊂ ∆0
2 . . .

and locate the set A in one of the classes.
• Other classes of shared complexity might be incompatible

with them. An example is being computably dominated:
every function f computable relative to A is dominated by a
computable function.

• Relative complexity: we compare sets A and B using a
reducibility such as Turing ≤T .
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The randomness aspect of a set

(a) 00000000 00000000 00000000 00000000 0000. . .

(b) 10100100 01000010 00001000 00010000 0001. . .

(c) 00100100 00111111 01101010 10001000 1000 . . .

(d) 10010100 00010001 11110100 00101101 1111 . . .

(e) 11101101 01111010 10101111 11001110 1110 . . .

(a) Only zeros

(b)
∏

i 0i1

(c) π − 3 in binary

(d) Coin tossing

(e) Coin tossing
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Randomness theory

• For the absolute randomness aspect of a set, one introduces
a hierarchy of randomness notions.

• The central notion is Martin-Löf-randomness, based on a
computably enumerable test concept.

• Others notions can often be viewed as variants of
Martin-Löf-randomness. For instance, we have

weakly 2-random ⇒ ML-random ⇒ Schnorr random.

• The relative randomness aspect of sets has been studied to
a lesser extent. One asks: when is a set B “more random”
than a set A?
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Applying computability to randomness I

• The formal definition of randomness notions relies on
computability theoretic tools.

• We study them with computability theoretic methods.

For instance, consider the definition of Martin-Löf-randomness.
Sets are elements of Cantor space 2N.
Let λ denote the uniform (product) measure on 2N.

• A ML-test is a uniformly computably enumerable sequence
(Gm)m∈N of open sets such that λGm ≤ 2−m for each m.

• A set Z is ML-random if Z passes each ML-test, in the sense
that Z 6∈

⋂
m Gm.

A ML-random set Z can be low (Z ′ ≡T ∅′), but it can also be
Turing complete (Z ≡T ∅′).
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Applying computability to randomness II

• A ML-test is a uniformly computably enumerable sequence
(Gm)m∈N of open sets such that λGm ≤ 2−m for each m.

• (Gm)m∈N is a generalized ML-test if the condition
“λGm ≤ 2−m for each m” is weakened to limmλGm = 0.
Such tests are equivalent to null Π0

2 classes.
• We say that Z is weakly 2-random if Z is in no null Π0

2 class.

Theorem (Hirschfeldt, Miller 06)
Let Z be ML-random. Then
Z is weakly 2-random ⇔ each computably enumerable set
Turing below Z is computable ⇔
Z and ∅′ form a minimal pair.
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Applying randomness to computability

Randomness-related concepts enrich computability theory.

• New examples:

– Chaitin’s halting probability Ω, a left-c.e. real.
– the class of K -trivial sets, a natural Σ0

3 ideal in the ∆0
2

Turing degrees.

• New methods: cost functions as a way to understand
injury-free solutions to Post’s problem.

• New results: purely computability-theoretic classes can be
characterized via randomness.
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Part 2 : Lowness properties of ∆0
2 sets
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Three ways to be almost computable

We will use randomness to study lowness properties of ∆0
2 sets.

There are three ways in which a ∆0
2 set A can be

almost computable:
• Weak as an oracle:

A does not provide much computational power as an oracle
set. For instance, A is low, namely A′ ≤T ∅′.

• Easy to compute:
in some sense, the class of sets computing A is large.

• Approximable with few mind changes:
A(x) = limsAs(x) for a computable approximation (As)s∈N
such that the total amount of changes is small. (We will
introduce cost functions to measure this.)
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New lowness properties

• Till about 2000, the usual lowness A′ ≤T ∅′ was the most
restrictive property studied that says “almost computable”.

• Recently, two interesting classes inside the low sets have
emerged: K trivial sets, and strongly jump traceable sets.

• The classes have many characterizations, of all three types:
weak as an oracle/ easy to compute/ few mind changes.

• The classes have nice properties:

– they induce ideals in the Turing degrees (in the
computably enumerable degrees, at least);

– there is a natural, injury-free construction of a c.e.
incomputable (even promptly simple) member.
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Two classes inside Low

The two classes are:
• The K -trivial sets.

Equivalently, the sets that are low for ML-randomness.
• The strongly jump traceable sets.

Within the c.e. sets we have this picture:

K-trivial

SJT

Computable

Low

c.e. sets

André Nies The University of Auckland Lowness properties and cost functions



Part 3: K -triviality

André Nies The University of Auckland Lowness properties and cost functions



Machines and K

Let {0,1}∗ be the strings over {0,1}. A machine is a partial
recursive function M : {0,1}∗ 7→ {0,1}∗.
M is prefix free if its domain is an antichain under inclusion of
strings.

Let (Md)d≥0 be an effective listing of all prefix free machines.
The standard universal prefix free machine U is given by

U(0d1σ) = Md(σ).

The prefix free version K (y) of descriptive string complexity
(aka Kolmogorov complexity) is the length of a shortest prefix
free description of y :

K (y) = min{|σ| : U(σ) = y}.
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K -triviality

• A set A is K -trivial (Chaitin, 1975) if each initial segment has
minimal prefix free complexity, namely, it is no greater than
the one of its length.

• More precisely, there is c ∈ N such that

∀n K (A�n) ≤ K (n) + c.

• Chaitin showed: computable ⇒ K -trivial ⇒ ∆0
2.

• Solovay built an incomputable K -trivial.
• Schnorr’s Theorem:

Z is ML-random iff ∀n K (Z �n) ≥ n − c for some c.

So being K -trivial says that A is far from random.
• It is not clear why this should be a lowness property at all.

André Nies The University of Auckland Lowness properties and cost functions



Weak as an oracle: low for ML-randomness

• A is low for ML-randomness if each ML-random set is already
ML-random relative to A (Zambella, 1990).

• This says that A is weak as an oracle: A cannot find new
“regularities” in any ML-random set.

Theorem (Nies 05, Hirschfeldt)
A is K -trivial ⇔ A is low for ML-randomness.

“⇒” uses the golden run method.
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Bases for ML-randomness

We say that A is a base for ML-randomness(Kučera, 1993) if

A ≤T Z for some Z ∈ MLRA.

That is, A can be computed from a set that is random relative to
it. This says that the class of sets computing A is large (in a
sense relative to A itself).
Kučera proved that some (promptly) simple set is a base for
ML-randomness.
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Coincidence of “base for ML” with K -trivialilty

• The Kučera-Gács Theorem says that for each set A, there is
a ML-random Z such that A ≤T Z .

• So, if A is low for ML-randomness then A is a base for
ML-randomness.

• We already know that K -trivial ⇒ low for ML-randomness
⇒ base for ML-randomness.

The following then shows that all three classes coincide.

Theorem (Hirschfeldt,Nies, Stephan 07)
Each base for ML-randomness is K -trivial.
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Part 4 : Cost functions

We head for a characterization of K -triviality saying that the set
A can be computably approximated with a small total amount of
mind changes.
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Definition of cost functions

Definition
A cost function is a computable function

c : N× N → {x ∈ Q : x ≥ 0}.

We view c(x , s) as the cost of changing A(x) at stage s.

Definition

We say that a computable approximation (As)s∈N obeys a cost
function c if

∞ >
∑

x ,s c(x , s) [[x < s & x is least s.t. As−1(x) 6= As(x)]].
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Basic existence theorem

For a cost function c : N× N → Q, let c(x) = supsc(x , s).
We say that c has the limit condition if limxc(x) = 0.

Theorem (Various)
If a cost function c has the limit condition, then some (promptly)
simple set A obeys c.

Proof. Let We be the e-th c.e. set. If We is infinite we want
some x ∈ We to enter A. We define a computable enumeration
(As)s∈N as follows. A0 = ∅. For s > 0,
As = As−1 ∪ {x : ∃e

We,s ∩ As−1 = ∅ We haven’t met e-th simplicity requirement.
x ∈ We,s We can meet it via x .
x ≥ 2e This makes A co-infinite.
c(x , s) ≤ 2−e}. This ensures that A obeys c.
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The K -Mart analogy

• We want to buy a shirt of each color e at K -Mart, provided
that there is a sufficient number of shipments from China.

• For the shirt of color e we can spend at most 2−e.
• Eventually, a sufficiently cheap shirt of color e will arrive,

unless that color is discontinued.
• We can buy all shirts that are not discontinued.
• We spend at most 2 dollars in total.
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Cost function characterization of the K -trivials

The standard cost function cK is given by

cK(x , s) =
∑

x<w≤s 2−Ks(w).

We could also use c(x , s) = Prob[{σ : Us(σ) ≥ x}], the chance
that the universal machine prints a string ≥ x within s steps.

Theorem (Nies 05)
A is K -trivial ⇔
some computable approximation of A obeys cK.

Corollary
For each K -trivial A there is a c.e. K -trivial set D ≥T A.

D is the change set {〈x , i〉 : A(x) changes at least i times}.
One verifies that D obeys cK as well.
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Analogy with model theory

• We think of a cost function as a description of a class of ∆0
2

sets: those sets with an approximation obeying the cost
function.

• For instance, the standard cost function describes the
K -trivial sets.

• This is somewhat similar to a sentence in some formal
language describing a class of structures.

• “A obeys c” is like A |= c.
• The limit condition is consistency. We disregard computable

sets.
• If c has a model it must satisfy the limit condition.
• The basic existence theorem shows that each “consistent”

cost function has a (promptly simple) model.
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Analogy with model theory

• We think of a cost function as a description of a class of ∆0
2

sets: those sets with an approximation obeying the cost
function.

• For instance, the standard cost function describes the
K -trivial sets.

• This is somewhat similar to a sentence in some formal
language describing a class of structures.

• “A obeys c” is like A |= c.
• The limit condition is consistency. We disregard computable

sets.
• If c has a model it must satisfy the limit condition.
• The basic existence theorem shows that each “consistent”

cost function has a (promptly simple) model.
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Part 5 : Strong jump-traceability

• During 2002-2005 researchers thought of the K -trivials as
the “strongest” lowness property on the ∆0

2 sets.
• Recently a proper subclass has emerged (at least on the c.e.

sets).
• It is defined in a purely computability-theoretic way, but can

be characterized via randomness, using the “computed by
many” paradigm.

André Nies The University of Auckland Lowness properties and cost functions



Tracing

• The idea of tracing: the set A is weak as an oracle because
for certain functions ψ computed relative to A, the possible
values ψ(x) lie in a finite set Tx of small size.

• The sets Tx are obtained effectively from x (not using A as
an oracle).
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Strongly jump traceable sets

• An order function is a function h : N → N that is computable,
nondecreasing, and unbounded.

• A c.e. trace with bound h is a uniformly c.e. sequence
(Tx)x∈N such that |Tx | ≤ h(x) for each x .

• Let JA(e) be the value of the A-jump at e, namely,
JA(e) ' ΦA

e (e).
• The set A is called strongly jump traceable if for each order

function h, there is a c.e. trace (Tx)x∈N with bound h such
that, whenever JA(x) it is defined, we have

JA(x) ∈ Tx

(Figueira, Nies, Stephan, 2004).
• For jump-traceability, one merely requires that this works for

some order function h.
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A proper subclass of the c.e. K -trivial sets

Theorem (Figueira, Nies, Stephan 2004)
There is a c.e. incomputable strongly jump traceable set.

We also prove that A is strongly jump traceable ⇔ A is “lowly”
for the plain Kolmogorov complexity C, namely, for every order
function h and almost every x , C(x) ≤ CA(x) + h(CA(x)).
The hope was that strong jump traceability is a
computability-theoretic characterization of K -triviality.
But, in fact:

Theorem (Cholak, Downey, Greenberg 2006)

The c.e. strongly jump traceable sets form a proper subideal of
the K -trivial sets.

It is open whether this also holds within the ∆0
2 sets.
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Building a promptly simple strongly jump traceable set

We meet the prompt simplicity requirements

PSe: #We = ∞ ⇒ ∃s ∃x [x ∈ We,at s & x ∈ As].

The function K (x) := min{K (y) : y ≥ x} is dominated by each
order function g.
Construction of A. Let A0 = ∅.
Stage s > 0. For each e < s, if PSe is not satisfied and there is
x ≥ 2e such that x ∈ We,at s and

∀i
[
(e ≥ K s(i) & JA(k)[s − 1]↓) → x > use JA(i)[s − 1]

]
then put x into As and declare PSe satisfied.
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Benign cost functions

The result of Cholak e.a. that SJT implies K -trivial for c.e. sets
was reproved and extended using the language of cost
functions.

Definition

We say that a cost function c is benign if

• c(x + 1, s) ≤ c(x , s) ≤ c(x , s + 1) for each x < s
(monotonicity), and

• there is a computable function g such that
x0 < x1 < . . . < xk and ∀i < k [c(xi , xi+1) ≥ 2−n]

⇒ k ≤ g(n).

Intuitively, for at most g(n) times the cost of the current
candidate x can grow to exceed 2−n.
The standard cost function cK is benign via g(n) = 2n.
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Characterizing SJT via cost functions

Theorem (Greenberg, Nies, ta)
Let A be c.e. Then
A is strongly jump traceable ⇔

A obeys each benign cost function.

• In particular, A is K -trivial.
• We also prove that each benign cost function is obeyed by

some c.e. set that is not strongly jump traceable.
• Hence we have another proof that SJT is a proper subclass

of K.

For “⇐” we have to define the right benign cost function to
ensure tracing of JA at order h.
The harder direction is “⇒”. It uses the “box promotion method”
of Cholak, Downey and Greenberg.
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Part 6 : SJT sets are computed by many oracles

• We will give several characterizations of SJT as the c.e. sets
that are easy to compute (in the sense that the class of
oracles computing the set is large).

• For instance, A is strongly jump traceable ⇔ A is Turing
below each ω-c.e. ML-random set. (We say Y is ω-c.e. if
Y ≤T ∅′ with computably bounded use.)

• Thus, the computability-theoretic notion SJT can be
characterized via randomness.

• For the K -trivials, the “easy to compute” property is “base for
ML-randomness”: A ≤T Y for some Y that is ML-random in
A. In contrast, to characterize SJT we don’t need to relativize
ML-randomness.
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Diamond Classes

For a null class H ⊆ 2N, we define

H♦ = the c.e. sets A Turing below each ML-random set in H.

∅'the class  H

computable sets

H     = the c.e. sets T-below
all sets in  H ∩ MLR
♢K-trivial sets

• The larger H is, the smaller is H♦.
• H♦ induces an ideal in the c.e. Turing degrees.
• If some ML-random set Z 6≥T ∅′ is in H, then H♦ ⊆ K -trivial.

André Nies The University of Auckland Lowness properties and cost functions



Existence Theorem

Theorem (Hirschfeldt/Miller)

For each null Σ0
3 class H, there is a promptly simple set in H♦.

For instance, there is a promptly simple set in (ω-c.e.)♦.

• The theorem is proved by defining an appropriate cost
function cH with the limit condition.

• Whenever a c.e. set A obeys cH, then A is in H♦.
• Now recall that some promptly set obeys A.

This implies that a ML-random set Y that is not weakly 2-random
bounds an incomputable c.e. set: for H choose a null Π0

2 class
containing Y .
In the proof we implicitly build a Turing functional Γ. If A = ΓZ

becomes wrong because A changes, we put Z into a Solovay test. So
this Z cannot be random. The fact that A obeys c is used to show that
it is indeed a Solovay test, i.e., we don’t have to “correct” Γ on too
many sets.
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A lowness property and its dual highness property

• Recall that Z is low if Z ′ ≤T ∅′, and Z is high if ∅′′ ≤T Z ′.
• These classes are “too big”: we have

(low)♦ = (high)♦= computable.

(For instance, (high)♦= computable because there is a
minimal pair of high ML-random sets.)

• So we will try somewhat smaller classes, replacing ≤T by the
stronger truth-table reducibility ≤tt.

Definition
A set Z is superlow if Z ′ ≤tt ∅′. Z is superhigh if ∅′′ ≤tt ∅′.

A random set can be superlow (low basis theorem). It can also
be superhigh but Turing incomplete (Kučera coding).
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SJT is contained in the diamond classes

• Superlow is a countable Σ0
3 class. Superhigh is contained in

a null Σ0
3 class (Simpson).

• So by the Hirschfeldt/Miller cost function we already know
there is a promptly set in each of the corresponding diamond
classes.

• Now we make such a cost function benign.

Theorem (Greenberg,Nies)
Let H be either superlowness or superhighness.

• Then there is a benign cost function c such that each c.e. set
obeying c is in H♦.

• Thus SJT ⊆ H♦.
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Conversely, the diamond classes are contained in SJT

• Greenberg, Hirschfeldt and Nies showed the converse
inclusion, thereby giving two characterizations of the c.e.
strongly jump traceable sets via randomness.

• We use a “golden run” construction with infinitely many
levels.

To summarize, we have:

Theorem

SJT = (ω − c.e.)♦ =superlow ♦= superhigh ♦.

The proof that SJT ⊇ superlow ♦ is very general.
• We don’t need the hypothesis that the set is c.e.
• We can replace the ML-random sets by any non-empty Π0

1
class.
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∅'

superhigh

SJT= (superlow)   =(superhigh)♢ ♢

superlow

K-trivial
computable
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Corollaries to the characterization of SJT

Often new characterizations give new views of the class. We
obtain

• A new proof of the Cholak e.a. result that SJT induces an
ideal in the c.e. Turing degrees (because every diamond
class does that).

• a cost function construction (hence, injury-free) of a promptly
simple set in SJT via the Hirschfeldt/MIller cost function cH
where H = (ω)-c.e. (say).
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Open questions on classes between SJT and K -trivial

• No natural classes are currently known to lie properly
between SJT and K -trivial

• A good candidate is (UAED)♦. Here UAED is the class of
uniformly almost everywhere dominating sets Z of Dobrinen
and Simpson. (Equivalently, each random in Z is random in
∅′.) For the highness properties, there are proper implications

Turing-complete ⇒ UAED ⇒ superhigh.

• For the corresponding diamond classes, Greenberg and Nies
proved that SJT is properly contained in (UAED)♦.

• However, (UAED)♦ may coincide with K -trivial.
• This would imply that the classes ML-coverable and

ML-noncuppable also coincide with K -trivial.
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Classes of c.e. sets between SJT and K -trivial

K-trivial

ML-coverable ML-noncuppable

UAED♢

SJT

(The dashed arrows may be coincidences.)
• A is ML-coverable if A ≤T Y for some ML-random Y 6≥T ∅′.
• A is ML-noncuppable if
∅′ ≤T A⊕ Y for ML-random Y implies ∅′ ≤T Y .
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