Lowness properties and cost functions

André Nies The University of Auckland

ASL Annual Meeting, May 2009

André Nies The University of Auckland Lowness properties and cost functions

Part 1 : The interaction of computability and randomness

We study sets of natural numbers $A \subseteq \mathbb{N}$ (simply called *sets*). We want to understand their computational complexity.

Absolute complexity: we introduce classes such as

computable \subset low $\subset \Delta_2^0 \dots$

and locate the set A in one of the classes.

- Other classes of shared complexity might be incompatible with them. An example is being computably dominated: every function *f* computable relative to *A* is dominated by a computable function.
- Relative complexity: we compare sets A and B using a reducibility such as Turing ≤_T.

The randomness aspect of a set

- (a) 0000000 0000000 0000000 0000000 0000...
- (b) 10100100 01000010 00001000 0001000 0001...
- (c) 00100100 00111111 01101010 10001000 1000
- (d) 10010100 00010001 11110100 00101101 1111...
- (e) 11101101 01111010 10101111 11001110 1110 ...
- (a) Only zeros
- (b) ∏_i 0ⁱ1
- (c) $\pi 3$ in binary
- (d) Coin tossing
- (e) Coin tossing

- For the absolute randomness aspect of a set, one introduces a hierarchy of randomness notions.
- The central notion is Martin-Löf-randomness, based on a computably enumerable test concept.
- Others notions can often be viewed as variants of Martin-Löf-randomness. For instance, we have

weakly 2-random \Rightarrow ML-random \Rightarrow Schnorr random.

• The relative randomness aspect of sets has been studied to a lesser extent. One asks: when is a set *B* "more random" than a set *A*?

Applying computability to randomness I

- The formal definition of randomness notions relies on computability theoretic tools.
- We study them with computability theoretic methods.

For instance, consider the definition of Martin-Löf-randomness. Sets are elements of Cantor space $2^{\mathbb{N}}$.

Let λ denote the uniform (product) measure on $2^{\mathbb{N}}$.

- A ML-test is a uniformly computably enumerable sequence (G_m)_{m∈ℕ} of open sets such that λG_m ≤ 2^{-m} for each m.
- A set Z is ML-random if Z passes each ML-test, in the sense that Z ∉ ∩_m G_m.

A ML-random set Z can be low $(Z' \equiv_T \emptyset')$, but it can also be Turing complete $(Z \equiv_T \emptyset')$.

Applying computability to randomness II

- A ML-test is a uniformly computably enumerable sequence (G_m)_{m∈ℕ} of open sets such that λG_m ≤ 2^{-m} for each m.
- (G_m)_{m∈ℕ} is a generalized ML-test if the condition "λG_m ≤ 2^{-m} for each m" is weakened to lim_mλG_m = 0. Such tests are equivalent to null Π⁰₂ classes.
- We say that Z is weakly 2-random if Z is in no null Π_2^0 class.

Theorem (Hirschfeldt, Miller 06)

Let Z be ML-random. Then

Z is weakly 2-random \Leftrightarrow each computably enumerable set

Turing below Z is computable \Leftrightarrow

Z and \emptyset' form a minimal pair.

Randomness-related concepts enrich computability theory.

- New examples:
 - Chaitin's halting probability Ω , a left-c.e. real.
 - the class of *K*-trivial sets, a natural Σ_3^0 ideal in the Δ_2^0 Turing degrees.
- New methods: cost functions as a way to understand injury-free solutions to Post's problem.
- New results: purely computability-theoretic classes can be characterized via randomness.

Part 2 : Lowness properties of Δ_2^0 sets

We will use randomness to study lowness properties of Δ_2^0 sets. There are three ways in which a Δ_2^0 set *A* can be almost computable:

• Weak as an oracle:

A does not provide much computational power as an oracle set. For instance, A is low, namely $A' \leq_T \emptyset'$.

Easy to compute:

in some sense, the class of sets computing A is large.

• Approximable with few mind changes:

 $A(x) = \lim_{s \to a} A_s(x)$ for a computable approximation $(A_s)_{s \in \mathbb{N}}$ such that the total amount of changes is small. (We will introduce cost functions to measure this.)

New lowness properties

- Till about 2000, the usual lowness A' ≤_T Ø' was the most restrictive property studied that says "almost computable".
- Recently, two interesting classes inside the low sets have emerged: *K* trivial sets, and strongly jump traceable sets.
- The classes have many characterizations, of all three types: weak as an oracle/ easy to compute/ few mind changes.
- The classes have nice properties:
 - they induce ideals in the Turing degrees (in the computably enumerable degrees, at least);
 - there is a natural, injury-free construction of a c.e. incomputable (even promptly simple) member.

Two classes inside Low

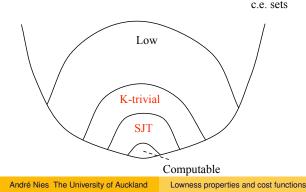
The two classes are:

The K-trivial sets.

Equivalently, the sets that are low for ML-randomness.

• The strongly jump traceable sets.

Within the c.e. sets we have this picture:



Part 3: K-triviality

Machines and K

Let $\{0, 1\}^*$ be the strings over $\{0, 1\}$. A machine is a partial recursive function $M : \{0, 1\}^* \mapsto \{0, 1\}^*$.

M is prefix free if its domain is an antichain under inclusion of strings.

Let $(M_d)_{d\geq 0}$ be an effective listing of all prefix free machines. The standard universal prefix free machine \mathbb{U} is given by

 $\mathbb{U}(\mathbf{0}^d\mathbf{1}\sigma)=M_d(\sigma).$

The prefix free version K(y) of descriptive string complexity (aka Kolmogorov complexity) is the length of a shortest prefix free description of y:

$$K(\mathbf{y}) = \min\{|\sigma| : \mathbb{U}(\sigma) = \mathbf{y}\}.$$

K-triviality

- A set *A* is *K*-trivial (Chaitin, 1975) if each initial segment has minimal prefix free complexity, namely, it is no greater than the one of its length.
- More precisely, there is $c \in \mathbb{N}$ such that

 $\forall n \ K(A \upharpoonright_n) \leq K(n) + c.$

- Chaitin showed: computable \Rightarrow *K*-trivial $\Rightarrow \Delta_2^0$.
- Solovay built an incomputable K-trivial.
- Schnorr's Theorem:

Z is ML-random iff $\forall n K(Z \upharpoonright_n) \ge n - c$ for some *c*.

So being *K*-trivial says that *A* is far from random.

It is not clear why this should be a lowness property at all.

- *A* is low for ML-randomness if each ML-random set is already ML-random relative to *A* (Zambella, 1990).
- This says that *A* is weak as an oracle: *A* cannot find new "regularities" in any ML-random set.

Theorem (Nies 05, Hirschfeldt)

A is K-trivial \Leftrightarrow A is low for ML-randomness.

" \Rightarrow " uses the golden run method.

We say that A is a base for ML-randomness(Kučera, 1993) if

$A \leq_T Z$ for some $Z \in MLR^A$.

That is, A can be computed from a set that is random relative to it. This says that the class of sets computing A is large (in a sense relative to A itself).

Kučera proved that some (promptly) simple set is a base for ML-randomness.

Coincidence of "base for ML" with K-trivialilty

- The Kučera-Gács Theorem says that for each set A, there is a ML-random Z such that A ≤_T Z.
- So, if *A* is low for ML-randomness then *A* is a base for ML-randomness.
- We already know that *K*-trivial ⇒ low for ML-randomness ⇒ base for ML-randomness.

The following then shows that all three classes coincide.

Theorem (Hirschfeldt, Nies, Stephan 07)

Each base for ML-randomness is K-trivial.

Part 4 : Cost functions

We head for a characterization of K-triviality saying that the set A can be computably approximated with a small total amount of mind changes.

Definition

A cost function is a computable function

$$c: \mathbb{N} \times \mathbb{N} \to \{x \in \mathbb{Q}: x \ge 0\}.$$

We view c(x, s) as the cost of changing A(x) at stage s.

Definition

We say that a computable approximation $(A_s)_{s \in \mathbb{N}}$ obeys a cost function *c* if

 $\infty > \sum_{x,s} c(x,s) \llbracket x < s \& x \text{ is least s.t. } A_{s-1}(x) \neq A_s(x) \rrbracket.$

Basic existence theorem

For a cost function $c : \mathbb{N} \times \mathbb{N} \to \mathbb{Q}$, let $c(x) = \sup_{s} c(x, s)$. We say that *c* has the limit condition if $\lim_{x} c(x) = 0$.

Theorem (Various)

If a cost function c has the limit condition, then some (promptly) simple set A obeys c.

Proof. Let W_e be the *e*-th c.e. set. If W_e is infinite we want some $x \in W_e$ to enter *A*. We define a computable enumeration $(A_s)_{s \in \mathbb{N}}$ as follows. $A_0 = \emptyset$. For s > 0, $A_s = A_{s-1} \cup \{x : \exists e$

 $\begin{array}{l|l} W_{e,s} \cap A_{s-1} = \emptyset & \text{We haven't met } e\text{-th simplicity requirement.} \\ x \in W_{e,s} & \text{We can meet it via } x. \\ x \geq 2e & \text{This makes } A \text{ co-infinite.} \\ c(x,s) \leq 2^{-e} \}. & \text{This ensures that } A \text{ obeys } c. \end{array}$

- We want to buy a shirt of each color *e* at *K*-Mart, provided that there is a sufficient number of shipments from China.
- For the shirt of color *e* we can spend at most 2^{-e}.
- Eventually, a sufficiently cheap shirt of color *e* will arrive, unless that color is discontinued.
- We can buy all shirts that are not discontinued.
- We spend at most 2 dollars in total.

Cost function characterization of the K-trivials

The standard cost function $c_{\mathcal{K}}$ is given by

 $c_{\mathcal{K}}(x,s) = \sum_{x < w \leq s} 2^{-K_s(w)}.$

We could also use $c(x, s) = \text{Prob}[\{\sigma : \mathbb{U}_s(\sigma) \ge x\}]$, the chance that the universal machine prints a string $\ge x$ within *s* steps.

Theorem (Nies 05)

A is K-trivial \Leftrightarrow some computable approximation of A obeys $c_{\mathcal{K}}$.

Corollary

For each K-trivial A there is a c.e. K-trivial set $D \ge_T A$.

D is the change set { $\langle x, i \rangle$: A(x) changes at least *i* times}. One verifies that *D* obeys $c_{\mathcal{K}}$ as well.

Analogy with model theory

- We think of a cost function as a description of a class of Δ⁰₂ sets: those sets with an approximation obeying the cost function.
- For instance, the standard cost function describes the *K*-trivial sets.
- This is somewhat similar to a sentence in some formal language describing a class of structures.
- "A obeys c" is like $A \models c$.
- The limit condition is consistency. We disregard computable sets.
- If *c* has a model it must satisfy the limit condition.
- The basic existence theorem shows that each "consistent" cost function has a (promptly simple) model.

Analogy with model theory

- We think of a cost function as a description of a class of Δ⁰₂ sets: those sets with an approximation obeying the cost function.
- For instance, the standard cost function describes the *K*-trivial sets.
- This is somewhat similar to a sentence in some formal language describing a class of structures.
- "A obeys c" is like $A \models c$.
- The limit condition is consistency. We disregard computable sets.
- If *c* has a model it must satisfy the limit condition.
- The basic existence theorem shows that each "consistent" cost function has a (promptly simple) model.

Part 5 : Strong jump-traceability

- During 2002-2005 researchers thought of the *K*-trivials as the "strongest" lowness property on the Δ⁰₂ sets.
- Recently a proper subclass has emerged (at least on the c.e. sets).
- It is defined in a purely computability-theoretic way, but can be characterized via randomness, using the "computed by many" paradigm.

- The idea of tracing: the set *A* is weak as an oracle because for certain functions ψ computed relative to *A*, the possible values ψ(x) lie in a finite set *T_x* of small size.
- The sets *T_x* are obtained effectively from *x* (not using *A* as an oracle).

Strongly jump traceable sets

- An order function is a function *h* : N → N that is computable, nondecreasing, and unbounded.
- A c.e. trace with bound *h* is a uniformly c.e. sequence $(T_x)_{x \in \mathbb{N}}$ such that $|T_x| \le h(x)$ for each *x*.
- Let $J^{A}(e)$ be the value of the *A*-jump at *e*, namely, $J^{A}(e) \simeq \Phi_{e}^{A}(e)$.
- The set A is called strongly jump traceable if for each order function h, there is a c.e. trace (T_x)_{x∈ℕ} with bound h such that, whenever J^A(x) it is defined, we have

 $J^{A}(x) \in T_{x}$

(Figueira, Nies, Stephan, 2004).

• For jump-traceability, one merely requires that this works for some order function *h*.

Theorem (Figueira, Nies, Stephan 2004)

There is a c.e. incomputable strongly jump traceable set.

We also prove that *A* is strongly jump traceable \Leftrightarrow *A* is "lowly" for the plain Kolmogorov complexity *C*, namely, for every order function *h* and almost every *x*, $C(x) \leq C^A(x) + h(C^A(x))$. The hope was that strong jump traceability is a computability-theoretic characterization of *K*-triviality. But, in fact:

Theorem (Cholak, Downey, Greenberg 2006)

The c.e. strongly jump traceable sets form a proper subideal of the *K*-trivial sets.

It is open whether this also holds within the Δ_2^0 sets.

We meet the prompt simplicity requirements

$$PS_e: \ \#W_e = \infty \ \Rightarrow \ \exists s \exists x [x \in W_{e, \text{at } s} \& x \in A_s].$$

The function $\overline{K}(x) := \min\{K(y): y \ge x\}$ is dominated by each order function *g*.

Construction of A. Let $A_0 = \emptyset$.

Stage s > 0. For each e < s, if PS_e is not satisfied and there is $x \ge 2e$ such that $x \in W_{e,at s}$ and

$$\forall i \left[(e \geq \overline{K}_{s}(i) \And J^{\mathcal{A}}(k)[s-1] \downarrow) \rightarrow x > \mathsf{use} \ J^{\mathcal{A}}(i)[s-1] \right]$$

then put x into A_s and declare PS_e satisfied.

Benign cost functions

The result of Cholak e.a. that SJT implies *K*-trivial for c.e. sets was reproved and extended using the language of cost functions.

Definition

We say that a cost function c is benign if

- $c(x + 1, s) \le c(x, s) \le c(x, s + 1)$ for each x < s (monotonicity), and
- there is a computable function g such that

 $x_0 < x_1 < \ldots < x_k$ and $\forall i < k [c(x_i, x_{i+1}) \ge 2^{-n}]$ $\Rightarrow k \le g(n).$

Intuitively, for at most g(n) times the cost of the current candidate *x* can grow to exceed 2^{-n} . The standard cost function $c_{\mathcal{K}}$ is benign via $g(n) = 2^n$.

Characterizing SJT via cost functions

Theorem (Greenberg, Nies, ta)

Let A be c.e. Then A is strongly jump traceable ⇔ A obeys each benign cost function.

- In particular, A is K-trivial.
- We also prove that each benign cost function is obeyed by some c.e. set that is not strongly jump traceable.
- Hence we have another proof that SJT is a proper subclass of K.

For " \Leftarrow " we have to define the right benign cost function to ensure tracing of J^A at order *h*. The harder direction is " \Rightarrow ". It uses the "box promotion method" of Cholak, Downey and Greenberg.

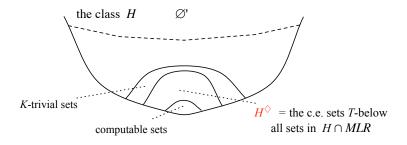
Part 6 : SJT sets are computed by many oracles

- We will give several characterizations of *SJT* as the c.e. sets that are easy to compute (in the sense that the class of oracles computing the set is large).
- For instance, A is strongly jump traceable ⇔ A is Turing below each ω-c.e. ML-random set. (We say Y is ω-c.e. if Y ≤_T Ø' with computably bounded use.)
- Thus, the computability-theoretic notion *SJT* can be characterized via randomness.
- For the *K*-trivials, the "easy to compute" property is "base for ML-randomness": A ≤_T Y for some Y that is ML-random in A. In contrast, to characterize SJT we don't need to relativize ML-randomness.

Diamond Classes

For a null class $\mathcal{H}\subseteq 2^{\mathbb{N}},$ we define

 \mathcal{H}^{\Diamond} = the c.e. sets *A* Turing below each ML-random set in \mathcal{H} .



- The larger \mathcal{H} is, the smaller is \mathcal{H}^{\Diamond} .
- \mathcal{H}^{\Diamond} induces an ideal in the c.e. Turing degrees.
- If some ML-random set $Z \not\geq_T \emptyset'$ is in \mathcal{H} , then $\mathcal{H}^{\Diamond} \subseteq K$ -trivial.

Theorem (Hirschfeldt/Miller)

For each null Σ_3^0 class \mathcal{H} , there is a promptly simple set in \mathcal{H}^{\Diamond} .

For instance, there is a promptly simple set in $(\omega$ -c.e.) \diamond .

- The theorem is proved by defining an appropriate cost function *c*_{*H*} with the limit condition.
- Whenever a c.e. set *A* obeys $c_{\mathcal{H}}$, then *A* is in \mathcal{H}^{\Diamond} .
- Now recall that some promptly set obeys A.

This implies that a ML-random set *Y* that is not weakly 2-random bounds an incomputable c.e. set: for \mathcal{H} choose a null Π_2^0 class containing *Y*.

In the proof we implicitly build a Turing functional Γ . If $A = \Gamma^Z$ becomes wrong because *A* changes, we put *Z* into a Solovay test. So this *Z* cannot be random. The fact that *A* obeys *c* is used to show that it is indeed a Solovay test, i.e., we don't have to "correct" Γ on too many sets.

A lowness property and its dual highness property

- Recall that Z is low if $Z' \leq_T \emptyset'$, and Z is high if $\emptyset'' \leq_T Z'$.
- These classes are "too big": we have

 $(low)^{\diamond} = (high)^{\diamond} = computable.$

(For instance, $(high)^{\diamond}$ = computable because there is a minimal pair of high ML-random sets.)

 So we will try somewhat smaller classes, replacing ≤_T by the stronger truth-table reducibility ≤_{tt}.

Definition

A set *Z* is superlow if $Z' \leq_{tt} \emptyset'$. *Z* is superhigh if $\emptyset'' \leq_{tt} \emptyset'$.

A random set can be superlow (low basis theorem). It can also be superhigh but Turing incomplete (Kučera coding).

SJT is contained in the diamond classes

- Superlow is a countable Σ₃⁰ class. Superhigh is contained in a null Σ₃⁰ class (Simpson).
- So by the Hirschfeldt/Miller cost function we already know there is a promptly set in each of the corresponding diamond classes.
- Now we make such a cost function benign.

Theorem (Greenberg, Nies)

Let \mathcal{H} be either superlowness or superhighness.

- Then there is a benign cost function c such that each c.e. set obeying c is in H[◊].
- Thus $SJT \subseteq \mathcal{H}^{\Diamond}$.

Conversely, the diamond classes are contained in SJT

- Greenberg, Hirschfeldt and Nies showed the converse inclusion, thereby giving two characterizations of the c.e. strongly jump traceable sets via randomness.
- We use a "golden run" construction with infinitely many levels.

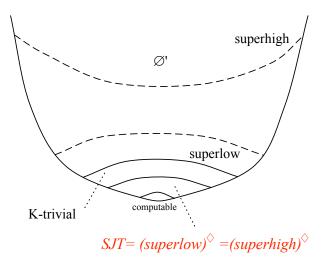
To summarize, we have:

Theorem

 $SJT = (\omega - c.e.)^{\diamond} = superlow^{\diamond} = superhigh^{\diamond}.$

The proof that $SJT \supseteq$ superlow \diamond is very general.

- We don't need the hypothesis that the set is c.e.
- We can replace the ML-random sets by any non-empty Π⁰₁ class.



Often new characterizations give new views of the class. We obtain

- A new proof of the Cholak e.a. result that *SJT* induces an ideal in the c.e. Turing degrees (because every diamond class does that).
- a cost function construction (hence, injury-free) of a promptly simple set in *SJT* via the Hirschfeldt/MIIIer cost function $c_{\mathcal{H}}$ where $\mathcal{H} = (\omega)$ -c.e. (say).

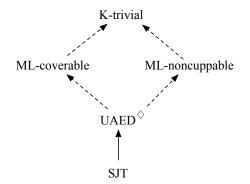
Open questions on classes between SJT and K-trivial

- No natural classes are currently known to lie properly between *SJT* and *K*-trivial
- A good candidate is (UAED)[◊]. Here UAED is the class of uniformly almost everywhere dominating sets *Z* of Dobrinen and Simpson. (Equivalently, each random in *Z* is random in Ø'.) For the highness properties, there are proper implications

Turing-complete \Rightarrow UAED \Rightarrow superhigh.

- For the corresponding diamond classes, Greenberg and Nies proved that SJT is properly contained in (UAED)[◊].
- However, $(UAED)^{\diamond}$ may coincide with *K*-trivial.
- This would imply that the classes ML-coverable and ML-noncuppable also coincide with *K*-trivial.

Classes of c.e. sets between SJT and K-trivial



(The dashed arrows may be coincidences.)

- A is ML-coverable if $A \leq_T Y$ for some ML-random $Y \geq_T \emptyset'$.
- A is ML-noncuppable if

 $\emptyset' \leq_T A \oplus Y$ for ML-random Y implies $\emptyset' \leq_T Y$.