André Nies
The University of Auckland

ASL Annual Meeting, May 2009

Part 1 :

The interaction of
computability and randomness

André Nies The University of Auckland Lowness properties and cost functions

The complexity aspect of a set

We study sets of natural numbers A C N (simply called sets).
We want to understand their computational complexity.

e Absolute complexity: we introduce classes such as
computable C low C A9 ...
and locate the set A in one of the classes.
e Other classes of shared complexity might be incompatible
with them. An example is being computably dominated:

every function f computable relative to A is dominated by a
computable function.

e Relative complexity: we compare sets A and B using a
reducibility such as Turing <r.

André Nies The University of Auckland Lowness properties and cost functions

The randomness aspect of a set

(a) 00000000 00000000 00000000 00000000 0000. ..
(b) 10100100 01000010 00001000 00010000 0001...
(c) 00100100 00111111 01101010 10001000 1000 ...
(d) 10010100 00010001 11110100 00101101 1111 ...
(e) 11101101 01111010 10101111 11001110 1110 ...

(a) Only zeros

(b) TT;0'"

(c) m—3in binary
(d) Coin tossing
(e) Coin tossing

André Nies The University of Auckland Lowness properties and cost functions

Randomness theory

e For the absolute randomness aspect of a set, one introduces
a hierarchy of randomness notions.

e The central notion is Martin-L6f-randomness, based on a
computably enumerable test concept.

e Others notions can often be viewed as variants of
Martin-L6f-randomness. For instance, we have

weakly 2-random = ML-random =- Schnorr random.

e The relative randomness aspect of sets has been studied to
a lesser extent. One asks: when is a set B “more random”
than a set A?

André Nies The University of Auckland Lowness properties and cost functions

Applying computability to randomness |

e The formal definition of randomness notions relies on
computability theoretic tools.
e We study them with computability theoretic methods.

For instance, consider the definition of Martin-L6f-randomness.

Sets are elements of Cantor space 2"

Let \ denote the uniform (product) measure on 2%,

e A ML-test is a uniformly computably enumerable sequence
(Gm)men of open sets such that A\G,, < 2~ for each m.

e Aset Zis ML-random if Z passes each ML-test, in the sense
that Z ¢ (1, Gm.

A ML-random set Z can be low (Z’ =7 /'), but it can also be
Turing complete (Z =7 ().

André Nies The University of Auckland Lowness properties and cost functions

Applying computability to randomness |l

e A ML-test is a uniformly computably enumerable sequence
(Gm)men of open sets such that A\G,, < 2" for each m.

e (Gm)men is a generalized ML-test if the condition
“ANGm < 27" for each m” is weakened to lim,\G, = 0.
Such tests are equivalent to null N3 classes.

e We say that Z is weakly 2-random if Z is in no null I'Ig class.

Theorem (Hirschfeldt, Miller 06)

Let Z be ML-random. Then

Z is weakly 2-random < each computably enumerable set
Turing below Z is computable <

Z and (' form a minimal pair.

André Nies The University of Auckland Lowness properties and cost functions

Applying randomness to computability

Randomness-related concepts enrich computability theory.
e New examples:
— Chaitin’s halting probability 2, a left-c.e. real.
— the class of K-trivial sets, a natural £J ideal in the AJ
Turing degrees.
e New methods: cost functions as a way to understand
injury-free solutions to Post’s problem.
e New results: purely computability-theoretic classes can be
characterized via randomness.

André Nies The University of Auckland Lowness properties and cost functions

Part 2 : Lowness properties of AJ sets

André Nies The University of Auckland Lowness properties and cost functions

Three ways to be almost computable

We will use randomness to study lowness properties of Ag sets.

There are three ways in which a Ag set A can be

almost computable:

e Weak as an oracle:
A does not provide much computational power as an oracle
set. For instance, A is low, namely A" < (/'.

e Easy to compute:
in some sense, the class of sets computing A is large.

e Approximable with few mind changes:
A(x) = limgAs(x) for a computable approximation (As)sen
such that the total amount of changes is small. (We will
introduce cost functions to measure this.)

André Nies The University of Auckland Lowness properties and cost functions

New lowness properties

e Till about 2000, the usual lowness A’ <t (' was the most
restrictive property studied that says “almost computable”.
e Recently, two interesting classes inside the low sets have
emerged: K trivial sets, and strongly jump traceable sets.
e The classes have many characterizations, of all three types:
weak as an oracle/ easy to compute/ few mind changes.
e The classes have nice properties:
— they induce ideals in the Turing degrees (in the
computably enumerable degrees, at least);
— there is a natural, injury-free construction of a c.e.
incomputable (even promptly simple) member.

André Nies The University of Auckland Lowness properties and cost functions

Two classes inside Low

The two classes are:
e The K-trivial sets.

Equivalently, the sets that are low for ML-randomness.
e The strongly jump traceable sets.

Within the c.e. sets we have this picture:

c.c. sets

Computable

André Nies The University of Auckland Lowness properties and cost functions

Part 3: K-triviality

André Nies The University of Auckland Lowness properties and cost functions

Machines and K

Let {0, 1}* be the strings over {0, 1}. A machine is a partial
recursive function M : {0,1}* — {0, 1}*.

M is prefix free if its domain is an antichain under inclusion of
strings.

Let (My)q4>0 be an effective listing of all prefix free machines.
The standard universal prefix free machine U is given by

U(0%) = My(0).

The prefix free version K(y) of descriptive string complexity
(aka Kolmogorov complexity) is the length of a shortest prefix
free description of y:

K(y) = min{|o| : U(o) = y}.

André Nies The University of Auckland Lowness properties and cost functions

K-triviality

A set Ais K-trivial (Chaitin, 1975) if each initial segment has
minimal prefix free complexity, namely, it is no greater than
the one of its length.
e More precisely, there is ¢ € N such that
Vn K(Aln) < K(n)+c.
o Chaitin showed: computable = K-trivial = AJ.
e Solovay built an incomputable K-trivial.
e Schnorr’s Theorem:
Z is ML-random iff Vn K(Z [) > n — ¢ for some c.

So being K-trivial says that A is far from random.
e |tis not clear why this should be a lowness property at all.

André Nies The University of Auckland Lowness properties and cost functions

Weak as an oracle: low for ML-randomness

e Ais low for ML-randomness if each ML-random set is already
ML-random relative to A (Zambella, 1990).

e This says that A is weak as an oracle: A cannot find new
“regularities” in any ML-random set.

Theorem (Nies 05, Hirschfeldt)
A is K-trivial = A is low for ML-randomness.

“=" uses the golden run method.

André Nies The University of Auckland Lowness properties and cost functions

Bases for ML-randomness

We say that A is a base for ML-randomness(Kucera, 1993) if
A <7 Z for some Z € MLR".

That is, A can be computed from a set that is random relative to
it. This says that the class of sets computing A is large (in a
sense relative to A itself).

Kucera proved that some (promptly) simple set is a base for
ML-randomness.

André Nies The University of Auckland Lowness properties and cost functions

Coincidence of “base for ML’ with K-trivialilty

e The Kucera-Gacs Theorem says that for each set A, there is
a ML-random Z such that A <1 Z.
e So, if Ais low for ML-randomness then A is a base for
ML-randomness.
e We already know that K-trivial = low for ML-randomness
= base for ML-randomness.
The following then shows that all three classes coincide.

Theorem (Hirschfeldt,Nies, Stephan 07)
Each base for ML-randomness is K -trivial.

André Nies The University of Auckland Lowness properties and cost functions

Part 4 : Cost functions

We head for a characterization of K-triviality saying that the set
A can be computably approximated with a small total amount of
mind changes.

André Nies The University of Auckland Lowness properties and cost functions

Definition of cost functions

Definition
A cost function is a computable function

c:NxN—{xeQ: x>0}
We view ¢(x, s) as the cost of changing A(x) at stage s.
Definition

We say that a computable approximation (As)scn Obeys a cost
function c if

00 >3, s C(X,8) [x < s & xisleasts.t. As_1(x) # As(X)].

André Nies The University of Auckland Lowness properties and cost functions

Basic existence theorem

For a cost function ¢ : N x N — Q, let ¢(x) = supsc(x, S).
We say that ¢ has the limit condition if lim,c(x) = 0.

Theorem (Various)
If a cost function c has the limit condition, then some (promptly)
simple set A obeys c.

Proof. Let W, be the e-th c.e. set. If W, is infinite we want
some x € W, to enter A. We define a computable enumeration
(As)sen as follows. Ag = 0. For s > 0,

As = As_1 U {X : de

Wes N As_1 =0 | We haven't met e-th simplicity requirement.
x € Wes We can meet it via x.

X > 2e This makes A co-infinite.

c(x,s) <2¢}. | This ensures that A obeys c.

André Nies The University of Auckland Lowness properties and cost functions

The K-Mart analogy

e We want to buy a shirt of each color e at K-Mart, provided
that there is a sufficient number of shipments from China.

e For the shirt of color e we can spend at most 2°.

e Eventually, a sufficiently cheap shirt of color e will arrive,
unless that color is discontinued.

e We can buy all shirts that are not discontinued.

e We spend at most 2 dollars in total.

André Nies The University of Auckland Lowness properties and cost functions

Cost function characterization of the K-trivials

The standard cost function ci is given by

C/g(X, S) - Zx<w§s 2~ HKs(w),

We could also use c¢(x, s) = Prob[{c: Us(c) > x}], the chance
that the universal machine prints a string > x within s steps.

Theorem (Nies 05)
A is K-trivial <
some computable approximation of A obeys ci.

Corollary
For each K-trivial A there is a c.e. K-trivial set D >1 A.

D is the change set {(x,/i): A(x) changes at least / times}.
One verifies that D obeys ¢ as well.

André Nies The University of Auckland Lowness properties and cost functions

Analogy with model theory

o We think of a cost function as a description of a class of AJ
sets: those sets with an approximation obeying the cost
function.

e For instance, the standard cost function describes the
K-trivial sets.

e This is somewhat similar to a sentence in some formal
language describing a class of structures.

e “Aobeys c”is like A = c.

e The limit condition is consistency. We disregard computable
sets.

e If ¢ has a model it must satisfy the limit condition.

e The basic existence theorem shows that each “consistent”
cost function has a (promptly simple) model.

André Nies The University of Auckland Lowness properties and cost functions

Analogy with model theory

o We think of a cost function as a description of a class of AJ
sets: those sets with an approximation obeying the cost
function.

e For instance, the standard cost function describes the
K-trivial sets.

e This is somewhat similar to a sentence in some formal
language describing a class of structures.

e “Aobeys c”is like A = c.

e The limit condition is consistency. We disregard computable
sets.

e If ¢ has a model it must satisfy the limit condition.

e The basic existence theorem shows that each “consistent”
cost function has a (promptly simple) model.

André Nies The University of Auckland Lowness properties and cost functions

Part 5 : Strong jump-traceability

During 2002-2005 researchers thought of the K-trivials as
the “strongest” lowness property on the Ag sets.

Recently a proper subclass has emerged (at least on the c.e.
sets).

It is defined in a purely computability-theoretic way, but can
be characterized via randomness, using the “computed by
many” paradigm.

André Nies The University of Auckland Lowness properties and cost functions

Tracing

e The idea of tracing: the set A is weak as an oracle because
for certain functions ¢» computed relative to A, the possible
values ¢ (x) lie in a finite set T, of small size.

e The sets Ty are obtained effectively from x (not using A as
an oracle).

André Nies The University of Auckland Lowness properties and cost functions

Strongly jump traceable sets

e An order function is a function h: N — N that is computable,
nondecreasing, and unbounded.

e A c.e. trace with bound h is a uniformly c.e. sequence
(Tx)xen such that | Tx| < h(x) for each x.

o Let J4(e) be the value of the A-jump at e, namely,

JA(e) ~ di(e).

e The set A is called strongly jump traceable if for each order
function h, there is a c.e. trace (Tx)xen With bound h such
that, whenever J4(x) it is defined, we have

JA(x) € Ty
(Figueira, Nies, Stephan, 2004).

e For jump-traceability, one merely requires that this works for

some order function h.

André Nies The University of Auckland Lowness properties and cost functions

A proper subclass of the c.e. K-trivial sets

Theorem (Figueira, Nies, Stephan 2004)
There is a c.e. incomputable strongly jump traceable set.

We also prove that A is strongly jump traceable < Ais “lowly”
for the plain Kolmogorov complexity C, namely, for every order
function h and almost every x, C(x) < CA(x) + h(CA(x)).

The hope was that strong jump traceability is a
computability-theoretic characterization of K-triviality.

But, in fact:

Theorem (Cholak, Downey, Greenberg 2006)

The c.e. strongly jump traceable sets form a proper subideal of
the K -trivial sets.

It is open whether this also holds within the A9 sets.

André Nies The University of Auckland Lowness properties and cost functions

Building a promptly simple strongly jump traceable set

We meet the prompt simplicity requirements
PSe #We =0 = ESEX[X & We’ats & X € As]

The function K(x) := min{K(y): y > x} is dominated by each
order function g.
Construction of A. Let Ay = 0.

Stage s > 0. For each e < s, if PS; is not satisfied and there is
x > 2esuch that x € We ats and

Vi[(e > Ks(i) & JAK)[s —1]]) — x > use JA(i)[s — 1]]

then put x into As and declare PS, satisfied.

André Nies The University of Auckland Lowness properties and cost functions

Benign cost functions

The result of Cholak e.a. that SJT implies K-trivial for c.e. sets
was reproved and extended using the language of cost
functions.

Definition

We say that a cost function c is benign if

e c(x+1,8) <c(x,s) <c(x,s+1)foreachx < s
(monotonicity), and

e there is a computable function g such that
Xo < Xq <...<Xgand Vi< k[c(x;,Xj11)>27")
= k <g(n).

Intuitively, for at most g(n) times the cost of the current
candidate x can grow to exceed 2~ ".
The standard cost function c is benign via g(n) = 2".

André Nies The University of Auckland Lowness properties and cost functions

Characterizing SJT via cost functions

Theorem (Greenberg, Nies, ta)
Let A be c.e. Then
A is strongly jump traceable <
A obeys each benign cost function.

e In particular, A is K-trivial.

e We also prove that each benign cost function is obeyed by
some c.e. set that is not strongly jump traceable.

e Hence we have another proof that SJT is a proper subclass
of K.

For “<=” we have to define the right benign cost function to
ensure tracing of JA at order h.

The harder direction is “=-". It uses the “box promotion method”
of Cholak, Downey and Greenberg.

André Nies The University of Auckland Lowness properties and cost functions

Part 6 : SJT sets are computed by many oracles

e We will give several characterizations of SJT as the c.e. sets
that are easy to compute (in the sense that the class of
oracles computing the set is large).

e Forinstance, A is strongly jump traceable < A is Turing
below each w-c.e. ML-random set. (We say Y is w-c.e. if
Y <7 (/ with computably bounded use.)

e Thus, the computability-theoretic notion SJT can be
characterized via randomness.

e For the K-trivials, the “easy to compute” property is “base for
ML-randomness”™ A <7 Y for some Y that is ML-random in
A. In contrast, to characterize SJT we don’t need to relativize
ML-randomness.

André Nies The University of Auckland Lowness properties and cost functions

Diamond Classes

For a null class H C 2N, we define

H® = the c.e. sets A Turing below each ML-random set in H.

K-trivial sets
HY = the c.e. sets T-below

computable s-ets all setsin H N MLR

e The larger H is, the smaller is H°.
e 1 induces an ideal in the c.e. Turing degrees.
o If some ML-random set Z #7 (/' is in H, then H® C K-trivial.

André Nies The University of Auckland Lowness properties and cost functions

Existence Theorem

Theorem (Hirschfeldt/Miller)
For each null Zg class H, there is a promptly simple set in H°.

For instance, there is a promptly simple set in (w-c.e.)°.

e The theorem is proved by defining an appropriate cost
function ¢ with the limit condition.

o Whenever a c.e. set A obeys ¢y, then Ais in H°.

e Now recall that some promptly set obeys A.

This implies that a ML-random set Y that is not weakly 2-random
bounds an incomputable c.e. set: for H choose a null N3 class
containing Y.

In the proof we implicitly build a Turing functional I'. If A= T4
becomes wrong because A changes, we put Z into a Solovay test. So
this Z cannot be random. The fact that A obeys c is used to show that

it is indeed a Solovay test, i.e., we don’t have to “correct” I' on too

manv qete
André Nies The University of Auckland Lowness properties and cost functions

A lowness property and its dual highness property

e Recall that Zis low if Z/ <7 (/, and Z is high if (" <t Z'.
e These classes are “too big”: we have
(low)¢ = (high)®= computable.

(For instance, (high)®= computable because there is a
minimal pair of high ML-random sets.)

e So we will try somewhat smaller classes, replacing <r by the
stronger truth-table reducibility <.

Definition
A set Z is superlow if Z/ <4 0. Z is superhigh if 0" <g 0.

A random set can be superlow (low basis theorem). It can also
be superhigh but Turing incomplete (KuCera coding).

André Nies The University of Auckland Lowness properties and cost functions

SJT is contained in the diamond classes

e Superlow is a countable Zg class. Superhigh is contained in
a null £J class (Simpson).

e So by the Hirschfeldt/Miller cost function we already know
there is a promptly set in each of the corresponding diamond
classes.

e Now we make such a cost function benign.

Theorem (Greenberg,Nies)
Let H be either superlowness or superhighness.

e Then there is a benign cost function ¢ such that each c.e. set
obeying c is in H°.
e Thus SJT C HO.

André Nies The University of Auckland Lowness properties and cost functions

Conversely, the diamond classes are contained in SJT

e Greenberg, Hirschfeldt and Nies showed the converse
inclusion, thereby giving two characterizations of the c.e.
strongly jump traceable sets via randomness.

e We use a “golden run” construction with infinitely many
levels.

To summarize, we have:
Theorem

SJT = (w — c.e.)® =superlow® = superhigh®.

The proof that SUT D superlow © is very general.

e We don’t need the hypothesis that the set is c.e.

e We can replace the ML-random sets by any non-empty N9
class.

André Nies The University of Auckland Lowness properties and cost functions

computable ",

K-trivial

SIT= (superlow)<> :(superhigh)O

André Nies The University of Auckland Lowness properties and cost functions

Corollaries to the characterization of SJT

Often new characterizations give new views of the class. We
obtain

e A new proof of the Cholak e.a. result that SJT induces an
ideal in the c.e. Turing degrees (because every diamond
class does that).

e a cost function construction (hence, injury-free) of a promptly
simple set in SJT via the Hirschfeldt/Mlller cost function ¢y
where H = (w)-c.e. (say).

André Nies The University of Auckland Lowness properties and cost functions

Open questions on classes between SJT and K-trivial

e No natural classes are currently known to lie properly
between SJT and K-trivial

e A good candidate is (UAED). Here UAED is the class of
uniformly almost everywhere dominating sets Z of Dobrinen
and Simpson. (Equivalently, each random in Z is random in
('.) For the highness properties, there are proper implications

Turing-complete = UAED =- superhigh.

e For the corresponding diamond classes, Greenberg and Nies
proved that SJT is properly contained in (UAED).

o However, (UAED)® may coincide with K-trivial.

e This would imply that the classes ML-coverable and
ML-noncuppable also coincide with K-trivial.

André Nies The University of Auckland Lowness properties and cost functions

Classes of c.e. sets between SJT and K-trivial

K-trivial
o~ >
ML-coverable ML-no\ncuppable
> <
UAED®
SJT

(The dashed arrows may be coincidences.)

e Ais ML-coverable if A <7 Y for some ML-random Y # (.

e Ais ML-noncuppable if
) <+ A@ Y for ML-random Y implies (/) <t Y.

André Nies The University of Auckland Lowness properties and cost functions

