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Lowness properties

A lowness property of a set specifies a sense in which the set is
computationally weak. Usually this means that it is not very
useful as an oracle.
We require that such a property be closed downward under
Turing reducibility; in particular it only depends on the Turing
degree of the set.
If a set is computable then it satisfies any lowness property. A
set that satisfies a lowness property can be thought of as
almost computable in a specific sense.
Examples:
A′ ≤T ∅′ (usual lowness)
A′ ≤tt ∅′ (superlowness)
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Highness properties

Highness properties say that the set is computationally strong.
They are closed upward under Turing reducibility. If a set
satisfies a highness property it is almost Turing above ∅′ in a
specific sense.
Examples:
C′ ≥T ∅′′ (usual highness)
C′ ≥tt ∅′′ (superhighness)
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General framework

Lowness and highness properties are often dual to each other.
We suggest a more general framework for such pairs of dual
properties.
A reducibility is a preordering on 2N that specifies a way to
compare sets with regard to their computational complexity.
We will introduce a notion of weak reducibility ≤W .
Such a reducibility determines a lowness property A ≤W ∅ and
a dual highness property C ≥W ∅′.
For instance, we could define A ≤W B iff A′ ≤T B′, or A ≤W B
iff A′ ≤tt B′, to get the examples above.
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Definition of weak reducibility

A reducibility ≤W is weak if

A ≤T B implies A ≤W B (as opposed to strong
reducibilities like ≤tt that imply ≤T ).

≤W is Σ0
n for some n as a relation on sets (often n = 3)

X ′ 6≤W X for each set X (so the lowness and highness
properties are disjoint).

Thus, we want ≤W to be somewhat close to ≤T ; for instance,
arithmetical reducibility, defined by X ≤ar Y ↔ ∃n X ≤T Y (n),
does not qualify. Neither does enumeration reducibility.
In general, there are no reduction procedures for a weak
reducibility.
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Implications of the weak reducibilities

The inclusions of lowness properties in the diagram extend to
inclusions of the weak reducibilities,
with the exception A ≤LR B 6⇒ A′ ≤tt B′

and the possible exception of ≤SSL
?⇒ ≤SJT .
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Table of some weak reducibilities

Weak reducibility Lowness property Highness prop.

≤T computable ≥T ∅′

≤LR ⇔ ≤LK Low(MLR) = low for K u.a.e.d
≤JT (jump traceable by) jump traceable ≥JT ∅′

A′ ≤tt B′ superlow superhigh
A′ ≤T B′ low high
≤CT comp. traceable ≥T ∅′

≤cdom comp. dominated ≥T ∅′

≤BLR (Cole & Simpson) jump tr. & superlow ≥JT ∅′ & superhigh

For instance, A ≤cdom B if each A-computable function is
dominated by a B-computable function.
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BLR reducibility

Cole and Simpson, JML, to appear

BLR(X )= class of functions with an X -recursive
approximation, and the number of changes recursively
bounded.

A ≤BLR B if BLR(A) ⊆ BLR(B).

They show
(?) ≤BLR implies both ≤JT and ≤ superlow .

For the lowness property they show equality. Simpson also
proved equality for the highness property. The converse of
(?) is open.
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Directions of study

The usual degree theoretic questions (e.g. existence of
minimal degrees, or minimal pairs)

cardinality of single degrees/lower cones. For instance
each LR degree countable (Nies/Miller) while LR lower
cone below ∅′ (and in fact below each non-GL2) is
uncountable (Barmpalias, Lewis, Soskova). Note that each
weak reducibiblity degree structure has cardinality ≥ ω1.

Apply this to randomness. For instance, see whether

A ≤CT B ⇔ SRB ⊆ SRA.

Here SRX is the set of Schnorr random “reals”
relative to X .
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JT reducibility

Recently a question on separating highness properties was
answered by using the weak reducibility ≤JT .

Definition

(Simpson) A is jump traceable by B, written A ≤JT B, if there is
a c.e. trace (Te)e∈N relative to B for JA, and an order function h
such that #Te ≤ h(e) for each e.

Being jump traceable by B is somewhat different from being
jump traceable relative to B because we only require the
existence of a c.e. trace for the function JA, not for JA⊕B; on the
other hand, the bound for this trace must be computable, not
merely computable in B. This “partial relativization” is typical.
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≤JT is a weak reducibility

It is not hard to show that ≤JT is a Σ0
3 relation on sets, that

A ≤T B implies A ≤JT B, and that A′ 6≤JT A.

Fact

The relation ≤JT is transitive.

Proof. Suppose A is jump traceable by B via a trace (Sn)n∈N
with computable bound g, and B is jump traceable by C via a
trace (Ti)i∈N with a computable bound h. There is a
computable function β such that

JB(β(〈n, k〉)) ' the k -th element enumerated into Sn.

Let Vn =
⋃

k<g(n) Tβ(〈n,k〉), then #Vn ≤ g(n) · h(β(〈n, g(n)〉))
and A is jump traceable by C via the trace (Vn)n∈N. �

Transitivity can be non-trivial to show. For instance, it also
works for computable traceability, but not for c.e. traceability.
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Separating highness properties

Cole and Simpson asked whether
C superhigh ⇔ ∅′ is jump traceable by C.

The answer is NO.

Mohrherr 84: for every set A ≥tt ∅′ there is a set C such
that C′ ≡tt A. The construction makes C jump traceable as
noted by Kjos Hanssen .

If A = ∅′′, this jump inversion for ≡tt yields a superhigh
jump traceable set C.

Thus C ≤JT ∅ and hence ∅′ 6≤JT C.
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Two highness properties

LRH = {C : ∅′ ≤LR C} = u.a.e.d. sets.,
JTH = {C : ∅′ ≤JT C}.

JTH is properly contained in the class of superhigh sets.
However, the two latter classes coincide on the ∆0

2 sets (Cole
and Simpson, extending “Reals which compute little” by Nies).
There is a superhigh ∆0

2 (even c.e.) set C such that C <LR ∅′

(pseudo jump inversion)
Hence LRH is a proper subclass of JTH.
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Diamond operator

For a class H ⊆ 2N let

H♦ = {A : A is c.e. & ∀Y ∈ H ∩MLR [A ≤T Y ]}.

Here MLR is the set of Martin-Löf random sets.
If H is a null Σ0

3 class, then H♦ contains a promptly simple set
(Hirschfeldt and Miller).
So there is a promptly simple set in JTH ♦ ⊆ LRH ♦.
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Subclasses of the c.e. K -trivials

Theorem

Consider the following properties of a c.e. set A.

(i) A ∈ JTH ♦;

(ii) A ∈ LRH ♦;

(iii) A is ML-coverable, namely, there is a ML-random set
Z ≥T A such that ∅′ 6≤T Z ;

(iv) For each ML-random set Z , if ∅′ ≤T A⊕ Z then ∅′ ≤T Z;

(v) A is K -trivial.

The following implications are known: (i)⇒ (ii)⇒(iii)⇒(v);
(ii)⇒(iv)⇒(v).

All these classes are closed downward under ≤T within the c.e.
sets. The classes given by (i), (ii) and (v) are even known to be
ideals.
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Strong jump traceability beats it all

JTH ♦ is the “smallest” class known to contain a promptly
simple that may coincide with the c.e. K -trivials.
It actually contains quite a bit.

Theorem
(Greenberg and Nies) Each strongly jump traceable c.e. set A
is in JTH ♦.

We first prove that each strongly jump traceable c.e. set A
obeys each benign cost function (a generalization of the
standard cost function used to build a K -trivial.) Then we find a
benign c.f. for being in JTH ♦.
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superhigh♦

Note that high♦= computable because Ω∅′
is high and

2-random, so Ω∅′
and Ω form a minimal pair.

Is the class of superhigh sets Σ0
3?

This would provide an affirmative answer to:
Is there an incomputable set in superhigh♦?
Even if superhigh is not Σ0

3, it could be that

superhigh ⇔ JTH for ML-random sets.

I rather expect that superhigh♦ = computable.
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