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Preliminaries: Randomness notions

How to formalize the intuitive notion that a set Z ⊆ N is
random?
• Polynomial randomness: the tests are polynomial time

betting strategies (martingales).
• Schnorr, and computable randomness: the tests are

computable betting strategies.
• Martin-Löf-randomness: the tests are uniformly computably

enumerable (c.e.) sequences (Gm)m∈N of open sets in
Cantor space 2N such that the uniform measure of Gm is at
most 2−m.
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Part 1
Lowness properties

We study lowness properties in recursion theory and
computational complexity theory.
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Lowness properties in recursion theory

A lowness property of a set A ⊆ N specifies a sense in which A
is close to being computable.
Often this means that A is weak when used as an oracle. A
says:

“I can’t tell you much that you don’t know already”.

Lowness properties are closed downwards under Turing
reducibility ≤T . Here are some examples:

1. each function f ≤T A is dominated by a computable function;
2. the usual lowness A′ ≤T ∅′ (for a set X we let X ′ denote the

halting problem relative to X );
3. lowness for Martin-Löf-randomness: if a set Z ⊆ N is

ML-random, then Z is already ML-random relative to A.
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Lowness properties in computational complexity
theory

Let Σ = {0, 1}. In complexity theory, a lowness property of a
language A ⊆ Σ∗ specifies a sense in which A is nearly in P.

Such a property should be closed downwards under polynomial
Turing reducibility ≤p

T (or at least one of its variants such
as ≤p

m).

We now study subclasses of the recursive sets. So, unlike the
case of recursion theory, a lowness property may be given by:
• A resource bound on deterministic Turing machines. This is

the case for PSPACE.
• A variant of the machine concept. This is the case for BPP.
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Weakness as an oracle

We can also define a lowness property of a language A ⊆ Σ∗ by
specifying a sense in which A is weak when used as an oracle.

Examples:
1. each function f : N → N, f ∈ PA, is dominated by a function

in P (here numbers are represented in binary);
2. NPA = NP (this is equivalent to A ∈ NP ∩ CoNP);
3. if the set Z ⊆ N is polynomially random, then Z is already

polynomially random relative to A.
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Part 2
Weakness as an oracle via tracing

A is computationally weak because the functions A computes
have few possible values.
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Computable traces

Let h : N → N be computable.

Definition 1
A computable trace with bound h is a sequence (Tn)n∈N of
non-empty sets such that
• |Tn| ≤ h(n) for each n
• from n, one can compute the finite set Tn.

(Tn)n∈N is a trace for the function f : N → N if f (n) ∈ Tn for
each n.

We say that A is computably traceable if there is a fixed h such
that each function f ≤T A has a computable trace with bound h.

Theorem 2 (Terwijn, Zambella, 2001; Kjos-Hanssen, Nies,
Stephan, 2005)
A is computably traceable ⇔ A is low for Schnorr randomness.

André Nies The University of Auckland Superhighness and strong jump traceability



Complexity theory: k -traces

Definition 3
Let k ≥ 1. A k -trace is a sequence (Tx)x∈Σ∗ of subsets of Σ∗

such that

• |Tx | = k for each x
• The function x → (code for) Tx is in P.

(Tx)n∈N is a trace for the function f : Σ∗ → Σ∗ if f (x) ∈ Tx for
each x .
We say that A is k -traceable if each function f ∈ PA has a
k -trace.
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Supersparse sets are 2-traceable

Definition 4 (Ambos-Spies 1986)
Let f : N 7→ N be a strictly increasing, time constructible
function. A is f -super sparse if

• A ⊆ {0f (i) : i ∈ N}
• Some machine determines A(0f (i−1)) in time O(f (i)).

Let f be the iteration of the function n → 2n. Ambos-Spies
constructed an f -supersparse set in EXPTIME− P.

Theorem 5 (Ambos-Spies 1986)
Each f -supersparse set is 2-traceable.

Question 6
Is each k-traceable set low for polynomial randomness
[polynomial Schnorr randomness]?
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Part 3
Strong jump traceability

We characterize a strong lowness property in recursion theory
using randomness.
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Strongly jump traceable sets

• A computably enumerable trace with bound h is a uniformly
computably enumerable sequence (Tx)x∈N such that
|Tx | ≤ h(x) for each x .

• Let JA(e) be the value at e of a universal A-partial
computable function. (For instance, let JA(e) ' ΦA

e (e) where
Φe is the e-th Turing functional.)

• The set A is called strongly jump traceable if for each order
function h, there is a c.e. trace (Tx)x∈N with bound h such
that, whenever JA(x) it is defined, we have

JA(x) ∈ Tx

• SJT will denote the class of c.e. strongly jump traceable sets.
• There is an incomputable set in SJT by Figueira, Nies,

Stephan (2004).
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Diamond Classes
2N denotes Cantor space with the uniform (coin-flip) measure.
For a null class H ⊆ 2N, we define

H♦ = the c.e. sets A Turing below each ML-random set in H.

∅'the class  H

computable sets

H     = the c.e. sets T-below
all sets in  H ∩ MLR
♢K-trivial sets

• The larger H is, the smaller is H♦.
• H♦ induces an ideal in the computably enumerable Turing

degrees.
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A lowness property and its dual highness property

• Recall that Z ⊆ N is low if Z ′ ≤T ∅′, and Z is high if ∅′′ ≤T Z ′.
• These classes are “too big”: we have

(low)♦ = (high)♦= computable.

(For instance, (high)♦= computable because there is a
minimal pair of high ML-random sets.)

• So we will try somewhat smaller classes, replacing ≤T by the
stronger truth-table reducibility ≤tt.

Definition 7 (Mohrherr 1986)
A set Z is superlow if Z ′ ≤tt ∅′. Z is superhigh if ∅′′ ≤tt Z ′.

A random set can be superlow (low basis theorem). It can also
be superhigh but Turing incomplete (Kučera coding).
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These diamond classes characterize SJT

The following theorems say that a c.e. set A is strongly jump
traceable iff it is computed, in a specific sense, by many
ML-random oracles.

Theorem 8 (Greenberg, Hirschfeldt and Nies (to appear))

SJT =superlow ♦.

That is, a c.e. set A is strongly jump traceable ⇔ A is Turing
below each superlow ML-random set.

Theorem 9 (Nies, improved version in G’berg, H’feldt, N)

SJT= superhigh ♦.
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Diagram: SJT means computed by many oracles

∅'

superhigh

SJT= (superlow)   =(superhigh)♢ ♢

superlow

K-trivial
computable
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