Superhighness and strong jump traceability

André Nies The University of Auckland

ICALP 2009

André Nies The University of Auckland Superhighness and strong jump traceability

Preliminaries: Randomness notions

How to formalize the intuitive notion that a set $Z \subseteq \mathbb{N}$ is random?

- Polynomial randomness: the tests are polynomial time betting strategies (martingales).
- Schnorr, and computable randomness: the tests are computable betting strategies.
- Martin-Löf-randomness: the tests are uniformly computably enumerable (c.e.) sequences (*G_m*)_{*m*∈ℕ} of open sets in Cantor space 2^ℕ such that the uniform measure of *G_m* is at most 2^{−m}.

Part 1 Lowness properties

We study lowness properties in recursion theory and computational complexity theory.

Lowness properties in recursion theory

A lowness property of a set $A \subseteq \mathbb{N}$ specifies a sense in which A is close to being computable.

Often this means that *A* is weak when used as an oracle. *A* says:

"I can't tell you much that you don't know already".

Lowness properties are closed downwards under Turing reducibility $\leq_{\mathcal{T}}$. Here are some examples:

- 1. each function $f \leq_T A$ is dominated by a computable function;
- the usual lowness A' ≤_T Ø' (for a set X we let X' denote the halting problem relative to X);
- lowness for Martin-Löf-randomness: if a set Z ⊆ N is ML-random, then Z is already ML-random relative to A.

Lowness properties in computational complexity theory

Let $\Sigma = \{0, 1\}$. In complexity theory, a lowness property of a language $A \subseteq \Sigma^*$ specifies a sense in which A is nearly in P.

Such a property should be closed downwards under polynomial Turing reducibility \leq_T^p (or at least one of its variants such as \leq_m^p).

We now study subclasses of the recursive sets. So, unlike the case of recursion theory, a lowness property may be given by:

- A resource bound on deterministic Turing machines. This is the case for PSPACE.
- A variant of the machine concept. This is the case for BPP.

We can also define a lowness property of a language $A \subseteq \Sigma^*$ by specifying a sense in which A is weak when used as an oracle.

Examples:

- each function *f* : N → N, *f* ∈ P^A, is dominated by a function in P (here numbers are represented in binary);
- 2. $NP^A = NP$ (this is equivalent to $A \in NP \cap CoNP$);
- 3. if the set $Z \subseteq \mathbb{N}$ is polynomially random, then Z is already polynomially random relative to A.

Part 2

Weakness as an oracle via tracing

A is computationally weak because the functions *A* computes have few possible values.

Computable traces

Let $h : \mathbb{N} \to \mathbb{N}$ be computable.

Definition 1

A computable trace with bound *h* is a sequence $(T_n)_{n \in \mathbb{N}}$ of non-empty sets such that

- $|T_n| \le h(n)$ for each n
- from *n*, one can compute the finite set T_n .

 $(T_n)_{n\in\mathbb{N}}$ is a trace for the function $f: \mathbb{N} \to \mathbb{N}$ if $f(n) \in T_n$ for each *n*.

We say that *A* is computably traceable if there is a fixed *h* such that each function $f \leq_T A$ has a computable trace with bound *h*.

Theorem 2 (Terwijn, Zambella, 2001; Kjos-Hanssen, Nies, Stephan, 2005)

A is computably traceable \Leftrightarrow A is low for Schnorr randomness.

Complexity theory: k-traces

Definition 3

Let $k \ge 1$. A *k*-trace is a sequence $(T_x)_{x \in \Sigma^*}$ of subsets of Σ^* such that

- $|T_x| = k$ for each x
- The function $x \rightarrow$ (code for) T_x is in P.

 $(T_x)_{n\in\mathbb{N}}$ is a trace for the function $f: \Sigma^* \to \Sigma^*$ if $f(x) \in T_x$ for each x.

We say that *A* is *k*-traceable if each function $f \in P^A$ has a *k*-trace.

Supersparse sets are 2-traceable

Definition 4 (Ambos-Spies 1986)

Let $f : \mathbb{N} \mapsto \mathbb{N}$ be a strictly increasing, time constructible function. *A* is *f*-super sparse if

- $A \subseteq \{0^{f(i)} : i \in \mathbb{N}\}$
- Some machine determines $A(0^{f(i-1)})$ in time O(f(i)).

Let *f* be the iteration of the function $n \rightarrow 2^n$. Ambos-Spies constructed an *f*-supersparse set in EXPTIME – P.

Theorem 5 (Ambos-Spies 1986)

Each f-supersparse set is 2-traceable.

Question 6

Is each k-traceable set low for polynomial randomness [polynomial Schnorr randomness]?

Part 3 Strong jump traceability

We characterize a strong lowness property in recursion theory using randomness.

Strongly jump traceable sets

- A computably enumerable trace with bound *h* is a uniformly computably enumerable sequence (*T_x*)_{x∈ℕ} such that |*T_x*| ≤ *h*(*x*) for each *x*.
- Let J^A(e) be the value at e of a universal A-partial computable function. (For instance, let J^A(e) ≃ Φ^A_e(e) where Φ_e is the e-th Turing functional.)
- The set *A* is called strongly jump traceable if for each order function *h*, there is a c.e. trace (*T_x*)_{x∈ℕ} with bound *h* such that, whenever *J^A*(*x*) it is defined, we have

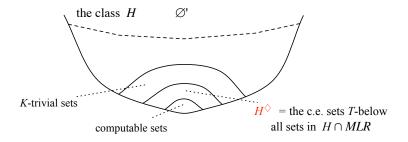
$J^A(x) \in T_x$

- *SJT* will denote the class of c.e. strongly jump traceable sets.
- There is an incomputable set in *SJT* by Figueira, Nies, Stephan (2004).

Diamond Classes

 $2^{\mathbb{N}}$ denotes Cantor space with the uniform (coin-flip) measure. For a null class $\mathcal{H}\subseteq 2^{\mathbb{N}}$, we define

 \mathcal{H}^{\Diamond} = the c.e. sets A Turing below each ML-random set in \mathcal{H} .



- The larger \mathcal{H} is, the smaller is \mathcal{H}^{\Diamond} .
- *H*[◊] induces an ideal in the computably enumerable Turing degrees.

A lowness property and its dual highness property

- Recall that $Z \subseteq \mathbb{N}$ is low if $Z' \leq_T \emptyset'$, and Z is high if $\emptyset'' \leq_T Z'$.
- These classes are "too big": we have

 $(low)^{\Diamond} = (high)^{\Diamond} = computable.$

(For instance, (high) $^{\diamond}$ = computable because there is a minimal pair of high ML-random sets.)

 So we will try somewhat smaller classes, replacing ≤_T by the stronger truth-table reducibility ≤_{tt}.

Definition 7 (Mohrherr 1986)

A set *Z* is superlow if $Z' \leq_{tt} \emptyset'$. *Z* is superhigh if $\emptyset'' \leq_{tt} Z'$.

A random set can be superlow (low basis theorem). It can also be superhigh but Turing incomplete (Kučera coding).

These diamond classes characterize SJT

The following theorems say that a c.e. set *A* is strongly jump traceable iff it is computed, in a specific sense, by many ML-random oracles.

Theorem 8 (Greenberg, Hirschfeldt and Nies (to appear))

 $SJT = superlow^{\diamond}$.

That is, a c.e. set A is strongly jump traceable \Leftrightarrow A is Turing below each superlow ML-random set.

Theorem 9 (Nies, improved version in G'berg, H'feldt, N)

SJT= superhigh \diamond .

Diagram: SJT means computed by many oracles

