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K(y)
• A machine is a partial recursive function M : {0, 1}∗ !→ {0, 1}∗.

• M is prefix free if its domain is an antichain under inclusion of
strings.

Let (Md)d≥0 be an effective listing of all prefix free machines. The
is given by

U(0d1σ) = Md(σ).

Let UB be the standard universal prefix free oracle machine.
UB(σ) = y means σ is a description of y with oracle B.

Let

KB(y) = min{|σ| : UB(σ) = y}.

Thus, KB(y) is the length of a shortest prefix free description of y,
with oracle B.
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K-trivial sets
A set A is K-trivial if there is c ∈ N such that

∀n K(A ! n) ≤ K(0n) + c

(Chaitin, 1975).

• By Schnorr’s theorem, Z is ML-random if for each n, K(Z ! n)
is near its maximal value n + K(0n).

• K-trivial means far from ML-random, because K(A ! n) is
minimal (all up to constants).

Solovay (1976) constructed a noncomputable K-trivial.

Improving this, the cost function construction gives a
noncomputable c.e. example. In fact, promptly simple.
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Cost function construction
Downey, Hirschfeldt, Nies, Stephan 2002 have given a short
“definition” of a noncomputable c.e. K-trivial set, which had been
anticipated by various researchers (Kummer, Zambella). We use
the “cost function”

c(x, s) =
∑

x<y≤s 2−Ks(y) .

This determines a non-computable set A:

As = As−1 ∪ {x : ∃e

We,s ∩As−1 = ∅ we haven’t met e-th non-computability requirement

x ∈ We,s we can meet it, via x

x ≥ 2e make A co-infinite

c(x, s) ≤ 2−(e+2)} ensure A is K-trivial.
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Properties of the K-trivials
The K-trivial sets are all ∆0

2 (Chaitin 76) and closed under ⊕
(DHNS, 2002). Hirschfeldt proved they are Turing incomplete.

(N, 2004) shows: the K trivial sets form an ideal K, with the
following properties

• K is the downward closure of its c.e. members

• each A ∈ K is super-low: A′ ≤tt ∅′.
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Equivalent properties
The following are equivalent to K triviality of A:

• low for ML-random (introduced by Zambella 1990):
MLRandA = MLR

• basis for ML-random (introduced by Kucera 1987): A ≤T Z

where Z is in MLRandA

• low for K (Muchnik 1995): ∃b ∀y KA(y) ≥ K(y)− b.

K-trivial ⇒ low for K is hardest. Decanter method, with golden
run.

Question 1 Study K-trivial for time bounded versions of K.
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Almost complete sets
Now for the new stuff.

• B is almost complete if ∅′ is K-trivial relative to B.

• That is, there is c ∈ N such that

∀n KB(∅′ ! n) ≤ KB(0n) + c

• We will see that such a set is super-high: ∅′′ ≤tt B′.

• First I discuss why there exists an almost complete B <T ∅′.
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Inverting a c.e. operator

Theorem 2 (Jockusch/Shore 1983) For each c.e. operator W ,
there is a c.e. set B such that

WB ⊕B ≡T ∅′.

• Apply this to the c.e. operator B !→ WB given by doing the
cost function construction relative to the oracle B,

• in this way, obtain an almost complete c.e. set B <T ∅′.
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LR reducibility
Let A ≤LR B if

∀Z (Z /∈ MLRandA ⇒ Z /∈ MLRandB).

This means: if A can see that Z is nonrandom, then so can B.

• Clearly ≤T ⇒ ≤LR.

• By relativizing a result from Nies 2004, we have

B almost complete ⇔ ∅′ ⊕B ≤LR B ⇒ ∅′ ≤LR B.

• In particular, for ∆0
2 sets B, we have

B almost complete ⇔ ∅′ ≤LR B.
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Almost complete is

not closed upwards
J. Miller proved: almost complete is NOT closed upward under ≤T .

• Let B <T ∅′ be almost complete such that ∅′ is promptly
simple in B.

• Then it is low cuppable in B, so there is G ≥T B such that

∅′ ⊕G ≡T B′ ≡T G′.

• But if ∅′ is K-trivial in G then ∅′ ⊕G is K-trivial in G, so

(∅′ ⊕G)′ ≡T G′.

In particular, ∅′ ≤LR B ≤T G and hence ∅′ ≤LR G, while G is not
almost complete.
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How different are those

classes?

• Soft question: understand this difference better.

• For instance, Simpson has asked whether the sets ≥LR ∅′ are
the upward closure of the almost complete sets.
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Equivalent characterizations

of the class of sets ≥LR ∅′

• Kjos-Hanssen proved that for each B,

∅′ ≤LR B ⇔ B is positive measure dominating.

• Binns, Kjos-Hanssen, Miller, Solomon have shown recently that
pm domination is equivalent to the apparently stronger
uniform a.e. domination (both introduced by Dobrinen and
Simpson). In the same paper, they prove ≤LR is equivalent to
the apparently stronger ≤LK , via related methods.

So, just as the K trivials, the class of sets ≥LR ∅′ has several
equivalent characterizations. And for ∆0

2 sets B, it is even the same
as almost complete.
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Super-high
Simpson proved

∅′ ≤LR B ⇒ ∅′′ ≤tt B′.

The weaker result that an almost complete B satisfies ∅′′ ≤tt B′ is
in (N 2004).

Question 3 Study the c.e. ≤LR degrees. Are they dense?
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Direct construction of a

c.e. uniformly a.e.

dominating
Recall that we obtained an almost complete c.e. B <T ∅′ via
Jockusch-Shore pseudojump inversion. This is great, but a bit
indirect, and also not very flexible. For instance, can one avoid the
cone above an incomputable c.e. A? (Currently open.)

Cholak, Greenberg and Miller (2005) build a c.e. B <T ∅′ that is
u.a.e. dominating, using a ∅′′ construction. This B is almost
complete.

G. Barmpalias succeeded in making B half of a minimal pair.
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Direct construction of a

c.e. almost complete
Nies and Shore have a direct construction of a c.e. almost complete
B <T ∅′. We build KC-set LB relative to B, and meet the global
requirement

∀m∃ρ ∈ LB [ρ = 〈KB(m) + 1, ∅′ ! m〉].

• ρ is called a request for m. If ∅′ ! m changes, then the request
becomes inappropriate. Usually we now change B to get rid of
it, but this may be prevented by an incompleteness requirement
Ne : C /= ΦB

e (we also enumerate C to make B incomplete).

• We have to minimize the weight of those inappropriate requests
we cannot reject. For this, Ne has to obey a cost function.
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• Ne acts via a witness x targeted for C, and also a number w. It
hopes that ∅′ ! w + 1 has settled. The cost for LB of holding all
requests for m > w is half of

cB(w)[s] =
∑

w<m<s 2−KB(m)[s].

• Ne is allowed to act if cB(w)[s] ≤ 3−e. If ∅′ ! w + 1 changes
after all, then nothing is lost for LB . Eventually, on the least w

where the cost IS low (for the final B), it succeeds.

• Ne also takes over requests previously held by Nj , j > e, which
is fine because

∑
j>e 3−e = 2−e/2.

Using this direct construction of an almost complete:

Theorem 4 There is a c.e. K-trivial A and a c.e. almost complete
B such that A /≤T B.
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Minimal pairs?
Making a minimal pair of c.e. almost complete sets looks harder.
So far, this is open.

The closest result is due to Shore (unpublished):

Theorem 5 There is a minimal pair B0, B1 of c.e. sets such that
∅′′ ≤tt B′

i for both i.

Note that there is a minimal pair of u.a.e. dominating sets, applying
an observation of Simpson to the forcing construction of Cholak,
Greenberg and Miller: in fact for any A there is a u.a.e. dominating
B which forms a min pair with A, via avoiding the countably many
upper cones given by all incomputable sets C ≤T A.
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ML-random almost complete
A result analogous to Jockusch-Shore can be proved for
ML-randomness.

Theorem 6 (N 2006) For each c.e. operator W , there is a
ML-random set Z ≤ ∅′ such that

WZ ⊕ Z ≡T ∅′.

See Thm. 4.17 in draft of my book, available on the web, finally.

Corollary 7 There is a ML-random almost complete set Z <T ∅′.

No direct construction is available at this point.
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Infima of ML random sets

• There is no minimal pair of almost complete ML random sets

• In fact, some c.e. set is below all of them! (see next slide).

• Also, below any two ∆0
2 ML-random sets, there is an

incomputable c.e. set (Kucera).

• However, there is nothing below all the ∆0
2 ML randoms. (Not

even below all high ones, according to Downey +Miller, also
claimed previously by Kucera. Proofs not available,
unfortunately.)
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The class L
We will restrict ourselves to lowness properties involving only c.e.
sets A, for a while. Let

L = {A : A c.e. & ∀Z
Z ML-random, almost complete ⇒ A ≤T Z}.

• Hirschfeldt proved that there is a promptly simple set in L.

• By the previous corollary, each A ∈ L is ML-coverable, namely,
there is ML-random Z such that

A <T Z <T ∅′.

• Each c.e. ML-coverable set is a basis for ML-randomness, and
hence K-trivial.

• Thus L is a subideal of the c.e. K-trivials (possibly equal).
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ML-noncuppable
A c.e. set A is ML-cuppable if

A⊕ Z ≡T ∅′ for some ML-random Z <T ∅′.

Being not ML-cuppable implies being K-trivial (if A is not K

trivial and low, then A cups with the ML-random set ΩA <T ∅′. If
not low, apply Sacks splitting.)

Theorem 8 (N, PAMS 2005) There is a promptly simple set
which is not ML-cuppable.
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L ⊆ ML-noncuppable
The reason for this inclusion is that each potential ML-random
cupping partner Z of a K-trivial A is almost complete:

∅′ ≤T A⊕ Z, A ∈ K, Z ML-random ⇒ Z almost complete.

This takes a 4-line proof involving the van Lambalgen Theorem
(Hirschfeldt 2005).
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Is L a proper subideal of K?
Despite all this, we don’t know whether L is a proper subideal of
the c.e. K-trivials. In other words,

Question 9 Is there a K trivial c.e. A and an almost complete
ML random Z such that

A /≤T Z?
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Lower bounds for

Σ0
3 null classes

The existence proof for L has been both simplified and generalized.
See end of my “Eliminating concepts” paper, Lecture Notes of IMS
workshop, 2005.

Theorem 10 (Hirschfeldt, Miller) Let C be a Σ0
3 null class.

Then there is a promptly simple A such that A ≤T Z for each
ML-random Z ∈ C.

The proof is a simple cost function argument. (If C is the Π0
2 class

{Z}, for a ML-random ∆0
2 set Z, then the proof turns into

Kučera’s proof that there is a promptly simple A below Z.)
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• Apply this to the Σ0
3 null class C = almost complete in order

to obtain a promptly simple A ∈ L.

• We can even take the larger class C = {B : ∅′ is jump traceable
relative to B}. Here A is jump traceable if there is a c.e. trace
(Te) such that Φe(e) ↓ ⇒ Φe(e) ∈ Te.

This is the same as super-high for ∆0
2 sets B.

• Or again, we could take the Σ0
3 class of sets ≥LK ∅′

(equivalently, ≥LR ∅′).
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Π0
2 (or weak 2-) randomness

Z is Π0
2-random (usually called weakly 2-random) if Z is in no Π0

2

null class. Each such Z is ML-random. In fact,

Z is Π0
2-random ⇔ Z is ML-random and Z, ∅′ form minimal pair.

“⇒ ” is easy.

“⇐”: if Z is ML random but not Π0
2-random, let C be the null Π0

2

class showing this. Then there is c.e. incomputable A ≤ Z.

According to Joe Miller, to be Z ML-random and Z |T ∅′ is strictly
weaker than to be Π0

2-random.
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Low for Π0
2-randomness

A is low for Π0
2-randomness if

Π0
2-random relative to A = Π0

2-random.

Theorem 11 (Downey,N,Weber,Yu 2005)

• There is a c.e. noncomputable set that is low for
Π0

2-randomness

• each low for Π0
2-randomness set is low for K.
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same as K trivial

Theorem 12 (N; Binns, Kjos-H, Miller, Solomon independently)
Each K-trivial set is low for Π0

2-randomness.

The two proofs are very different.

• Nies’ proof used the golden run machinery

• Miller & friends’ proof is measure theoretic. They show low for
ML-randomness ⇒ low for Π0

2-randomness
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SJT
• Figueira, N, Stephan (2004) introduced the following

strengthening of super-lowness:

• For each order function h (that is computable, nondecreasing,
unbounded) A′ has an approximation that changes at most
h(x) times at x.

• This implies strongly jump traceable (defined similarly as a
strengthening of jump traceable). For c.e. A, the two notions
are equivalent.

• They build a c.e. noncomputable such set, via a construction
that resembles the cost function construction.

• A is strongly jump traceable ⇔ A is “lowly” for C, i.e., for
every order function h and almost every x,

C(x) ≤ CA(x) + h(CA(x)).
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A proper subclass of K
• Downey and Greenberg have proved that each c.e. set strongly

jump-traceable set is K-trivial

• Cholak, Downey, Greenberg have proved the c.e. SJT sets form
a proper subclass of K.

• it is open if this also holds for ∆0
2 SJT sets.
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Effective descriptive set

theory
Π1

1 sets of numbers are a high-level analog of c.e. sets, where the
steps of an effective enumeration are recursive ordinals. Hjorth and
Nies (Proc. LMS, ta) have studied the analogs of K and of
ML-randomness based on Π1

1-sets.

• The Kraft-Chaitin theorem and Schnorr’s Theorem still hold,
but the proofs takes considerable extra effort because of limit
stages

• There is a Π1
1 set of numbers which is K-trivial (in this new

sense) and not hyperarithmetic.
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Low(ML)=hyperarithmetic

Theorem 13 If A is low for Π1
1-ML-random, then A is

hyperarithmetic.

First we show that ωA
1 = ωCK

1 . This is used to prove that A is in
fact K-trivial at some η < ωCK

1 , namely

∀n Kη(A ! n) ≤ Kη(n) + b.

Then A is hyperarithmetic, by the same argument Chaitin used in
the c.e. case to show that K-trivial sets are ∆0

2
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Π1
1-classes

• A class C ⊆ 2ω is Π1
1 iff there is a functional Ψ such that for

each Z, ΨZ is a (code for a) linear order with domain ω, and

Z ∈ C ⇔ ΨZ wellordered.

• Think of α, the length of ΨZ as the stage when Z enters C.
Note that

α < ωCK
1 (Z) < ω1.

• C is ∆1
1 if C and 2ω − C are Π1

1.
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The ultimate

in convenience
Let Γ be a “point class” (such as arithmetical, ∆1

1,Π1
1, defined for

both sets of numbers and sets of reals)

• Z is Γ ML-random if Z /∈
⋂

n Un, for any sequence (Un) of open
sets, coded by a set in Γ, such that µUn ≤ 2−n.

• Z is Γ random (without ML in it) if Z /∈ C, for any null class in
Γ.

Remark: For Γ= arithmetical and Γ = ∆1
1, those two notions are

the same: in fact, for each null ∆1
1-class C one can find a Γ test

{Ui}i∈N such that C ⊆
⋂

i Ui.

We will trace the history of some of those randomness notions.
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∆1
1 random was

suggested by Martin-Löf

• In a little–known paper (1970), Martin-Löf suggested the
∆1

1-classes of measure 0 as tests: Z is ∆1
1-random if Z is in no

null ∆1
1-class.

• By the remark above, Π1
1-ML-random implies ∆1

1-random.

• ∆1
1-random is the effective descriptive set theory analog of both

computably random and Schnorr random.

• There is a ∆1
1-random Z of slowly growing initial segment

complexity (in sense of KΠ1
1
). Thus Z is not Π1

1-ML-random.
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A very strong

randomness notion
Sacks (1990) in Exercise 2.5.IV suggested the Π1

1 null classes as
tests. This is the strongest randomness notion we have seen so far.
The exercise was to separate this from ∆1

1-random.

The exact relationship is:

Z is Π1
1-random ⇔ Z is ∆1

1-random and Z /≥h O (or equivalently,
ωZ

1 = ωCK
1 ).
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Other facts on

Π1
1-randomness

• Since each Π1
1-random Z satisfies ωZ

1 = ωCK
1 , the

Π1
1-ML-random set ΩΠ1

1
is not Π1

1-random.

• By Gandy’s basis theorem, some strongly random set satisfies
OZ ≤T O.

• Analog of van Lambalgen’s Theorem

Theorem 14 (Kechris 75; Hjorth,N 2004) There is a greatest
Π1

1-class Q ⊆ 2ω of measure 0. Thus Q is a universal test.
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Associated lowness notions

• Chong, N and Yu: there is a perfect class of sets that are low
for ∆1

1-randomness. In fact each Sacks generic does.

– Conditions: perfect hyperarithmetical trees,

– decide: Σ1
1 statements.

• This contrasts with the Nies result that the only low for
computably random sets are the computable ones.

• We show

low for ∆1
1 random ⇔ ∆1

1 traceable ⇔ Pi11 traceable.
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Low for Π1
1-randomness

It is not known if there is a nonhyperarithmetical set that is low for
Π1

1-randomness. Recall Z is Π1
1-random ⇔ Z is ∆1

1-random and
Z /≥h O.

A is random cuppable if ∃Z Π1
1-random A⊕ Z ≥h O.

In very recent work of Harrington, N, Slaman:

A is low for Π1
1-randomness ⇔ A is low for ∆1

1-randomness and A

is random noncuppable.
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