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K(y)

e A machine is a partial recursive function M : {0,1}* — {0,1}*.

o M is prefix free if its domain is an antichain under inclusion of
strings.

Let (Mg)a>0 be an effective listing of all prefix free machines. The
is given by

U(0%0) = My(o).

Let UP be the standard universal prefix free oracle machine.
UB (o) = y means ¢ is a description of y with oracle B.

Let
K*(y) = min{|o| : UP(0) = y}.

Thus, KB (y) is the length of a shortest prefix free description of y,
with oracle B.



K-trivial sets

A set A is K-trivial if there is ¢ € N such that
Vn K(An) < K(@0O") +c
(Chaitin, 1975).

e By Schnorr’s theorem, Z is ML-random if for each n, K(Z [ n)

is near its maximal value n + K (0™).

e K-trivial means far from ML-random, because K(A | n) is

minimal (all up to constants).

Solovay (1976) constructed a noncomputable K-trivial.

Improving this, the cost function construction gives a

noncomputable c.e. example. In fact, promptly simple.



Cost function construction

Downey, Hirschfeldt, Nies, Stephan 2002 have given a short
“definition” of a noncomputable c.e. K-trivial set, which had been
anticipated by various researchers (Kummer, Zambella). We use

the “cost function”

This determines a non-computable set A:
As = As_ 1 U{x:3e

WesNAg_1 = 0 we haven’t met e-th non-computability requirement
x € Wes we can meet it, via «

T > 2e make A co-infinite

c(x,s) <272} | ensure A is K-trivial.



Properties of the K-trivials

The K-trivial sets are all AY (Chaitin 76) and closed under @
(DHNS, 2002). Hirschfeldt proved they are Turing incomplete.

(N, 2004) shows: the K trivial sets form an ideal IC, with the
following properties

e /C is the downward closure of its c.e. members

e cach A € K is super-low: A’ < (.



Equivalent properties

The following are equivalent to K triviality of A:

e low for ML-random (introduced by Zambella 1990):
MLRand* = M LR

e basis for ML-random (introduced by Kucera 1987): A <p Z
where Z is in MLRand"*

e low for K (Muchnik 1995): 3b Vy K*(y) > K(y) — b.

K-trivial = low for K is hardest. Decanter method, with golden

run.

Question 1 Study K-trivial for time bounded versions of K.



Almost complete sets

Now for the new stuff.
e B is almost complete if () is K-trivial relative to B.
e That is, there is ¢ € N such that
Vn KB n) < KB(0") +¢
e We will see that such a set is super-high: 0" <;; B’.

e First I discuss why there exists an almost complete B < (.



Inverting a c.e. operator

Theorem 2 (Jockusch/Shore 1983) For each c.e. operator W,

there is a c.e. set B such that
WB D B =T (Z),.
e Apply this to the c.e. operator B — W given by doing the
cost function construction relative to the oracle B,

e in this way, obtain an almost complete c.e. set B < (.



LR reducibility

Let A <y r B if
VZ (Z ¢ MLRand® = Z ¢ MLRand®).
This means: if A can see that Z is nonrandom, then so can B.
o Clearly < = <pg.

e By relativizing a result from Nies 2004, we have

B almost complete < (' B <;rp B = 0 <y r B.

e In particular, for AY sets B, we have

B almost complete < (' <rr B.
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Almost complete is

not closed upwards

J. Miller proved: almost complete is NOT closed upward under <r.

o Let B <t () be almost complete such that ()’ is promptly

simple in B.
e Then it is low cuppable in B, so there is G >7 B such that
Ve G=rB =rG.
e But if () is K-trivial in G then (/ ® G is K-trivial in G, so
VoG =rG.

In particular, ' <;r B <t G and hence (/ <pr G, while G is not

almost complete.
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How different are those

classes?

e Soft question: understand this difference better.

e For instance, Simpson has asked whether the sets > r () are
the upward closure of the almost complete sets.
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Equivalent characterizations

of the class of sets >;p (f

e Kjos-Hanssen proved that for each B,

0! <pr B < B is positive measure dominating.

e Binns, Kjos-Hanssen, Miller, Solomon have shown recently that
pm domination is equivalent to the apparently stronger
uniform a.e. domination (both introduced by Dobrinen and
Simpson). In the same paper, they prove < g is equivalent to
the apparently stronger <, via related methods.

So, just as the K trivials, the class of sets > r (' has several
equivalent characterizations. And for AJ sets B, it is even the same

as almost complete.
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Super-high

Simpson proved
0V <prB =0"<y B

The weaker result that an almost complete B satisfies (0" <;; B’ is
in (N 2004).

Question 3 Study the c.e. <pgr degrees. Are they dense?
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Direct construction of a
c.e. uniformly a.e.

dominating

Recall that we obtained an almost complete c.e. B <t ()’ via
Jockusch-Shore pseudojump inversion. This is great, but a bit
indirect, and also not very flexible. For instance, can one avoid the

cone above an incomputable c.e. A? (Currently open.)

Cholak, Greenberg and Miller (2005) build a c.e. B <7 ()’ that is
u.a.e. dominating, using a ()" construction. This B is almost

complete.

G. Barmpalias succeeded in making B half of a minimal pair.
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Direct construction of a

c.e. almost complete

Nies and Shore have a direct construction of a c.e. almost complete
B <7 ('. We build KC-set L” relative to B, and meet the global

requirement
Ym3p € L [p= (KB(m) + 1,0 | m)].

e p is called a request for m. If )’ | m changes, then the request
becomes inappropriate. Usually we now change B to get rid of
it, but this may be prevented by an incompleteness requirement
N, : C # &5 (we also enumerate C to make B incomplete).

e We have to minimize the weight of those inappropriate requests

we cannot reject. For this, N, has to obey a cost function.
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e N, acts via a witness x targeted for C', and also a number w. It
hopes that (' | w 4 1 has settled. The cost for L? of holding all
requests for m > w is half of

B(w)[s] =3, oo 27 Kl

o N, is allowed to act if ¢®(w)[s] < 37¢. If )/ | w + 1 changes
after all, then nothing is lost for L?. Eventually, on the least w
where the cost IS low (for the final B), it succeeds.

e N, also takes over requests previously held by N;, 7 > e, which
is fine because ) .. 37°=27°/2.

Using this direct construction of an almost complete:

Theorem 4 There is a c.e. K-trivial A and a c.e. almost complete
B such that A L1 B.
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Minimal pairs?

Making a minimal pair of c.e. almost complete sets looks harder.
So far, this is open.

The closest result is due to Shore (unpublished):

Theorem 5 There is a minimal pair By, B1 of c.e. sets such that
0" <i B. for both i.

Note that there is a minimal pair of u.a.e. dominating sets, applying
an observation of Simpson to the forcing construction of Cholak,
Greenberg and Miller: in fact for any A there is a u.a.e. dominating
B which forms a min pair with A, via avoiding the countably many
upper cones given by all incomputable sets C' < A.
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ML-random almost complete

A result analogous to Jockusch-Shore can be proved for

ML-randomness.

Theorem 6 (N 2006) For each c.e. operator W, there is a
ML-random set Z < (' such that

WZ D A =T @’.
See Thm. 4.17 in draft of my book, available on the web, finally.
Corollary 7 There is a ML-random almost complete set Z <r ).

No direct construction is available at this point.
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Infima of ML random sets

e There is no minimal pair of almost complete ML random sets
e In fact, some c.e. set is below all of them! (see next slide).

e Also, below any two Aj ML-random sets, there is an
incomputable c.e. set (Kucera).

e However, there is nothing below all the A ML randoms. (Not
even below all high ones, according to Downey +Miller, also
claimed previously by Kucera. Proofs not available,

unfortunately.)
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The class L

We will restrict ourselves to lowness properties involving only c.e.
sets A, for a while. Let

L={A :Ace. & VZ
Z ML-random, almost complete = A <p Z}.

e Hirschfeldt proved that there is a promptly simple set in L.

e By the previous corollary, each A € L is ML-coverable, namely,
there is ML-random Z such that

A<TZ<T 0.

e Fach c.e. ML-coverable set is a basis for ML-randomness, and
hence K-trivial.

e Thus £ is a subideal of the c.e. K-trivials (possibly equal).
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ML-noncuppable

A c.e. set A is ML-cuppable if
A® Z =7 )V for some ML-random Z <7 (.

Being not ML-cuppable implies being K-trivial (if A is not K
trivial and low, then A cups with the ML-random set Q4 < 0. If
not low, apply Sacks splitting.)

Theorem 8 (N, PAMS 2005) There is a promptly simple set
whaich is not ML-cuppable.
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L C ML-noncuppable

The reason for this inclusion is that each potential ML-random

cupping partner Z of a K-trivial A is almost complete:
V<A Z, Aec K, Z ML-random = Z almost complete.

This takes a 4-line proof involving the van Lambalgen Theorem
(Hirschfeldt 2005).
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Is £ a proper subideal of IC7?

Despite all this, we don’t know whether £ is a proper subideal of
the c.e. K-trivials. In other words,

Question 9 Is there a K trivial c.e. A and an almost complete
ML random Z such that

Aty 772
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Lower bounds for

% null classes

The existence proof for £ has been both simplified and generalized.
See end of my “Eliminating concepts” paper, Lecture Notes of IMS
workshop, 2005.

Theorem 10 (Hirschfeldt, Miller) Let C be a X9 null class.
Then there is a promptly simple A such that A < Z for each
ML-random Z € C.

The proof is a simple cost function argument. (If C is the II class
{Z}, for a ML-random AY set Z, then the proof turns into
Kucera’s proof that there is a promptly simple A below Z.)
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e Apply this to the X3 null class C = almost complete in order
to obtain a promptly simple A € L.

e We can even take the larger class C = {B : (' is jump traceable
relative to B}. Here A is jump traceable if there is a c.e. trace

(T,) such that ®.(e) | = P.(e) € Te.
This is the same as super-high for AY sets B.

e Or again, we could take the X3 class of sets > (I
(equivalently, >pr 0').
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[15 (or weak 2-) randomness

Z is IIY-random (usually called weakly 2-random) if Z is in no II9
null class. Each such Z is ML-random. In fact,

Z is IIY-random < Z is ML-random and Z, () form minimal pair.
“= "7 is easy.

“<”: if Z is ML random but not IT3-random, let C be the null IT9
class showing this. Then there is c.e. incomputable A < Z.

According to Joe Miller, to be Z ML-random and Z |7 ()" is strictly

weaker than to be II-random.
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Low for II)-randomness

A is low for II9-randomness if

I19-random relative to A = II-random.

Theorem 11 (Downey,N,Weber,Yu 2005)

e There is a c.e. noncomputable set that is low for

I19-randomness

o cach low for I1Y-randomness set is low for K.
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same as K trivial

Theorem 12 (N; Binns, Kjos-H, Miller, Solomon independently)

FEach K -trivial set is low for I19-randomness.

The two proofs are very different.
e Nies’ proof used the golden run machinery

e Miller & friends’ proof is measure theoretic. They show low for
ML-randomness = low for II9-randomness
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SJT

Figueira, N, Stephan (2004) introduced the following
strengthening of super-lowness:

For each order function h (that is computable, nondecreasing,
unbounded) A’ has an approximation that changes at most
h(x) times at x.

This implies strongly jump traceable (defined similarly as a
strengthening of jump traceable). For c.e. A, the two notions

are equivalent.

They build a c.e. noncomputable such set, via a construction
that resembles the cost function construction.

A is strongly jump traceable < A is “lowly” for C, i.e., for
every order function h and almost every z,

C(x) < CA(z) + h(CA(x)).
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A proper subclass of

e Downey and Greenberg have proved that each c.e. set strongly

jump-traceable set is K-trivial

e Cholak, Downey, Greenberg have proved the c.e. SJT sets form

a proper subclass of /C.

e it is open if this also holds for AJ SJT sets.
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Effective descriptive set

theory

I11 sets of numbers are a high-level analog of c.e. sets, where the

steps of an effective enumeration are recursive ordinals. Hjorth and
Nies (Proc. LMS, ta) have studied the analogs of K and of
ML-randomness based on IIi-sets.

e The Kraft-Chaitin theorem and Schnorr’s Theorem still hold,
but the proofs takes considerable extra effort because of limit

stages

e There is a II{ set of numbers which is K-trivial (in this new

sense) and not hyperarithmetic.
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Low(ML)=hyperarithmetic

Theorem 13 If A is low for II{-ML-random, then A is

hyperarithmetic.

First we show that w{® = w{*. This is used to prove that A is in

fact K-trivial at some 1 < w{%, namely

Vn K,(A [ n) < K,(n)+b.

Then A is hyperarithmetic, by the same argument Chaitin used in

the c.e. case to show that K-trivial sets are A)

33



[1i-classes

o A class C C 2% is II} iff there is a functional ¥ such that for

each Z, U7 is a (code for a) linear order with domain w, and

7 € C < UZ wellordered.

e Think of o, the length of ¥# as the stage when Z enters C.
Note that

a < wiE(Z) < w;.

e Cis Al if C and 2¢ — C are IIj.
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The ultimate

In convenience

Let T' be a “point class” (such as arithmetical, A{,IIj, defined for

both sets of numbers and sets of reals)

e ZisI' ML-random if Z ¢ () U,, for any sequence (U,,) of open
sets, coded by a set in I', such that uU, < 27",

e 7 is I' random (without ML in it) if Z ¢ C, for any null class in
I

Remark: For I'= arithmetical and I' = A}, those two notions are

the same: in fact, for each null Al-class C one can find a I test

{U;},on such that C C (), U;.

We will trace the history of some of those randomness notions.
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Al random was

suggested by Martin-Lof

In a little-known paper (1970), Martin-Lof suggested the
At-classes of measure 0 as tests: Z is Aj-random if Z is in no
null Ai-class.

By the remark above, II}-ML-random implies Ai-random.

Ai-random is the effective descriptive set theory analog of both

computably random and Schnorr random.

There is a Al-random Z of slowly growing initial segment
complexity (in sense of Ky1). Thus Z is not I1{-ML-random.
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A very strong

randomness notion

Sacks (1990) in Exercise 2.5.IV suggested the IIT null classes as
tests. This is the strongest randomness notion we have seen so far.

The exercise was to separate this from Al-random.
The exact relationship is:

Z is Il{-random < Z is Al-random and Z %#; O (or equivalently,

w? = wPE).
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Other facts on
[1i-randomness

e Since each IIi-random Z satisfies w? = w{X, the

I1{-ML-random set Q1 1s not I1{-random.

e By Gandy’s basis theorem, some strongly random set satisfies

0% <1 O.

e Analog of van Lambalgen’s Theorem

Theorem 14 (Kechris 75; Hjorth,N 2004) There is a greatest

I11-class Q C 2% of measure 0. Thus Q is a universal test.
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Assoclated lowness notions

e Chong, N and Yu: there is a perfect class of sets that are low

for Al-randomness. In fact each Sacks generic does.
— Conditions: perfect hyperarithmetical trees,

— decide: X1 statements.

e This contrasts with the Nies result that the only low for

computably random sets are the computable ones.

e We show

low for A random < Af traceable < Pii traceable.
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Low for Il{-randomness

It is not known if there is a nonhyperarithmetical set that is low for
I1{-randomness. Recall Z is II{-random < Z is Aj-random and

Z *n O.
A is random cuppable if 3Z II}-random A @ Z >, O.
In very recent work of Harrington, N, Slaman:

A is low for II{-randomness < A is low for A}-randomness and A

is random noncuppable.
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