Proceedings of the International Congress of Mathematicians
Hyderabad, India, 2010

Interactions of Computability and
Randomness

André Nies*

Abstract

We survey results relating the computability and randomness aspects of sets of
natural numbers. Each aspect corresponds to several mathematical properties.
Properties originally defined in very different ways are shown to coincide. For
instance, lowness for ML-randomness is equivalent to K-triviality. We include
some interactions of randomness with computable analysis.

Mathematics Subject Classification (2010). 03D15, 03D32.

Keywords. Algorithmic randomness, lowness property, K-triviality, cost function.

1. Introduction

We will study sets of natural numbers. We refer to them simply as sets. Sets
can be identified with infinite sequences of bits. Co-infinite sets can also be
identified with real numbers in [0, 1) via the binary representation.

We consider two aspects of a set, its computational complexity and its ran-
domness. The principal observation is that these two aspects interact closely
with one another.

The traditional interaction is from computability to randomness. One uses
algorithmic methods to define and study randomness notions [43, 26, 27]. We
will show that notions introduced in very different computability-theoretic ways
coincide.

The converse interaction was discovered later. Concepts originating from
randomness enrich computability theory [4, 19, 34]. We will give examples of
this interaction through the study of lowness properties of a set A. Such a
property specifies a sense in which A is close to being computable. Often this

*Partially supported by the Marsden Fund of New Zealand, grant no. 08-UOA-184
André Nies, Dept. of Computer Science, University of Auckland, Private Bag 92019, Auck-
land, New Zealand. E-mail: andre@cs.auckland.ac.nz.

2 André Nies

is understood via the weak-as-an-oracle paradigm: A is weak in a specific sense
when used as an oracle set in a Turing machine computation. Randomness-
related concepts have led to two new paradigms of lowness [37, 31, 13].

The Turing-below-many paradigm says that A is close to being computable
because it is easy for an oracle set to compute it, in the sense that the class
of oracles computing A is large. Here, a class of oracles is considered large if
it contains random sets of a certain kind. So far, all the sets that satisfy an
instance of the Turing-below-many paradigm are AY.

The inertness paradigm says that a set A is close to computable because
it is computably approximable with a small number of changes. In particular,
such a set is A9 (see the Limit Lemma 2.1 below). To formalize the inertness
paradigm, we use so-called cost functions. They measure the total number of
changes of a AJ set, and especially that of a computably enumerable set. Most
examples of cost functions are based on randomness-related concepts.

In Sections 4-6, we will show that various lowness properties coincide. We
introduce the K-trivial sets, and the strongly jump-traceable sets. For each
class we give characterizations via all three lowness paradigms.

For some more motivation and background in non-technical language
see [32]. For detailed background see [37, 8]. Most sections end with a sum-
mary and some interesting further facts. The keen student may want to prove
some of these facts as exercises.

2. Some Background from Computability
Theory

We assume that the reader knows the basics of computability theory, such as
the notions of a computable set, a computably enumerable (c.e.) set, Turing
reducibility <r, relativization, and (to some extent) Turing functionals. See
[41] or [37, Ch. 1].

The capital letters A, B, X,Y, Z denote sets of natural numbers, simply
called sets in what follows. For an “oracle” set A, we let J4(z) be the value on
input z of a universal partial A-computable function. For instance, let (®.)cen
be an effective listing of all Turing functionals and let J4(x) = ®4(x) (equality
extends to the value ‘undefined’). The domain of J# is denoted A’. Thus, A’
is the set of 2 such that J4(x) is defined, and /' is (a version of) the halting
problem. We say that a set A is AY if A <t ('. The following basic result of
Shoenfield will be used frequently.

Lemma 2.1 (Limit Lemma).
Ais AY & A(x) =limg f(x,s) for some computable 0, 1-valued function f.

Usually we write As(z) instead of f(z,s).
Recall that X < Y (X is truth-table below V) if X <t Y via a Turing
functional T' such that I'(Z) is total for all oracles Z. A variant of the Limit

Interactions of Computability and Randomness 3

Lemma says that A < (' iff the number of changes in some computable
approximation of A is computably bounded in z. Such a set is called w-c.e.

Recall that a lowness property specifies a sense in which a set A C N is
close to being computable. Such a property is closed downwards under <r. For
instance, A is low if A" <t (, that is, the Turing degree of A’ is as low as
possible. A is superlow if in fact A’ is truth-table below (.

Another example of a lowness property is the following. We say that a set
A is computably dominated (or of hyperimmune-free degree) if each function
f that can be computed with A as an oracle is dominated by a computable
function. Outside the computable sets, this lowness property is not compatible
with being low in the usual sense. In fact, the only computably dominated A
sets are the computable sets.

Cantor space. Finite sequences of bits will be called strings. The set of strings
is denoted {0,1}*. The variables x,y, z,0,7 range over strings. We identify
strings with natural numbers via a computable bijection {0,1}* — N (related
to the binary presentation of a number).

Subsets of N are identified with infinite sequences of bits. They form the
Cantor space 2N, which is equipped with the product topology. For each
string o,

[o] ={X: 0 < X}

is the class of sets extending the string o. The clopen classes [o] form a basis
for the product topology. Thus, an open class (or set) has the form (J .[o]
for some set C. Such a class is called computably enumerable, or 3, if one can
choose the set C' computably enumerable.

The complements of computably enumerable open classes are called ITY
classes. A TI{ class is given as the set of paths through a computable binary
tree. There are many examples of non-empty I1 classes without a computable
member.

Basis Theorems for 119 classes. A basis theorem (for 1) classes) says that
each non-empty II{ class has a member with a particular property, usually a
lowness property.

Theorem 2.2 (Jockusch and Soare [16]). Let P be a non-empty 119 class.
Then P has a low member, and a computably dominated member.

The proof of the first statement actually shows that P has a superlow mem-
ber. In the second statement one obtains a computably dominated member A
of P such that A” <i 0" (see [37, 1.8.38, 1.8.43)).

3. Randomness

In this section we consider the interaction from computability to randomness.
We use algorithmic tools to introduce tests concepts, which determine formal

4 André Nies

randomness notions. The tools are not only taken from computability theory
on sets of natural numbers, but also from computable analysis, where the ba-
sic objects are continuous functions. We show that differentiability of certain
computable functions defined on the unit interval can be used as a test notion.

3.1. Finite objects. Recall that {0,1}* denotes the set of strings over
{0,1}. A machine is a partial computable function M : {0,1}* — {0,1}*. If
M (o) = = we say that o is an M-description of x.

We say that a machine M is prefiz-free if no M-description is a proper
initial segment of any other M-description. To build a prefix-free machine M,
one usually specifies a set of requests (r,y) € N x {0,1}*. Via such a request
one asks that M can describe the string y with r bits. An important technical
fact is that any consistent c.e. set of requests can be turned into a prefix-free
machine. This result is often referred to as the Kraft-Chaitin theorem, but is
called the Machine Existence Theorem in [37, 2.2.17].

Theorem 3.1. Let L be a computably enumerable set of requests such that

1>>{27": (r,y) € L}.

Then there is a prefiz-free machine M such that for each request (r,y) € L, the
machine M can describe y with at most r bits.

Let (My)gen be an effective listing of the prefix-free machines. We define a
prefix-free machine U by U(0%10) = My(c). The machine U is universal in the
sense that, if a string y has an My-description o, it has a U-description that is
only longer by a constant. For a string x, we let K(x) denote the length of a
shortest U-description of z:

K(z) = min{|o| : U(o) = z}.

The definitions given above can be generalized to the case that the compu-
tation model includes queries to an oracle set X. In this way, we define U (o),
KX (y), etc.

We list some facts about K. Let “<T denote “<” up to a constant. (For
instance, we write 2n+5 <* n2.) Let |z| € {0,1}* denote the length of a string =
written in binary. The following bounds are proved by constructing appropriate
prefix-free machines: for each computable function f we have K(f(z)) <*
K(z). In particular, we have the lower bound K(|z|) <* K(z). Further, we
have the upper bound K(x) <t |z| + K(|z|). Since K(|z|) <T 2log|z|, this
upper bound is not much larger than |z|.

If |z| <* K(z) we think of z as incompressible. This formalizes the intuitive
notion of randomness for strings (see Section 2.5 of [37] for details).

Interactions of Computability and Randomness 5}

3.2. Measure, tests, and Martin-Lo6f randomness. The product
measure A on Cantor space 2" is given by

Mo] = 2-lol

for each string o. If a class G C 2N is open then AG = ZJEB 2-lol where B is
a prefix-free set of strings such that G = {J,czlo].

A class C C 2N is called null if C is contained in some Borel class D such
that AD = 0. We discuss the connection of null classes and randomness. The
intuition is that an object is random if it satisfies no exceptional properties. We
give two examples of exceptional properties of a set Y. The first is that every
other bit is zero. The second is that in the limit, there are at least twice as
many zeros as ones:

2/3 <liminf, [{i <n:Y (i) = 0}|/n.

We would like to formalize “exceptional property” by “null class”. The examples
above are null classes, so they should not contain a random set. The problem
is that if we do this, no set Z is random, because {Z} itself is a null class.
The solution is to consider only effective null classes. By specifying a particular
notion of effectivity, we specify a notion of tests. To be random in this particular
algorithmic sense, Z has to avoid these effective null classes, that is, to pass
these tests. Since there are only countably many null classes of this type, the
class of random sets in this sense will have measure 1.

Frequently test notions are based on the following fact from measure theory.

Fact 3.2. The class C C 2V is null < C C N Gm for some sequence (Gm)men
of open sets such that A\G,, converges to 0.

We obtain a type of effective null class (or test) by adding effectivity require-
ments to this condition characterizing null classes. We can require an effective
presentation of (G,)men; further, we can require fast convergence of A\G,, to 0.
In this way, we obtain for instance the central randomness notion introduced

by Martin-Lof in 1966 [26].

Definition 3.3. A Martin-Lof test (or ML-test) is a uniformly computably
enumerable sequence (G,,)men of open subclasses of 2 such that A\G,, < 2~™
for each m. A set Z is Martin-Léf random (or ML-random) if Z passes each
ML-test (Gm)men, in the sense that Z is not a member of some G,,.

The two properties given above (every other bit is zero, or in the limit there
are at least twice as many zeros as ones) determine effective null classes in this
sense. So a ML-random set does not have either of these properties.

In the following, we identify co-infinite sets with real numbers in [0,1) via
the binary presentation. A natural example of a ML-random set was given by
Chaitin. Consider the halting probability of the universal prefix-free machine U:

Q= Z{Q*M: Uhalts on inputo}.

6 André Nies

Note that this sum converges because the machine U is prefix-free. Chaitin
proved that € is Martin-Lof random.

The left cut {¢ € Q: ¢ < 9} is computably enumerable. Since any real
number is Turing equivalent to its left cut, this implies that Q <t '. It is also
not hard to show that (/ <t Q. Thus Q determines a ML-random set that is
Turing equivalent to the halting problem.

Given aset Z and n € N, let Z [,, denote the initial segment Z(0) ... Z(n—1).
Schnorr’s 1972 Theorem [40] says that Z is ML-random if and only if each of
its initial segments is incompressible.

Theorem 3.4. 7 is ML-random <
there is b € N such that Vn K(Z[,) > n —b.

Levin [24] proved the analogous theorem for a variant of K called monotone
string complexity.
Schnorr’s Theorem yields a universal ML-test: Let

Ry ={X: In[K(X],) <n—b]}.

The relation “K(z) < r” is computably enumerable, so the sequence of open
classes Ry, is uniformly computably enumerable. One shows that AR, < 27°.
Thus, using this notation, Schnorr’s Theorem says that

7 is ML-random < Z passes the ML-test (Rp)pen-

So, the single test (Rp)pen suffices to emulate all the others.

This fact can be used to obtain ML-random sets with lowness properties.
The complement of Ry is {X: Vn K(X [,) > n}. This is a II{ class of measure
at least 1/2. By Schnorr’s Theorem, it consists entirely of ML-random sets. So
we can apply the Jockusch-Soare Basis Theorems 2.2 to obtain ML-random
sets satisfying lowness properties:

Example 3.5. (i) There is a low ML-random set.
(ii) There is a computably dominated ML-random set.

3.3. Randomness and differentiability. A well-known theorem
from analysis states that every function f: [0,1] — R of bounded variation
is differentiable almost everywhere (with respect to Lebesgue measure A). In
particular, this holds for every monotonic function. In the following we identify
co-infinite subsets of N with reals in [0,1] via the binary representation (we
identify the set N with the real 1). If one also requires an effectiveness condi-
tion on the function, the reals at which it is not differentiable form a type of
effective null class, and hence a test notion for reals. In the 1970s Demuth had
a program to show that effective functions are well-behaved, and in particular
differentiable, at random reals. For instance, in his own constructivist language
he proved that if a real x is Martin-Lof random then each constructive function
of bounded variation is differentiable at z [6].

Interactions of Computability and Randomness 7

We will describe a similar coincidence due to Brattka, Miller and Nies [2]. We
characterize computable randomness using differentiability of non-decreasing
computable functions on the unit interval. First we explain the notions involved.

Computable randomness. Martin-Lof tests are c.e. objects. For this reason
Schnorr [39] maintained the point of view that ML-tests are already too power-
ful to be considered algorithmic. He proposed a more restricted notion of a test.
His tests formalize computable betting strategies. A test in Schnorr’s sense is a
computable function M from {0,1}* to the non-negative rationals. When the
player has seen z = Z |,,, she can make a bet ¢ where 0 < ¢ < M(z) on the
next bit Z(n). If she is right she wins ¢, otherwise she loses ¢. Thus M must
satisfy the fairness condition M(z0) + M (z1) = 2M (z) for each string z. She
wins on Z if M(Z[,) is unbounded. We call a set Z computably random if no
computable betting strategy wins.

Choose ¢ € N such that the start capital M(0) is at most 2¢. Let G, be
the class of Z such that M(Z [;) > 2"F¢ for some k. It is not hard to see that
(Gr)ren forms a ML-test. If M(Z [,) is unbounded then Z € (), Gy,. This
shows that computable betting strategies induce a type of effective null class.
Further, each ML-random set is computably random.

Computable functions on the unit interval. A Cauchy representation of a real
z € R is a sequence (g;);en of rationals converging to x such that |gx — ¢;| <
27% for each k > i. A function f: [0,1] — R is called computable if there
is an effective method (i.e., a Turing functional) to transform each Cauchy
representation of an z € [0,1] into a Cauchy representation of f(z). Such a
function is necessarily continuous. Functions from analysis such as e, y/x etc.
are computable.
We are now able to state the result of Brattka, Miller and Nies in [2].

Theorem 3.6. Let x € [0,1]. Then x is computably random if and only if [’ (x)
exists for each computable non-decreasing function f.

Further research in [2] indicates that z is Martin-Lof random if and only
if each computable function of bounded variation is differentiable at x. The
forward implication is a variant of the aforementioned result of Demuth [6].

3.4. A notion stronger than Martin-Lof randomness. One
can also argue that ML-randomness is too weak to be viewed as a formal coun-
terpart of our intuitive idea of randomness for sets. For instance, the ML-
random real {2 has a computably enumerable left cut, and is Turing equivalent
to the halting problem ()’. These properties may contradict our intuition on
randomness: the halting problem is not random at all, so a random set should
not match its computational strength. In fact, the set should be Turing incom-
parable with the halting problem. The following stronger notion was proposed
by Kurtz [23].

8 André Nies

Definition 3.7. We say that Z is 2-random if Z is ML-random relative to the
halting problem.

Clearly, a set Z <t (' is not 2-random: let G,, = [Z |], then (G)men is a
ML-test relative to () which Z fails. It is also not hard to show that a set Z > 0/
is not 2-random: given a Turing functional ®, the halting problem can for each
m compute k such that the measure of G,, = {Y: Vi < k[®Y (i) = 0/(4)]} is
at most 27™. If ®(Z) = (/ then Z fails (G,)men, which is a ML-test relative
to (.

For an example, note that the real 9 is 2-random. Kurtz [23] showed,
among other things, that no 2-random set Z is computably dominated (see
Section 2 for the definition). In fact he obtained the stronger result that Z is
c.e. relative to some set Y <p Z.

Let C(z) be the plain Kolmogorov complexity of a string x, without restric-
tion to prefix-free machines. Clearly C(z) <* |z|. A string is incompressible
in the sense of C if C(x) > |z| — b for some (small) constant b. One can show
that for some constant slightly larger than b, all prefixes of such a string are
incompressible in the sense of K.

Our next coincidence result characterizes 2-randomness in terms of C-
incompressibility of initial segments. This can be seen as a variant of Schnorr’s
Theorem 3.4. However, we merely need C-incompressibility of infinitely many
initial segments to arrive at the stronger notion of 2-randomness. This sug-
gests that C-incompressibility of a string is a condition much stronger than
K-incompressibility.

The coincidence result is due to Nies, Stephan and Terwijn [36]; the harder
implication “=” was also independently (and slightly earlier) obtained by
Miller [28].

Theorem 3.8. Z is 2-random &
there is b € N such that C(Z [,) > n — b for infinitely many n.

Sketch of Proof (for the details see [37, Thm. 3.6.10]).

<: Recall that for each oracle X the domain of UX is prefix-free. The plain
machine M on input ¢ searches for a splitting ¢ = 7z such that y = u? (1)
converges in |o| steps with the approximation of the oracle () at stage |o|. In
this case, it outputs yz. That is, M prints y followed by the rest of o.

Now suppose that Z is not 2-random. Then by Theorem 3.4 relative to (',
for each d there is » € N such that K@/(Z [») <r —d. Let ng be so large that
the final computation U‘D/(T) = Z |, converges in ng steps for some 7 such that
|7] < r—d. For each n > ny, if the string y contains the bits of Z from position
rton—1, then M(ry) = Z|,,. Thus M can describe Z [,, with at most n — d
bits for each n > ng, whence C(Z[,) <n —d+ O(1) for each n > ny.

=: A function F: {0,1}* — {0,1}* is called a compression function if F is
one-one and |F(z)| < C(x) for each z. By the Low Basis Theorem 2.2 there is

Interactions of Computability and Randomness 9

a compression function F such that F’ =¢ §’. Using this lowness of F, if Z is
2-random one can show that there is b such that |F(Z |,,)| > n —b for infinitely
many n. This implies that C(Z [,,) > n — b for infinitely many n. O

As a corollary, in [36] we obtained a simple new proof of Kurtz’s result [23]
that no 2-random set is computably dominated.

Summary of Section 3. For binary strings x, we introduce plain descriptive string
complexity C(z), and prefix-free string complexity K (x). The intuitive notion of ran-
domness for strings can be formalized by incompressibility. One formal version of
incompressibility is |x| <T K(x). A stronger one is |z| < C(z).

For an infinite sequence of bits (i.e., a set), the intuitive notion of randomness
corresponds to a hierarchy of mathematical randomness notions. The central one is
Martin-Lo6f randomness; computable randomness is a weaker notion where the tests
formalize the idea of a computable betting strategy; 2-randomness is the relativization
of ML-randomness to .

ML-randomness and 2-randomness can be characterized via incompressibility
of initial segments of the sequence. Computable randomness is implied by ML-
randomness. It can be characterized by the condition that each non-decreasing com-
putable function on the unit interval is differentiable at the corresponding real number.

Some further facts. The implications between randomness notions are proper:
2-random = Martin-L6f random = computably random. See [37, 3.6.2, 7.4.8].

Suppose that the set A is computable. If Z satisfies a randomness notion, then
the symmetric difference ZA A satisfies the same notion. Further, if p is a computable
permutation of N, then p(Z) satisfies the same notion (see [37, 7.6.24] for the case of
computable randomness).

4. For Ag, Close to Computable = Far From
Random

We will introduce a lowness property via relativized ML-randomness. Further,
we will introduce the K-trivial sets which are far from random. Recall from
Subsection 3.1 that K (x) is the length of a shortest prefix-free description of a
string .

Definition 4.1. Let A C N.

(i) A is low for ML-randomness (Zambella 1990, [44]) if each ML-random
set is already ML-random relative to A.

(ii) A is K-trivial (Chaitin 1975, [4]) if each initial segment of A has prefix-
free complexity no greater than the complexity of its length. That is, there
is b € N such that, for each n, K(AT,) < K(n)+b. (Here n is written in
binary.)

10 André Nies

We will see that these two properties of sets are equivalent.

4.1. Background on the two properties.

Lowness for ML-randomness. Zambella asked whether lowness for ML-
randomness implies being computable. Kucera and Terwijn [22] answered this
in the negative. They proved that in fact some incomputable c.e. set is low for
ML-randomness.

Kjos-Hanssen [17] characterized being low for ML-randomness using only
effective topology and the uniform measure on Cantor space: A is low for ML-
randomness < each open class G C 2N that is c.e. in A and has measure \G
less than 1 is contained in an open class S that is c.e. (without the oracle A)
and still of measure AS less than 1.

J. Miller observed that for an incomputable set A, Kjos-Hanssen’s result is
not constructive. An indez for a c.e. open set R is a number e such that R is the
class of sets extending some string in W,.. Assume that from an index relative
to A for G we can effectively obtain an index for the covering class S O G. To
compute A [, let G = 2Y — [A[,]. Compute the index for S. Wait for a stage
when all strings y of length n except for one satisfy [y] € S. Then A [,, must
be the remaining string.

K -triviality. This property of sets is the opposite of ML-randomness: K-trivial
sets are “antirandom”. For, by Schnorr’s Theorem 3.4, Z is ML-random iff all
values K(Z [,) are near their upper bound n + K(n); on the other hand Z
is K-trivial if the values K(Z [,) are at their lower bound K(n) (all within
constants).

Chaitin [4] was the first to study K-triviality. He showed that the number
of strings of a fixed length with minimal K-complexity up to a constant b is
bounded by O(2°).

Theorem 4.2 (Counting Theorem [4]). For each b € N, at most O(2°) strings
of length n satisfy K(x) < K(n) 4+ b. Thus, at most O(2°) sets are K-trivial
with constant b.

The following is an easy consequence.
Theorem 4.3 ([4]). Each K-trivial set is AY.

Proof. Ais K-trivial via the constant b iff A is a path on the AJ tree of strings z
such that K(z) < K(|z|) + b for each x < z. This tree has only O(2°) paths.
Therefore A is Ay as an isolated path on a AY tree. O

Instigated by Chaitin, in 1975 Solovay [42] built an incomputable K-trivial
set. His set was merely AS. Calude and Coles [3] modified Solovay’s construction
in order to make the set c.e. In 2002, Downey, Hirschfeldt, Nies and Stephan [9]
gave an easier construction of a c.e. incomputable K-trivial set. It is similar to
the 1999 Kucera-Terwijn construction of a set that is low for ML-randomness.

Interactions of Computability and Randomness 11

These constructions gave rise to the cost function method described in Section 5.
In Proposition 5.4 we will explain how to obtain a c.e. incomputable K-trivial
set via the general Existence Theorem 5.3.

For sets A and B, let A & B denote the set 24 U 2B + 1, namely the set
which is A on the even bit positions and B on the odd positions. The K-trivial
sets are closed under @ by the following result of Downey, Hirschfeldt, Nies and
Stephan.

Theorem 4.4 ([9]). If A and B are K-trivial via b, then A& B is K-trivial
via 3b+ O(1).

Proof. Tt is sufficient to describe each string A® B |2, with K (n)+3b+0(1) bits.
To do this, we need to describe n only once; if we have a shortest description
of n we also know its length r = K(n).

We (somewhat generously) use b+ 1 bits to describe b itself, by putting the
string 0°1 at the beginning of our description of A @ B [4,,. Next, we put the
prefix-free description of n. The set of strings x of length n such that K(z) <
r + b is uniformly c.e. and has size O(2°) by Chaitin’s Counting Theorem 4.2.
So we only need to put b+ O(1) further bits each to describe the positions of
Al, and B/, in its enumeration. O

4.2. Coincidence of the two properties.
Theorem 4.5. A is low for ML-randomness < A is K-trivial.

Known since 2002, this result published in [34] is now considered funda-
mental in the area. Nies [34] proved “=". The converse implication has a com-
plicated history. Downey, Hirschfeldt, Nies and Stephan [9] showed that each
K-trivial set is Turing incomplete. These ideas were later explained through the
decanter model [10]. Nies combined this model with a new technique called the
golden run method in order to show that the K-trivial sets are closed downward
under <p. Hirschfeldt and Nies together used the golden run method to show
the stronger result that K-triviality implies being low for ML-randomess; see
[34, 37].

Conceptually, lowness for ML-randomness and K-triviality are quite far
apart: the former is a lowness property defined in terms of randomness, while
the latter expresses being far from random. So it come at no surprise that the
proof of their coincidence is hard. On the other hand, this makes the coincidence
quite beneficial, because properties that are easily obtained via one definition
can be very hard to obtain directly via the other. For instance, it is easy to see
from the definition that each set A that is low for ML-randomness is generalized
lowy, ie., A" <t A& (' [22], while it takes the golden run method to see this
for the K-trivials. On the other hand, for the K-trivial sets, containment in
the AY sets and closure under @ is not very hard to see (Theorems 4.3, 4.4).
If one takes the definition via lowness for ML-randomness, containment in the

12 André Nies

AY sets is much harder [33], and no direct proof is even known for the closure
under @.

Outline of the Proof. 1t is easiest to introduce two further properties and show
the coincidence of the theorem via these properties. The implication from left
to right is proved via the notion of a base for ML-randomness. The converse
implication is proved via the notion of being low for K. These two notions are
of independent interest.

=: Bases for ML-randomness were introduced by Kucera [21] in a different
terminology.

Definition 4.6. We say that A is a base for ML-randomness if A <t Z for
some set Z that is ML-random relative to A.

Each set A that is low for ML-randomness is a base for ML-randomness.
For, by the Kucera-Gdcs Theorem (see [37, Thm. 3.3.2]) there is a ML-random
set Z such that A <¢ Z. Then Z is ML-random relative to A.

It is now sufficient to show that each base for ML-randomness is K-trivial.
This is a result of Hirschfeldt, Nies and Stephan [15] whose proof we follow.
Suppose there are a set Z and a Turing functional ® such that ®% = A and
Z is ML-random relative to A. We will build a prefix-free machine Ny for each
d € N. We want to ensure that there is a d such that Ng can describe each
7 < A with K(|7]) + d 4+ 2 bits. Of course, A is unknown. Thus, given the
limitation that the total measure of the Ngy-descriptions must not exceed 1,
we have to be judicious in deciding which strings 7 receive such a descrip-
tion. The idea is to build uniformly c.e. open classes Cj C 2% for d € N and
7 € 2<%, Their purpose is to test whether a string 7 is likely to be an ini-
tial segment of A. Roughly, 7 fulfills this test if sufficiently many o satisfy
T <P,

For each fixed d, the Cj are pairwise disjoint. If we let Gg = |J,_ 4 C], then
the following hold.

e (G4)den is a Martin-Lof test relative to A.

o If Z ¢ G4 then X\C] = 2=K(mh=d for all 7 < A.

For a c.e. open class C and a stage s, let C[s] C C denote the clopen class
approximating C at stage s. We define Ny by enumerating a description of length
K (|7])+d+2 of T at stage s whenever we have not previously enumerated such
a description and \Cj[s] > 27 K:(7D)=d=1 Gince the C] are disjoint for fixed d,
we don’t run out of descriptions. For the formal definition of the Ny we apply
the Machine Existence Theorem 3.1.

Since Z is ML-random relative to A, we have Z ¢ G4 for some d and hence
AC) = 2= K(7D=d for all 7 < A. This implies that there is an Ny-description of
length K(|7]) + d+ 2 of 7 for all 7 < A, as desired.

Interactions of Computability and Randomness 13

To build the C7, as long as at a stage s we have A\Cj[s] < 27 K:(Th=d e
look for strings ¢ such that 7 < ®7 and AC][s] + 2-lol < 2=K:(7h=d and put
[o] into C][s+1]. To keep our open classes pairwise disjoint, we then ensure that
no [0'] such that o’ is compatible with o is later put into C4 for any string v.

If Z ¢ Gq, then no [o] with ¢ < Z is ever put into any Cj. This means that
the measure of each CJ with 7 < A = ®% must eventually exceed 2~ ¥ (7h=d=1,

«<: Recall that U# is the universal prefix-free machine with oracle A, and
K4(y) is the length of a shortest U#-description of y. In general, enhancing
the computational power of the universal machine by an oracle A decreases
K (y). We say that A is low for K if this is not so:

Definition 4.7. A is low for K if K(y) <T K4(y) for each string y.

This property was introduced by Andrej Muchnik Jr. in a 1999 Moscow
seminar. He showed that some incomputable c.e. set is low for K. Among the
properties discussed in this section, it is the most well-behaved. For instance,
if a c.e. set A is low for K, we can, effectively in the constant for being low for
K and the c.e. index for A, find an index for a truth table reduction showing
A" <4 O, that is, the superlowness of A [37, 5.1.3].

Also, lowness for K easily implies the other properties we have discussed.
By Schnorr’s Theorem relative to A, being low for K implies being low for
ML-randomness: if Z is ML-random, then n <* K(Z [,) <t K4(Z |,,) for
each n, so Z is ML-random relative to A. To show that lowness for K implies
K-triviality, one uses the finitary methods common in algorithmic information
theory (see [25]): K(AT,) <t KA4(Al,) <t K4(n) <t K(n). The hypothesis
is only used in the first inequality.

To prove that K-triviality implies being low for ML-randomness, it now
suffices to show that conversely, each K-trivial set is low for K. From the for-
mulation of this implication, one could hope that it can also be proved using
finitary methods, such as manipulating inequalities involving K and K“. How-
ever, so far no one has found such a proof.

The difficulty of proving the implication “K-trivial = low for K” is in part
explained by the fact that it is not constructive: from a constant for K-triviality
and a c.e. index for a set A, one can not compute a constant via which A is low
for K. See [37, 5.5.6], which goes back to [9]. In fact, one cannot even compute
an index of a Turing reduction for A" <t @’ [37, 5.5.5]. This shows that the
original implication “<” in the theorem is also not constructive.

We give an outline of the proof that K-triviality implies being low for K,
using the decanter model and the golden run method; for more details see [37,
Sections 5.4-5]. We already know from Theorem 4.3 that each K-trival set A
is AJ, and hence has a computable approximation (A,)sen in the sense of the
Limit Lemma 2.1. We now have to understand why K-triviality of A can be seen
as an inertness (in particular, a lowness) property. Roughly speaking, whenever
A, changes, say at a stage s, a U-description of length at most K4(n) + b of

14 André Nies

the new version of A [, is needed. The measure of possible descriptions is at
most 1, so this restricts the changes of A.

Turing incompleteness. First we will discuss the result of [9] that a K-trivial
set A is Turing incomplete. The proof is by contradiction. We build an auxiliary
c.e. set B. If A is Turing complete, then by the Recursion Theorem we are given
a Turing reduction T such that B = I'(A). Let v (m)[s] denote the use u, i.e.,
u — 1 is the largest oracle question asked in the computation I'4(m)[s]. If we
put m into B then A must change below u in order to maintain B = I'(A4) at
input m.

We also build a bounded request set L as in Theorem 3.1. Putting a request
(r,n) into L causes K (n) < r + d, where d is the constant for the machine ob-
tained from L (which is again known ahead of the construction by the Recursion
Theorem). Hence K(A[,) <r+ b+ d where A is K-trivial via b.

Let k = 2°79+1 If we can force A [, to change to a new configuration for
more than k /2 times, then for this n, our investment into L is overmatched by
the opponent’s investment into descriptions of A [,. The idea is to do this for
so many numbers n that he does not have enough resources to match us.

We can cause these changes if we have k /2 numbers m with use v (m) < n
to put into B. If T is a weak truth-table reduction, i.e., the use is bounded by
a computable function g, we can arrange this by choosing n > g(k). In the
general case, the opponent will simply change A “early” and then redefine the
use v (m) with a value beyond n. This deprives us of the possibility to cause
further A-changes when we need them.

Our solution to this problem is to pool numbers n together, so that a single
A-change will let us make progress on lots of them. Further, we already make
partial progress based on the A-changes the opponent relies on to move up
yA(m). For i < k let us say that a set F is an i-set if for each n € E, we
put a request (r,,n) into L, and then see descriptions of length r,, + b+ d of i
different AT, configurations. The weight of such a set is), ., 27" . If n is in
a k-set, then for each of the k different versions A [,, there is a U-description
of length at most r,, + b+ d. Hence the weight of a k-set cannot exceed 1/2.

We visualize a set of numbers n associated with requests (r,,, n) as a quantity
of precious wine of the corresponding weight. The decanter model consists of
decanters Fi,..., F}. For instance, in the case k = 4 it looks like this:

Precious wine is first poured into F;. Decanter F; 1 can be emptied into de-
canter F;. At any stage the content of each F; must form an i-set. We want as
much wine as possible to reach F}, because from F} we can pour it into a glass

Interactions of Computability and Randomness 15

and drink it. Under certain circumstances we cannot ensure that the content
of F;_ is promoted to F;, so we have to spill it on the floor.

When we put (r,,n) into L, we also put n into Fj, which means that we
pour a quantity 27" of precious wine into Fj. At a stage s, all elements n of
F;_1,i < k, satisfy n > v*(m)[s] for a specific number m associated with F}
(to be explained shortly). Once the weight of F;_; passes a certain quota, we
put m into B and empty F;_; into F;. Since A [,a(,,) has to change to keep
B =T'(A) correct, the content of F; including the wine just added remains an
i-set, as required.

Now we can get around the problem of an “early” A-change that would
move y4(m) beyond n. If A changes early, then the wine that has already
reached F;_; is still promoted to F;. The only wine lost is the one currently
in Fy,..., F;_5: the content of these decanters is spilled onto the floor. But
the quotas of these decanters are chosen smaller and smaller as ¢ decreases,
so we can ensure that the total quantity of wine spilled has a weight of less
than 1/4.

In the construction we have many runs of procedures associated with a
decanter F;. Each run has a parameter m such that T'4(m) converges, and a
weight quota p called its goal. For ¢ > 1 it will call a run associated with F;_;
with smaller quota for as many times as needed for F;_; to fill to weight p.
Then it puts m into B, empties F;_; into Fj, and returns. If A[,a(,,) changes
prematurely then the current content of F;_; is poured into F;, but the run for
F; continues.

The construction starts out by running Fj, with a quota of 3/4. It calls Fj _;
with a smaller quota for a number of times, and so on down to Fj.

Since T is total we can force all the A changes needed for runs to return.
Hence, the single run associated with Fj returns. This yields a k-set of weight
3/4, which is a contradiction.

The full result. We now discuss the full result that a K-trivial set A is low for K.
The basic approach is to build a bounded request set W (see Theorem 3.1) as
follows: if U4(0) = vy, there is a request (|o| + O(1),y) in W. Similar to the
proof of the implication “=" of the present theorem, we have to judiciously
choose the computations U4 (o) existing at a stage s for which we want to issue
a request. The set W has bounded resources, so we have to limit the situation
that, after a computation is chosen, A changes to destroy it. We will use such
an A-change to promote numbers.

To exploit the hypothesis that A is K-trivial, as before we build a global
bounded request set L. Numbers n go through levels 1,..., k. The decanters
are now arranged on a tree. While trying to fill, each decanter at a level greater
than 1 builds its own bounded request set W in an attempt to show that A is
low for K.

Suppose F; is a decanter at level ¢ where 1 < i < k. When U4 (o) converges,
F; calls a decanter F;_; , at level i — 1 that can be emptied into F;. Its goal is

16 André Nies

2-l7lq, where « is a non-negative rational called the garbage quota of the run
of F; (to be explained shortly). When F;_; , reaches its goal, it returns. It now
remains inactive, until possibly A changes below the use of U4 (o). In this case
the content of F;_; , becomes an i-set, so F;_; , can be emptied into F;. We
say that the run of F;_; , is released.

If A changes below the use of U# (o) before the run returns, then this run is
cancelled, but we still can empty the current content of F;_; , into Fj, because
the A-change turned it into an i-set.

If A does not change at all, a quantity 2~!°la of garbage has been created
in the form of wine that is forever stuck at the now defunct decanter Fj_; .
If we choose the o values small enough, we can make the amount of garbage
tolerable.

\ golden run ; :

To start the construction, we call the decanter at level k with goal 3/4 and an
appropriate small garbage quota. A golden run is a run of a decanter F; that
is never cancelled and never returns, while all the runs of F;_; , it calls are
cancelled or return. A golden run exists, for otherwise the decanter at level k
would reach its goal 3/4, which is a contradiction.

At the golden run node F; we can build a bounded request set W that
succeeds in showing that A is low for K. Suppose the golden run of F; has
goal p and garbage quota a. Let u € N be least such that p/a < 2¥. When
F,_1,, returns we put (|o| +u + 1,y) into W. To see that W is a bounded
request set, note that we can bound by 2% the sum of all 217! where o is a UA-
description at some stage, F;_1 . is called, then F;_; , returns, and later on it
is released by an A-change. If this sum exceeds 2% then the run of F; reaches its
goal p < 2%a. So these descriptions contribute at most 1/2 to W. The weight
of the descriptions o where A does not change after the run of F;_; , returns
is at most the measure of the domain of U4, whence their contribution is at
most 1/2. Hence W is a bounded request set. O

Interactions of Computability and Randomness 17

Summary of Section 4. We introduce a lowness property, being low for ML-
randomness, and a far-from-randomness property, K-triviality. Each K-trivial set is
AY. The K-trivials are closed under @.

Base for ML
K-trivial
easy
Low for ML
harder casy very hard;
non-uniform
easy
Low for K

We show the equivalence of the two properties. To do so we introduce two further
properties, being a base for ML-randomness and being low for K, which are also of
independent interest. The diagram summarizes the implications discussed. To show
that each K-trivial is low for K, we need the decanter and golden run methods.
Some further facts. We say that A is C-trivial if C(A],) <T C(n). Each C-trivial set
is computable (Chaitin; see [37, 5.2.20]).

Directly from the definition one can see that each set A that is low for ML-
randomness is GL1, namely A" <r A & @’ [22]. As mentioned above, it is not hard
to see from the definition that each c.e. set A that is low for K is superlow, namely
A < O [37, 5.1.3]. A golden run construction shows directly that each K-trivial set
is superlow [37, p. 208].

5. The Inertness Paradigm and Cost Functions

In Section 4.1 we described four properties of A sets that were introduced
by different groups of researchers. For each property, the researchers gave a
construction of a c.e. incomputable set with the property. All these construc-
tions looked similar, which is not too surprising given that the properties later
turned out to be equivalent. From 1999 on, the language of cost function was
developed to formulate these constructions [22, 9, 34].

Nowadays cost functions are an indispensable tool for understanding the
class of K-trivial sets and its subclasses [37, Section 5.3], [14, 35]. For instance,
each K-trivial set is Turing below a c.e. K-trivial set (see Corollary 5.6 below).
The only known proof of this result relies on a cost function.

5.1. Basics on cost functions. Recall the Limit Lemma 2.1: A <y (/
iff A(x)=lim, A,(x) for some 0,1-valued computable approximation (As)sen.
Cost functions are used to measure the total of changes, taken over all numbers,
of a computable approximation. In this way we have a formal version of the
inertness paradigm from the introduction: a AJ set is close to computable if it
can be computably approximated with a small total amount of changes.

18 André Nies

Definition 5.1. A cost function is a computable function
¢c:NxN—={zecQ: x>0}
We say that a cost function c satisfies the limit condition if
lim, sup, ¢(z,s) =0.

When building a computable approximation of a A9 set A, we view c(x,s) as
the cost of changing A(x) at stage s. We now express that the total cost of
changes, taken over all z, is finite [37, Section 5.3].

Definition 5.2. We say that a computable approximation (Ag)sen obeys a
cost function c if

00 >3 c(z,s)[r <s A wisleast such that A;_1(z) # As(2)].
We say that A obeys c if some computable approximation of A obeys c.

Mostly we use this to construct some auxiliary object of finite “weight”,
such as a bounded request set in the sense of 3.1, or a so-called Solovay test in
the proof of Theorem 5.10 below.

The analytic approach to restricting changes is more powerful than most
combinatorial approaches. For example, call a AJ set A slow if for each non-
decreasing unbounded computable function h, there is a computable approxi-
mation (Ag)sen of A such that A [, changes at most h(n) times. Is it not hard
to build a slow c.e. set that is Turing complete.

A co-infinite c.e. set is called simple [38] if it meets each infinite c.e. set.
Clearly no such set is computable. The following theorem can be traced back
to [22, 9].

Theorem 5.3. If a cost function c satisfies the limit condition, then some
simple set A obeys c.

Proof. Let (W,)een be an effective listing of the c.e. sets. To make A simple
we meet the requirements S, : |[W,| = co = AN W, # (. Requirement S, is
allowed to spend at most 27¢. Because of the limit condition, S. can wait for
an x to appear in W, that is so large that S, can afford it.

At stage s, if S, is not satisfied yet, we look for an x, 2¢ < x < s, such that
x € W, and

c(x,s) <27°.

If so, we put the least such x into A and declare S, satisfied.

Since a requirement S, spends at most 27¢ the total cost of changes is
bounded by)", 27¢ = 2. Hence A obeys c.

Suppose that W, is infinite. As explained above, since ¢ satisfies the limit
condition, each S, is met. A is co-infinite because we choose x > 2¢. So A is
simple. 0

Interactions of Computability and Randomness 19

We say that a cost function ¢(z, s) is monotonic if ¢(x, s) is non-increasing
in z, and non-decreasing in s. Thus, at the same stage a smaller number can
only be more expensive, and the same number can only get more expensive at
later stages. Most cost functions given below will be monotonic.

5.2. Applications of cost functions. We analyze some lowness prop-
erties and their corresponding constructions, using cost functions.

5.2.1. K-triviality. Recall that a set A is K-trivial if there is a b € N such
that Vn K(A[,) < K(n) 4+ b. We introduce a cost function cx satisfying the
limit condition such that any set obeying cx is K-trivial. Then, by Theorem 5.3,
there is a simple K-trivial set. In Theorem 5.5 we will prove that obeying cx
actually characterizes K-triviality.

To show that A is K-trivial we build an appropriate prefix-free machine M
via the Machine Existence Theorem 3.1.

(a) Let K;(i) be the value of K (i) at stage s. Whenever there is a new value
K, (i), we give an M-description of A [; with length K(¢) + 1. The combined
weight of such descriptions is at most 1/2.

(b) If A(z) changes at stage s then, for all ¢ such that s > ¢ > z, the initial
segment A [; gets a new M-description of length K (i) 4+ 1. If we let

e (w,8) =0 2~ Ka(d)

then the measure of the new M-descriptions needed is cx(x,s)/2. If A obeys
cx and the total cost of changes is at most 1, this contributes a weight of at
most 1/2 in M-descriptions, so we build the desired machine. More generally, if
the total cost of changes is at most 2¢ for d € N, we choose the M-descriptions
in (b) of length K;(#) + d + 1. We have shown the following.

Proposition 5.4. Suppose that A obeys the cost function ci. Then A is K-
trivial.

Note that sup, cx(z,s) = ;.. 2 %) is bounded above by the measure
of the set of strings ¢ such that U(c) > . Therefore ci satisfies the limit
condition, and by Theorem 5.3 some simple set is K-trivial.

By the implication “=" of the following result, any possible construction of
a K-trivial set will be similar to the one in the proof of Theorem 5.3.

Theorem 5.5 (Nies [34]). A is K-trivial < A obeys cx.

The implication “<=” is Proposition 5.4. The implication “=" is not too
hard for c.e. sets ([37, 5.3.27]). For AJ sets in general, apparently it requires
the full power of the golden run method (see [37, 5.5.2]).

20 André Nies

As an application, we show that K-triviality is closely tied to being c.e.
Corollary 5.6. For each K-trivial set A, there is a c.e. K-trivial set D > A.

Proof. Let D = {{z,i): A(x) changes at least i times}. Thus, when A(z)
changes, we put the next element in the z-th column of N into D. Clearly,
D({(x,i)) can only change at a stage s when A(z) also changes. Now z < (z,1)
and cx(y,) is non-increasing in y. Thus, if A obeys ¢x then D obeys ¢k as
well. (Note that cx can be replaced by any monotonic cost function in this
argument.) O

In [35] we introduce a cost function cq simpler than ¢, and show that it also
characterizes K-triviality. For each stage t, let {); be the measure of the domain
of U at stage t. Now let cq(z,s) be the measure of U-descriptions converging
from stage x to s, that is, co(z,s) = Qs — Q.

Theorem 5.7. A is K-trivial < A obeys the cost function cq.

Outline of the proof. <: Clearly cx(x,s + 1) — c(x,8) < Qgy1 — Qg, which
implies that ¢ (x,s) < cq(z, s) by induction on s > x . Thus, if a set A obeys
cq it also obeys cx. Therefore A is K-trivial by Proposition 5.4.

=-: This is a further application of the golden run method. It can also be proved
directly from the foregoing Theorem. O

We say that a monotonic cost function c¢ is additive if ¢(x,y) + c(y,z) =
¢(x, z) for each © < y < z. Clearly cq is additive (while ¢ is not). An additive
cost function c is completely determined by the non-decreasing sequence of
rationals (¢(0, s))sen approximating the real sup, ¢(0, s). Nies [35] proved that
A is K-trivial iff A obeys all additive cost functions. This characterizes K-
triviality of a A9 set A purely based on effective approximations of A, and
on left-c.e. reals. In contrast, the characterizations in Section 4 used machines,
measure, or relativization.

5.2.2. Strongly jump traceable sets. We discuss a lowness property which
is defined by purely computability-theoretic means following the weak-as-an-
oracle paradigm. It properly implies K-triviality for c.e. sets. It is much stronger
than slowness mentioned after Definition 5.2. We will show how it can be char-
acterized by obeying all so-called benign cost functions.

The property is an instance of the meta-concept of traceability. The idea
behind traceability is the following. The set A is computationally weak because
for certain functions ¢ computed with oracle A, the possible values 1(n) are
contained in a finite set T, of small size. The sets T),, are obtained effectively
from n (not using A as an oracle).

Traces for functions w — w also appear in combinatorial set theory, espe-
cially forcing results related to cardinal characteristics. They are called slaloms
there, and were introduced by T. Bartoszynski (see [1]).

Recall that J#(z) is the value on input z of a universal A-partial computable
function. We say that a computable function h with only positive values is an
order function if it is non-decreasing and unbounded.

Interactions of Computability and Randomness 21

Definition 5.8. A computably enumerable trace with bound h is a uniformly
computably enumerable sequence (T}).en of finite sets such that |T,| < h(x)
for each x.

We say that a set A is strongly jump traceable (SJT) if for each order func-
tion h, there is a c.e. trace (T)zeny with bound h such that, whenever J4(z)
is defined, we have J4(x) € T,.

Strong jump traceability was introduced by Figueira, Nies, and Stephan [11].
They built a simple strongly jump traceable set. Further, they show that A is
SJT iff the relative Kolmogorov complexity C4(y) of a string y is not far below
C(y) (for each order function g we have C(y) <T C4(y) 4+ g(C4(y))). This
makes the notion an analog of being low for K.

It matters that we require each order function h as a bound for some trace.
A much weaker notion is jump traceability, where one merely requires that
there is a c.e. trace for J# with some computable bound h. There is a perfect
class of sets that are jump traceable as shown in [37, 8.4.4], while each SJT set
is AJ by [7].

Computable

The c.e. strongly jump traceable sets form a proper subclass of the c.e. K-
trivial sets by Cholak, Downey, and Greenberg [5]. It is interesting to compare
the two classes. Both are closed downward under <t. Both are closed under ®.
By definition the c.e. K-trivials have a ¥ index set; in contrast, the c.e. SJTs
have a I19-complete index set by Ng [30]. Thus, as already indicated by the
definition, within the c.e. sets SJT is more complicated than the K-trivials as a
class, even though its members are closer to being computable. Recent research
of Downey and Greenberg [7] shows that in fact each SJT set (c.e. or not) is
K-trivial.

Greenberg and Nies [14] characterized the c.e. SITs according to the inert-
ness paradigm. They specified the right class of cost functions to gauge how
inert a c.e. set must be so that it is SJT. A monotonic cost function c¢ is called
benign if there is a computable bound g(n) on the length of any finite sequence
g < 1 < ... < xp such that e(a;, x;41) > 27" for each ¢ < k. For instance, the
cost function cx characterizing K-triviality is benign via g(n) = 2". Further,
any additive cost function is benign.

22 André Nies

Theorem 5.9 ([14]). Let A be c.e. Then
A is strongly jump traceable < A obeys each benign cost function.

Because of Proposition 5.4, the harder implication “=" generalizes the re-
sult of Cholak, Downey, and Greenberg [5] that SJT implies K-triviality for
c.e. sets.

5.2.3. Kucera’s injury free solution to Post’s problem. Post [38] asked
whether a c.e. set can be incomputable but also Turing incomplete. Both Fried-
berg and Muchnik solved the problem in 1955 by building a pair of Turing
incomparable c.e. sets. To do so, they introduced the finite injury method.
A further solution to Post’s problem is to build a low simple set (see [41]).
This construction again uses the finite injury method, because it has injury to
lowness requirements. In contrast, Kucera in 1986 [20] obtained an injury-free
proof of the following result, and then used it for an injury-free solution to
Post’s problem.

Theorem 5.10. Suppose Y is a ML-random AY set. Then some simple set A
18 Turing below Y .

Now let Y be the bits of €2 in the even positions. An easy direct argument
involving van Lambalgen’s theorem on relative randomness shows that Y is
low and ML-random ([36] or [37, 3.4.10]). Therefore one can build without
injury a low simple set A.

We formulate the proof of Kucera’s theorem in the language of cost func-
tions. This argument is due to Greenberg and Nies [14], and indirectly also
Hirschfeldt and Miller (2006, unpublished; see Section 6 of this paper).

Proof of Theorem 5.10. Fix a computable approximation (Ys)sen of Y. We de-
fine a cost function cy such that, if e < x and Y; [does not change for x <t < s,
then ¢y (z,s) < 27¢. In more detail, let ¢y (z,s) =277 for each z > s. If © < s,
and e is least such that Y;_1(e) # Ys(e), let ¢y (2, s) = max(cy (x,s — 1),27°).

Fact 5.11. If a AY set A obeys cy, then A <7 Y with use function bounded by
the identity.

A Solovay test S is given by an effective enumeration of strings og, 071, ...,
such that >, 2719 < 00. If Y is ML-random and ¢, 071, ... is a Solovay test,
then for almost all 7 the string o; is not a prefix of Y (see [37, 3.2.19]).

To see that A <t Y, we enumerate a Solovay test as follows. When
As_1(z) # As(z) and cy(x,s) = 27°, we put the string Ys [. into S. Since
A obeys cy, S is indeed a Solovay test.

Choose sqg such that o £ Y for any o enumerated into S after stage so. Given
an input x > sg, using Y as an oracle, compute ¢ > x such that Y; [,=Y [,.
Then = € A implies © € A;. For, by the definition of the cost function ¢, at
each stage s > t, if ¢(x,s) = 27¢ (where e < z), then Y | still has the same

Interactions of Computability and Randomness 23

value as at stage t, which is the true Y [.. Thus, if A;_1(z) # As(x) we will
put a prefix o of Y into S, contradiction. This shows Fact 5.11.

Since Y is A9, the cost function cy satisfies the limit condition. Hence some
simple set A obeys cy. So A <1 Y. O

5.2.4. Adaptive cost functions and injury. In Theorem 5.3 we assumed
that the cost function ¢ was given in advance. In a more complicated variant, the
cost function ¢ may be defined during the construction. Such a variant is needed
for the Kucera-Terwijn construction of a set that is low for ML-randomness [22],
and also for Muchnik’s direct construction of a set that is low for K. In the
latter construction, say, c¢(x, s) is the measure of all descriptions at stage s — 1
such that a change at « would destroy the corresponding computation of U4 at
stage s—1; that is, c(z,s) = >, 27191 [UA(0)[s — 1] | A = < use UA(0)[s — 1]].
Extra care has to be taken now to ensure that c satisfies the limit condition.
Note that this cost function is not monotonic.

If the cost function is defined during the construction, then the construction
must be regarded as having injury. For instance, during the construction of a
low simple set, the lowness requirements L.: 3%sJ4(e)[s — 1] | = J4(e) |
are injured. The following cost function encodes the restraint imposed by L.:
if J4(e) newly converges at stage s — 1, define c(z, s) = max{c(z,s — 1),27¢}
for each x < use J4(e)[s — 1]. If A is enumerated in such a way that the total
cost of changes is finite, then L. is injured only finitely often. Thus A is low.

In contrast, a cost function c given in advance cannot be used to hide injury,
because to encode a restraint that is in force at the beginning of stage s we
have to know A,_;.

Summary of Section 5. Cost functions arose to uniformize the constructions of AJ
sets with lowness properties. Nowadays they have turned into an important tool for
understanding these lowness properties. We formulate in terms of cost functions the
construction of a simple K-trivial set, and Kucera’s construction of a simple set below
a A3 ML-random. We characterize the K-trivial sets and the strongly jump traceable
sets in terms of obeying a class of cost functions with simple combinatorial properties:
being additive for the K-trivials, and benign for the SJTs. For the K-trivials there is
a universal cost function cq.

Some further facts. If ¢ is a monotonic cost function and sets A and B obey ¢, then
A® B obeys c. The class of sets obeying c is closed downward under Turing reduction
with use bounded by the input [35].

There is a computable enumeration (A;)sen of N in the order 0,1, 2, ... such that
(As)sen does not obey cx [37, Ex. 5.3.7]. Thus it matters in the Definition 5.2 of
obedience that we require a finite total cost of changes only for some computable
approximation.

The converse of Theorem 5.3 holds for a monotonic cost function c: if a computable
approximation (As)sen of an incomputable set A obeys ¢, then c satisfies the limit
condition [37, Ex. 5.3.8].

24 André Nies

6. The Turing-Below-Many Paradigm

In Theorem 5.10 we discussed the result of Kucera [20] that for every ML-
random A set Y there is an incomputable c.e. set A <t Y. If Y is Turing
incomplete (i.e. ' €1 Y), then A must be a base for randomness, and hence
K-trivial by [15] (also see [37, 3.4.13]). Thus, for c.e. sets, being below a Turing
incomplete ML-random set is a lowness property implying K-triviality. A major
open question in the area is whether this property coincides with K-triviality
[29, Question 4.6], [37].

Question 6.1. Is each K-trivial set Turing below an incomplete ML-random?

By Corollary 5.6, it is not necessary to require that the given set be c.e.

Kucera’s result is our starting point for studying lowness properties of a
set A according to the Turing-below-many lowness paradigm. To obtain lowness
properties stronger than the ones mentioned in the previous paragraph, we
strengthen the condition related to Kucera’s result that A <t Y for some
Turing incomplete random set Y. There are two interrelated approaches:

(a) Replace the single oracle set Y by a null class C C 2" containing a ML-
random set Y Z7 ', and require that A <t Z for each ML-random set
Z eC.

(b) Stay with a single oracle set Y, but require that it satisfy a randomness
property stronger than Martin-Lof-randomness.

Both approaches lead to similar results related to strong jump traceability.

To carry out (a) the following notation is useful. For a class C C 2V, let C©
denote the collection of c.e. sets that are computable from all ML-random sets
in C. This “infimum” operator was implicitly introduced in unpublished work
of Hirschfeldt and Miller. Each class of the form C® induces an ideal in the
c.e. Turing degrees. Via cost functions Hirschfeldt and Miller showed that C
contains a simple set for each null 9 class C (see [37, 5.3.15]). Since {Y} is a
39 class for each AJ set Y, this strengthens Kuécera’s result.

A strengthening of ML-randomness as required in (b) is Demuth random-
ness, a notion between 2-randomness and Martin-Lof randomness that is still
compatible with being Turing below @’ (but no longer with being above (). We
show that each c.e. set that is Turing below a Demuth random is strongly jump
traceable. We leave open the question whether being below a Demuth random
actually characterizes strong jump traceability for c.e. sets.

We give some more detail on the two approaches above.
Approach (a). By definition, the strongly jump traceable (SJT) sets are weak as
an oracle. In Theorem 5.9 we discussed how to characterize the c.e. SJT sets via
the inertness paradigm. Now we will characterize them via the Turing-below-
many paradigm. Recall that a AJ set Y is w-c.e. if Y has a computable approx-
imation with a computable bound on the number of times Y (n) changes. It is

Interactions of Computability and Randomness 25

easy to obtain a ML-random w-c.e. set. Examples are Chaitin’s number 2, or a
superlow ML-random set. Thus, the following theorem of Greenberg, Hirschfeldt
and Nies [13] says that a c.e. set A is strongly jump traceable iff it is Turing
below many ML-random oracles.

Theorem 6.2. Let A be c.e. Then
A is strongly jump traceable < A is Turing below each w-c.e. ML-random set.

The implication “=" follows from Theorem 5.9: if Y is w-c.e. then its associated
cost function cy defined in the proof of Theorem 5.10 is benign. Since A obeys
cy and Y is ML-random, we obtain A <t Y.

The implication “<” is harder. Given an order function h we want to build a

c.e. trace for J4 with bound h. We threaten to build an w-c.e. ML-random set
Y such that A L1 Y.

Let (®.)ecen be an effective list of Turing functionals. We have a tree of runs
of procedures similar to the golden run method in Subsection 4.2. However,
now the tree has infinitely many levels. At stage s, there is a procedure S¢ at
each level e, for each x such that y = J#(z) converges at s with use u. This
procedure either shows that A [, is not a prefix of ®.(Y), or places y into a
trace set T, of size at most h(x). Since A <1 Y, at some level e there is a
golden run node which always succeeds via tracing. At this node we obtain the
required trace for J4 with bound h.

Since diamond classes induce ideals, as a corollary the c.e. SJT sets are
closed under @. This result was first obtained by Cholak, Downey, and Green-
berg [5] who used a direct construction.

The techniques in the proof of Theorem 6.2 are very adaptable. A variant
shows that the c.e. sets in SJT coincide with C® when C is the class of superlow
sets. A more complex variant shows that the c.e. sets in SJT also coincide
with C® when C is the class of superhigh sets Z (namely, Z’ is truth-table
above (").

In proving the implication “<”, the hypothesis is actually not needed that
the given set A be c.e. for the case of superlow (and hence w-c.e.) sets. We
conclude that the same hypothesis can be discarded from the implication “<”
of Theorem 5.9: suppose A obeys all benign cost functions. Then, for each w-c.e.
set Y, A obeys the benign cost function ¢y defined in the proof of Theorem 5.10.
Hence A <7 Y. Thus A is strongly jump traceable.

By [7] each SJT set is K-trivial, and hence obeys cx. However, it is not
known whether the implication “=" of Theorem 5.9 works for arbitrary sets,
that is, whether each SJT set obeys each benign cost function.

Approach (b). Demuth tests generalize Martin-Lof tests (G,)men in that one
can change the m-th component (a %Y set of measure at most 2-™) for a
computably bounded number of times. Z fails a Demuth test if Z is in infinitely
many final versions of the G,,. (For a formal definition see [37, Section 3.6].)

26 André Nies

Greenberg [12] built a A Martin-Lof random set Y such that every c.e.
set computable from Y is strongly jump traceable. Subsequently, Kucera and
Nies [18] showed that any Demuth random AY set Y serves this purpose.

Theorem 6.3. Let Y be Demuth random. Let A be a c.e. set such that A <t Y.
Then A is strongly jump traceable.

The following open problem is analogous to Question 6.1.

Question 6.4. Is each strongly jump traceable c.e. set Turing below a Demuth
random?

Acknowledgments. I thank Rod Downey, Asher Kach, Justin Moore, Eamonn
O’Brien, and Christopher Porter for comments on earlier drafts of this paper.

References

[1] T. Bartoszynski. Combinatorial aspects of measure and category. Fund. Math.,
127(3):225-239, 1987.

[2] V. Brattka, J. Miller, and A. Nies. Computable randomness and differentiability.
To appear.

[3] C. Calude and Richard J. Coles. Program-size complexity of initial segments and
domination reducibility. In Jewels are forever, pages 225-237. Springer, Berlin,
1999.

[4] G. Chaitin. A theory of program size formally identical to information theory.
J. Assoc. Comput. Mach., 22:329-340, 1975.

[5] P. Cholak, R. Downey, and N. Greenberg. Strongly jump-traceability I: the
computably enumerable case. Adv. in Math., 217:2045-2074, 2008.

[6] O. Demuth. The differentiability of constructive functions of weakly bounded
variation on pseudo numbers. Comment. Math. Univ. Carolin., 16(3):583-599,
1975. Russian.

[7] R. Downey and N. Greenberg. Strong jump traceability II: the general case. To
appear.

[8] R. Downey and D. Hirschfeldt. Algorithmic randomness and complezity.
Springer-Verlag, Berlin. To appear.

[9] R. Downey, D. Hirschfeldt, A. Nies, and F. Stephan. Trivial reals. In Proceedings
of the Tth and 8th Asian Logic Conferences, pages 103-131, Singapore, 2003.
Singapore University Press.

[10] R. Downey, D. Hirschfeldt, A. Nies, and S. Terwijn. Calibrating randomness.
Bull. Symbolic Logic, 12(3):411-491, 2006.

[11] S. Figueira, A. Nies, and F. Stephan. Lowness properties and approximations of
the jump. Ann. Pure Appl. Logic, 152:51-66, 2008.

[12] N. Greenberg. A AS random set which only computes strongly jump-traceable
c.e. sets. To appear.

Interactions of Computability and Randomness 27

13]
14]
[15)
16]
17]
18]

[19]

[28]
[29]
[30]
31]

[32]

N. Greenberg, D. Hirschfeldt, and A. Nies. Characterizing the strongly jump
traceable sets via randomness. To appear.

N. Greenberg and A. Nies. Benign cost functions and lowness properties. To
appear.

D. Hirschfeldt, A. Nies, and F. Stephan. Using random sets as oracles. J. Lond.
Math. Soc. (2), 75(3):610-622, 2007.

C. Jockusch, Jr. and R. Soare. TI? classes and degrees of theories. Trans. Amer.
Math. Soc., 173:33-56, 1972.

B. Kjos-Hanssen. Low for random reals and positive-measure domination. Proc.
Amer. Math. Soc., 135(11):3703-3709, 2007.

A. Kucera and A. Nies. Demuth randomness and computational complexity. To
appear.

A. Kucera. Measure, I19-classes and complete extensions of PA. In Recursion
theory week (Oberwolfach, 1984), volume 1141 of Lecture Notes in Math., pages
245-259. Springer, Berlin, 1985.

A. Kucera. An alternative, priority-free, solution to Post’s problem. In Mathe-
matical foundations of computer science, 1986 (Bratislava, 1986), volume 233 of
Lecture Notes in Comput. Sci., pages 493-500. Springer, Berlin, 1986.

A. Kucera. On relative randomness. Ann. Pure Appl. Logic, 63:61-67, 1993.

A. Kucera and S. Terwijn. Lowness for the class of random sets. J. Symbolic
Logic, 64:1396-1402, 1999.

S. Kurtz. Randomness and genericity in the degrees of unsolvability. Ph.D.
Dissertation, University of Illinois, Urbana, 1981.

L. A. Levin. The concept of a random sequence. Dokl. Akad. Nauk SSSR,
212:548-550, 1973.

M. Li and P. Vitanyi. An introduction to Kolmogorov complezity and its applica-
tions. Graduate Texts in Computer Science. Springer-Verlag, New York, second
edition, 1997.

P. Martin-Lof. The definition of random sequences. Inform. and Control, 9:602—
619, 1966.

Per Martin-Lo6f. On the notion of randomness. In Intuitionism and Proof Theory
(Proc. Conf., Buffalo, N.Y., 1968), pages 73-78. North-Holland, Amsterdam,
1970.

J. Miller. Every 2-random real is Kolmogorov random. J. Symbolic Logic, 69:907—
913, 2004.

J. Miller and A. Nies. Randomness and computability: Open questions. Bull.
Symbolic Logic, 12(3):390-410, 2006.

K. Ng. On strongly jump traceable reals. Ann. Pure Appl. Logic, 154:51-69,
2008.

A. Nies. Applying randomness to computability. Series of three lectures at the
ASL summer meeting, Sofia, 2009.

A. Nies. Computability and randomness: Five questions. To appear.

28

André Nies

A. Nies. Low for random sets: the story. Preprint, available at

http://www.cs.auckland.ac.nz/nies/papers/, 2005.
A. Nies. Lowness properties and randomness. Adv. in Math., 197:274-305, 2005.
A. Nies. Calculus of cost functions. To appear.

A. Nies, F. Stephan, and S. Terwijn. Randomness, relativization and Turing
degrees. J. Symbolic Logic, 70(2):515-535, 2005.

A. Nies. Computability and randomness, volume 51 of Oxford Logic Guides.
Oxford University Press, Oxford, 2009.

E. Post. Recursively enumerable sets of positive integers and their decision prob-
lems. Bull. Amer. Math. Soc., 50:284-316, 1944.

C.P. Schnorr. Zufalligkeit und Wahrscheinlichkeit. Eine algorithmische
Begriindung der Wahrscheinlichkeitstheorie. Springer-Verlag, Berlin, 1971. Lec-
ture Notes in Mathematics, Vol. 218.

C.P. Schnorr. Process complexity and effective random tests. J. Comput. Sys-
tem Sci., 7:376-388, 1973. Fourth Annual ACM Symposium on the Theory of
Computing (Denver, Colo., 1972).

R. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathemat-
ical Logic, Omega Series. Springer—Verlag, Heidelberg, 1987.

R. Solovay. Handwritten manuscript related to Chaitin’s work. IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, 215 pages, 1975.

R. von Mises. Grundlagen der Wahrscheinlichkeitsrechnung. Math. Zeitschrift,
5:52-99, 1919.

D. Zambella. On sequences with simple initial segments. ILLC technical report
ML 1990-05, Univ. Amsterdam, 1990.

