
RANDOMNESS VIA EFFECTIVE DESCRIPTIVE SET THEORY 1
†

Abstract

An analog of ML-randomness in the effective descriptive set theory setting is studied, where the
r.e. objects are replaced by their Π1

1 counterparts. We prove the analogs of the Kraft-Chaitin
Theorem and Schnorr’s Theorem. In the new setting, while K-trivial sets exist that are not
hyperarithmetical, each low for random set is. Finally, we begin to study a very strong yet effective
randomness notion: Z is Π1

1 random if Z is in no null Π1
1 class. There is a greatest Π1

1 null class,
that is, a universal test for this notion.
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1. Introduction

A reasonable intuitive view is that an infinite sequence of 0’s and 1’s is random if
it does not have any properties of probability zero. However, one has to restrict the
type of properties considered to obtain a sound formal definition of randomness, for
instance since being equal to that sequence also is a null property. To do so, usually
one uses algorithmic notions. A commonly accepted formalization is the one given
by Martin-Löf [7], based on uniformly r.e. open sets. He defined a sequence to be
random if it does not have any property of effective Σ0

1-measure zero. A Martin-
Löf test (ML-test) is a uniformly r.e. sequence {Ui}i∈ω of Σ0

1 classes such that
µ(Ui) ≤ 2−i. A set A ⊆ 2ω is Martin-Löf null if there is a ML-test {Ui}i∈ω

such that A ⊆
⋂

i Ui. A set A is Martin-Löf random if {A} is not ML-null.
There is an extensive theory of ML-randomness. For instance, Schnorr’s Theorem
states that Z is ML-random iff there exists b such that Kr.e.(Z � n) > n − b at
every n, where Kr.e. is the prefix free complexity defined in terms of the universal
recursively enumerable prefix free machine.
Effective descriptive set theory provides the Π1

1 sets of natural numbers as a high
level analog of the r.e. sets. Such a set can be thought of as being enumerated
during stages formed by the recursive ordinals. One can also restrict the allowed
properties using tools from effective descriptive set theory, instead of from (classical)
computability theory. Thus we replace the r.e. test and machine concepts mentioned
above by their Π1

1 analogs. We show that Schnorr’s Theorem and a further major
tool, the Kraft-Chaitin Theorem, persist in this new setting. In the new context,
there are considerable new technical problems arising from the presence of limit
stages.
A lot of recent research is centered on K-trivial sets, a notion opposite to ML-
randomness. A is K-trivial if there is a constant b such that Kr.e.(A � n) ≤
Kr.e.(n)+b for each n (here the number n is identified with the string corresponding
to its binary representation). There are r.e. non-computable K-trivial sets, but all
are ∆0

2 (see [2]). A is K-trivial if and only if A is low for ML-random, namely each
ML-random set is already ML-random relative to A [12]. In particular, K-triviality
is closed downward under Turing reducibility. This coincidence has been extended
to a further class introduced by Kučera [6]: A is a base for ML-randomness (or
base, in brief) if A ≤T Z for some Z which is ML-random relative to A. Each low
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for ML-random set is such a base. In [3] it is shown that each base is K-trivial.
Thus all the three notions coincide, being K-trivial, low for ML-random and a base
for ML-randomness.
Surprisingly, these coincidences are limited to the r.e. setting. We show that in the
Π1

1 case, while a K-trivial Π1
1 set exists which is not hyperarithmetical, the only low

for ML-random sets (and in fact, the only bases) are the hyperarithmetical sets.
In a little known paper [8], Martin-Löf considered a randomness notion based on
effective descriptive set theory. He suggested the (lightface) ∆1

1-classes of measure 0
as tests. Thus, Z is ∆1

1-random if Z is in no null ∆1
1-class. One could also define ∆1

1

ML-randomness in a way similar to the Π1
1 version of ML-randomness. However, by

an observation of Yu Liang involving [13, Lemma 1.8.III], for each null ∆1
1-class S

one can find a ∆1
1-ML-test {Ui}i∈ω

such that S ⊆
⋂

i Ui, so this is the same as ∆1
1-

random. In particular, (the Π1
1 version of) ML-randomness implies ∆1

1-randomness.
In [1] it is shown that the former notion is strictly stronger.
Finally we consider the even stronger randomness notion where the null properties
to be avoided are the Π1

1 classes of sets. We give a short proof that there is a
largest such class, that is, a universal test for this randomness notion. Therefore,
this notion, first mentioned in Sacks [13, Exercise 2.5.IV], is a natural one deserv-
ing further exploration. After we announced our proof, Yu Liang brought to our
attention that the result can also be derived from a more general result in Kechris
[5], where the main focus is on countable Π1

1-classes. For instance, he shows there
is a largest countable one, as well as a largest thin Π1

1 class (a class is thin if it has
no perfect subset). See also [9, Thm 4F.4]. Under PD, Kechris methods also show
that there is a largest Π1

2n+1 null class and a largest Σ1
2n null class for any n ≥ 1,

and similarly for thin (or equivalently countable) classes. The direct self-contained
proof of the result for Π1

1 classes should still be useful though, as the notation and
terminology in [5] is quite involved.
Acknowledgment. We thank T. Slaman for his suggestion to study higher level
notions of randomness.

2. Basics

2.1. Π1
1 sets and the Spector-Gandy Theorem

We identify a string σ in 2<ω with the natural number n such that the binary
representation of n+1 is 1σ. Sets are subsets of ω unless otherwise stated. They are
identified with infinite strings over {0, 1}. Z � n denotes the string Z(0) . . . Z(n−1).
A set Z is left-r.e. if {σ : σ <L Z} is r.e. (<L is the usual lexicographical ordering
on 2<ω). Similarly we define left-Π1

1 sets. Topological notions refer to the space 2ω

with the product topology. For σ a finite binary string, we let [σ] be the set of
all Z ∈ 2ω which extend σ; in other words, [σ] is the basic clopen set canonically
described by σ. A clopen set is a finite union of basic clopen sets. For D ⊂ 2<ω we
let [D]� denote the open set

⋃
{[σ] : σ ∈ D}. We often identify an open set with

the corresponding set of strings closed under extension.
We generally refer to Sacks [13] for effective descriptive set theory. In particular,
O is the set of ordinal notations, a Π1

1 complete set, ωck
1 is the least non-recursive

ordinal, and ωA
1 is the least ordinal not recursive in the set A.
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Given a Π1
1 set S ⊆ ω, one can effectively obtain a u.r.e. sequence (Re)e∈ω of linear

orders, with domain an initial segments of ω, such that, for each y, y ∈ S ⇔ Ry is
well-ordered. See [13, Prop. 5.3.I] and Section 5 for more details, or [4, Thms 25.3,
25.12].
For y ∈ S, we view the order type α = |Ry| as the stage when y is enumerated
into S, in an enumeration through stages which are recursive ordinals. We replace
Ry by ωRy + y + 1, so we may assume that at each stage, at most one element is
enumerated, and none at a limit stage. In the following, each Π1

1 set S comes with
such an enumeration. For each ordinal α ≤ ωck

1 , we let Sα = {y : |Ry| < α} (so that
Sωck

1
is the whole set).

A related issue is the set-theoretic representation of Π1
1 sets. Here and below, “Σ1”

refers to the Levy hierarchy: Thus a Σ1 formula is a formula in the language of set
theory which has the form ∃x1∃x2...∃xn ϕ0, where ϕ0 uses only bounded quantifiers,
namely, quantifiers of the form ∃z ∈ y and ∀z ∈ y.
We frequently use the following.

Theorem 2.1 Spector-Gandy. S ⊆ ω is Π1
1 iff there is a Σ1-fmla ϕ(y) such that

S = {y ∈ ω : L(ωck
1 ) |= ϕ(y)}.

It easy to see that each Π1
1 set is of this form: ϕ(y) expresses that Ry is isomorphic

to an ordinal, namely, ∃α∃g [g : (ω, Ry) ∼= (α,∈)]. For the converse, see [13, Thm.
1.3.VII].

This important theorem enables us to apply the techniques of recursion theory to
effective descriptive set theory. Instead of enumeration over the natural numbers,
we enumerate over L(ωck

1 ). Π1
1 sets in particular play a role analogous to recursively

enumerable sets. It should be mentioned already at this stage of exposition that
the limit ordinals less than ωck

1 play a role in effective descriptive set theory that
has no counterpart in recursion theory.
Our use of the Spector-Gandy Theorem to build Π1

1 sets S can be made more explicit
as follows. An enumeration of S is a Σ1 (over L(ωck

1 )) function ωck
1 → ω ∪ {nil}

(where nil is a further element, say ω). A construction C of S is given by a
Σ1 function over L(ωck

1 ) that tells us what to enumerate at stage α, given the
enumeration up to α. Formally, C is a Σ1 function over L(ωck

1 ) mapping 〈α, f � α〉
to the number to be enumerated at α, or to nil if no number is enumerated. By
transfinite recursion in L(ωck

1 ), a unique f exists for each C (see [13, pg. 155]).
However, we will not be that formal below.

2.2. Prefix free machines and prefix free complexity.

Throughout, we use the terminology and notation of the r.e. setting with the new
interpretations.

Definition 2.2. A prefix free machine is a possibly partial function M :
2<ω → 2<ω with Π1

1 graph such that dom(M) is an antichain under the prefix
relation of strings �.
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Proposition 2.3. There is an effective listing (Me)e∈ω−{0} of all prefix free
machines.

Proof. Let (Se)e∈ω−{0} be an effective listing of the Π1
1 sets ⊆ 2<ω × 2<ω. Thus

〈σ, y〉 ∈ Se ⇔ Re
σ,y is well-ordered, where (Re

σ,y) is a u.r.e sequence of linear orders
as above. Now let 〈σ, y〉 ∈ Me ⇔ Re

σ,y is well-ordered &
∀〈ρ, z〉 ∀g [(ρ ≺ σ ∨ (ρ = σ & z 6= y)) ⇒

g is not an order preserving embedding of Re
ρ,z into Re

σ,y].
(Informally, no substring ρ of σ and no other value for σ has been enumerated
before.) Clearly this is a Π1

1 condition, uniformly in e. If Se is a prefix free machine,
then Me = Se. �

As a consequence, there is a universal prefix free machine U, given by
U(0d−11σ) = Md(σ).

If U(σ) = y, we say that σ is a U -description of y.
Let

K(y) = min{|σ| : U(σ) = y}.
For any α ≤ ωck

1 , we let Uα(σ) = y if 〈σ, y〉 ∈ Uα, and
Kα(y) = min{|σ| : Uα(σ) = y}.

Note that for α < ωck
1 , “Kα(y) = u” is a ∆1 relation over L(ωck

1 ), and “K(y) ≤ u”
is Σ1 over L(ωck

1 ), and hence Π1
1, being equivalent to “∃α ∃y (|y| ≤ u & Uα(y) =

x)”. Recall that each Π1
1 set is many-one reducible to Kleene’s O [13, I.5.4]. As a

consequence, K ≤T O, since O can determine the value K(x).

3. A high level analog of ML-randomness

We prove that the analogs of the Kraft-Chaitin theorem, Schnorr’s Theorem and
the Kučera-Gács Theorem are valid in the Π1

1 setting. We make use of some material
from [10].

3.1. The Kraft-Chaitin Theorem

Definition 3.1. A Π1
1 set W ⊆ ω × 2<ω is a Kraft-Chaitin set (KC set) if∑

〈r,y〉∈W 2−r ≤ 1. The elements of W are called requests.

Theorem 3.2. From a Kraft-Chaitin set W one can effectively obtain a prefix
free machine M such that

∀〈r, y〉 ∈ W∃w (|w| = r & M(w) = y).

We say that M is a prefix free machine for W .

Proof. As remarked above, W comes with an enumeration of elements at certain
successor stages α, at most one per stage. Here the elements are requests of the
form 〈r, y〉. We turn this enumeration into a stage-by-stage construction of a prefix
free machine M , as defined in 2.2.
Construction of M . At a successor stage α = β +1, if a request 〈r, y〉 is enumerated
into W we will find a string w of length r, and we set M(w) = y. We let D0 = {∅}. At
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each stage γ ≥ 0 we have an antichain Dβ ∈ L(ωck
1 ) of strings (the set of extensions

of strings in Dγ is our reservoir of future w-values, and strings in this set are called
unused). With each string x we associate the half-open interval I(x) ⊆ [0, 1) of real
numbers whose binary representation (containing infinitely many 0’s) extends x.
For instance, I(011) = [3/8, 1/2).
Let z be the longest string in Dβ of length ≤ r. Choose w so that I(w) is the
leftmost subinterval of I(z) of length 2−r, i.e., let w = z0r−|z|. To obtain Dα, first
remove z from Dβ . If w 6= z, then also add the strings z0i1, 0 ≤ i < r − |z|.
At limit stages η, we let

Dη = {x : ∃γ < η ∀α [γ < α < η → x ∈ Dα]}.

This ends the construction. We will see that a string x can appear in Dα at most
once, so that actually Dη(x) = limγ→ηDγ(x). In Claim 3.3 below, we verify a
number of properties in order to show that for each request 〈r, y〉, z as above
exists, and therefore one can assign a string w of length r to the request. Let
Eα =

⋃
{I(x) : x ∈ Dα} be the set of real numbers corresponding to Dα. At a

limit stage η, the measure of the unused strings is µ(Gη), where Gη =
⋂

α<η Eα.
To be able to get beyond this limit stage, we want to replace Gη by Dη. The
main statement, (i) below, says that this substitution is legal, because Eη ⊆ Gη

and µ(Gη −Eη) = 0. We first illustrate the construction with an example showing
that this null set may be non-empty. Suppose at each stage i < ω, the request
〈2i + 1, yi〉 is enumerated. Then Gω −Eω = {1/3}. For D0 = {∅}, z0 = ∅, w0 = 00;
D1 = {01, 1}, z1 = 01, w1 = 0100; D2 = {0101, 011, 1}, z2 = 0101, w2 = 010100
etc. Then Dω = {(01)i1 : i ∈ ω}. 1/3 has the binary representation 0.010101 . . ., so
that 1/3 ∈ Ei for each i, but 1/3 6∈ Eω.

Claim 3.3.
(i) For each stage α, Eα+1 ⊆ Eα. If α = η is a limit ordinal, then Eη ⊆ Gη :=⋂

β<η Eβ . Moreover, µ(Gη − Eη) = 0.
(ii) If a request is enumerated at stage α, then at that stage one can choose z, and

hence w.
(iii) The strings in Dα have different lengths and form an antichain. (In fact, for

x, y ∈ Dα, |x| < |y| ⇔ x <L y, that is, the intervals I(x) get longer as one
moves to the right.)

(iv) {I(z) : z ∈ Dα} ∪ {I(wβ) : β ≤ α & wβ defined} induces a partition of a conull
subset Pα of [0, 1).

Proof. Inductively assume (i)-(iv) hold for all γ < α.
(i) Clearly Eα+1 ⊆ Eα. If α = η is a limit ordinal, to show Eη ⊆ Gη, let β < η. If
r ∈ Eη, then r ∈ I(x) for some x ∈ Dη, so there is γ, β < γ < η, such that x ∈ Dγ .
Inductively Eγ ⊆ Eβ . Thus r ∈ Eβ .
We verify µEη ≥ µGη, by showing µEη ≥ µGη−2−k+1 for any k ∈ ω. Write µGη in
binary form, µ(Gη) =

∑
d∈A 2−d, where A ⊆ ω. Since (µEγ)γ<η is non-increasing

and converges to µGη, there is γ < η such that 2−k+1 +
∑

d∈A∩k 2−d ≥ µEγ . Let
A∩ k = {d1, d2, ..., dN}. For each α, γ < α < δ, let zα

i (1 ≤ i ≤ N) be the elements
of Dα such that |zα

i | = di. Such strings exist by inductive hypothesis (iii) for α. If
z ∈ Dβ − Dβ+1 for some β < η, then z � wβ , so z 6∈ Dδ for any δ, β < δ < η
by inductive hypothesis (iv) for δ (in brief, z cannot reappear after disappearing).
Since there are only 2di possibilities for zα

i , we eventually settle on some strings zi,
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hence zi ∈ Dη. Thus

µ(Eη) ≥
∑

1≤i≤N

2−|zi| ≥ µ(Eγ)− 2−k+1 ≥ µ(Gη)− 2−k+1

as required.
(ii) Suppose the request 〈r, y〉 is enumerated at stage α = β + 1. If zα fails to exist,
then r is less than the length of each string in Dβ . By (iii) for β, µEβ =

∑
{2−|z| :

z ∈ Dβ}, so by (iv) for β,
2−r +

∑
{2−m : a request 〈m, z〉 is enumerated at a stage ≤ β} > 1,

contrary to the assumption that W is a KC-set.
(iii) This is clear for successor stages α, because the intervals I(wγ), γ ≤ α and wγ

defined, are disjoint. Then the property persists to limit ordinals by the definition
of Dη.
(iv) Again, this is clear for successor stages α = β +1, in which case we may define
Pα = Pβ . If α = η is a limit ordinal, then let Pη be the intersection of the sets Pγ

and the complements of the null sets Gγ − Eγ from (ii), for γ ≤ η. Then for each
β < η, Pη is partitioned by Eβ and I(wγ), γ ≤ β, wγ defined. So Pη is partitioned
into Gη and I(wγ), γ < η. Since Gη is partitioned on Pη into the intervals I(w),
w ∈ Dη, we have shown (iv) for η. �

3.2. The Coding Theorem

For a prefix free machine D, the probability that D outputs x is
PD(x) = µ{σ : D(σ) = x}.

Clearly, 2−K(x) ≤ PU(x). We show that, for some constant c, ∀x 2c2−K(x) ≥ PD(x).
This also holds at certain ordinal stages. For α ≤ ωck

1 , let PD,α(x) = µ{σ : Dα(σ) =
x}. For g : ωck

1 → ωck
1 , we say that a limit ordinal λ ≤ ωck

1 is g-closed if ∀α <
λ [g(α) < λ].

Theorem 3.4 Coding Theorem. For each prefix free machine D, there is a Σ1

over L(ωck
1 ) function gD : ωck

1 → ωck
1 and a constant c such that, for each gD-closed

λ ≤ ωck
1

∀x 2c2−Kλ(x) ≥ PD,λ(x).

Proof. One enumerates a KC set W , “accounting” the enumeration of requests
〈r, x〉 against the open sets generated by the D-descriptions of x. Of course, for
different outputs x, these open sets are disjoint. Thus the sum of their measures is
at most 1, which shows that W is indeed KC.
Construction of W .

Stage α. If x is a string, r ∈ ω is least such that PD,α(x) ≥ 2−r+1, and the
request 〈r, x〉 is not in W yet, then put 〈r, x〉 into W .

For a string x, let αx be the greatest stage at which a request 〈r, x〉 is put into
W . Then PD,αx(x) ≥ 2−r+1. Hence, all such requests together contribute at most
1/2. The total weight of all requests 〈r′, x〉 enumerated at previous stages is ≤ 2−r,
since r′ > r for such a request, and there is at most one for each length r′. Thus
W is a KC set.
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Let cW be the coding constant for W given by Theorem 3.2. The function g is the
delay it takes the universal machine to react to an enumeration of a request into
W . Thus for α < ωck

1 ,
g(α) = µβ ∀〈r, x〉 ∈ Wα [Kβ(x) ≤ r + cW ],

which is is a Σ1 over L(ωck
1 ). If r is least such that PD,λ(x) > 2−r+1, then at

the least stage α < λ where PD,α(x) ≥ 2−r+1, we enumerate 〈r, x〉 and cause
Kλ(x) ≤ Kg(α)(x) ≤ r+cW , by the hypothesis that λ is g-closed. By the minimality
of r, 2−r+2 ≥ PD,λ(x), hence 2cW +22−Kλ(x) ≥ 2−r+2 ≥ PD,λ(x). Thus c = cW + 2
is as required. �

3.3. Some properties of K

As in the r.e. setting, one can apply the Coding Theorem to obtain an estimate on
the number of strings with small K-complexity.

Theorem 3.5. There is a constant c ∈ ω and a Σ1 over L(ωck
1 ) function g : ωck

1 →
ωck

1 such that the following hold for each g-closed η ≤ ωck
1 .

(i) ∀d ∀n |{x : |x| = n & Kη(x) ≤ n + Kη(n)− d}| ≤ 2c2n−d

(ii) ∀b ∀n |{x : |x| = n & Kη(x) ≤ Kη(n) + b}| ≤ 2c2b

Proof. Let D be the prefix free machine given by D(σ) = |U(σ)|, and let g be the
function obtained in the coding theorem for D. Let c be the coj each n, 2c2−Kη(n) ≥
PD,η(n), given by the Coding Theorem.
(i). If |x| = n and Kη(x) ≤ n+Kη(n)−d, then a shortest description of x contributes
at least 2−n−Kη(n)+d to PD,η(n). If there were more that 2n+c−d many such x, then
PD,η(n) > 2n+c−d2−n−Kη(n)+d = 2c2−Kη(n), a contradiction.
(ii). This follows from (i), by letting d = n− b. �

3.4. The Π1
1 version of ML-randomness

In what follows we use µ to denote the product measure on 2ω.
A ML-test is a sequence (Sm)m∈ω−{0} of uniformly Σ1 over L(ωck

1 ) open subsets
of 2ω such that ∀m ∈ ω − {0} µSm ≤ 2−m. Z is ML-random if Z passes each
ML-test in the sense that Z 6∈

⋂
m Sm.

Let MLR denote the class of ML-random sets, and Non-MLR its complement in 2ω.
For b ∈ ω+, let Rb = [{x ∈ 2<ω : K(x) ≤ |x| − b}].

Proposition 3.6. (Rb)b∈ω−{0} is a ML-test.

Proof. The condition “K(x) ≤ |x|−b” is equivalent to ∃σ, α Uα(σ) = x & |σ| ≤ |x|−
b, which is a Σ1-property of x and b. Hence the sequence of open sets (Rb)b∈ω−{0}
is uniformly Σ1. To show µRb ≤ 2−b, let Vb be the set of strings in Rb which are
minimal under the prefix ordering. For each x ∈ Vb, K(x) ≤ |x| − b, so 2−|x

∗| ≥
2b2−|x| (here x∗ denotes a shortest U-description of x). Because U is a prefix free
machine,

1 ≥
∑
{2−|x∗| : x ∈ Vb} ≥ 2b

∑
{2−|x| : x ∈ Vb},

hence µRb ≤ 2−b. �
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We now begin on the analogue of Schnorr’s theorem for the hyperarithmetical
context. Recall that Schnorr’s original theorem stated that Z is ML-random with
respect to recursively enumerable tests if and only if for Kr.e., the prefix free
complexity defined in terms of the universal recursively enumerable prefix free
machine, there exists b with Kr.e.(Z � n) > n− b at every n.
Although the statement of this theorem carries across with only the obvious changes,
the proof does not. The new obstacle arises at limit stages. We describe the measure
theoretic lemmas which are necessary to meet this fresh obstacle, then we prove the
hyperarithmetical version of Schnorr’s theorem, and then finally we indicate why
the original proof refuses a cut and paste adaption to the present context.
In the arguments below we think of 2ω as coming equipped with an enumeration
of the standard basis consisting exactly of all the clopen sets.

Lemma 3.7. Given an open S ⊆ 2ω such that S ∈ L(ωck
1 ), a clopen subset U of 2ω

and a rational ε > 0, we may in an effective (i.e., ∆1 over L(ωck
1 ) ) manner obtain

a clopen set C such that C ⊃ U − S and λ(C) < λ(U − S) + ε.

Proof. From S one may effectively (in the above sense) obtain an L(ωck
1 ) sequence

(σn)n∈ω such that S =
⋃

n[σn]. For each k consider the clopen set
Ck =

⋃
{[ρ] : |ρ| = k & ρ ⊆ U & ∀n σn 6� ρ.}

Then
⋂

k Ck = U − S, since [σn] ∩ Ck = ∅ whenever k ≥ |σn|. So one may in an
effective (over L(ωck

1 )) way determine k such that µ(C) ≤ µ(U − S) + ε. �

Next, we cover an effective sequence of basic clopen sets by such a sequence which
is almost disjoint in the sense that the sum of the measures is small.

Proposition 3.8. Let α 7→ Uα be a Σ1 over L(ωck
1 ) function mapping ordinals

to basic clopen sets in 2ω. Then we may find, uniformly in the sequence (Uα)α<ωck
1

and rational ε > 0, a Σ1 over L(ωck
1 ) mapping α 7→ Cα of ordinals to clopen sets

such that at each β ≤ ωck
1⋃

α<β Uα ⊂
⋃

α<β Cα, and
∑

α<β λ(Cα) ≤ λ(
⋃

α<β Uα) + ε.

Proof. Let (ρn)n∈ω be a computable listing of 2<ω. Let
Xβ = {m : [ρm] ⊂ Uβ} − {m : [ρm] ⊂

⋃
α<β Uα}

(see the explanatory remark after the proof of Theorem 3.9.) As long as Uβ is not
included in the union of the earlier Uα’s we will have Xβ 6= ∅. Clearly, β 7→ Xβ is
Σ1 over L(ωck

1 ). At each stage β, applying 3.7 for S =
⋃

α<β Uα and U = Uβ , we
choose a clopen set Cβ such that

Uβ − (
⋃

α<β

Uα) ⊂ Cα,

λ(Cβ) < λ(Uβ −
⋃

α<β

Uα) +
∑

m∈Xβ

2−m−2 · ε.
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Then at any stage β we have∑
α<β

λ(Cα)− λ(
⋃

α<β

Uα) ≤

∑
α<β

(λ(Cα)− λ(Uα −
⋃

γ<α

Uγ)) ≤

∑
m∈

S
α<β Xα

2−m−2ε ≤ ε

2
< ε.

�

This proposition allows itself to be further massaged. Given the assignment β 7→ Cβ

arising as above, we can break them up into basic clopen sets, and in this way find
a new sequence ([xβ ])β , each xβ ∈ 2ω,⋃

Cβ =
⋃

[xβ ],∑
λ(Cβ) =

∑
λ[xβ ],

and the assignment β 7→ xβ is still Σ1 over L(ωck
1 ).

Theorem 3.9. The following are equivalent.
(i) Z is ML-random
(ii) ∃b ∀n K(Z � n) > n− b, that is, ∃b Z 6∈ Rb.

Proof. (i)⇒(ii) holds because (Rb)b∈ω−{0} is a ML-test. For (ii)⇒(i), suppose that
(i) fails for Z. That is, Z ∈

⋂
m Sm for a ML-test (Sm)m∈ω−{0}. We may assume

that µSm ≤ 2−2m−1 and Sm =
⋃

β<ωck
1

Um
β where each Um

β is basic clopen, and the
associated map (m,β) 7→ Um

β is Σ1 over L(ωck
1 ).

Following 3.8 we may find a Σ1 over L(ωck
1 ) map (m,β) 7→ xm

β such that at each m

Sm ⊂
⋃
β

[xm
β ],

λ(
⋃
β

[xm
β ]) < 2−2m.

In particular, at each m,∑
β

2m−|xm
β | < 2m

∑
λ([xm

β ]) < 2m(2−2m) = 2−m,

and hence L = {〈|xm
β |−m,xm

β 〉 : m ∈ ω, β < ωck
1 } is a KC set. Let Md be the prefix-

free machine for L given by the KC-Theorem 3.2. Given b, let m = b + d + 1. Since
Z ∈ Sm, xm

i ≺ Z for some i. Because of the request enumerated for compressing
x = xm

i , K(x) ≤ |x| −m + d + 1 = |x| − b. �

Certain steps were taken in the course of the proof above which did not need
to be considered in Schnorr’s original argument. There is a kind of continuing
approximation, and giving ground, with the sets Xα from 3.8 serving as a kind of
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clock — letting us know how much to give, so that at the end of the process we did
not give in too far.
The reason for this extra precaution can be illustrated by the following kind of
example which could arise in 3.8 if we try to steadfastly insist that∑

α<β

λ(Cα) = λ(
⋃

α<β

Uα).

We could be given an open set S with λ(S) < 1/4, S enumerated as (Uα)α∈ωck
1

. In
the naive attempt to copy Schnorr’s earlier argument we try to effectively build a
corresponding KC set, {〈rα, yα〉 : α < ωck

1 } which has∑
2−rα = λ(S),

and at each α we have some ordinal γ(α) < ωck
1⋃

β<α

Uβ =
⋃

β<γ(α)

[yβ ],

∑
β<γ(α)

2−rβ = λ(
⋃

β<α

Uβ).

It could then happen that at ω we already have that
⋃

n<ω Cn contains the interval
[0, 1/4] with the exception of a set S of positive measure containing no intervals.
Eventually we are going to settle on some stage γ(ω) with

⋃
β<γ(ω)[yβ ] equal to that

complement. But there is no way of doing this which will rule out the possibility
of the unpleasant discovery at the next stage that Uγ(ω)+1 includes some non-null
piece of S, at which there is no way of choosing the next 〈rβ , yβ〉 without overbiting.
Next, we give two examples of ML-random sets. Z is ML-random just if for some
b, Z is in the complement of the open set Rb, that is the set of paths through a
Σ1

1 subtree of 2<ω. Recall the version of the Gandy low basis theorem for Σ1
1-sets

(folklore): A non-empty Σ1
1 class always contains a member Z with OZ ≤h O. Thus

we have the following.

Proposition 3.10. There is a ML-random set Z such that OZ ≤h O.

One can also consider the analog of Chaitin’s halting probability, in order to obtain
a ML-random set Z which is left-Π1

1. Let
Ω = µ(domU) =

∑
{2−|σ| : U(σ) ↓}.

Adapting Chaitin’s proof, one can show that Ω is ML-random.

3.5. An analog of the Kučera-Gács Theorem

Finite hyperarithmetical reducibility ≤fin−h between sets X, Y ⊆ ω is a restriction
of hyperarithmetical reducibility, where the use is finite for each input.

Definition 3.11.
(i) A fin− h reduction procedure is a partial function Φ : 2<ω → 2<ω with Π1

1 graph
(or, equivalently, Σ1 over L(ωck

1 ) graph) such that the domain is closed under
prefixes, and, if Φ(t) ↓, then s � t ⇒ Φ(s) � Φ(t).

(ii) A = ΦZ if ∀n∃m Φ(Z � m) � A � n. A ≤fin−h Z if A = ΦZ for some fin− h
reduction.
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(iii) A ≤wtt−h Z if A = ΦZ for some fin− h reduction such that the use is recursively
bounded.

Notice that if A is hyperarithmetical, then A ≤fin−h Z for any Z, because {σ : σ �
A} is Π1

1.

Theorem 3.12. Let Q be the class of ML-random sets 2ω −R1 = {Z : ∀n K(Z �
n) > n− 1}. For each A, there is Z ∈ Q such that A ≤wtt−h Z.

Proof. For S ⊆ 2ω, µ(S|z) denotes the local measure 2|z|µ(S ∩ [z]). For each n,
µ(S) is the average, over all strings z of length n, of the local measures µ(S|z).

Lemma 3.13. Suppose S ⊆ 2ω is measurable, r ∈ ω and µ(S|x) ≥ 2−(r+1). Then
there are y0, y1 � x, |yi| = |x|+ r + 2, such that µ(S|yi) ≥ 2−(r+2) for i = 0, 1.

Proof. We may assume that x = ∅. Let y0 be a string of length r + 2 such that
µ(S|y0) is greatest among those strings, in particular µ(S|y0) ≥ 2−(r+2) since the
average is at least 2−(r+2). Since µ(S ∩ [y0]) ≤ 2−(r+2),∑

y 6=y0 & |y|=r+2 µ(S ∩ [y]) ≥ 2−(r+2),
or

∑
y 6=y0 & |y|=r+2 µ(S|y) ≥ 1. Hence there is a further y1 6= y0 of length r+2 such

that µ(S|y1) ≥ 2−(r+2). ♦

Let f be the function given by f(0) = 0 and f(r + 1) = f(r) + r + 2 (namely,
f(r) = r(r + 3)/2) and consider the closed class Q̂ of paths through the tree

{y : ∀r.f(r) ≤ |y| [µ(Q|(y � f(r))) ≥ 2−(r+1)]}.
Note that Q̂ is nonempty because µQ ≥ 1/2 and by Lemma 3.13. Define a tree T
of strings (xτ )τ∈2<ω , where |xτ | = f(|τ |). Let x∅ = ∅. If xτ has been defined, let
xτ0 be the leftmost y on Q̂ such that xτ ≺ y and |y| = f(|τ | + 1). Let xτ1 be the
rightmost such y. By Lemma 3.13, xτ0 and xτ1 exists and are distinct.
For each A, the ML-random set Z coding A is simply the path

⋃
τ≺A xτ determined

by A.
We verify A ≤wtt−h Z, where f is the computable bound on the use. Given an
input n, to determine A(n), let x = Z � f(n) and let y = Z � f(n + 1). Find α
such that Q̂α ∩ {v : x � v & |v| = |y| & v <L y} = ∅, or Q̂α ∩ {v : x � v & |v| =
|y| & v >L y} = ∅. In the first case, output 0, while in the second case, output 1.
�

4. K-triviality and Lowness properties

4.1. K-triviality

Definition 4.1.
(i) A is K-trivial if, for some b ∈ ω,

∀n K(A � n) ≤ K(n) + b.
(ii) Given a limit ordinal η ≤ ωck

1 , A is K-trivial at η if for some b ∈ ω,
∀n Kη(A � n) ≤ Kη(n) + b.
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Thus being K-trivial is equivalent to being K-trivial at ωck
1 .

Using the Π1
1-version of the KC Theorem (Theorem 3.2 above), one can adapt the

cost function construction from [2] (also see [12, Theorem 4.2]) in order to show:

Theorem 4.2. There is a K-trivial Π1
1 set A which is not hyperarithmetical. �

Recall our convention that no element is enumerated into a Π1
1 set at a limit stage.

Then, A is K-trivial at η iff for some b ∈ ω, ∀n∀α < η ∃β < η Kβ(A � n) ≤
Kα(n) + b.
Fix b and η ≤ ωck

1 . The subsets of ω which are K-trivial via b at η are the paths of
the following tree:

Tη,b = {s : ∀t � sKη(t) ≤ Kη(|t|) + b}.
If η < ωck

1 then Tη,b is hyperarithmetical, by ∆1 comprehension in L(ωck
1 ) (see [13,

p. 67]): Tη,b is a subset of 2<ω which is ∆1 (with η ∈ L(ωck
1 ) as a parameter).

Let gD be the function obtained in Theorem 3.4, where D(x) = |U(x)|. Recall
that η is gD-closed if ∀α < η [gD(α) < η]. We show that for such η < ωck

1 , if A is
K-trivial at η, then A is hyperarithmetical.

Theorem 4.3. Let η < ωck
1 be gD-closed.

(i) There is c ∈ ω such that the following holds: for each b there are at most 2c+b

sets that are K-trivial at η with constant b.
(ii) If a set A is K-trivial at η for η < ωck

1 then A is hyperarithmetical.
(iii) Each K-trivial set is computable in O.

Proof. By Theorem 3.5 (ii), there is a constant c such that the size of each level of
Tη,b is at most 2c+b, which shows (i). Note that each path A of Tη,b is isolated, hence
recursive in Tη,b. For (ii), if η < ωck

1 this shows A is hyperarithmetical. For (iii),
note that since K ≤T O, the tree Tωck

1 ,b is computable in O. Now argue as in (ii). �

The following consequence will be needed below.

Proposition 4.4. If A is K-trivial via b and ωA
1 = ωck

1 , then A is hyperarith-
metical.

Proof. We show that A is K-trivial at η via b, for some gD-closed η. We define by
recursion a function h : ω → ωck

1 which is Σ1 over LωA
1 [A]: let h(0) = 0, and

h(n + 1) = µβ > gD(h(n))∀m ≤ n Kβ(A � m) ≤ Kβ(m) + b.
Since A is K-trivial, h(n) is defined for each n ∈ ω. Let η = sup(range(h)), then
η < ωA

1 = ωck
1 , so η is as required. �

Note that a Π1
1-set A that is not hyperarithmetical satisfies A ≥h O. A reasonable

theory of K-trivials can be developed when using the reducibility ≤fin−h instead.
For instance, adapting the methods in [2, 12] one can show that the K-trivials
induce a proper ideal in the ≤fin−h-degrees of sets ≤fin−h O.

4.2. Lowness for ML-randomness
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The notion of ML-randomness and the theorems in subsection 3.4 can be relativized
to oracle sets A in the usual way. MLRA denotes the class of sets which are ML-
random relative to A. A set A is low for ML-random if MLRA = MLR. A is
a strong base for ML-randomness if A ≤fin−h Z for some Z ∈ MLRA (see
Definition 3.11). By Theorem 3.12, if A is low for ML-random then A is a strong
base for ML-randomness. (We say strong base because the reduction is ≤fin−h and
not merely ≤h. The theory for ≤h remains unexplored.)

Theorem 4.5. A is a strong base for ML-randomness iff A is hyperarithmetical.

Proof. If A is hyperarithmetical, then A ≤fin−h Z for each Z, so A is a strong base.
Now suppose that A is a strong base, namely A = ΦZ for some fin− h reduction
Φ and Z ∈ MLRA. First we show that ωA

1 = ωck
1 . We may assume that A is not

hyperarithmetical, so that µ{Y : A = ΦY } = 0 (see [13, Thm. 2.4.IV]). For each k,
let

Vk = [{ρ : A � k � Φρ}]� = [{ρ : ∃α < ωck
1 A � k � Φρ

α}]�
(recall that, for a set of strings G, [G]� is the open set generated by G). If ωA

1 > ωck
1 ,

then Vk is uniformly hyperarithmetical relative to A, so the function k 7→ Vk is in
L(ωA

1 )[A]. Note that the binary statement “µW ≤ q”, for open W ∈ L(ωA
1 )[A] and

a rational q, is Σ1 over L(ωA
1 )[A]. So the function

h(n) = µk µVk ≤ 2−n

is also Σ1 over L(ωA
1 )[A]. Then (Vh(n))n∈ω−{0} is a ML-test relative to A which

succeeds on Z, contrary to the hypothesis that Z ∈ MLRA.
The principal part of the proof is to show that if A is a strong base for ML-
randomness then A is K-trivial. By Proposition 4.4, this implies that A is hyper-
arithmetical. To show that A is K-trivial, one proceeds exactly as in the proof of
the corresponding theorem in the r.e. case, [3, Thm 2.1] (also see [10]), with mere
notational changes. One restricts the enumeration into open sets Cτ

d,α to successor
stages, and for limit stages η, one defines Cτ

d,η =
⋃

α<η Cτ
d,α. The verification works

as before, making use of our Π1
1 version of the Kraft-Chaitin theorem. �

Corollary 4.6. Each low for ML-random set is hyperarithmetical.

Proof. Immediate from Theorems 3.12 and 4.5. �

We first had a more technical but direct proof of this corollary, along the lines of
the direct proof that in the r.e. case, each low for ML-random set is ∆0

2 (see [11]).

5. An even stronger effective notion of randomness

We consider the even stronger randomness notion where the null properties to be
avoided are the Π1

1 classes (we usually write “class” when we mean a set of subsets
of ω).
Some preliminaries. According to Sacks [13, Subsection 5.2.I], a Π1

1 class (also
called predicate) S(Z) can be written in the normal form ∀f∃nR(f(n), Z), where
R is recursive and f(n) is defined to be the tuple (f(0), . . . , f(n − 1)). This gives
an indexing of the Π1

1 classes. Sacks also introduces a recursive functional ΨR such
that, for each Z, ΨR(Z) is a set of codes for tuples in ω<ω (the sequence numbers)
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and S(Z) ⇔ ΨR(Z) is well-founded (under the reverse prefix relation on sequence
numbers). Using the length-lexicographical (also called Kleene-Brouwer) ordering,
one can effectively “linearize” ΨR(Z) (see [13, proof of Thm 3.5.III]). Thus, there
is a Turing functional Φ such that for each Z, Φ(Z) is a set which is a code for a
linear order with domain ω, and

S(Z) ⇔ Φ(Z) is well-ordered.

An index for such a Turing reduction gives an index for the corresponding Π1
1 class.

The Spector-Gandy theorem 2.1 has a version for Π1
1 classes: C ⊆ 2ω is Π1

1 iff there
is a formula ϕ such that C = {Z : LωZ

1
[Z] |= ϕ(Z)}, where ϕ is a Σ1-formula in the

language of set theory with an additional constant symbol for Z.
By [13, Exercise 1.11.IV], we have

Lemma 5.1. The binary relation “µS > q” is Π1
1, where S is an index for a Π1

1

class and q is a rational.

In particular, µS is a left-Π1
1 set.

A ∆1
1 class B is given by Π1

1-indices for B and 2ω−B. By the Lemma, the function
which assigns to a ∆1

1 set its measure is Σ1 over L(ωck
1 ).

A randomness notion based on Π1
1-classes. Recall that to introduce ML-randomness,

both in the classical (r.e.) case and in the form of Subsection 3.4, we used a test
concept based on uniformly r.e., or Π1

1, open sets. In both cases there is a universal
test (Rb)b∈ω, namely,

⋂
k Sk ⊆

⋂
b Rb for each ML-test (Sk)k∈ω. To obtain an even

stronger randomness notion, naively, one might want to use tests of uniformly Π1
1

classes Sk in place of the open sets, where µSk ≤ 2−k. However, for such a test,⋂
k Sk is a null Π1

1-class. Conversely, each null class also induces a test. Thus, single
Π1

1 null classes are analogous to the tests.
We will give a direct proof that there is a universal test for this strong randomness
notion, namely, a largest Π1

1 null class. As mentioned at the end of the introduction,
this result can also be derived from a more general result in Kechris [5, Thm 1A-2].

Theorem 5.2. There is a null Π1
1 class Q such that S ⊆ Q for each null Π1

1-class
S.

Proof. We claim that one may effectively assign to each Π1
1 class S a Π1

1 class
Ŝ ⊆ S such that λ(Ŝ) = 0 and if λ(S) = 0 then Ŝ = S. Then to obtain Q we take
the union of all Ŝ, as S ranges over the Π1

1 classes.
To prove the claim, let Φ be a functional representing S in the sense of the beginning
of this Section. At each stage α ∈ ω1 let Sα be the collection of all Z ∈ S for which
the corresponding well ordering ΦZ has rank less than α. Let Ŝ be the class of all
Z such that there exists some α < ωZ

1 with

Z ∈ Sα

λ(Sα) = 0.

Following 5.1 membership of Z in Ŝ is uniformly Σ1(Z) over L(ωZ
1 )[Z]. Thus, by

the version of the Spector-Gandy Theorem for Π1
1 classes discussed above, Ŝ is Π1

1.
Since the class of Z such that ωZ

1 = ωck
1 is conull, Ŝ is the union of a null set and
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all Sα, α < ωck
1 which are null, hence Ŝ is null. When S is null every Sα, α < ωZ

1 ,
will be null, and hence we will have Ŝ = S. �

The class Q has the interesting property that Q∩R 6= ∅ for each non-empty Π1
1-class

R. For if µR > 0 then R has a hyperarithmetic member X by [13, Thm 2.2.IV], so
that {X} is a Π1

1 class of measure 0.

Definition 5.3. Z ∈ 2ω is Π1
1 random if it avoids every null Π1

1 class. Or,
equivalently, if it is not an element of the largest null Π1

1 class. Let S denote the
class of Π1

1 random sets.

This notion is first mentioned in an exercise in [13, Ex.2.5.IV] (but called Σ1
1-

random there). By Gandy’s basis theorem, some Π1
1 random set satisfies OZ ≤h O.

Of course the notion implies the Π1
1 version of ML-randomness, but it is in fact

much stronger. For instance, each Π1
1 random set Z satisfies ωZ

1 = ωck
1 , since the

class {Z : ωZ
1 = ωck

1 } is Σ1
1 and has measure 1. On the other hand, the version of

Chaitin’s Ω discussed after Proposition 3.10 is Π1
1 ML-random and Ω ≡T O.

The analog of van Lambalgen’s Theorem [14] holds:

Proposition 5.4. For any sets X, Y ,

X ⊕ Y ∈ S ⇔ X ∈ SY & Y ∈ S.

Proof. For the “⇒” direction, note that the class L = {X⊕Y : X ∈ SY & Y ∈ S}
is Σ1

1. Since µSY = 1 for each Y , by Fubini’s Theorem L has measure 1. Hence
S ⊆ L.
For the “⇐” direction, let S[B] = {A : A⊕B ∈ S}. Then the class {B : µS[B] = 1}
is Σ1

1 and has measure 1, again by Fubini’s Theorem (otherwise there are rationals
ε > 0 and q < 1 such that µ{B : µS[B] ≤ q} ≥ ε, so that µS =

∫
Y

(µS[Y ])dµ ≤
εq + (1 − ε) < 1). Thus if Y ∈ S then µS[Y ] = 1. Since S[Y ] is Σ1

1 relative to Y ,
X ∈ SY implies X ∈ S[Y ], that is, X ⊕ Y ∈ S. �

It is unknown whether there is a low for Π1
1 random set which is not hyperarith-

metical.
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