SUPERHIGHNESS AND STRONG JUMP TRACEABILITY

ANDRÉ NIES

ABSTRACT. Let A be a c.e. set. Then A is strongly jump traceable if and only if A is Turing below each superhigh Martin-Löf random set. The proof combines priority with measure theoretic arguments.

1. Introduction

A lowness property of a set $A \subseteq \mathbb{N}$ specifies a sense in which A is computationally weak.

- (I) Usually this means that A has limited strength when used as an oracle. An example is superlowness, $A' \leq_{\rm tt} \emptyset'$. Further examples are given by traceability properties of A. Such a property specifies how to effectively approximate the values of certain functions (partial) computable in A. For instance, A is jump traceable [12] if $J^A(n) \downarrow$ implies $J^A(n) \in T_n$ for some uniformly c.e. sequence $(T_n)_{n\in\mathbb{N}}$ of computably bounded size. Here J is the jump functional: If $X\subseteq\mathbb{N}$, we write $J^X(n)$ for $\Phi^X_n(n)$.
- (II) A further way to be computationally weak is to be easy to compute. A lowness property of this kind specifies a sense in which many oracles compute A. For instance, consider the property to be a base for ML-randomness, introduced in [8]. Here the class of oracles computing A is large enough to admit a set that is ML-random relative to A. By [6] this property coincides with the type (I) lowness property of being low for ML-randomness.

As our main result, we show a surprising further coincidence of a type (I) and a type (II) lowness property. The type (I) property is strong jump traceability, introduced in [3], and studied in depth in [1]. We say that a computable function $h \colon \mathbb{N} \to \mathbb{N}$ is an order function if h is nondecreasing and unbounded.

Definition 1.1. $A \subseteq \mathbb{N}$ is strongly jump traceable (s.j.t.) if for each order function h, there is a uniformly c.e. sequence $(T_n)_{n\in\mathbb{N}}$ such that

- $\bullet \ \forall n \, |T_n| \le h(n)$ $\bullet \ \forall n \, [J^A(n) \downarrow \rightarrow \ J^A(n) \in T_n].$

Figueira, Nies and Stephan [3] built a promptly simple set that is strongly jump traceable. Cholak, Downey and Greenberg [1] showed that the strongly jump traceable c.e. sets form a proper subideal of the K-trivial c.e. sets under Turing reducibility.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 03F60; Secondary: 03D30.

Key words and phrases. computability, randomness, lowness, camembert.

The author was partially supported by the Marsden Fund of New Zealand, grant no. 03-UOA-130.

We say that a set $Y \subseteq \mathbb{N}$ is superhigh if $\emptyset'' \leq_{\text{tt}} Y'$. This notion was first studied by Mohrherr [10] for c.e. sets. For more background see [11, 7]. The type (II) property is to be Turing below each superhigh ML-random set. Thus our main result is that a c.e. set A is strongly jump traceable \Leftrightarrow A is Turing below each superhigh Martin-Löf random set.

The property to be Turing below each superhigh ML-random set can be put into a more general context. For a class $\mathcal{H} \subseteq 2^{\omega}$, we define the corresponding diamond class

$$\mathcal{H}^{\diamond} = \{A \colon A \text{ is c.e. } \& \forall Y \in \mathcal{H} \cap \mathsf{MLR} [A \leq_T Y] \}.$$

Here MLR is the class of ML-random sets. Note that \mathcal{H}^{\diamond} determines an ideal in the c.e. Turing degrees. By a result of Hirschfeldt and Miller (see [11, 5.3.15]), for each null Σ_3^0 class, the corresponding diamond class contains a promptly simple set A. Their proof is a non-adaptive cost-function construction. As argued in [11, Section 5.3], this means that the construction of A can be viewed as injury-free. In contrast, the direct construction of a promptly simple strongly jump traceable set in [3] is a variant of Post's construction of a low simple set, which therefore has injury.

In [4] a result similar to our main result was obtained when \mathcal{H} is the class of superlow sets Y (namely, $Y' \leq_{\text{tt}} \emptyset'$). Both results derive from earlier work of Hirschfeldt and Nies who obtained such a coincidence for the class \mathcal{H} of ω -c.e. sets Y (namely, $Y \leq_{\text{tt}} \emptyset'$).

In all cases, to show that a c.e. strongly jump traceable set A is in the required diamond class, one finds an appropriate collection of benign cost functions; this key concept was introduced by Greenberg and Nies [5]. The set A obeys each benign cost function by the main result of [5]. This implies that A is in the diamond class.

It is harder to prove the converse inclusion: each c.e. set in $\mathcal{H}^{\diamondsuit}$ is s.j.t., suppose an order function h is given. For one thing, similar to proving the analogous inclusion in [4], we use a variant of the golden run method introduced in [2, 13]. One wants to restrict the changes of A to the extent that A is strongly jump traceable. To this end, one defines a "bad set" $Z \in \mathcal{H} \cap \mathsf{MLR}$. It exploits the changes of A in order to avoid being Turing above A. The number of levels in the golden run construction is infinite, with the e-the level based on the Turing functional Φ_e . If the golden run fails to exist at level e, then $A \neq \Phi_e^Z$. Then, as $A \in \mathcal{H}^{\diamondsuit}$, the golden run must exist. Since it is golden, it successfully builds the required trace for J^A with bound h.

A further ingredient in our proof stems from ideas that started in Kurtz [9] and were elaborated further, for instance, in Nies [13, 14]: mixing priority arguments and measure theoretic arguments. In contrast, the proof in [4] is not measure theoretic. (Indeed, they prove, more generally, that for each non-empty Π_1^0 class P, each c.e. set Turing below every superlow member of P must be strongly jump traceable.) Here we need to make the bad set Y superhigh. This is done by coding of \emptyset'' (see [11, 3.3.2]) in the style of Kučera, but not quite into Y: the coding strings change due to the activity of the tracing procedures. Their number of changes is computably bounded. So the coding merely yields $\emptyset'' \leq_{\rm tt} Y'$.

Notation. Suppose f is a unary function and \widetilde{f} is binary. We write

$$\forall n f(n) = \lim_{s}^{\text{comp}} \widetilde{f}(n, s)$$

if there is a computable function $g: \mathbb{N} \to \mathbb{N}$ such that for all n, the set

$$\{s>0\colon \widetilde{f}(n,s)\neq \widetilde{f}(n,s-1)\}$$

has cardinality less than g(n), and $\lim_{s} \widetilde{f}(n,s) = f(n)$.

We let
$$X' = \{n \colon J^X(n) \downarrow \}$$
, and $X'_t = \{n \colon J^X_t(n) \downarrow \}$.

2. Benign cost functions and $\mathsf{Shigh}^{\diamondsuit}$

Note that a function f is d.n.c. relative to \emptyset' if $\forall x \neg f(x) = J^{\emptyset'}(x)$. Let P be the $\Pi_1^0(\emptyset')$ class of $\{0,1\}$ -valued functions that are d.n.c. relative to \emptyset' . By [11, 8.5.12] relative to \emptyset' , the class $\{Z \colon \exists f \leq_T Z \oplus \emptyset' [f \in P]\}$ is null. Then, since $\operatorname{GL}_1 = \{Z \colon Z' \equiv_T Z \oplus \emptyset'\}$ is conull, the following class, suggested by Simpson,

(1)
$$\mathcal{H} = \{Z \colon \exists f \leq_{\text{tt}} Z' [f \in P]\}$$

is also null. This class clearly contains Shigh.

Since \mathcal{H} is Σ_3^0 , by a result of Hirschfeldt and Miller (see [11, 5.3.15]) the class $\mathcal{H}^{\diamondsuit}$ contains a promptly simple set. We strengthen this:

Theorem 2.1. Let A be a c.e. set that is strongly jump traceable. Then $A \in \mathcal{H}^{\diamondsuit}$.

Proof. For each truth table reduction Γ we define a benign cost function c such that for each Δ_2^0 set A, and each ML-random set Y,

A obeys c and
$$\Gamma^{Y'}$$
 is $\{0,1\}$ -valued d.n.c. relative to $\emptyset' \Rightarrow A \leq_T Y$.

Let (I_e) be the sequence of consecutive intervals of length e. Thus min $I_e = e(e+1)/2$. We define a function $\alpha \leq_T \emptyset'$. We are given a partial computable function p and think of p as a reduction function for α , namely, p is total, increasing, and $\forall x \ \alpha(x) \simeq J^{\emptyset'}(p(x))$.

At stage s of the construction we define the approximations $\alpha_s(x)$. Let $\alpha_s(x) = 0$ unless p(y) is defined at stage s for each $y \in I_e$. In this case, let

$$\mathfrak{C}_{e,s} = \{Y \colon \exists t_{v < t < s} \forall x \in I_e \left[1 - \alpha_t(x) = \Gamma(Y_t', p(x))\right]\},\$$

where $v \leq s$ is greatest such that v = 0 or $\alpha_v \upharpoonright I_e \neq \alpha_{v-1} \upharpoonright I_e$. (Thus, $\mathcal{C}_{e,s}$ is the set of oracles Y such that Y' computes α correctly at some stage t after the last change of $\alpha \upharpoonright_{I_e}$.)

Construction of α .

Stage s > 0. For each e < s, if $\lambda C_{e,s-1} \le 2^{-e+1}$ let $\alpha_s \upharpoonright I_e = \alpha_{s-1} \upharpoonright I_e$. Otherwise change $\alpha \upharpoonright_{I_e}$: define $\alpha_s \upharpoonright I_e$ in such a way that $\lambda C_{e,s} \le 2^{-e}$.

Claim. $\alpha(x) = \lim_s \alpha_s(x)$ exists for each x.

We use a measure theoretic fact suggested by Hirschfeldt in a related context (see [11, 1.9.15]). Suppose $N, e \in \mathbb{N}$, and for $1 \leq i \leq N$, the class \mathcal{B}_i is measurable and $\lambda \mathcal{B}_i \geq 2^{-e}$. If $N > k2^e$ then there is a set $F \subseteq \{1, \ldots, N\}$ such that #F = k+1 and $\bigcap_{i \in F} \mathcal{B}_i \neq \emptyset$. For instance, if N=5 classes of measure at least 1/2 are given, then the intersection of three of them is non-empty.

Suppose now that $0 = v_0 < v_1 < \ldots < v_N$ are consecutive stages at which $\alpha \upharpoonright I_e$ changes. Thus $p \upharpoonright I_e$ is defined. Then $\lambda \mathcal{B}_i \geq 2^{-e}$ for each $i \leq N$, where

$$\mathcal{B}_i = \{Y \colon Y'_{v_{i+1}} \upharpoonright_k \neq Y'_{v_i} \upharpoonright_k \},\$$

and $k = \text{use } \Gamma(\max p(I_e))$, because $\lambda \mathcal{C}_e$ increased by at least 2^{-e} from v_i to v_{i+1} . Note that the intersection of any k+1 of the \mathcal{B}_i is empty. Thus $N \leq 2^e k$ by the measure theoretic fact. \diamond

Since α is Δ_2^0 , by the Recursion Theorem, we can now assume that p is a reduction function for α . Then in fact we have a computable bound g on the number of changes of $\alpha \upharpoonright I_e$ given by $g(e) = 2^e$ use $\Gamma(\max p(I_e))$.

To complete the proof, let A be a c.e. set that is strongly jump traceable. We define a cost function c by $c(x,s) = 2^{-x}$ for each $x \geq s$; if x < s, and e < x is least such that $\alpha_s \upharpoonright I_e \neq \alpha_{s-1} \upharpoonright I_e$ let

$$c(x,s) = \max(c(x,s-1), 2^{-e}).$$

Note that the cost function c is benign as defined in [5]: if $x_0 < \ldots < x_n$ and $c(x_i, x_{i+1}) \ge 2^{-e}$ for each i, then $\alpha_s \upharpoonright I_e \ne \alpha_{s-1} \upharpoonright I_e$ for some s such that $x_i < s \le x_{i+1}$. Hence $n \le g(e)$ where g is defined after the claim.

By [5] fix a computable enumeration $(A_s)_{s\in\mathbb{N}}$ of A that obeys c. (The rest of the argument actually works for a computable approximation $(A_s)_{s\in\mathbb{N}}$ of a Δ_2^0 set A.)

We build a Solovay test \mathcal{G} as follows: when $A_{t-1}(x) \neq A_t(x)$, we put $\mathcal{C}_{e,t}$ into \mathcal{G} where e is largest such that $\alpha \upharpoonright I_e$ has been stable from x to t. Then $2^{-e} \leq c(x,t)$. Since $\lambda \mathcal{C}_{e,t} \leq 2^{-e+1} \leq 2c(x,t)$ and the computable approximation of A obeys c, \mathcal{G} is indeed a Solovay test.

Choose s_0 such that $\sigma \not\preceq Y$ for each $[\sigma]$ enumerated into \mathcal{G} after stage s_0 . To show $A \leq_T Y$, given an input $y \geq s_0$, using Y as an oracle, compute s > y such that $\alpha_s(x) = \Gamma(Y'_s; x)$ for each x < y. Then $A_s(y) = A(y)$: if $A_t(y) \neq A_{t-1}(y)$ for t > s, let $e \leq y$ be largest such that $\alpha \upharpoonright I_e$ has been stable from y to t. Then by stage s > y the set Y is in $\mathcal{C}_{e,s} \subseteq \mathcal{C}_{e,t}$, so we put Y into \mathcal{G} at stage t, contradiction.

In the following we give a direct construction of a null Σ_3^0 class containing the superhigh sets. Note that the class $\mathcal H$ defined in (1) is such a class. However, the proof below uses techniques of independent interest. For instance, they might be of use to resolve the open question whether superhighness itself is a Σ_3^0 property.

Proposition 2.2. There is a null Σ_3^0 class containing the superhigh sets.

Proof. For each truth-table reduction Φ , we uniformly define a null Π_2^0 class \mathcal{S}_{Φ} such that $\emptyset'' = \Phi(Y') \to Y \in \mathcal{S}_{\Phi}$.

We build a Δ_2^0 set D_{Φ} . Then, by the Recursion Theorem we have a truthtable reduction Γ_{Φ} such that $\emptyset'' = \Phi(Y') \to D_{\Phi} = \Gamma(Y')$. We define D_{Φ} in such a way that $\mathcal{S}_{\Phi} = \{Y : D_{\Phi} = \Gamma(Y')\}$ is null. Also, \mathcal{S}_{Φ} is Π_2^0 because

$$Y \in \mathcal{S}_{\Phi} \leftrightarrow \forall w \, \forall i > w \, \exists s > i \, D_{\Phi}(w, s) = \Gamma(Y'_s; w).$$

Claim. For each string σ , the real number $r_{\sigma} = \lambda\{Z : \sigma \prec Z'\}$ is difference left-c.e. (see [11, 1.8.15]) uniformly in σ .

To see this, note that for each finite set F the class $\mathcal{C}_F = \{Z : F \subseteq Z'\}$ is uniformly Σ_1^0 . Let $F(\sigma) = \{j < |\sigma| : \sigma(j) = 1\}$, then

$$r_{\sigma} = \lambda (\mathfrak{C}_{F(\sigma)} - \bigcup_{r < |\sigma| \& \sigma(r) = 0} \mathfrak{C}_{\{r\} \cup F(\sigma)}).$$

This proves the claim. Now, for each τ let

$$b_{\tau} = \lambda \{ Z \colon \tau \prec \Gamma(Z') \}.$$

Then $b_{\tau} = \sum_{\sigma} r_{\sigma} \llbracket \tau = \Gamma^{\sigma} \rrbracket$ is uniformly difference left-c.e.

We define the Δ_2^0 set $D = D_{\Phi}$ in such a way that $b_{D \upharpoonright n+1} \leq b_{D \upharpoonright n}/2$ for each n. Then $2^{-n} \geq \lambda \{Y : D_{\Phi} \upharpoonright_n = \Gamma(Y') \upharpoonright_n \}$ for each n, so \mathcal{S}_{Φ} is null. \square

3. Each set in Shigh[♦] is strongly jump traceable

Theorem 3.1. Let A be a c.e. set that is Turing below all ML-random superhigh sets. Then A is strongly jump traceable.

Proof. Let h be an order function. We will define a ML-random superhigh set Z such that $A \leq_T Z$ implies that A is jump traceable via bound h. In fact for an arbitrary given set G we can define Z such that $G \leq_{\text{tt}} Z'$. If also $G \geq_{tt} \emptyset''$, then Z is superhigh.

Preliminaries. We will need a lower bound on the measure of a non-empty Π_1^0 class of ML-random sets. This bound is given uniformly in an index for the class (Kučera; see [11, 3.3.3]). Let $Q_0 \subseteq \mathsf{MLR}$ be the complement $2^{\omega} - \mathcal{R}_1$ of the second component of the standard universal ML-test.

Lemma 3.2. Given an effective listing $(P^v)_{v \in \mathbb{N}}$ of Π_1^0 classes, $P^v \subseteq Q_0$, there is a constant c_0 such that $\lambda P^v \leq 2^{-K(v)-c_0} \to P^v = \emptyset$.

We assume an indexing of all the Π_1^0 classes. Given an index for a Π_1^0 class P we have an effective approximation $P = \bigcap_t P_t$ where P_t is a clopen set ([11, Section 1.8]).

The basic set-up. For each e, a procedure R^e (with further parameters to be discussed later) builds a c.e. trace $(T_x)_{x\in\mathbb{N}}$ with bound h. Either for almost all x, $J^A(x) \downarrow$ implies $J^A(x) \in T_x$, or R^e shows that $A \neq \Phi_e^Z$. Since Z is superhigh, the first alternative must hold for some e.

When a new computation $w = J^A(x) \downarrow$ with use u appears, R^e activates a sub-procedure S_x^e . This sub-procedure waits for evidence that $A \upharpoonright_u$ is stable before putting w into the trace set T_x . By first waiting long enough, it makes sure that an $A \upharpoonright_u$ change after this tracing can happen for at most h(x) times, so that $\#T_x \leq h(x)$. S_x^e also calls an instance of the next procedure R^{e+1} . Thus, during the construction we can have many runs of each of the procedures R^e and S_x^e .

The environment of a procedure. Each R^e has as further parameters a Π^0_1 class P and a number $r \in \mathbb{N}$. It assumes that $Z \in P$ and $2^{-r} < \lambda P$. Each S^e_x activated by $R^e(P,r)$ will specify an appropriate subclass $Q \subseteq P$ and a number $q \in \mathbb{N}$, and call $R^{e+1}(Q,q)$.

Initially we call $R^0(Q_0, 2)$

The two phases of S_x^e . A procedure S_x^e alternates between Phases I, and II. When changing phases it returns control to R^e . In our first approximation to describing the construction, once a computation $w = J^A(x) \downarrow$ with use u appears, S_x^e enters Phase I. It considers the Σ_1^0 class $C = \{Z : \Phi_e^Z \mid_{u} = A \mid_{u}\}$.

It calls $R^{e+1}(Q,q)$ where Q = P - C and q is obtained by Lemma 3.2. If it stays here then, because $Z \in Q$, its outcome is that $\Phi_e^Z \neq A$.

For a threshold δ depending only on r and x, once $\lambda(P_s \cap C_s) > \delta$ at stage s it lets $D = C_s$ and puts w into T_x . Now the outcome is that $J^A(x)$ has been traced. So S_x^e can return and stay inactive unless $A \upharpoonright_u$ changes.

Once $A \upharpoonright_u$ has changed, S_x^e enters Phase II by calling $R^{e+1}(Q,q)$ where now $Q = P \cap D$ and q is obtained by Lemma 3.2. Its outcome is again that $\Phi_e^Z \neq A$, this time because $\Phi_e^Z \upharpoonright_u$ is the previous value of $A \upharpoonright_u$ (here we use that A is c.e.).

If, later on, $P \cap D$ becomes empty, then S_x^e returns. It is now turned back to the beginning and may start again in Phase I when a new computation $J^A(x)$ appears. Note that P has now lost a measure of δ . So S_x^e can go back to Phase I for at most $1/\delta$ times.

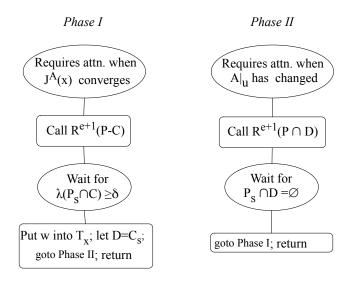


FIGURE 1. Diagram for the procedure S_r^e

The golden run. For some e we want a run of R^e such that each subprocedure S_x^e it calls returns. For then, the c.e. trace $(T_x)_{x\in\mathbb{N}}$ this run of R^e builds is a trace for J^A . If no such run R^e exists then each run of R^e eventually calls some S_x^e which does not return, and therefore permanently runs a procedure R^{e+1} . If $Y \in \bigcap P_e$ where P_e is the parameter of the final run of a procedure R^e , then $A \not\leq_T Y$. So we have a contradiction if we can define a set $Z \in \bigcap_e P_e$ such that $G \leq_{\operatorname{tt}} Z'$.

Ensuring that $G \leq_{\text{tt}} Z'$. For this we have to introduce new parameters into the procedures S_x^e .

Note that $G \leq_{\text{tt}} Z'$ iff there is a binary function $f \leq_T Z$ such that $\forall x G \upharpoonright_x = \lim_s^{\text{comp}} f(x,s)$ (namely, the number of changes is computably bounded). We will define Z such that Z' encodes G. We use a variant of Kučera's method to code into ML-random sets. We define strings $z_{\gamma} = \lim_s^{\text{comp}} z_{\gamma,s}$ and let $Z = \bigcup_{\gamma \prec G} z_{\gamma}$. The strings $z_{\gamma,s}$ are given effectively, and for each s they are

pairwise incomparable. Then we let $f(x,s) = \gamma$ if $z_{\gamma,s} \prec Z$, and $f(x,s) = \emptyset$ if there is no such γ .

Firstly, we review Kučera's coding into members of a Π^0_1 -class of positive measure.

Lemma 3.3 (Kučera; see [11], 3.3.1). Suppose that P is a Π_1^0 class, x is a string, and $\lambda(P|x) \geq 2^{-l}$ where $l \in \mathbb{N}$. Then there are at least two strings $w \succeq x$ of length |x| + l + 1 such that $\lambda(P|w) > 2^{-l-1}$. We let w_0 be the leftmost and w_1 be the rightmost such string.

In the following we code a string β into a string y_{β} on a Π_1^0 class P.

Definition 3.4. Given a Π_1^0 class P, a string z such that $P \subseteq [z]$, and $r \in \mathbb{N}$ such that $2^{-r} < \lambda P$, we define a string

$$y_{\beta} = \mathsf{kuc}(P, r, z, \beta)$$

as follows: $y_{\varnothing} = y$; if $x = y_{\beta}$ has been defined, let $l = r + |\beta|$, and let $y_{\beta \widehat{} b} = w_b$ for $b \in \{0, 1\}$, where the strings w_b are defined as in Lemma 3.3. Note that for each β we have $\lambda(P \mid y_{\beta}) \geq 2^{-r - |\beta|}$ and

(2)
$$|y_{\beta}| \le |z| + |\beta|(r + |\beta| + 1).$$

At stage s we have the approximation $y_{\beta,s} = \text{kuc}(P_s \cap [z], r, z, \beta)$. While $y_{\beta,s}$ is stable, the string w_b in the inductive definition above changes at most 2^l times. Thus, inductively, $y_{\beta,s}$ changes at most $2^{|\beta|(r+|\beta|+1)}$ times.

For each e, η we may have a version of R^e denoted $R^{e,\eta}(P,r,z_{\eta})$. It assumes that η has already been coded into the initial segment z_{η} of Z, and works within $P \subseteq [z_{\eta}]$. It calls procedures $S_x^{e,\eta\alpha}(P,r,z)$ for certain x,α . In this case we let $z_{\eta\alpha} = y_{\alpha} = \text{kuc}(P,r,z_{\eta},\alpha)$.

For each x, once $J^A(x) \downarrow$, $R^{e,\eta}$ wishes to run $S^{e,\eta\alpha}$ for all α of a certain length m defined in (4) below, which increases with h(x). Thus, as x increases, more and more bits beyond η are coded into Z. The trace set T_x will contain all the numbers enumerated by procedures $S_x^{e,\eta\alpha}$ where $|\alpha| = m$. We ensure that m is small enough so that $\#T_x \leq h(x)$.

Formal details. Some ML-random set $Y \not\geq_T \emptyset'$ is superhigh by [11, 3.4.13]. Since $A \leq_T Y$ and A is c.e., A is a base for ML-randomness by [11, 5.1.18], and therefore superlow. Hence there is an order function g and a computable enumeration of A such that $J^A(x)[s]$ becomes undefined for at most g(x) times.

We build a sequence of Π^0_1 classes $(P^n)_{n\in\mathbb{N}}$ as in Lemma 3.2. If $n=\langle e,\gamma,x,i\rangle$, then since $K(n)\leq^+2\log\langle e,\gamma\rangle+2\log x+2\log i$, we have

(3)
$$P^{\langle e, \gamma, x, i \rangle} \neq \emptyset \implies \lambda P^{\langle e, \gamma, x, i \rangle} \ge 2^{-q}$$

where $q=2\log\langle e,\gamma\rangle+2\log x+2\log i+c$ for some fixed $c\in\mathbb{N}$. By the Recursion Theorem we may assume that we know c in advance.

The construction starts off by calling $R^{0,\varnothing}(Q_0,3,\varnothing)$.

Procedure $R^{e,\eta}(P,r,z)$, where $z \in 2^{<\omega}$, $P \subseteq \mathsf{MLR} \cap [z]$ is a Π^0_1 class and $r \in \mathbb{N}$. This procedure enumerates a c.e. trace $(T_x)_{x \in \mathbb{N}}$. (It assumes that $2^{-r} < \lambda P$.)

For each string α of length at most s, see whether some procedure $S_x^{e,\eta\alpha}(P)$ requires attention or is at (b), (e) and no procedure $S_y^{e,\eta\beta}(P)$ for $\beta \prec \alpha$ satisfies the same condition. If so, choose x least for α and activate $S_x^{e,\eta\alpha}(P)$. (This suspends any runs $S_z^{e,\delta}$ for $\eta\alpha \leq \delta$. Such a run may be resumed later.)

Procedure $S_x^{e,\eta\alpha}(P,r,z)$, where $|\alpha|$ is the greatest m such that, if n = m(r+m+1), we have

(4)
$$2^{|\eta\alpha|}2^{2n+r+2} \le h(x).$$

There only is such a procedure if x is so large that m exists. Let $y_{\alpha,s} = \text{kuc}(P_s, \alpha, r, z)$. Let

$$\delta = 2^{-|y_{\alpha,s}| - m - r - 1}$$

(Comment: $S_x^{e,\eta\alpha}(P,r,z)$ cannot change $y_{\alpha,s}$. It only changes "by itself" as P_s gets smaller. This makes the procedure go back to the beginning. So in the following we can assume y_{α} is stable.)

Phase I.

(a) $S_x^{e,\eta\alpha}$ requires attention if $w=J^A(x)\downarrow$ with use u. Let

$$C = [y_{\alpha}] \cap \{Z \colon \Phi_e^Z \upharpoonright_u = A \upharpoonright_u\},\$$

a Σ^0_1 class. Let $C_s = [y_{\alpha,s}] \cap \{Z \colon \Phi^Z_e \upharpoonright_u = A \upharpoonright_u [s] \}$ be its approximation at stage s, which is clopen.

(b) While $\lambda(P_s \cap C_s) < \delta$ run in case e < s the procedure

$$R^{e+1,\eta\alpha}(Q,q,y_{\alpha,s});$$

here Q is the Π_1^0 class $P \cap [y_{\alpha,s}] - C$, and

$$q = 2\log\langle e, \eta\alpha\rangle + 2\log x + 2\log i + c,$$

where i is the number of times $S_x^{e,\eta\alpha}$ has called $R^{e+1,\eta\alpha}$ (the constant c was defined after (3) at the beginning of the formal construction). Then $2^{-q} < \lambda Q$ unless $Q = \emptyset$. Meanwhile, if $y_{\alpha,s} \neq y_{\alpha,s-1}$ put w into T_x , cancel all sub-runs, GOTO (a), and RETURN. Otherwise, if $A_s \upharpoonright_u \neq A_{s-1} \upharpoonright_u$ cancel all sub-runs, GOTO (a) and RETURN. (Comment: if the run $S_x^{e,\eta\alpha}$ stays at (b) and $Z \in Q$, then $A \upharpoonright_u = \Phi_e^Z \upharpoonright_u$ fails, so we have defeated Φ_e .)

(c) Put w into T_x , let $D = C_s$, goto (d), and return. (Thus, the next time we call $S_x^{e,\eta\alpha}(P)$ it will be in Phase II.)

Phase II.

- (d) $S_x^{e,\eta\alpha}$ requires attention again if $A \upharpoonright_u$ has changed.
- (e) While $P_s \cap D \neq \emptyset$ run in case e < s

$$R^{e+1}(P\cap D,q,y_{\alpha,s})$$

where $q \in \mathbb{N}$ is defined as in (b). Meanwhile, if $y_{\alpha,s} \neq y_{\alpha,s-1}$ cancel all sub-runs, GOTO (a), and RETURN.

(Comment: if the run $S_x^{e,\eta\alpha}$ stays at (e) and $Z \in Q$ then again $A \upharpoonright_u = \Phi_e^Z \upharpoonright_u$ fails, this time because $Z \in D$ and $\Phi_e^Z \upharpoonright_u$ is an old version of $A \upharpoonright_u$.)

(f) Goto (a) and Return.

 \Diamond

Verification. The function g was defined at the beginning of the formal proof. First we compute bounds on how often a particular run $S_x^{e,\eta\alpha}$ does certain things.

Claim 1. Consider a run $S_x^{e,\eta\alpha}(P,r,z)$ called by $R^{e,\eta}(P,r,z)$. As in the construction, let $m = |\alpha|$ and n = m(r+m+1).

- (i) While $y_{\alpha,s}$ does not change, the run passes (f) for at most 2^{m+r+1} times.
- (ii) The run enumerates at most 2^{2n+r+2} elements into T_x .
- (iii) It calls a run $R^{e+1,\eta\alpha}$ at (b) or (e) for at most $2^{n+1}g(x)$ times.

To prove (i), as before let $\delta=2^{-|y_{\alpha}|-m-r-1}$. Note that each time the run passes (f), the class $P\cap [y_{\alpha}]$ loses $\lambda D\geq \delta$ in measure. This can repeat itself at most 2^{m+r+1} times. (This argument allows for the case that the run of $S_x^{e,\eta\alpha}$ is suspended due to the run of some $S_z^{e,\eta\beta}$ for $\beta\prec\alpha$. If $S_z^{e,\eta\beta}$ finishes then $S_x^{e,\eta\alpha}$, with the same parameters, continues from the same point on where it was when it was suspended.)

(ii) There are at most 2^n values for y_{α} during a run of $S_x^{e,\eta\alpha}$ by the remarks after Definition 3.4. Therefore this run enumerates at most $2^n 2^{n+r+1} + 2^n$ elements into T_x where at most 2^n elements are enumerated when y_{α} changes.

(iii): for each value y_{α} there are at most 2g(x) calls, namely, at most two for each computation $J^{A}(x)$ (g is defined at the beginning of the formal proof).

Note that $\#T_x \leq h(x)$ by (ii) of Claim 1 and (4).

The strings $z_{\gamma,s}, \ \gamma \in 2^{<\omega}$ are used for coding the given set G into Z'. Let $z_{\varnothing,s} = \varnothing$.

- If $z_{\eta,s}$ has been defined and $R^{e,\eta}(P,r,z_{\eta})$ is running at stage s, then for all β such that no procedure $S^{e,\eta\alpha}$ is running for any $\alpha \prec \beta$, let $z_{\eta\beta} = \text{kuc}(P,r,z_{\eta},\beta)$.
- If α is maximal under the prefix relation such that $z_{\eta\alpha,s}$ is now defined, it must be the case that $R^{e+1,\eta\alpha}(Q,q,z_{\eta\alpha})$ runs. So we may continue the recursive definition.

Claim 2 For each γ , $z_{\gamma} = \lim_{s} z_{\gamma,s}$ exists, with the number of changes computably bounded in γ .

We say that a run of $S_x^{e,\delta}$ is a k-run if $|\delta| \leq k$. For each number parameter p we will let $\overline{p}(k,v)$ denote a computable upper bound for p computed from k,v. Such a function is always chosen nondecreasing in each argument.

To prove Claim 2, we think of k as fixed and define by simultaneous recursion on $v \leq k$ computable functions $\overline{r}(k,v), \overline{x}(k,v), \overline{b}(k,v), \overline{c}(k,v)$ with the following properties:

- (i) $\overline{r}(k,v)$ bounds r in any call $R^{e,\eta}(Q,r)$ where $|\eta| \leq k$ and $e \leq v$.
- (ii) $\overline{x}(k,v)$ bounds the largest x such that some k-run $S_x^{e,\eta\alpha}$ is started where $e \leq v$.
- (iii) For each x, $\bar{b}(k,v)$ bounds the number of times a k-run $S_x^{e,\eta\alpha}$ for $e \leq v$ requires attention.
- (iv) For each x, $\overline{c}(k,v)$ bounds the number of times a run $R^{e+1,\eta\alpha}$ is started by some k-run $S_x^{e,\eta\alpha}$ for $e \leq v$.

Fix γ such that $|\gamma| = k$. In the following we may assume that $\eta \alpha \leq \gamma$, because then the actual bounds can be obtained by multiplying with 2^k .

Suppose now $k \geq v \geq 0$ and we have defined the bounds in (i)–(iv) for v-1 in case v>0. We define the bounds for v and verify (i)–(iv). We may assume e=v, because then the required bounds are obtained by adding the bounds for k, v-1 to the bounds now obtained for e=v.

- (i). First suppose that v=0. Then $\eta=\varnothing$, so let $\overline{r}(k,0)=3$. If v>0, we define a sequence of Π^0_1 classes as in Lemma 3.2: if for the i-th time a run $S^{e-1,\delta}_x$ calls a run $R^{e,\delta}(Q,q)$ we let $P^{\langle e,\delta,x,i\rangle}=Q$. By the inductive hypothesis (iii) and (iv) for v-1 we have a bound $\overline{i}(v,x)$ on the largest i such that a class $P^{\langle v,\eta\alpha,x,i\rangle}$ is defined (when $S^{v-1,\eta}_x$ in (b) or (e) starts a run $R^{v,\eta}$). Thus let $\overline{r}(k,v)=2\log\langle v,\gamma\rangle+2\log\overline{x}(k,v-1)+2\log\overline{i}(v,\overline{x}(k,v-1))+c$. To prove (ii) and (iii), suppose $R^{e,\eta}(Q,r)$ calls $S^{e,\eta\alpha}_x$. Let $m=|\alpha|$ and n=m(r+m+1). Then $n\leq k(\overline{r}(k,v)+k+1)$.
- (ii) We have $h(x) < 2^{k+2k(\overline{r}(k,v)+k+1)+3}$ because m is chosen maximal in (4). Since h is an order function, this gives the desired computable bound $\overline{x}(k,v)$ on x.
- (iii). By Claim 1(i), for each value of y_{α} , the run can pass (f) for at most $2^{k+\overline{r}(k,v)+1}$ times. Further, it can require attention $2^n+g(\overline{x}(k,v))$ more times because y_{α} changes or because $J^A(x)$ changes. This allows us to define $\overline{b}(k,v)$.
- (iv). By Claim 1(iv) a run $R^{v+1,\eta\alpha}$ is started for at most $\overline{b}(k,v)2^{k+1}g(\overline{x}(k,v))$ times.

This completes the recursive definition of the four functions.

Now, to obtain Claim 2, fix γ . One reason that z_{γ} changes is that

- (A) some run $S_y^{e,\delta}$ for $\delta \leq \gamma$, calls $R^{e+1,\delta}$ in (e). This run is a k-run for $k = |\gamma|$. By (ii) and (iii), the number of times this happens is computably bounded by $\overline{b}(k,k)\overline{x}(k,k)$. While it does not happen, z_{γ} can also change because
- (B) for some $\eta \alpha \leq \gamma$ as in the construction, y_{α} changes because some P_s , which defines y_{α} , decreases. Since there is a computable bound $\bar{l}(k)$ on the length of z_{γ} by (i) of this claim and (2), while (A) does not apply this can happen for at most $2^{\bar{l}(k)}$ times. Thus in total z_{γ} changes for at most $\bar{b}(k,k)\bar{x}(k,k)2^{\bar{l}(k)}$ times.

Now let $Z = \bigcup_{\gamma \prec G} z_{\gamma}$. By Claim 2 we have $G \leq_{\text{tt}} Z'$.

Claim 3 (Golden Run Lemma) For some $\eta \prec G$ and some e, there is a run $R^{e,\eta}(P,r)$ (called a golden run) that is not cancelled such that, each time it calls a run $S_x^{e,\eta\alpha}$ where $\eta\alpha \prec G$, that run returns.

Assume the claim fails. We verify the following for each e.

- (i) There is a run $R^{e,\eta}$ that is not cancelled; further, $S_x^{e,\eta\alpha}(P)$ is running for some x, where $\eta\alpha \prec G$, and eventually does not return.
- (ii) $A \neq \Phi_e^Z$.
- (i) We use induction. For e=0 clearly the single run of $R^{0,\varnothing}$ is not cancelled. Suppose now that a run of $R^{e,\eta}$ is not cancelled. Since we assume the claim fails, some run $S_x^{e,\eta\alpha}$, $\eta\alpha \prec G$, eventually does not return. From then on

the computation $J^A(x)$ it is based on and y_α are stable. So the run calls $R^{e+1,\eta\alpha}$ and that run is not cancelled.

(ii) Suppose the run $S_x^{e,\eta\alpha}(P,r,z)$ that does not return has been called at stage s. Suppose further it now stays at (b) or (e), after having called $R^{e,\eta\alpha}(Q,q,y_{\alpha})$. Since $y_{\eta\alpha}$ is stable by stage s, we have $Z\in Q$. Hence $A \neq \Phi_e^Z$ by the comments in (b) or (e).

Let $(T_x)_{x\in\mathbb{N}}$ be the c.e. trace enumerated by this golden run. Claim 4 (T_x) is a trace for J^A with bound h.

As remarked after Claim 1, we have $\#T_x \leq h(x)$. Suppose x is so large that m in (4) exists. Suppose further that the final value of $w = J^A(x)$ appears at stage t. Let $\eta \alpha \prec G$ such that $|\alpha| = m$.

As the run is golden and by Claim 1(i), eventually no procedure $S_y^{e,\eta\beta}(P)$ for $\beta \prec \alpha$ is at (b) or (e). Thus, from some stage s > t on, the run $S_x^{e,\eta\dot{\alpha}}$ is not suspended. If y_{α} has not settled by stage s then w goes into T_x . Else $\lambda(P \mid y_{\alpha,s}) > 2^{-r-|\alpha|}$. Since $S_x^{e,\eta\alpha}$ returns each time it is called, the run is at (a) at some stage after t. Also, $P_s \cap C_s$ must reach the size $\delta = 2^{-|y_\alpha|-|\alpha|-r-1}$ required for putting w into T_x .

As a consequence, we separate highness properties within the ML-random sets. See [11, Def. 8.4.13] for the weak reducibility \leq_{JT} , and [5] for the highness property " \emptyset " is c.e. traceable by Y". Note that JT-hardness implies both this highness property and superhighness.

Corollary 3.5. There is a ML-random superhigh Δ_3^0 set Z such that \emptyset' is not c.e. traceable by Z. In particular, Z is not JT-hard.

Proof. By [11, Lemma 8.5.19] there is a benign cost function c such that each c.e. set A that obeys c is Turing below each ML-random set Y such that \emptyset' is c.e. traceable by Y. By [11, Exercise 8.5.8] there is an order function h such that some c.e. set A obeys c but is not jump traceable with bound h. Then by the proof of Theorem 3.1 there is a ML-random superhigh set $Z \leq_T \emptyset''$ such that $A \not\leq_T Z$. Hence Z is not JT-hard.

References

- [1] P. Cholak, R. Downey, and N. Greenberg. Strongly jump-traceability I: the computably enumerable case. Adv. in Math., 217:2045–2074, 2008.
- [2] R. Downey, D. Hirschfeldt, A. Nies, and F. Stephan. Trivial reals. In *Proceedings of* the 7th and 8th Asian Logic Conferences, pages 103-131, Singapore, 2003. Singapore Univ. Press.
- [3] S. Figueira, A. Nies, and F. Stephan. Lowness properties and approximations of the jump. Ann. Pure Appl. Logic, 152:51-66, 2008.
- [4] N. Greenberg, D. Hirschfeldt, and A. Nies. Characterizing the strongly jump traceable sets via randomness. To appear.
- N. Greenberg and A. Nies. Benign cost functions and lowness properties. To appear.
- [6] D. Hirschfeldt, A. Nies, and F. Stephan. Using random sets as oracles. J. Lond. Math. Soc. (2), 75(3):610-622, 2007.
- [7] B. Kjos-Hanssen and A. Nies. Superhighness. To appear, 20xx.
- [8] A. Kučera. On relative randomness. Ann. Pure Appl. Logic, 63:61-67, 1993.
- [9] S. Kurtz. Randomness and genericity in the degrees of unsolvability. Ph.D. Dissertation, University of Illinois, Urbana, 1981.

- [10] J. Mohrherr. A refinement of low_n and $high_n$ for the r.e. degrees. Z. Math. Logik Grundlag. Math., $32(1):5-12,\ 1986.$
- [11] A. Nies. *Computability and Randomness*. Oxford University Press. To appear in the series Oxford Logic Guides.
- [12] A. Nies. Reals which compute little. In *Logic Colloquium '02*, Lecture Notes in Logic, pages 260–274. Springer–Verlag, 2002.
- [13] A. Nies. Lowness properties and randomness. Adv. in Math., 197:274–305, 2005.
- $[14]\ A.\ Nies.\ Non-cupping\ and\ randomness.\ Proc.\ Amer.\ Math.\ Soc.,\ 135(3):837-844,\ 2007.$