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§1. Introduction. It is time for a new paper about open questions in
the currently very active area of randomness and computability. Ambos-
Spies and Kučera presented such a paper in 1999 [1]. All the question
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in it have been solved, except for one: is KL-randomness different from
Martin-Löf randomness? This question is discussed in Section 6.

Not all the questions are necessarily hard—some simply have not been
tried seriously. When we think a question is a major one, and therefore
likely to be hard, we indicate this by the symbol I, the criterion being that
it is of considerable interest and has been tried by a number of researchers.
Some questions are close contenders here; these are marked by B. With
few exceptions, the questions are precise. They mostly have a yes/no
answer. However, there are often more general questions of an intuitive
or even philosophical nature behind. We give an outline, indicating the
more general questions.

All sets will be sets of natural numbers, unless otherwise stated. These
sets are identified with infinite strings over {0, 1}. Other terms used in
the literature are sequence and real.

Section 2 aims at understanding the relationship between Martin-Löf
randomness and Turing reducibility. A major question, which has been
around for over a decade, is whether the degrees of Martin-Löf random
sets are definable. In Section 3, we look at K-triviality from a purely
combinatorial point of view. We ask if there is a characterization that is
not directly related to ML-randomness or prefix-free complexity K. In the
next section we consider the relationship between K-triviality, Martin-Löf
randomness and Turing reducibility. There are multiple (sometimes fasci-
nating) interactions between these at first sight rather disparate concepts.
We also ask to what extent all the K-trivial sets are similar; for instance,
do the K-trivial sets that have an incomplete ML-random set above form
a proper subclass?

In Sections 5 and 6, the general question is what happens when the c.e.
test concept defining Martin-Löf randomness is replaced by a computable
one. For computable and Schnorr randomness, several results show that
the behavior is quite different. On the other hand, KL-randomness has not
even been separated from Martin-Löf randomness. In fact, the separation
question remains open for apparently much weaker randomness notions,
like permutation randomness which we introduce here.

In Section 7, we look at concepts stronger than Martin-Löf randomness.
One could argue that Martin-Löf random sets are not “really” random,
for instance because there is a Martin-Löf random set Turing above an
arbitrary given one, or because a ML-random set can be left-c.e. These
nonrandom features disappear when one takes 2-randomness instead, that
is, Martin-Löf randomness relative to the halting problem. We also con-
sider randomness much higher up, where the test notions are not based
on computability theory but on effective descriptive set theory.



RANDOMNESS AND COMPUTABILITY: OPEN QUESTIONS 3

In Section 8, we consider Chaitin’s halting probability Ω and its rela-
tivizations. We will see that sometimes highly random and highly nonran-
dom sets behave similarly. For instance, both 2-random and K-trivial sets
are low for Ω. One could ask what is behind this and other similarities.
Maybe, in some appropriate sense, both lack useful information.

The randomness notions encountered so far provide an absolute hier-
archy, similar to the absolute complexity hierarchy given by classes like
computable, computably enumerable, ∆0

2 and so on. The complexity of
a set can also be measured in a relative way, by comparing it to other
sets, say via Turing reducibility. In Section 9, we ask for randomness
analogs of relative complexity. Namely, what does it mean for one set
to be more random than another? We also consider to what extent such
relative notions of degree of randomness cohere with the absolute ones, as
evidenced for instance by the upward closure of absolute notions in rela-
tive randomness degree structures. (The analogy to relative complexity
comes out clearer if one considers non-randomness notions rather than
randomness notions.)

In the last section we ask to what extent it is possible to distill random-
ness out of a somewhat random source.

Facts quoted here without reference can be found in [8], or in the forth-
coming books [10, 37]. An updated version of the paper will be kept at
http://www.cs.auckland.ac.nz/~nies/.

§2. ML-randomness. A Martin-Löf test (ML-test) is a uniform se-
quence {Ui}i∈N of Σ0

1-classes such that µ(Ui) ≤ 2−i. A set A is Martin-Löf
random, or 1-random, if A 6∈

⋂
i Ui for each ML-test {Ui}i∈N . The class of

ML-random sets is denoted MLR.
For σ ∈ 2<ω, let K(σ) be the prefix-free Kolmogorov complexity of σ.

Theorem 2.1 (Schnorr). A set A is ML-random iff there is a constant
d such that K(A � n) > n− d for every n.

One of the most important facts about relative randomness is van Lam-
balgen’s Theorem (1990) [54].

Theorem 2.2. A ⊕ B is ML-random ⇔ B is ML-random and A is
ML-random relative to B.

A set Z is diagonally noncomputable if there is a total function f ≤T Z
such that f(n) 6= Φn(n) for all n. This class is denoted DNC. Note that
MLR ⊆ DNC, via a finite variant of the function n 7→ Z � n.

2.1. Turing degrees. A Turing degree is called ML-random if it con-
tains a ML-random set. Let ML denote this class of degrees.

The following questions were mainly posed by Kučera (since 1990) in
conference talks.
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I Question 2.3.

(i) Is the class ML first-order definable in the Turing degrees?
(ii) Is ML∩ [0,0′] first-order definable in [0,0′], the ∆0

2 Turing degrees?

The definability of ML in the Turing degrees would give an alternative
first-order definition of 0′, since x ≥ 0′ iff (∀y ≥ x) [y ∈ ML]. The fact
that every degree above 0′ is in ML is due to Kučera [21]. The other
direction uses Stephan’s result that the only PA-complete degrees in ML
are the ones above 0′ [52]. Kučera has also asked if the PA-complete
degrees are definable. As with ML, this would give an alternative first-
order definition of 0′, since 0′ = inf{a∨b : a,b PA complete & a∧b = 0}
[23].

Demuth [6] proved that if A is ML-random and B ≤tt A is noncom-
putable, then the Turing degree of B also contains a ML-random set.
Everything Turing below a set of hyperimmune-free degrees is truth-table
reducible to it. This implies that if a ∈ ML has hyperimmune-free degree
and 0 < b ≤ a, then b ∈ ML. Does the latter property characterize the
hyperimmune-free degrees in ML? That is,

Question 2.4. If (0,a] ⊆ ML, is a hyperimmune-free?

Two natural candidates for a counterexample fail, namely noncomput-
able ∆0

2 sets and 2-random sets (both are of hyperimmune degree). For
the first, if (0,a] ⊆ ML, then a and 0′ have infimum 0, otherwise some
non-zero b < a is c.e. [22], and hence not random, since no incomplete c.e.
set is DNC. For the second, if a is of 2-random degree then a bounds a 1-
generic degree [25, 18], and no 1-generic set is Turing above a ML-random
set.

It would also be of interest to determine whether there is b < 0′ such
that [b,0′] ⊆ ML. Such a b cannot be low, because there is a PA-complete
low degree above every low b.

§3. K-triviality and combinatorial properties. A lot of recent
research is centered on K-triviality, which is at the end of the spectrum
opposite to ML-randomness. A set A is K-trivial if (∀n) K(A � n) ≤
K(n) + O(1). (We identify a string σ in 2<ω with the natural number
n such that the binary representation of n + 1 is 1σ.) There is a c.e.
noncomputable (even promptly simple) K-trivial set, and all K-trivial
sets are ∆0

2 (see [12, 8] for proofs and references). A set A is K-trivial
if and only if it is low for ML-random, namely each ML-random set is
random relative to A [42]. In particular, K-triviality is closed downward
under Turing reducibility. The class of K-trivial sets is also closed under
⊕ [12], and each K-trivial set is truth-table below a c.e. K-trivial set [42].
Thus the K-trivial sets form an ideal in the Turing degrees that is the
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downward closure of its c.e. members. Restricted to the c.e. sets, it is the
first known example of a natural intermediate Σ0

3 ideal.
3.1. Traceability. It is desirable to characterize a lowness property

of a set A by a “combinatorial” notion of computational weakness, in
particular the approximability of certain functions computable in A. A c.e.
trace is a uniformly c.e. family T = {T0, T1, . . . } of finite sets of natural
numbers. For a function h, the trace T has bound h if (∀n) |Tn| ≤ h(n).
T is a computable trace if there is a computable r such that Tn = Dr(n),
i.e., Tn is effectively given by a strong index.

Terwijn and Zambella [53] defined a set A to be computably traceable
if there is a computable bound p such that for every f ≤T A, there is a
computable trace T with bound p that approximates the values of f , in
the sense that f(n) ∈ Tn. They showed that A is low for Schnorr tests iff A
is computably traceable. Later on, in [20], it was shown that computable
traceability is in fact equivalent to being low for Schnorr random (see [8]
for details).

The following aims at a characterization of K-triviality that is not re-
lated to ML-randomness or prefix-free complexity K.

Question 3.1. Is there a traceability type characterization of low for
ML-random (that is, K-triviality)?

One candidate, albeit not too likely, is strong jump traceability, intro-
duced in [13]. The set A is jump traceable (via a function h) [41] if there is
a c.e. trace T with bound h such that (∀e) [ΦA

e (e) ↓ ⇒ ΦA
e (e) ∈ Te]. In [42]

it is proved that each K-trivial set is jump traceable. The set A is strongly
jump traceable iff it is jump traceable via every order function h (where
an order function is a computable nondecreasing unbounded function).
In [13] a c.e. noncomputable strongly jump traceable set is constructed.
Interestingly, this construction resembles the cost function construction
(see for instance [12, 8]) of a c.e. noncomputable K-trivial set.

§4. K-triviality, ML-randomness and Turing reducibility. Some
important known interactions are:
• The Kučera–Gács Theorem: each set is Turing (and even wtt) below

a ML-random set [21, 15].
• The downward closure of K-triviality under ≤T [42]. (In particular,

K-triviality is a degree notion, rather than a set notion.)
4.1. Definability, exact pairs and bounds.

Question 4.1. Is the class of K-trivial sets definable in either the ∆0
2

degrees or in the c.e. Turing degrees?

For ∆0
2, this question is the “far from random” analog of Question 2.3

(ii). If the answer is yes for the c.e. case, this would be the first definable
subclass of the class of c.e. low degrees.
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Question 4.2. Does the ideal K of K-trivial sets have an exact pair
a,b—namely K = [0,a] ∩ [0,b]—in the c.e. Turing degrees?

There is a low2 c.e. degree bounding K, but no such low c.e. degree
[42, 41]. Since there is a bound below 0′, the Σ0

3-ideal of K-trivial sets has
an exact pair in the ∆0

2 degrees. This uses results from [48].

Question 4.3. Is there a ∆0
2 low degree bounding K?

4.2. Having a ML-random set above. The following questions aim
at characterizing K-triviality using ML-randomness and Turing reducibil-
ity (and perhaps a predicate for the c.e. degrees).

Definition 4.4. Let C be a randomness notion. We say B is a basis
for C randomness if there is a Z ≥T B such that Z is C random relative
to B.

For ML-randomness, the notion of basis was introduced by Kučera [24]
(in different terminology). By the Kučera–Gács theorem, each low for
ML-random set (see Subsection 5.1 below) is a basis for ML-randomness.
In fact, the two notions coincide.

Theorem 4.5 ([16]). Every basis for ML-randomness is K-trivial, and
hence Low(MLR).

If A is c.e., Z ≥T A is ML-random and Z 6≥ ∅′, then Z is ML-random
relative to A [16]. Thus, by the Theorem, any c.e. A for which such a Z
exists is K-trivial. Is every c.e. K-trivial of this kind? Recall that each
K-trivial set is Turing below a c.e. K-trivial set, so there is no need to
assume that A is c.e. when formulating this question.

I Question 4.6 (Stephan, Feb. 2004). If A is K-trivial, must there be a
ML-random Z ≥T A such that ∅′ 6≤T Z? How about Z <T ∅′? Z low?

Each K-trivial set is low [42], so we cannot rule out the last possibility.
However, the known proof is complicated, and any proof is necessarily
non-uniform (see the proof Theorem 5.10 in [41]). So one can expect a
proof of an affirmative answer to the last part of Question 4.6 to be at
least as hard.

If X = X0 ⊕ X1 is a ML-random, then X0 is ML-random relative to
X1. So if A ≤T X0 and A ≤T X1, then X1 is ML-random relative to A
and hence A is K-trivial by Theorem 4.5. It is possible for such an A to
be noncomputable [21]. Can it be an arbitrary K-trivial set?

Question 4.7. Let A be K-trivial. Is there a ML-random set X =
X0 ⊕X1 such that A ≤T X0 and A ≤T X1? Can X be taken to be ∆0

2?

A positive answer to the first part would also answer the first part of
Question 4.6 in the affirmative, since at least one of the “halves” X0, X1
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is not above ∅′ (in fact, neither if A is noncomputable). Because each part
of a ∆0

2 ML-random is low [7, Thm. 3.4], a positive answer to the second
part of the question would also provide an affirmative answer to the last
part of Question 4.6.

4.3. Cupping above ∅′ with a ML-random set. Let us say A is
weakly ML-cuppable if A ⊕ Z ≥T ∅′ for some ML-random Z 6≥ ∅′. A is
ML-cuppable if one can choose Z <T ∅′.

B Question 4.8 (Kučera, 9/2004). Which ∆0
2 sets are (weakly) ML-cuppable?

Is one of the notions equivalent to not being K-trivial?

Quite a bit is known already. If A ∈ ∆0
2 is not K-trivial, then A is

weakly ML-cuppable, via Z = ΩA (Z 6≥T ∅′ by Theorem 4.5, and ∅′ ≤T

A′ ≡T A ⊕ ΩA). If A is low then in fact ΩA <T ∅′. Thus, each ∆0
2 set A

with a low non-K-trivial set below is ML-cuppable. This includes:
1) any ML-random set A, since A ∩ 2N is low [7, Thm. 3.4]
2) any non-low2 and any c.e.a. non-K-trivial set, as those are the supre-

mum of a pair of 1-generic sets (see [26, Ex. IV.3.15] for the first)
3) any c.e. non-K-trivial set A, because A is a disjoint union of c.e. low

sets A0, A1, and at least one of them is not K-trivial.
An interesting case of a ∆0

2 set that is not proved to be ML-cuppable by
any of the reasons above is a set of minimal degree which is properly low2

[26, Ex. IX.2.7].
Nies [40] has shown that there is a (necessarily K-trivial) c.e. non-

computable set that is not even weakly ML-cuppable. In fact, if Y is ∆0
2

ML-random, then there is a promptly simple set A such that, for each ML-
random set Z, Y ≤T A⊕ Z implies Y ≤T Z. If one lets Y = Ω, then one
obtains A which is not weakly ML-cuppable, since Ω ≡T ∅′. Hirschfeldt
and Miller have recently given a simpler proof of Nies’ Theorem. See [38].

4.4. Almost deep degrees. The following is a strong lowness prop-
erty within the c.e. degrees. We say that the c.e. set A is almost deep if
A ⊕ W is low for each low c.e. set W . Cholak, Groszek and Slaman [4]
built a non-computable almost deep set.

Question 4.9 (Downey, 2004). Is each almost deep set K-trivial?

A K-trivial set can be promptly simple, while an almost deep set is not
low cuppable, and hence not of promptly simple degree. Thus there is a
K-trivial set that is not almost deep.

Note (Feb. 2006): P. Cholak has announced a negative answer.

§5. Notions weaker than ML-randomness. One obtains notions
weaker than ML-randomness by replacing the ML-tests, which are based
on c.e. open sets, by computable test concepts. The main ones explored
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so far are computable randomness and the even weaker notion of Schnorr
randomness.

For the first, a test is a computable martingale, where (for our purposes)
a martingale is a function M : {0, 1}∗ → R+ that satisfies for every σ ∈
{0, 1}∗ the averaging condition 2M(σ) = M(σ0) + M(σ1). A martingale
M succeeds on Z if lim supn→∞M(Z � n) = ∞. A set Z is computably
random if there is no computable martingale M such that M succeeds on
Z. We denote the class of such Z by CR.

For the second, a test is a pair (M, r) consisting of a computable mar-
tingale and a computable nondecreasing and unbounded function r. The
test succeeds on a set Z if M(Z � n) > r(n) for infinitely many n, and Z is
Schnorr random if no such test succeeds on Z. Equivalently, one can use
ML-tests {Ui}i∈N such that µ(Ui) = 2−i. We denote the class of Schnorr
random sets by SR. See [8, §10] for details.

Call Z weakly 1-random (or Kurtz random) if Z is not in any Π0
1-class

of measure zero (also called a Kurtz test). This class is denoted WR. Since
every weakly 1-generic set is weakly 1-random, the law of large numbers,
namely limn|{i < n : Z(i) = 0}|/n = 1/2, can fail for such a set, so WR
is not a randomness notion. However, we include WR in the discussion
because of the naturalness of its definition.

A little explored notion is partial computable randomness: PCR is the
class of sets on which not even a partial computable martingale succeeds
(i.e., a martingale that may be undefined on strings off the set).

The inclusions are

MLR ⊂ PCR ⊂ CR ⊂ SR ⊂ WR.

They are known to be proper. The classes can even be separated on the
left-c.e. sets, with the possible exception of PCR and CR. (A set Z is left-
c.e. if the set of finite strings lexicographically preceding Z is a c.e. set.
They are also called c.e. reals.)

5.1. Lowness and bases. Let C be a randomness notion. A set A
is low for C-random if every C-random set is C-random relative to A.
We denote this class by Low(C). All the lowness notions for the classes
above have been characterized in terms not referring to those randomness
notions, with the exception of WR.

• Low(MLR) equals K-trivial
• Low(CR) = Low(PCR) equals computable (see [42] for CR, [10, 39]

for PCR)
• Low(SR) equals computably traceable, as mentioned in Section 3.1.

It makes sense to study the degree class Low(C) = {A : CA = C} not only
for randomness notions, but in fact for any relativizable class C where CX

only depends on the Turing degree of X. (However, Low(C) is downward
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closed only if the stronger condition X ≤T Y ⇒ CX ⊇ CY holds, oth-
erwise it is not necessarily a lowness property.) For instance, in [55] it is
shown that the only low for 1-generic sets are the computable ones, and
that low for weakly 1-generic is somewhere between computably trace-
able and hyperimmune-free (joint with J. Miller). For the latter inclusion
one uses the result of Kurtz [25] that the degrees of weakly 1-generic
and hyperimmune sets coincide. The class Low(WR) behaves similarly.
If A computably traceable then A is low for Kurtz tests and hence A is
Low(WR). Since each weakly 1-generic set is in WR, each set in Low(WR)
is hyperimmune-free.

Question 5.1 (Downey, Yu, Kjos-Hanssen). Characterize the lowness
notions for the classes of weakly 1-random, weakly 1-generic and diago-
nally noncomputable (DNC) sets.

Here Z is DNCA if there is a total function f ≤T Z ⊕ A such that
(∀n) f(n) 6= ΦA

n (n).
Recall Definition 4.4. By the Kučera–Gács Theorem, if ML-randomness

implies C-randomness, then every set that is low for C-random is a basis
for C-randomness.

Question 5.2. For each of the weak randomness notions C defined
above, characterize the bases for C-randomness.

Unlike in the case of ML-randomness, the base notion can be strictly
larger than the lowness notion, for instance for CR: each ∆0

2 set that is
not DNC is a base for CR. On the other hand, no PA-degree is a base for
CR (this uses Theorem 4.5). See [16]. It is not known if a ML-random set
can be a base for CR.

Note (Dec. 2005): Stephan and Yu [51] have shown that A is low for
weakly 1-generic iff A is of hyper-immune free and non-DNC degree. This
class strictly includes computably traceable. They also show that each low
for weakly 1-generic is low for weakly random. (May. 2006): Stephan and
Yu [51] have also shown that only the computable sets are low for diago-
nally noncomputable.

§6. KL-randomness. We discuss a major open question: whether
KL-randomness, a notion based on a computable yet very powerful test
concept, can be separated from ML-randomness. This question has been
asked in several places, using different terminology: in [36, Open ques-
tion 8.11], where ML-random sets are called chaotic sequences and KL-
random sets are called unpredictable sequences. Then again in [1, Open
problem 2.9], where ML-random sets are called Σ0

1 random sequences, and
KL-random sets are called nonmonotone computably random sequences.
Although it is believed that ML-randomness is strictly stronger than KL-
randomness, major effort by various researchers has not been sufficient to
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settle the question. However, they did achieve results implying that KL-
randomness is at least much closer to ML-randomness than the notions
encountered previously.

We give the formal definition, but refer to [31] for more details. An
assignment is a (finite or infinite) sequence

x = (r0, b0), . . . , (rn, bn), . . .

of pairs of consisting of a natural number and a bit. The corresponding
bit sequence is b0, b1, . . . . The set of all finite assignments is denoted by
FinA. A scan rule is a partial computable function S : FinA → N such
that (∀w ∈ FinA) S(w) 6∈ dom(w). The assignment σZ

S given by the scan
rule S is defined as follows: let σZ

S (0) = ∅, and if xn = σZ
S (n) and S(xn)

are defined, let

σZ
S (n + 1) = xn

∧ (S(xn), Z(S(xn))).

(σZ
S (n + 1) is undefined otherwise. The symbol ∧ denotes concatenation.)

Definition 6.1. Z is KL-random if for each scan rule S, if the as-
signment σZ

S is infinite, then the corresponding bit sequence is partial
computably random.

Thus the tests are pairs (S, M), where S is a scan rule and M is a partial
computable martingale; (S, M) succeeds on Z if M succeeds on the bit
sequence of σZ

S . (Equivalently, one may replace M by a stake function
defined on the domain of S rather than on strings, see [31].) Given a
test (S, M), there are two tests where the scan rule and the martingale
are total (even primitive recursive) [30], so that one of the two succeeds
wherever (S, M) succeeds. Thus KL-randomness is given by a computable
test concept, called a nonmonotonic betting strategy.

By [31, Remark 9], a nonmonotonic betting strategy that for any Z
scans all places can by replaced by a computable martingale. If it scans
all places only for almost all sets Z, then this is still true, though one
also needs a further test consisting of a Π0

1-class of measure 0. Thus to
exploit the full strength of nonmonotonicity, it is essential to avoid scan-
ning places for a class of sets Z of nonzero measure. Even for computable
Z, the sets of scanned places is in general only c.e., so some may question
that the test concept actually deserves to be called computable.

I Question 6.2. Is there a KL-random set that is not ML-random?

This is unknown even for left-c.e. sets, though the answer is more likely
to be negative here. Thus we separately ask

Question 6.3. Is each left-c.e. KL-random set ML-random?

A single nonmonotonic betting strategy fails on some c.e. set. However,
even the interaction of two is already beyond our present understanding.
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We cannot rule out that there are two nonmonotonic betting strategies
such that one of them succeeds on any non-ML random set.

The following randomness notions may be helpful in approaching the
questions. In general, the next position chosen by a scan rule depends
on the values of Z at the previous places. We consider a special class
of scan rules S where this is not the case: S is given by a computable
injection h : N → N, so the nth position chosen is h(n), and σZ

S (n) is
simply (h(n), Z(h(n))). We say Z is injective random if Z ◦ h is partial
computably random for each computable injection h, and Z is permutation
random if this is so for each computable permutation h of N. The following
should then be easier to answer than Question 6.2.

Question 6.4. Is there a permutation random set that is not ML-
random? An injective random set? What if one requires the sets to be
left-c.e.?

A caveat: permutation randomness is quite strong already. If there is an
unbounded, nondecreasing computable function g such that (∀m) K(Z �
g(m)) ≤ g(m)−m, then Z is not KL-random by Muchnik [36]. He provides
a pair of permutation betting strategies (one in fact monotonic, but both
with partial martingales) so that one of them succeeds on Z. Hence Z
is not even permutation random. On the other hand, it can be shown
that there are partial computably random sets with small initial segment
complexity (say K(Z � n) ≤ log2 n + O(1), see for instance [30]). So by
Muchnik’s result, PCR is not closed under computable permutations, and
hence different from permutation random.

A further result showing that KL-randomness is close to ML-randomness
is that if Z = Z0⊕Z1 is KL-random, then at least one of the “parts” Z0,
Z1 is ML-random [31]. (It is unknown if both are, unless we also assume
that Z is ∆0

2.) The technique, a variant of Muchnik’s technique, can be
refined in order to show that each KL-random has effective dimension 1
(see Section 10 for a Definition). Using a much more complex argument,
this has been extended to the larger class of KL-stochastic sets in [31].

A set A is K-trivial iff each ML-random set is computably random
relative to A [42]. This implies that each low for KL-random (injective
random, permutation random) set is K-trivial.

Question 6.5. Determine the class of low for KL-random sets. Does
it coincide with the low for ML-random sets? Do the same for injective
and permutation randomness.

§7. Notions stronger than ML-randomness.
7.1. Strong Chaitin randomness. Z is n-random if Z is ML-random

relative to ∅(n−1). So, 1-randomness is the same as ML-randomness. In [33]
and [44] it is proved independently that if Z is 2-random then (∃∞n) C(Z �
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n) ≥ n − O(1), that is, within a fixed constant, the plain Kolmogorov
complexity of Z � n infinitely often achieves its maximum value n. The
converse holds as well [44].

Is there an analogous result for prefix-free complexity? The maximum
value of K(x) is |x|+ K(|x|) +O(1). Solovay [49] proved that if K(x) is
maximal then so is C(x) (up to a fixed constant). A set Z is called strongly
Chaitin random if (∃∞n) K(Z � n) ≥ n + K(n) − O(1). Each 3-random
set is strongly Chaitin random, and (by the above) each strongly Chaitin
random set is 2-random.

B Question 7.1. Does strongly Chaitin random equal 3-random, or 2-
random, or neither?

7.2. Weak 2-randomness. Z is weakly 2-random if Z is in no Π0
2-

class of measure 0. We have the inclusions:
2-random ⇒ weakly 2-random ⇒ ML-random,

none of which can be reversed, even for the Turing degrees of the sets.
If Z is of hyper-immune free degree, then Z is weakly 1-random iff Z
is weakly 2-random (an observation of Yu Liang extending [44, Theorem
4.3]). Since there is a ML-random set of hyper-immune free degree, but no
such 2-random set, we have that the first inclusion is proper for degrees.
No weakly 2-random set is ∆0

2, so also the second inclusion is proper.
Since ML-randomness and 2-randomness can be characterized by the

complexity of initial segments, the following question is obvious.

Question 7.2. Is there a characterization of weak 2-randomness via a
growth condition on the initial segment complexity?

There is a non-computable c.e. low for weakly 2-random set, and each
low for weakly 2-random set is K-trivial [9].

Question 7.3. Is low for weakly 2-random the same as K-trivial?

Note (Mar 2006): The authors have independently given an affirmative
answer.

7.3. Effective descriptive set theory. In a little known paper [28],
Martin-Löf considered a randomness notion based on effective descriptive
set theory. He suggested the (lightface) ∆1

1-classes of measure 0 as tests.
Thus, Z is ∆1

1-random if Z is in no null ∆1
1-class.

An analog of ML-randomness in the effective descriptive set theory
setting is studied in [17], where the (open) Σ0

1-classes in the definition of
ML-tests are replaced by open Π1

1-classes. Thus a Π1
1-ML-test is a uniform

sequence {Ui}i∈N of Π1
1 open sets such that µ(Ui) ≤ 2−i, and Z is Π1

1-ML-
random if it passes each such test. One could define ∆1

1-ML-randomness
in a similar way. However, by an observation of Yu Liang involving [47,
Lemma 1.8.III], for each null ∆1

1-class S one can find a ∆1
1-ML-test {Ui}i∈N
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such that S ⊆
⋂

i Ui, so this is the same as Martin-Löf’s notion from [28].
In particular, Π1

1-ML-random implies ∆1
1-random.

In the Π1
1-case things go differently. Let us say a set Z is Π1

1-random
if Z is in no null Π1

1 subset of 2ω. This notion is first mentioned in an
exercise in [47, Ex.2.5.IV] (but called Σ1

1-random there). The notion is
strictly stronger than Π1

1-ML randomness, for instance because any Π1
1-

random set Z satisfies ωZ
1 = ωCK

1 , while an analog of Ω is Π1
1-ML random

and fails to have that property. Recently it was shown that there is a
greatest Π1

1 null set, that is, a universal test. See [17].
These notions behave to some extent similar to algorithmic randomness

notions. For example, by Gandy’s basis theorem, there is a Π1
1-random

Z such that OZ ≤h O. This is analogous to the existence of a low ML-
random set. One can study analogs of most of the questions asked for the
case of algorithmic randomness. For instance,

Question 7.4. Is there a low for Π1
1-random set that is not hyperarith-

metical? Is there a low for ∆1
1-random set that is not hyperarithmetical?

The only low for Π1
1-ML-random sets are the hyperarithmetical ones

[17]. Any low for Π1
1-random set A satisfies ωA

1 = ωCK
1 .

One can also look at versions of KL-randomness in the new setting.
Modifying Definition 6.1, we say that Z is Π1

1-KL random if the definition
of KL-random applies when the functions involved (scan rule and partial
martingale) have a Π1

1 graph. If those functions are required to be total
then the success set is ∆1

1, so that version is the same as ∆1
1 randomness (in

contrast to the algorithmic case where one can require totality by Merkle’s
observation [30] mentioned after Definition 6.1). Clearly Π1

1-ML-random
implies Π1

1-KL-random.

Question 7.5. Is there a Π1
1-KL-random set that is not Π1

1-ML-random?

§8. Chaitin’s halting probability.
8.1. Low for Ω and weakly low for K. A set A is low for Ω if

Ω is ML-random relative to A [44]. This property does not depend on
the choice of the universal prefix-free machine. By Theorem 4.5 and [42],
the ∆0

2 low for Ω sets are just the K-trivial sets. Also 2-random sets are
Low(Ω). In fact, by van Lambalgen’s Theorem 2.2, MLR ∩ Low(Ω) = 2-
random. There are still other low for Ω sets, since each Π0

1-class contains
a low for Ω set [7].

Each 2-random set is of hyperimmune degree [25, 18], as is each non-
computable K-trivial set (because they are ∆0

2). An affirmative answer to
the following question would generalize these facts.

Question 8.1. Is each noncomputable low for Ω set hyperimmune?
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Recall that A is low for K if (∀y) KA(y) ≥ K(y) − O(1) (this notion
coincides with K-triviality [42]). J. Miller [32] introduced the following
weaker form: A is weakly low for K (WLK) if (∃∞y) KA(y) ≥ K(y)−O(1).
He proved that each 3-random set is WLK, and each WLK set is low for
Ω. By the latter result, for ∆0

2 sets, WLK equals low for K.

Question 8.2. Is there a low for Ω set that is not weakly low for K?

A negative answer would show that strongly Chaitin random is equiv-
alent to 2-random (see Question 7.1), since Miller also proved that ML-
random and WLK together imply strongly Chaitin random.

One can study the analog of low for Ω for randomness notions weaker
than ML-random. For instance, for c.e. A, Ω is Schnorr random relative
to A iff A is c.e. traceable [20].

Question 8.3. Characterize the (c.e.) sets A such that Ω is computably
random relative to A. Does this depend on the version of Ω used?

If Ω is computably random relative to a ∆0
2-set A, then A is low2. To

see this, use the result that any left-c.e. computably random set is high
[44, Prop. 4.1], relativized to A.

8.2. Relativizing Chaitin’s halting probability. The questions in
this subsection are from [7]. A partial computable functional MA : 2<ω →
2<ω is a prefix-free oracle machine if MA is prefix-free for every A ∈ 2ω.
Such a machine N is weakly universal if for each A, the prefix-free machine
NA is universal among the prefix-free partial A-computable machines.

Question 8.4. Is there a weakly universal prefix-free oracle machine
N such that ΩN is degree invariant?

In [7], the previous question is answered in the negative under a reason-
able uniformity assumption on U . A prefix-free oracle machine U is uni-
versal if for every prefix-free oracle machine M there is a prefix ρM ∈ 2<ω

such that

(∀A ∈ 2ω)(∀σ ∈ 2<ω) UA(ρMσ) = MA(σ).

In other words, U can simulate any prefix-free oracle machine (for all
oracles) by prepending an appropriate string to the input.

In [7, Theorem 4.3] it is shown that each A-random A-left-c.e. set is of
the form ΩA

U for some universal prefix-free oracle machine U . The following
asks if some version of ΩA can be above ∅′ without actually being left-c.e.

Question 8.5. If X ≥T ∅′ is an A-random A-left-c.e. set for some
A ∈ 2ω, is X necessarily left-c.e.?

A ∆0
2 set A does not serve here, because if ΩA is above ∅′ then A is

K-trivial, and hence ΩA is left-c.e.
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In [7] it is shown that if U is a universal prefix-free oracle machine, then
ΩU is not degree invariant. It is also proved that if A is K-trivial, then ΩA

U

is a left-c.e. set, hence ΩA
U ≡T ∅′. Therefore, ΩU must be degree invariant

at least on the K-trivial sets. It is possible for ΩU to be degree invariant
only for the K-trivial degrees. Is this always the case?

Question 8.6. For a universal prefix-free oracle machine U and a set
A ∈ 2ω that is not K-trivial, is there a B ≡T A such that ΩB

U 6≡T ΩA
U?

It is possible to construct a universal prefix-free oracle machine U for
which range(ΩU ) is not closed [7].

Question 8.7. Is it true for every universal prefix-free oracle machine
U that range(ΩU ) is not closed?

The range of ΩU is a (lightface) Σ1
1-class. However, no better upper

bound on the complexity of the range of ΩU is known. The measure of
the range is a left-Σ1

1 real. In [7] it is shown that this measure is strictly
between 0 and 1.

Question 8.8. Is range(ΩU ) an arithmetical class (or even Borel) for
a universal prefix-free oracle machine U? What can be said about the
complexity of the measure?

8.3. Further questions. While ΩU is wtt-complete for each universal
machine U , it is never tt-complete [3].

Question 8.9. Are there universal machines U0, U1 such that ΩU0 6≡tt

ΩU1?

Fix a universal machine U . For a non-empty set S ⊆ 2<ω, let Ω[S] =
µ{σ : U(σ) ∈ S}, the probability that U halts with output in S. Grigorieff
asked when Ω[S] is ML-random. While this is true for c.e. sets, Becher,
Figueira, Grigorieff and Miller [2] constructed a ∆0

2 set S for which Ω[S]
is not ML-random.

Question 8.10. Is there a Π0
1 set S such that Ω[S] is not ML-random?

What about a Π0
1-complete set?

We can also consider more complicated sets. Becher, et al., proved that
if S is Σ0

n-complete, then Ω[S] is 1-random.

Question 8.11. If S ⊆ 2<ω is Σ0
n-complete for n ≥ 2, then must Ω[S]

be computably n-random? Alternately, can it ever be weakly 2-random?

It is known that for n ≥ 2, if S is a Σ0
n set of strings, then Ω[S] is

not n-random [2]. Also, there is a Σ0
n set S such that Ω[S] is computably

n-random (and from above, another for which Ω[S] is not random).
Note (May 2005): Figueira, Stephan and Wu [14] have answered Ques-

tion 8.9 in the affirmative after seeing a preliminary version of this paper.
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They also made progress on Question 8.1, showing that each low for Ω
set that is in a Π0

1-class without computable members is hyperimmune.
Finally they have shown that 8.10 is true for some machine satisfying a
weak form of universality.

§9. Degrees of Randomness. Various notions have been introduced
to compare the “degree of randomness” of sets. The questions below focus
on the K-degrees, the C-degrees and the van Lambalgen degrees. The
definition of the K-degrees is motivated by Schnorr’s Theorem 2.1, and
draws on the intuition that “more random” sets have more complex initial
segments. We write A ≤K B if (∀n) K(A � n) ≤ K(B � n) + O(1). The
equivalence classes under ≡K are called K-degrees. The C-degrees are
defined in the same way. Both were implicit in Solovay’s manuscript [49],
and studied in more depth by Downey, Hirschfeldt, and LaForte [11].
Note that MLR is closed upward under ≤K , and that the least K-degree
consists of the K-trivial sets.

The van Lambalgen degrees were introduced by Miller and Yu [34] while
studying the K-degrees. We write A ≤vL B if

(∀Z ∈ 2ω)[ A⊕ Z ML-random ⇒ B ⊕ Z ML-random ].

This reducibility is the weakest of those that have been considered; both
≤K and ≤C imply ≤vL [34]. It is known that there is no join in the vL-
degrees because almost every pair of sets has no ≤vL upper bound) [34].
Hence, the same is true for the K-degrees and C-degrees. Is there a meet
operation?

Question 9.1. Do meets always exist in the vL-degrees (K-degrees, C-
degrees)? Is there a non-zero branching degree?

In [5] it is proved that there is a minimal pair of K-degrees, i.e., a pair
of non-zero K-degrees with infimum zero.

9.1. Coherence with natural randomness classes. The various
degree notions are intended to measure the randomness content of sets,
but do they? One way to test would be to determine if they respect
natural randomness classes. It is known that the n-random sets are closed
upward in the vL-degrees for every n ≥ 1, hence also in the K-degrees
and C-degrees [34]. On the other hand, coherence breaks down for weak
randomness notions. For instance, there are sets A <K B such that A
is computably random but B is not even weakly 1-random (this follows
from [30]). Coherence is open for classes stronger than ML-randomness in
all of the degree structures. Most of the randomness notions introduced in
Section 5 relativize in the expected way. For instance, Z is computably n-
random if no martingale computable in ∅(n−1) succeeds on Z. Slight care
must be taken when defining weak n-randomness: Z is weakly n-random
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if it is in no null Π0
n-class (or equivalently for n ≥ 2, if it is in no null

Π0
2[∅(n−2)]-class).

Question 9.2. For every n ≥ 2, are the weakly n-random (Schnorr
n-random, computably n-random) sets closed upwards in the vL-degrees
(K-degrees, C-degrees)?

Related to these questions are the manifold problems of finding natural
initial segment and oracle characterizations for the various randomness
classes. (See below for the relationship between the vL-degrees and rela-
tive randomness.) One example was already given in Question 7.2. Other
examples:

Question 9.3. Is there a natural characterization of the computably
2-random sets in terms of initial segment K-complexity?

Question 9.4. Can the weakly 2-random sets be characterized in terms
of which (ML-random) oracles they are random relative to?

The second example could be particularly interesting. Recall that a set
X is GL2 if X ′′ ≡T (X ⊕ ∅′)′. It is not hard to prove that if a set A is
ML-random relative to a non-GL2 oracle X, then A is weakly 2-random
(J. Miller). Does the converse hold?

9.2. The K-degrees. Recall that ML-random and 1-random are syn-
onyms. Miller and Yu [35] have shown that there are 1-random sets
A <K B. To do so, they characterized the functions f for which there
is a 1-random set A such that (∀∞n) K(A � n) ≤ n + f(n). Such an f
needs to be somewhat large.

Theorem 9.5.
∑

n∈ω 2−f(n) converges iff there is a ML-random A ∈ 2ω

such that (∀∞n) K(A � n) ≤ n + f(n).

The question remains how random A,B can be in the absolute hierar-
chy. For instance,

Question 9.6. Are there comparable K-degrees of 2-random sets?

The relativization of Theorem 9.5 is not helpful for solving this question
because it involves K∅′ .

Question 9.7. Are there maximal K-degrees? Are there maximal 1-
random K-degrees?

While Question 9.6 is unsolved, it even remains open whether almost
every set has maximal K-degree. To approach the second subquestion,
one might hope to characterize the functions g for which there is a ML-
random set A such that (∀∞n) K(A � n) ≥ n + g(n).

As ML-random sets have high K-complexity, one might expect an af-
firmative answer to the following. If so, the two subquestions of Question
9.7 coincide.
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Question 9.8. For every A ∈ 2ω, is there a 1-random set X ≥K A?

Some progress has been made in understanding the cones above random
sets in the K-degrees. There is a ML-random with uncountably much K-
above it [35], while every 3-random set has a countable upper cone [32].

We also know that every ML-random set has a countable K-degree. In
fact, if X ∈ 2ω is ML-random, then X ≡K Y implies X ′ ≡tt Y ′ [32]. It is
not known if this can be improved.

Question 9.9. For ML-random sets X, Y , does X ≡K Y imply X ≡T

Y ?

This is known to fail for nonrandom sets. For example, there are non-
computable K-trivial sets. However, for K-trivial sets it is at least true
that X ≡K Y implies X ′ ≡tt Y ′, since X ′ ≡tt ∅′ when X is K-trivial
[42]. There is no general bound on the complexity of K-equivalent reals
because there are uncountable K-degrees [32].

9.3. The C-degrees. All of the questions asked for ≤K can also be
asked for ≤C . In fact, less is known about the C-degrees. For example:

Question 9.10. Are there ML-random sets A,B ∈ 2ω such that A <C

B?

Furthermore, very little is known about the relationship between ≤K

and ≤C . It is known that X ≡K Y does not, in general, imply X ≡C Y
(because there are noncomputable K-trivial sets). Other basic questions
remain open.

Question 9.11. Does X ≤C Y imply X ≤K Y ? Do ≤K and ≤C differ
on the ML-random sets?

9.4. The vL and LR-degrees. Most of the questions that were asked
for the other degrees structures are easily answered for the vL-degrees (see
[34]). Instead, let us look at two simple reformulations of ≤vL. If A,B ∈ 2ω

are ML-random, then by van Lambalgen’s theorem A ≤vL B iff

(∀Z ∈ 2ω)[ Z is MLA-random implies Z is MLB-random ].

In this form, the reducibility was introduced independently by Nies [42],
who used the notation B ≤LR A (where LR stands for low for random).
He proved that there is a c.e. incomplete A such that A ≡LR ∅′. Not much
is known about the degree structure on c.e. sets.

Question 9.12. Are the LR-degrees of c.e. sets dense?

It is also not known how close sets with the same LR-degree are, from
a computability theoretic perspective, although there are partial results.
Nies proved that if A ≤LR B are c.e., then A′ ≤tt B′. Furthermore, for
any sets A, B, if A⊕B ≤LR B, then A is K-trivial relative to B, and so
again A′ ≤tt B′ [42].
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Question 9.13. Does A ≤LR B imply A′ ≤T B′, or even A′ ≤tt B′?

Another reformulation, which works for all A,B ∈ 2ω, also follows from
van Lambalgen’s theorem: A ≤vL B iff

(∀ ML-random Z ∈ 2ω)[ A is MLZ-random implies B is MLZ-random ].

Informally, B is at least as random as A since it is ML-random relative
to at least as many ML-random oracles as A. Is it necessary to require
that Z is ML-random? We could define an apparently stronger pre-order
A ≤SvL B by dropping the restriction that Z ranges only over ML-random
sets.

Question 9.14. Are ≤vL and ≤SvL actually different?

§10. Effective dimension. Lutz [27] introduced an effective version
of Hausdorff dimension. Although the Hausdorff dimension of the single-
ton {X} is zero, for a set X, the effective (Hausdorff) dimension need
not be. In fact, Ryabko [46] and Mayordomo [29] proved that the effective
dimension of {X} is

dim(X) = lim inf
n→∞

K(X � n)
n

.

See [8, 15.2] for details. L. Staiger [50] shows that this equality can be
derived from the existence of an optimal lower semi-computable semimea-
sure.

I Question 10.1 (J. Reimann, S. Terwijn, 2003). Does every set of pos-
itive effective dimension Turing compute a Martin-Löf random set?

It cannot always be the case that the ML-random set has the same
Turing degree as the given set of positive dimension, because the degrees
of sets of positive dimension are closed upward while the degrees of ML-
random sets are not. For a specific example, take Y ≤T D where D is a
low set of PA-complete degree and Y is ML-random. Then the dimension
of Y ⊕D is 1/2, but there is no ML-random set in its degree by [52].

The answer is negative when one uses many-one reducibility in place of
Turing reducibility (Reimann and Terwijn, see [45, Cor 3.11]). This has
been extended to wtt-reducibility. For each rational α ∈ (0, 1), there is a
∆0

2 set A of effective dimension α such that each Z ≤wtt A has effective
dimension at most α [43]. For Turing reducibility, it is known that there
is a set Y and an unbounded, nondecreasing computable function h such
that (∀n) K(Y � n) > h(n) and Y does not compute a Martin-Löf random
set (Reimann and Slaman, see [45, Thm 4.17], and independently [19, Cor.
7]).

A possible approach toward a negative answer would be to find a lowness
property that admits a set of non-zero dimension, but not a ML-random
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set. Question 10.1 can be broken down into the following subquestions,
each of which remains open. Of course, a negative answer to any of the
following would provide a negative answer to the previous question.

Question 10.2. Consider X ∈ 2ω.
1. If dim(X) ∈ (0, 1), does X compute a set of higher effective dimen-

sion? Arbitrarily close to 1? Equal to 1?
2. If dim(X) = 1, does X compute a Martin-Löf random set?

These are fundamental questions about our ability to effectively com-
press random content. Given a set whose initial segments are guaranteed
to have a high Kolmogorov complexity, can we get our hands on that
complexity? Can we distill it out to produce a random set? Can we at
least get a set with higher information density?

Acknowledgments. We thank R. Downey, D. Hirschfeldt, B. Kjos-
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[52] Frank Stephan. Martin-Löf random sets and PA-complete sets. To appear in

Proc. of LC 2002, Chatzidakis, Koepke and Pohlers, eds., Springer Lecture Notes.
[53] S. Terwijn and D. Zambella. Algorithmic randomness and lowness. J. Symbolic

Logic, 66:1199–1205, 2001.
[54] Michiel van Lambalgen. The axiomatization of randomness. J. Symbolic Logic,

55(3):1143–1167, 1990.
[55] Liang Yu. Lowness for genericity. To appear in Arch. Math. Logic.

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF CONNECTICUT, U-3009

196 AUDITORIUM ROAD

STORRS, CT 06269–3009, USA

E-mail : joseph.miller@math.uconn.edu

DEPARTMENT OF COMPUTER SCIENCE

AUCKLAND UNIVERSITY

AUCKLAND, NEW ZEALAND

E-mail : andre@cs.auckland.ac.nz


	1. Introduction
	2. ML-randomness
	2.1. Turing degrees

	3. K-triviality and combinatorial properties
	3.1. Traceability

	4. K-triviality, ML-randomness and Turing reducibility
	4.1. Definability, exact pairs and bounds
	4.2. Having a ML-random set above
	4.3. Cupping above ' with a ML-random set
	4.4. Almost deep degrees

	5. Notions weaker than ML-randomness
	5.1. Lowness and bases

	6. KL-randomness
	7. Notions stronger than ML-randomness
	7.1. Strong Chaitin randomness
	7.2. Weak 2-randomness
	7.3. Effective descriptive set theory

	8. Chaitin's halting probability
	8.1. Low for  and weakly low for K
	8.2. Relativizing Chaitin's halting probability
	8.3. Further questions

	9. Degrees of Randomness
	9.1. Coherence with natural randomness classes
	9.2. The K-degrees
	9.3. The C-degrees
	9.4. The vL and LR-degrees

	10. Effective dimension

