
Using random sets as oracles

Denis R. Hirschfeldt∗

Department of Mathematics

University of Chicago
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Abstract

Let R be a notion of algorithmic randomness for individual subsets of N.
We say B is a base for R randomness if there is a Z >T B such that Z is R
random relative to B. We show that the bases for 1-randomness are exactly
the K-trivial sets and discuss several consequences of this result. We also
show that the bases for computable randomness include every ∆0

2 set that is
not diagonally noncomputable, but no set of PA-degree. As a consequence,
we conclude that an n-c.e. set is a base for computable randomness iff it is
Turing incomplete.

1 Introduction

The interaction between algorithmic randomness and computability-theoretic no-
tions such as Turing reducibility has received much attention recently (see for
instance the survey article [4]). In this paper, we focus on the computational
power of a sufficiently random set.

We work in the Cantor space 2ω, identifying an element of this space with the
set of natural numbers of which it is the characteristic function. For finite binary
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strings σ and τ , let σ 4 τ denote that σ is an initial segment of τ . Similarly,
for a set X and a string σ, let σ ≺ X denote that σ is an initial segment of (the
characteristic function of) X.

The space 2ω is endowed with the tree topology, which has as basic closed-open
sets [σ] = {X ∈ 2ω : σ ≺ X}, where σ ∈ 2<ω. The usual Lebesgue measure µ on
2ω is induced by giving each basic closed-open set [σ] the measure 2−|σ|.

For more on notions of randomness and their relationships to computability
theory, see [3, 4, 21], and for basic notions of computability theory used below, see
[13, 22, 23, 28].

The starting point of our investigations is the fact that if a set A is not com-
putable, then the sets that compute A are not typical, as witnessed by the following
classic theorem.

Theorem 1.1 (de Leeuw, Moore, Shannon, and Shapiro [12]; Sacks [24]). If A is
not computable then µ({Z : Z >T A}) = 0.

However, for any given notion R of algorithmic randomness for individual subsets
of N,1 it is trivially true that there are noncomputable sets A such that {Z : Z >T

A} contains an R random set. (This may even be true for all A; see Theorem
1.10 below.) Still, one might expect {Z : Z >T A} not to contain sets that are
R random relative to A. (We will discuss relativization of notions of randomness
below.) As we will see, though, if A is sufficiently simple, there may be sets that
are R random relative to A and still manage to compute A.

Definition 1.2. Let R be a randomness notion. We say B is a base for R ran-
domness if there is a Z >T B such that Z is R random relative to B.

We study bases for two well-known randomness notions, 1-randomness and com-
putable randomness, which we now define.

The first successful notion of randomness for individual sets was introduced by
Martin-Löf [16], using an effective measure-theoretic approach, which came from
the intuition that a random set should be typical, that is, not have any effectively
rare properties. Martin-Löf’s idea was to formalize the notion of an effectively null
class, and to say that a set is random if it avoids any such class.

Definition 1.3. A Martin-Löf test (ML-test) is a uniformly computably enumer-
able (c.e.) sequence {Ui}i∈N of Σ0

1-classes such that µ(Ui) 6 2−i. A set A ⊆ 2ω is
Martin-Löf null (ML-null) if there is an ML-test {Ui}i∈N such that A ⊆

⋂
i Ui. A

set A is Martin-Löf random, or 1-random, if {A} is not ML-null.

Thus ML-null sets are small in an effective sense and the 1-random sets are those
that do not belong to any effectively small set.

1Two such notions will be formally defined below.
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Another approach to the definition of randomness is through the incompress-
ibility paradigm, as embodied in the concept of Kolmogorov complexity. The idea
here is that a random set should be incompressible; that is, its initial segments
should not have short descriptions.

For a partial computable function f , we write f(σ) ↓ if f(σ) is defined, and
f(σ) ↑ otherwise. We say that a partial computable function f : 2<ω → 2<ω

is prefix-free if the domain of f is an antichain, that is, if whenever f(σ) ↓ and
σ ≺ τ , we have f(τ) ↑. A prefix-free partial computable function U is universal
if for each prefix-free partial computable function f there is a string ρ such that
∀σ [U(ρσ) = f(σ)].

The prefix-free Kolmogorov complexity K(σ) of σ ∈ 2<ω is defined to be
min{|τ | : U(τ) = σ}. The idea is that K(σ) is the length of the shortest de-
scription of σ. The value of K(σ) is independent of the choice of U , up to an
additive constant independent of σ. It is easy to see that the function K can
be computably approximated from above. Let Ks(σ) be the stage s approxima-
tion to K(σ). For n ∈ N, let K(n) = K(0n). See [15] for more on Kolmogorov
complexity, and see [4] for a discussion of why we use prefix-free Kolmogorov com-
plexity (rather than the earlier notion of plain Kolmogorov complexity) to obtain
an alternate characterization of 1-randomness.

Theorem 1.4 (Schnorr, see Chaitin [1]). A set A is 1-random iff there is a constant
d such that K(A � n) > n− d for all n.

Let RX
d = {σ : KX(σ) 6 |σ|− d}, where KX is prefix-free Kolmogorov complexity

relativized to X in the natural way. It is not hard to check that (RX
d )d∈N is an

ML-test relative to X. Theorem 1.4 says that (RX
d )d∈N is a universal ML-test

relative to X, in the sense that Z is 1-random relative to X iff Z /∈
⋂

d RX
d . We

write Rd for R∅
d.

A third approach to the definition of randomness is through the unpredictability
paradigm, using betting strategies known as martingales. The idea here is that
one should not be able to make much money betting on the successive bits of a
random set.

Definition 1.5. A martingale is a function M : 2<ω → R+ ∪ {0} such that
M(σ) = 1

2
(M(σ0) + M(σ1)) for all σ. It will be convenient to assume that if M

is a martingale then M(λ) 6 1, where λ is the empty string. A martingale M
succeeds on A if lim supn M(A � n) = ∞.

A martingale M is computably enumerable if the reals M(σ) are uniformly c.e.
and computable if the reals M(σ) are uniformly computable. (Here a real is c.e.
if its left cut is a c.e. set, or, equivalently, if it is approximable from below by a
computable sequence of rationals.)
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Theorem 1.6 (Schnorr [25]). A set A is 1-random iff no c.e. martingale succeeds
on A.

We note for future reference that there is a universal c.e. martingale, that is, a c.e.
martingale M that succeeds on a set Z iff Z is not 1-random: For σ ∈ 2<ω, let
M(σ) be the sum of all 2|τ |−K(τ) where τ is a proper prefix of σ, plus the sum of
all 2|σ|−K(τ) where σ is a prefix of τ . We can approximate M by the computable
martingales Ms, where the sum is taken over all τ of length 6 s, and we use Ks(τ)
in place of K(τ). It is not hard to check that M(σ) = sups Ms(σ) is a universal
c.e. martingale.

Given Theorem 1.6, it is natural to consider the effect of replacing c.e. martin-
gales by computable martingales, which leads to the following randomness notion.

Definition 1.7 (Schnorr [25]). A set A is computably random if no computable
martingale succeeds on A.

Of course, all of the above notions can be relativized to a given set A, yielding
definitions of 1-randomness relative to A, computable randomness relative to A,
and so forth. For example, we can define a martingale M to be A-computable if
the reals M(σ) are uniformly computable using A as an oracle, and then define
a set B to be computably random relative to A if no A-computable martingale
succeeds on B.

One of the most interesting phenomena to arise from recent work on relative
algorithmic randomness is an increased understanding of the importance of the
class of K-trivial sets, first studied by Chaitin [2] and Solovay [29]. These sets
are the ones that have the lowest possible initial segment prefix-free Kolmogorov
complexity (up to an additive constant).

Definition 1.8. A set A is K-trivial if there is a constant d such that K(A � n) 6
K(n) + d for all n.

Relative randomness can also be used to define classes of sets that are computa-
tionally weak. For example, for a relativizable randomness notion R, a set A is
low for R randomness if every R random set is R random relative to A. In 1998,
Muchnik defined the class of low for K sets, which are those sets A that cannot be
used to reduce the prefix-free complexity of any string; that is, there is a constant
c such that ∀σ [KA(σ) > K(σ)− c]. It is easy to see that if a set is low for K then
it is both K-trivial and low for 1-randomness. Two of the main results in [20] are
that every set that is low for 1-randomness is K-trivial and that every K-trivial
set is low for K. (For another proof of the first result, see Corollary 3.1 below.)
Thus all three classes coincide.

Kučera [9] and Gács [6] showed that every set is computable in some 1-random
set. Thus, if 1-randomness implies R randomness, then every set that is low for
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R randomness is a base for R randomness. In Theorem 2.1 below, we show that
for 1-randomness the converse also holds. That is, every base for 1-randomness is
K-trivial and hence low for 1-randomness. This result gives yet another charac-
terization of this natural class of sets that are randomness-theoretically weak. As
we discuss below, the situation is quite different for computable randomness.

We note that the proof of Theorem 2.1 can also be modified to show directly
that every base for 1-randomness is low for K (see [21]).

The Kučera-Gács Theorem shows that Theorem 1.1 cannot be effectivized, in
the sense that {Z : Z >T A} is never ML-null. However, we might still hope that
{Z : Z >T A} is small in the sense of being ML-null relative to A. It follows from
Theorem 2.1 that this is the case iff A is not K-trivial. Thus the K-trivial sets are
the ones that are close to being computable, in the sense that many sets compute
them. This and other consequences of Theorem 2.1 are discussed in Section 3.
Section 4 deals with issues of uniformity in some of these results.

Our characterization of the bases for 1-randomness has already found a sur-
prising application in a different area of computability theory. A Scott set is a
Turing ideal (i.e., a collection of sets closed downwards under Turing reducibility
and closed under joins) S such that for each infinite binary tree T ∈ S, there is an
infinite path of T in S. Scott sets occur naturally in various contexts, such as the
study of models of arithmetic and reverse mathematics. H. Friedman and McAllis-
ter independently asked the following question: if S is a Scott set and X ∈ S is not
computable, does there necessarily exist a Y ∈ S such that X |T Y ? Kučera and
Slaman [10] have recently given a positive answer to this question using Theorem
2.1.

In Section 5, we study bases for computable randomness, and connect them
with diagonally noncomputable sets and PA-degrees.

A set A is diagonally noncomputable if there is a total function f 6T A such
that f(n) 6= Φn(n) for all n, where Φn is the nth partial computable function. A
set A has PA-degree if it computes a completion of Peano Arithmetic.

We show that the bases for computable randomness include every ∆0
2 set that

is not diagonally noncomputable, but no set of PA-degree. As a consequence, we
conclude that an n-c.e. set is a base for computable randomness iff it is Turing
incomplete. Nies [20] has shown that the only sets that are low for computable
randomness are the computable ones, so the situation here is quite different from
the 1-randomness case.

We finish this section with two important tools we will use below, the Kraft-
Chaitin Theorem2 and a strong form of the Kučera-Gács Theorem mentioned
above.

2We retain the usual terminology “Kraft-Chaitin” for this theorem, which appears in Chaitin
[1], and certain associated concepts, but note that it appeared earlier in Levin’s dissertation [14].
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A Kraft-Chaitin set (KC-set) is a c.e. set of pairs {〈di, τi〉 : i ∈ N} (which we
call axioms), with di ∈ N and τi ∈ 2<ω, such that

∑
i 2

−di 6 1. We say that 2−di

is the weight of the axiom 〈di, τi〉.

Theorem 1.9 (Kraft-Chaitin Theorem; Levin [14]). Let S = {〈di, τi〉 : i ∈ N} be
a Kraft-Chaitin set. Then there is a constant c, which can be obtained effectively
from an index for S, such that K(τi) 6 di + c for all i.

Theorem 1.10 (Kučera-Gács Theorem [6], [9]). Let c ∈ N. There is a functional
Θ such that for each A there is a Z /∈ Rc for which ΘZ = A with use function
bounded by 2n.

See Merkle and Mihailović [17] for a proof of this result (and an improvement of
the bound on the use of Θ).

2 K-triviality and Bases for 1-randomness

As discussed above, every K-trivial set is a base for 1-randomness. We now prove
the converse. As we show in Corollary 3.2, this result implies that the K-trivial
sets are exactly those sets A that are too weak to compute a null set containing
{Z : Z >T A}.

Theorem 2.1. Every base for 1-randomness is K-trivial.

Proof. Suppose that A is a base for 1-randomness, that is, there are a Z and
a Φ such that ΦZ = A and Z is 1-random relative to A. We will enumerate a
Kraft-Chaitin set Ld for each d ∈ N. We want to ensure that there is a d such that
Ld contains an axiom 〈K(|τ |) + d + 2, τ〉 for each τ ≺ A. The idea is to build sets
Cτ

d ⊆ 2ω for d ∈ N and τ ∈ 2<ω with the following properties.

• The Cτ
d are uniformly c.e.

• For each fixed d, the Cτ
d are pairwise disjoint.

• If we let Ud =
⋃

τ≺A Cτ
d , then the following hold.

– (Ud)d∈N is a Martin-Löf test relative to A.

– If Z /∈ Ud then µ(Cτ
d ) = 2−K(|τ |)−d for all τ ≺ A.

We then define Ld by enumerating an axiom 〈Ks(|τ |)+d+2, τ〉 at stage s whenever
we have not previously enumerated such an axiom and µ(Cτ

d [s]) > 2−Ks(|τ |)−d−1.
Since the Cτ

d are pairwise disjoint, this is a KC-set. Since Z is 1-random relative
to A, we have Z /∈ Ud for some d and hence µ(Cτ

d ) = 2−K(|τ |)−d for all τ ≺ A,
which implies that 〈K(|τ |) + d + 2, τ〉 ∈ Ld for all τ ≺ A, as desired.
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To build the Cτ
d , as long as µ(Cτ

d ) < 2−Ks(|τ |)−d, we look for strings σ such that
τ 4 Φσ and µ(Cτ

d ) + 2−|σ| 6 2−Ks(|τ |)−d, and put [σ] into Cτ
d . To keep our sets

pairwise disjoint, we then ensure that no [σ′] such that σ′ is compatible with σ is
later put into any Cν

d . If Z /∈ Ud, then no [σ] with σ ≺ Z is ever put into any
Cτ

d , which means that the measure of each Cτ
d with τ ≺ A = ΦZ must eventually

exceed 2−K(|τ |)−d−1.
We now give the formal details of the construction. For each d ∈ N, we have

a separate procedure, which acts as follows. Initially, all strings are unused. Each
stage s has 2s many substages, one for each σ with |σ| = s. Let Cτ

d,σ denote the
approximation to Cτ

d at the beginning of the substage corresponding to σ. For
each σ with |σ| = s in turn, if σ is not used and Φσ[s]↓, then look for the shortest
τ 4 Φσ[s] such that µ(Cτ

d,σ) + 2−s 6 2−Ks(|τ |)−d. If there is such a τ , then put [σ]
in Cτ

d and declare every extension of σ to be used.
Note that, for a fixed d, the Cτ

d are pairwise disjoint, as we only enumerate
unused strings of length s at stage s.

Let Cd =
⋃

τ≺A Cτ
d . The sets Cd are uniformly A-c.e., and

µ(Cd) =
∑
τ≺A

µ(Cτ
d ) 6

∑
τ≺A

2−K(|τ |)−d < 2−d,

so (Cd)d∈N is a Martin-Löf test relative to A. Since Z is 1-random relative to A,
there must be a d such that Z /∈ Cd.

We claim that for such a d we have µ(Cτ
d ) = 2−K(|τ |)−d for all τ ≺ A. To

establish this claim, suppose that µ(Cτ
d ) < 2−K(|τ |)−d for some τ ≺ A. Let s be a

stage such that

• K(|τ |) = Ks(|τ |),

• µ(Cτ
d ) + 2−s 6 2−K(|τ |)−d, and

• ΦZ � (|τ |+ 1)[s]↓.

Then [Z � (s + 1)] must enter Cτ
d at the substage corresponding to Z � (s + 1)

unless it enters some other Cτ ′

d or is already used. In any case, there is a ν and
an n such that [Z � n] is in Cν

d . But then we must have ν 4 ΦZ�n ≺ ΦZ = A, so
[Z � n] is in Cd, and hence Z ∈ Cd, contrary to our choice of d. This establishes
the claim.

We now build the KC-sets Ld as described above. To build Ld, we enumerate an
axiom 〈Ks(|τ |) + d + 2, τ〉 at stage s whenever we have not previously enumerated
this axiom and µ(Cτ

d [s]) > 2−Ks(|τ |)−d−1. For a fixed τ , there is at most one axiom
per length, so all axioms 〈r, τ〉 together contribute at most twice the weight of the
one with smallest r. Thus the total weight of our axioms is bounded by

∑
τ µ(Cτ

d ),
which is less than or equal to 1, since the Cτ

d are pairwise disjoint. If d is such
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that Z /∈ Cd, then µ(Cτ
d ) = 2−K(|τ |)−d for all τ ≺ A, so we eventually enumerate

〈K(|τ |) + d + 2, τ〉 into Ld. This shows that A is K-trivial.

3 Further connections between K-triviality and

1-randomness

We now discuss consequences of our main result, and give conditions under which
we can replace 1-randomness relative to A by unrelativized 1-randomness. More
precisely, we show that if A is c.e., Z >T A, and Z �T ∅′, then to ensure that
A is K-trivial it is enough to assume that Z is 1-random. We also include two
open questions related to our main result, both of which have been the subject of
intense recent research.

The following corollary to Theorem 2.1 was first proved by different means in
[20]. The more complex proof there is via martingales, and yields the stronger
result that a set A is K-trivial if each 1-random set is computably random relative
to A.

Corollary 3.1. Every set that is low for 1-randomness is K-trivial.

Proof. Let A be low for 1-randomness. By the Kučera-Gács Theorem, there is a
1-random Z >T A. Since Z is also 1-random relative to A, it follows that A is a
base for 1-randomness, and hence K-trivial.

Since there is a universal ML-test, a set A is a base for 1-randomness iff {Z : A 6T

Z} is not ML-null relative to A. So we have the following consequence of Theorem
2.1.

Corollary 3.2. A set A is not K-trivial iff {Z : A 6T Z} is ML-null relative
to A.

As a byproduct of the method of the proof of Theorem 2.1, we obtain another, re-
lated characterization of the K-trivial sets, which also says that a Turing functional
can almost be viewed as a special kind of oracle Martin-Löf test.

Proposition 3.3. A set A is not K-trivial iff for each Turing functional Φ, there
is an oracle ML-test (CX

d )d∈N such that {Z : A = ΦZ} =
⋂

d CA
d .

Proof. If A is K-trivial then there are a Φ and a Z such that ΦZ = A and Z is
1-random relative to A. (Indeed, by the Kučera-Gács Theorem, there is a single Φ
that works for all K-trivial sets.) So {X : A = ΦX} is not ML-null relative to A.

Now suppose that A is not K-trivial. For a given functional Φ, define the sets
Cτ

d as in the proof of Theorem 2.1, but with the minor change that for each d
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only Cτ
d with |τ | > d are built. Let CX

d =
⋃

τ≺X, |τ |>d Cτ
d . Then, as shown in the

proof of Theorem 2.1, (CX
d )d∈N is an oracle ML-test, and, since A is not K-trivial,

{Z : A = ΦZ} ⊆
⋂

d CA
d . But if ΦZ 6= A then there is a d such that A � d ⊀ ΦZ ,

and hence Z /∈ CA
d . So {Z : A = ΦZ} =

⋂
d CA

d .

If A ⊕ B is 1-random then we would intuitively expect that A and B share very
little common information. Indeed, van Lambalgen [11] showed that in this case A
and B are 1-random relative to each other. On the other hand, Kučera [9] proved
that no two ∆0

2 1-random (or even diagonally noncomputable) sets form a minimal
pair. However, using Theorem 2.1, we can show that our intuition is essentially
correct, in the following sense.

Corollary 3.4. If A⊕B is 1-random, then any X 6T A, B is K-trivial.

Proof. As mentioned above, A is 1-random relative to B, and hence relative to
X. So X is a base for 1-randomness, and thus is K-trivial.

We next wish to establish a corollary relating the notions of K-triviality and
unrelativized 1-randomness. We first prove a lemma saying that if A is c.e., and a
1-random set Z is not too complex, then Z is 1-random relative to A.

Lemma 3.5. Let A be c.e., and let Z be 1-random and such that ∅′ 
T A ⊕ Z.
Then Z is 1-random relative to A.

Proof. Suppose Z is not 1-random relative to A. Thus Z ∈
⋂

d RA
d .

The idea of the proof is the following. Since A ⊕ Z 6>T ∅′, infinitely many x
enter ∅′ after (some initial segment of) Z enters RA

x , with A correct on the use.
This allows us to convert (RA

d )d∈N into an unrelativized ML-test for Z.
We now give the details. Let RA

d [s] = RAs
d,s be the approximation at stage

s of the dth set in the universal ML-test with oracle As. We may assume that
µ(RA

d [s]) 6 2−d for all s. Each enumeration of a string σ into RY
d corresponds to

a convergent computation with oracle Y , and hence has an associated use on this
oracle. The following function is computable in A⊕ Z:

f(x) = µs ∃k [Z � k ∈ RA
x [s] with use u ∧ As � u = A � u].

If k and s are as in the definition of f(x), then, because As � u is stable, Z �
k ∈ RA

x [t] for all t > s. (Here we need that A is c.e., not merely ∆0
2.) Let

m(x) ' µs [x ∈ ∅′s] (i.e., m(x) is defined only if the right side is). Then ∃∞x ∈
∅′ [m(x) > f(x)], since otherwise we could compute ∅′ from A ⊕ Z because, for
almost all x, we would have x ∈ ∅′ ⇔ x ∈ ∅′f(x).

Let
Sd =

⋃
x>d, x∈∅′

RA
x [m(x)].
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Then the sequence (Sd)d∈N is uniformly c.e., and µ(Sd) 6 2−d. Moreover, Z ∈⋂
d Sd, because m(x) > f(x) for infinitely many x. Since Z is 1-random, this is a

contradiction.

Corollary 3.6. Suppose A is c.e. and Z is a 1-random set such that A 6T Z and
∅′ 
T Z. Then A is K-trivial.

Proof. Suppose Z >T A is 1-random. If A is not K-trivial, then by Theorem 2.1,
Z is not 1-random relative to A. So, by Lemma 3.5, ∅′ 6T A⊕ Z ≡T Z.

Stephan [30] showed that if Z is a 1-random set such that ∅′ 
T Z, then Z does
not have PA-degree. Corollary 3.6 is further evidence that the 1-random sets not
above ∅′ are computationally weak, and hence very different from the 1-random
sets above ∅′.

We do not know at present whether Corollary 3.6 is in fact a characterization
of K-triviality for c.e. sets. This is Question 4.6 in [18].

Question 3.7. If A is K-trivial, must there be a 1-random Z >T A such that
∅′ 
T Z?

It would not alter the question to restrict attention to c.e. K-trivial sets, since
Nies [20] showed that every K-trivial set is computable in some c.e. K-trivial set.

Recall that the proof of Corollary 3.6 can be adapted to show that A is low for
K. Thus an affirmative answer to Question 3.7 would also give a new proof of the
result in [20] that every K-trivial set is low for K.

Remark 3.8. Corollary 3.6 can also be proved directly, by combining the proofs
of Theorem 2.1 and Lemma 3.5. Suppose that A is c.e. and not K-trivial, ΦZ = A,
and ∅′ 
T Z. We will show that Z is not 1-random by building an ML-test (Ei)i∈N
such that Z ∈

⋂
i Ei.

Define Cτ
d as in the proof of Theorem 2.1. For each d, the KC-set Ld fails to

show that A is K-trivial, so we must have µ(Cτ
d ) < 2−Ks(|τ |)−d for some τ ≺ A. So

after Ks(|τ |) has settled, Cτ
d keeps requesting strings. Thus for each d there is an

n such that Z � n ∈ Cτ
d for some τ ≺ A. Now let g(d) be the least stage s such

that Z � n is in Cτ
d,s for some n and τ with τ ≺ A and τ ≺ As.

The function g is computable in Z, so if we let m be as in the proof of Lemma
3.5, then there are infinitely many d such that m(d) > g(d). Now define

Ei =
⋃

d>i, d∈∅′

⋃
τ≺Am(d)

Cτ
d,m(d).

Then the sets Ei are uniformly c.e. and µ(Ei) 6
∑

d>i 2
−d = 2−i, so (Ei)i∈N is an

ML-test. Furthermore, for each i there is a d > i such that m(d) > g(d). For such
a d, there is an n such that Z � n is in Cτ

d for some τ ≺ Am(d), so Z � n is in Ei.
Thus Z ∈

⋂
i Ei, and hence Z is not 1-random.
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We finish this section with an application of Theorem 2.1 noted by Kučera. Let
us say that A is weakly ML-cuppable if A ⊕ Z >T ∅′ for some 1-random Z �T ∅′,
and that A is ML-cuppable if one can choose Z <T ∅′.

Question 3.9 (Kučera, see [18]). Which ∆0
2 sets are (weakly) ML-cuppable? Is

one of the notions equivalent to not being K-trivial?

Fix a prefix-free oracle machine U such that UA is universal for all oracles A, and
let ΩA be the halting probability of UA, that is,

∑
UA(σ)↓ 2−|σ|. (For more on such

Omega operators, see [5].)
If A 6T ∅′ is not K-trivial, then ΩA �T ∅′ by Theorem 2.1. Since ∅′ 6T A′ ≡T

A ⊕ ΩA, it follows that A is ML-cuppable. If A is low then in fact ΩA <T ∅′, so
every ∆0

2 set that computes a low non-K-trivial set is ML-cuppable. Such sets
include: (1) any ∆0

2 1-random set A, since A ∩ 2N is low [5, Thm. 3.4]; (2) any
non-low2 or c.e.a. set, as each such set is the supremum of a pair of 1-generic sets
(see [13, Ex. IV.3.15] for the first case); (3) any c.e. non-K-trivial set A, because A
is a disjoint union of c.e. low sets A0, A1, and at least one of these is not K-trivial.

Nies has shown that there is a (necessarily K-trivial) noncomputable c.e. set
that is not weakly ML-cuppable.

4 Uniformity

It is not hard to see that the proof of Theorem 2.1 is uniform, in the sense that if
Z is 1-random and ΦZ = A, then a constant b such that A is K-trivial via b can be
obtained effectively from an index for Φ and a constant c such that Z /∈ Rc. On the
other hand, Corollary 3.6 is necessarily nonuniform. It is not hard to see why the
particular construction in Remark 3.8 is nonuniform. From a c such that Z /∈ Rc,
one can compute an i such that Z /∈ Ei, but that is not enough, since we would
now need ∅′ to determine which KC-set Ld shows that A is not K-trivial, namely
the one where d > i is least such that m(d) > g(d). The following proposition
shows that this nonuniformity cannot be avoided. In fact, even if Z is low and we
are also given a lowness index for Z, we cannot effectively determine a constant
for the K-triviality of A.

Proposition 4.1. There is no computable function f(c, e, i, p) such that, if A =
We = ΦZ

i , where Z ′ = Φ∅′
p , and Z /∈ Rc, then A is K-trivial via b = f(c, e, i, p).

Proof. Let f(c, e, i, p) be computable. Fix c ∈ N. We effectively build a c.e. set A
(which will in fact be finite) and reductions Φ and Ψ such that there is a Z /∈ Rc

with ΦZ = A and Ψ∅′
= Z ′. By the Recursion Theorem, we may assume we know

indices e, i and p such that A = We = ΦZ
i and Φ∅′

p = Z ′. We will ensure that A is
not K-trivial via b = f(c, e, i, p).
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(In more detail, we use Smullyan’s extension of the Recursion Theorem (see
[28]), with parameter c and three arguments e, i, p. We build a c.e. set A = Wf(e,i,p),

and Turing functionals Φg(e,i,p) and Φh(e,i,p) such that Φ∅′

h(e,i,p) is of the form Z ′

where ΦZ
g(e,i,p) = A. By Smullyan’s Theorem, we may assume that A = Wi, that

Φg(e,i,p) = Φe and that Φh(e,i,p) = Φp, where the latter equalities hold for all oracles.)
There is a constant d such that K(2m) 6 2 log m+d for all m. Let N be of the

form 2m and such that N > 22 log log N+d+b+1. We build A by putting a number less
than N into A at stage s whenever Ks(As � N) 6 2 log log N + d + b. Since there
are fewer than N many strings σ of length N such that K(σ) 6 2 log log N +d+ b,
this procedure ensures that K(A � N) > 2 log log N + d + b > K(N) + b. Thus A
is not K-trivial via b.

The idea now is to find a string σ of length 2N such that [σ] * Rc and σ
computes A � N via the functional Θ from the Kučera-Gács Theorem (Theorem
1.10). We then extend σ to a low set Z by applying the Low Basis Theorem [8].

In more detail, since ∅′ can compute K(τ) for every τ , there is a ∅′-computable
procedure Γ∅

′
for determining a σ of length 2N such that [σ] * Rc and Θσ � N =

A � N , where N is as above (so that A ⊆ [0, N)).
Since the complement of Rc is a Π0

1 class, the Low Basis Theorem implies that
given a string τ , we can effectively find an index lτ such that if [τ ] * Rc then Φ∅′

l

is the jump of a low set Z /∈ Rc such that τ ≺ Z.
Now we define ΨX as follows: Run ΓX until it returns a string τ of length 2N .

If that happens, then determine lτ as above and simulate ΦX
lτ

.

Then Ψ∅′
= Φ∅′

lσ
is the jump of a low set Z /∈ Rc such that σ ≺ Z.

Finally, define the reduction Φ as follows: ΦX(k) = ΘX(k) if k < N , and
ΦX(k) = 0 otherwise. Then ΦZ � N = ΘZ � N = Θσ � N = A � N . Since
A ⊆ [0, N), this means that ΦZ = A.

5 Bases for computable randomness

In this section, we show that the bases for computable randomness include every
∆0

2 set that is not diagonally noncomputable, but no set of PA degree. As a
consequence, we conclude that an n-c.e. set is a base for computable randomness
iff it is Turing incomplete. We begin with a couple of lemmas that will be useful
below.

Lemma 5.1. If B′ >T A′′ and B >T A, then there is a B-computable martingale
MB that dominates all A-computable martingales, in the sense that, for each A-
computable martingale D, there is a k such that kMB(σ) > D(σ) for all σ.

Proof. It is enough to produce a uniformly B-computable sequence of martingales
MB

0 , MB
1 , . . . containing all A-computable martingales, since we can then let MB =

12



∑
n 2−n−1MB

n . (Recall that we are assuming that M(λ) 6 1 for every martingale
M .)

To obtain such a list, we begin with an effective list ΨA
0 , ΨA

1 , . . . of all partial
A-computable martingales and use the fact that, since B′ >T A′′, there is a B-
computable function f that dominates all A-computable functions. Let g0, g1, . . .
be a uniformly B-computable sequence consisting of all functions that are eventu-
ally equal to f (that is, ∃n ∀m > n [f(m) = ge(m)]). Note that each A-computable
function is majorized by some ge.

For n = 〈i, e〉, define MB
n as follows. If ΨA

i (λ)[ge(0)] ↓, then let MB
n (λ) =

ΨA
i (λ). Otherwise, let MB

n (σ) = 1 for all σ. If MB
n (σ) has been defined and

MB
n (σ0) and MB

n (σ1) have not yet been defined, then define them as follows.
If ΨA

i (σj)[ge(|σ| + 1)] ↓ for j = 0, 1, then let MB
n (σj) = ΨA

i (σj) for j = 0, 1.
Otherwise, let MB

n (τ) = MB
n (σ) for all τ � σ.

It is easy to see that the MB
n are uniformly B-computable martingales. Fur-

thermore, if ΨA
i is total then there is an e such that ΨA

i (σ)[ge(|σ|)]↓ for all σ. For
n = 〈i, e〉, we have MB

n = ΨA
i .

Recall that G is 1-generic relative to A if for every A-c.e. S ⊆ 2<ω there is a σ ≺ G
such that either σ ∈ S or S contains no extension of σ.

Lemma 5.2. If A is not diagonally noncomputable and G is 1-generic relative to
A, then A⊕G is not diagonally noncomputable.

Proof. Let e ∈ N be such that ΦA⊕G
e is total. We need to show that there is an

n such that ΦA⊕G
e (n)↓= Φn(n)↓.

Let S = {τ ∈ 2<ω : ∃n [ΦA⊕τ
e (n)↓= Φn(n)↓]}. If S contains an initial segment

of G then ΦA⊕G
e (n)↓= Φn(n)↓ for some n. Otherwise, since S is c.e. relative to A,

there is a σ ≺ G such that S contains no extension of σ. Since ΦA⊕G
e is total, for

each n we can A-computably find a τn � σ such that ΦA⊕τn
e (n) ↓. Since τn /∈ S,

we have ΦA⊕τn
e (n) 6= Φn(n). So the function f defined by f(n) = ΦA⊕τn

e (n) is a
total A-computable function such that f(n) 6= Φn(n) for all n, which contradicts
the assumption that A is not diagonally noncomputable.

We are now ready to show that every ∆0
2 set that is not diagonally noncomputable

is a base for computable randomness.

Theorem 5.3. If A 6T ∅′ is not diagonally noncomputable, then A is a base for
computable randomness, and indeed there is a Z >T A such that Z �T ∅′ and Z is
computably random relative to A.

Proof. Let A 6T ∅′ be not diagonally noncomputable. Then A <T ∅′. The
relativized form of the Shoenfield Jump Inversion Theorem [26] (see also [13, 22,
23]) allows us to obtain sets B and G such that
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• G is 1-generic relative to A,

• B = A⊕G, and

• B′ ≡T A′′.

Since G is 1-generic relative to A and ∅′ is c.e. but not computable in A, we also
have that B 6>T ∅′ (see Proposition XI.2.3 in [23]). We will build a set Z that is
computably random relative to A and such that A 6T Z 6T B.

Since B′ ≡T A′′, there is a B-computable martingale MB that dominates all
A-computable martingales, in the sense of Lemma 5.1.

There is a computable ascending sequence 0 = k0 < k1 < · · · such that for
every i > 0 and every σ of length ki−1, there are at least 2 extensions τ � σ of
length ki such that MB(τ) < MB(σ) + 2−i (see Merkle and Mihailović [17]).

We define σ0 ≺ σ1 ≺ · · · with |σi| = ki by recursion, using the oracle B. We
then let Z =

⋃
i σi. Let cA be the convergence modulus of A as defined by Miller

and Martin [19]:

cA(x) = min{s > x : ∀y 6 x [As(y) = A(y)]}.

Let σ0 be the empty string. For i > 0, given σi−1, we can choose an extension σi

of σi−1 such that

• |σi| = ki,

• MB(σi) < MB(σi−1) + 2−i, and

• if Φi(i)[cA(ki)] ↓ then σi 6= Φi(i) (where we identify binary strings with
natural numbers in some effective way).

Clearly, MB does not succeed on Z, so Z is computably random relative to A, by
the choice of MB. Furthermore, Z 6T B, and therefore Z �T ∅′.

We now show that A 6T Z. Note that A 6T Z iff some Z-computable function
f majorizes cA. (The reason for the if direction is that A is the only infinite branch
of the Z-computable binary tree containing all σ such that for every τ 4 σ there
is an s with |τ | 6 s 6 f(|τ |) and τ 4 As.)

The function i 7→ σi is computable in B = A⊕G. By Lemma 5.2, A⊕G is not
diagonally noncomputable, so there are infinitely many i such that Φi(i) ↓= σi.
Thus the function f defined as follows is a total Z-computable function: f(x) is
the least t such that there is an i with x < ki and Φi(i)[t]↓= σi = Z � ki. We claim
that f majorizes cA. To show this, suppose that x is such that f(x) < cA(x), and
let i be as in the definition of f(x). Then f(x) < cA(x) 6 cA(ki) and Φi(i)[f(x)]↓,
so we see the convergent computation Φi(i) = τ at step i of the definition of Z.
Hence we define σi to be distinct from Φi(i)[f(x)], contradicting the definition of
f . Thus f majorizes cA, and hence A 6T Z.
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A set A has PA-degree relative to B if it computes a completion of Peano Arithmetic
with an extra unary predicate symbol R and axioms R(n) for all n ∈ B and ¬R(n)
for all n /∈ B (where n is the formal numeral corresponding to the natural number
n). An equivalent definition (see [27]), which is the one we use below, is that every
B-computable infinite binary tree has an A-computable infinite path.

In showing that no set of PA-degree is a base for computable randomness, we
use the following lemma.

Lemma 5.4. If A has PA-degree relative to B and Z is computably random relative
to A, then Z is 1-random relative to B.

Proof. Let M be a universal c.e. martingale relative to B; that is, M is c.e. and
succeeds on a set Z iff Z is not 1-random relative to B. We will define an A-
computable martingale N that majorizes M , in the sense that ∀σ ∈ 2<ω [M(σ)
6 N(σ)].

For a martingale N , the undergraph U(N) is {(σ, q) : σ ∈ 2<ω ∧ q ∈ Q+ ∧ q <
N(σ)}. By definition,

N 6T A ⇔ U(N) 6T A.

Furthermore, U(M) is c.e. in B. Fix a bijection from the natural numbers to
2<ω × Q+. We define the Π0

1 class C relative to B of all martingales N such that
X = U(N) is a superset of U(M). This class is given by the following conditions
on X (where p, q range over Q+ and σ ranges over 2<ω):

(i) ∀p > 1 [(λ, p) /∈ X];

(ii) ∀σ ∀p, q [p < q ∧ (σ, q) ∈ X ⇒ (σ, p) ∈ X];

(iii) ∀σ ∀p, q [(σ0, p) ∈ X ∧ (σ1, q) ∈ X ⇒ (σ, p+q
2

) ∈ X];

(iv) ∀σ ∀p, q [(σ, p+q
2

) ∈ X ⇒ (σ0, p) ∈ X ∨ (σ1, q) ∈ X];

(v) ∀σ ∀p ∀s [(σ, p) ∈ U(Ms) ⇒ (σ, p) ∈ X].

The class C is nonempty, as it contains U(M). Conditions (i), (ii), and (iii) ensure
that X is the undergraph of some function N with N(λ) 6 1. Conditions (iii) and
(iv) guarantee the equation

∀σ ∈ 2<ω [N(σ) = 1
2
(N(σ0) + N(σ1))]

and the last condition says that U(M) ⊆ X, and hence implies that N majorizes
M . Since B 6T A and A has PA-degree relative to B, there is an N 6T A such
that U(N) is a member of C. If N does not succeed on a set Z, then M also fails
to succeed on Z, and hence Z is 1-random relative to B.
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Theorem 5.5. No set of PA-degree is a base for computable randomness.

Proof. Let A have PA-degree. By Theorem 6.5 in Simpson [27], there is a set
B 6T A such that B has PA-degree and A has PA-degree relative to B. If B has
PA-degree, then B is not K-trivial, since every set of PA-degree computes a 1-
random set and the K-trivial sets are closed downwards under Turing reducibility
[20]. On the other hand, if Z >T A is computably random relative to A, then Z is
1-random relative to B, by Lemma 5.4, so B is K-trivial, by Theorem 2.1. Thus
A is not a base for computable randomness.

Theorems 5.3 and 5.5 provide an exact characterization of the n-c.e. bases for
computable randomness.

Corollary 5.6. An n-c.e. set is a base for computable randomness iff it is Turing
incomplete.

Proof. Let A be n-c.e. If A is Turing incomplete then A is not diagonally noncom-
putable, by Jockusch, Lerman, Soare, and Solovay [7] (which extends Arslanov’s
Completeness Criterion). So, by Theorem 5.3, A is a base for computable random-
ness.

If A is Turing complete then A has PA-degree. So, by Theorem 5.5, A is not a
base for computable randomness.
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[30] Frank Stephan, Martin-Löf random and PA-complete sets, Logic Colloquium
2002, Proceedings of the Annual European Summer Meeting of the Asso-
ciation for Symbolic Logic and the Colloquium Logicum, held in Münster,
Germany, August 3–11, 2002. Lecture Notes in Logic 27 (2006), 342–348.

18


