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Abstract

Ambos-Spies and Kučera [1, Problem 4.5] asked if there is a non-computable set
A which is low for the computably random reals. We show that no such A is of
hyper-immune degree. Thus, each g ≤T A is dominated by a computable function.
Ambos-Spies and Kučera [1, Problem 4.8] also asked if every S-low set is S0-low. We
give a partial solution to this problem, showing that no S-low set is of hyper-immune
degree.

Keywords: Randomness, S-lowness, hyper-immunity.

1 Introduction

The formalization of the intuitive notions of computability and randomness
has been studied in order to provide a mathematical foundation to computer
science. Since 1936, several equivalent models of computability have been pro-
posed to capture the intuitive sense of computability (Church-Turing thesis).
The formalization of the intuitive notion of randomness has also motivated
several mathematicians and computer scientist to study the subject. Because
randomness in an absolute sense does not exist [1], some restrictions must be
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imposed to capture better the intuitive notion of randomness. This leads to a
hierarchy of notions of randomness. In 1940, Alonso Church [2] suggested that
intuitive randomness should be defined as algorithmic randomness proposing
a formal notion of computable randomness. Church’s proposal was widely
accepted, but still was deficient from a statistical point of view. Kolmogo-
roff intended to define randomness in terms of his complexity notion. This
motivated Per Martin-Löf in 1966 [5] to propose a new formal definition for
algorithmic randomness without the statistical problem of Church’s concept.
Martin Löf randomness is very restrictive since the tests are r.e. rather than
computable objects. So Schnorr [9] provided a broader randomness notion
based on computable tests, which still does not have the Church statistical
problems.

Infinite sequences of 0’s and 1’s will be called reals and are identified with
sets of natural numbers. A lowness property of a real says that, in some
sense, it has a low computational power when used as oracle [7]. For instance,
a real B is low for random if each Martin-Löf random real is already Martin-
Löf random relative to B, i.e. using B as an oracle does not help to detect
regularities in any random set. When considering Schnorr randomness instead,
because of the absence of a universal test, we obtain two lowness notions. An
oracle B is S-low if each Schnorr random real is already Schnorr random
relative to B. B is S0-low if it does not even change the power of Schnorr
tests. Then S0-lowness implies S-lowness. In [1, Problem 4.5] it is asked if
S0-low = S-low. Another open problem, pointed out by Ambos-Spies and
Kučera [1, Problem 4.8], is the following: “Are there non computable sets
which are low for the class of computably random sets? If so, what is the
relation between these sets and the ML-low (S-low) sets?”.

Some Martin-Löf random reals have hyper-immune free degree. Our first
result is that there is no low for computably random real which has hyper-
immune degree. So, we partially answer [1, Problem 4.8]. The proof can be
adapted to the case of S-lowness. Thus all S-low sets are of hyper-immune free
degree as well. Terwijn and Zambella [12] proved that A is S0-low if and only
if A is recursively traceable, a property which implies being of hyper-immune
free degree. Our result gives some positive evidence that S-low = S0-low: we
show that S-low is at least close, as it lies somewhere between S0-low and
hyper-immune free.

2 Basic Notions

A real is an infinite binary sequence of 0’s and 1’s, identified with a set of
natural numbers. Let 2ω be the set of reals. A real A is computable relative
to a real B, or is Turing reducible to B, denoted by A ≤T B, if we have an
access to B then we can compute A, that is, if we can compute χA

3 using

3 χA is the characteristic function of the set A.
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χB as oracle. Let C be a relativizable class of reals. For an oracle A, the
relativization is denoted by CA. An oracle A is called low for C if CA = C. For
all classes we consider the lowness property is downward closed under ≤T . For
instance, if C is the class of ∆0

2 sets (the class of real s which can be computed
with the halting problem), then lowness for C coincides with the usual lowness
A ≤T ∅′, that is A is low for C if and only if A is Turing reducible to ∅′ . If C
is a randomness notion, then the intuitive meaning of “A is low for C”, is that
the oracle A does not help to detect further regularities in the sense of C.

An oracle A is hyper-immune if there is a computable function g relative
to A, g ≤T A, which is not dominated by any recursive function and is hyper-
immune free if it is not hyper-immune [10]. In other words, an oracle A
is hyper-immune free if each total function, recursive in A, is majorized by
a recursive function, that is, if for each g ≤T A there exists a computable
function f such that for all x, g(x) ≤ f(x) [6].

A set A is low for random, if each random real X is already random relative
to A (that is, X passes all A-recursive enumerable test, where an A-recursive
enumerable test is a set U ⊆ ω×2<ω 4 which is recursively enumerable relative
to A). A Schnorr-test U is a recursive set U ⊆ ω × 2<ω such that µUn = 2−n

for each Un = {x : (x, n) ∈ U}, where µU is the usual Lebesgue measure of a
open set U in Cantor space 2ω (as usual we identify Un with the corresponding
open set). A class of reals is Schnorr null if it is contained in

⋂
n∈ω Un for

some Schnorr test (Un). An oracle A is called S0-low, if for each Schnorr test
(Vn) relative to A, there is an unrelativized Schnorr test

⋂
n∈ω Un such that⋂

n∈ω Vn ⊆
⋂

n∈ω Un

A real is Schnorr random if it does not belong to any Schnorr null set,
i.e. if for each Schnorr-test U , R 6∈

⋂
n Un. If C is the set of all Schnorr

random reals, then A is S-low if CA = C. Clearly each S0-low oracle is S-
low, but the converse is unknown [1]. Terwijn and Zambella in [12] classified
the oracles which satisfy the stronger property of S0-low and showed that an
oracle A is S0-low if, and only if, A is recursively traceable, where an oracle
A is recursively traceable if there is a recursive bound h : ω −→ ω such that
each total function g ≤T A has a recursive trace T bounded by h, that is
‖ T [k] ‖≤ h(k) 5 , for each k ≥ 0. A computable set T ⊆ ω × ω is a recursive
trace for a function f : ω −→ ω, if for each section T [k] = {m : (k,m) ∈ T} of
T we have that f(k) ∈ T [k], T [k] is finite and the function mapping k into the
canonical index of T [k] is computable.

The concept of martingales, proposed by P. Levy, has been widely applied
in the study of stochastic processes [4], learning [10] and randomness [13]. A
martingale allows us to calculate the gambling-account of a player who always
tries to predict the next value of a function [10]. The idea is that martingales
capture betting strategies to predict the next digit in a binary sequence.

4 2<ω denoted the set of all binary finite strings.
5 ‖ T [k] ‖ is the cardinality of T [k].
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For our purposes, a martingale (MG in short) is a function M : 2<ω 7→ Q
such that dom(M) is 2<ω, or 2≤n for some n, M(λ) ≤ 1, and M has the
martingale property M(x0) + M(x1) = 2M(x) whenever the strings x0, x1
belongs to the domain. A MG M succeeds on a sequence Z if

lim sup
n→∞

M(Z � n) = ∞,

where Z � n is the prefix of n bits of Z. A real is computably random if no
computable MG succeeds.

A MG M effectively succeeds on a sequence Z if there is a nondecreasing
and unbounded computable function f : ω −→ ω such that

lim sup
n→∞

M(Z � n)− f(n) > 0.

It is possible to provide a characterization of Schnorr randomness in terms
of martingales. A sequence Z is Schnorr random if and only if no computable
MG effectively succeeds on Z.

3 Main result

Theorem 3.1

(i) No low for computably random real A has hyper-immune degree.

(ii) Each S-low set is of hyper immune-free degree.

Proof: (i) Suppose A has hyper-immune degree, so there is a function g ≤T

A not dominated by a computable function. Thus for each computable f ,
∃∞x f(x) ≤ g(x) . We will define a computably random real R and an
A-computable Q-valued MG L which succeeds on R, so A is not low for
computably random. In the following α, β, γ denote finite subsets of N, and
nα =

∑
i∈α 2i (here n∅ = 0).

Let Me be an effective listing of partial recursive martingales with range
included in [1/2,∞). At stage t, we have a finite portion Me[t] whose domain is
of the form 2≤n for some n. If R is not computably random, then Me(R) = ∞
for some total Me [9]. Let

TMG = {e : Me total }.
For certain α, and all those included in TMG, we will define strings xα,

in a way that α ⊆ β ⇒ xα � xβ, that is xα is a prefix of xβ. We chose the
strings in a way that Me(xα) is bounded by a fixed constant, for each total
Me and each α containing e. Then the real

R =
⋃

α⊆TMG xα

is computably random. On the other hand we are able to define an A-
computable MG L which succeeds on R. We give an inductive definition
of the strings xα, “scaling factors” pα ∈ Q+ and partial computable MGs Mα
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such that, if xα is defined then

Mα(xα) converges in g(|xα|) steps and Mα(xα) < 2. (1)

It will be clear that A can decide if y = xα given inputs y and α.

Let x∅ be the empty string, and M∅ = 0. Now suppose α = β ∪ {e} where
e > max(β), and inductively suppose that (1) holds for β. Let

pα = 1
2
2−|xβ |(2−Mβ(xβ)),

and let Mα = Mβ + pαMe. Since Me is a MG on its domain, Me(z) ≤ 2|z| for
any z. So Mα(xβ) < 2 if defined.

To define xα, we look for a sufficiently long extension x of xβ such that
Mα does not increase from xβ to x and Mα(x) converges in g(|x|) steps. In
detail, for larger and larger m > xβ, m ≥ 4nα, if no string y, |y| < m has been
designated to be xα as yet, and if Mα(z) (i.e., each Me(z), e ∈ α) converges
in g(m) steps, for each string of length ≤ m, then choose xα of length m,
xβ ≺ xα such that Mα does not increase from xβ to xα.

Lemma 3.2 If α ⊆ TMG, then xα and pα are defined.

Proof: The lemma is trivial for α = ∅. Suppose it holds for β, and α = β∪{e}
where e > max(β). Since the function

f(m) = µs∀e ∈ α∀x[|x| ≤ m ⇒ Me(x) converges in s steps]

is computable, there is a least m ≥ 4nα, m > |xβ| such that g(m) ≥ f(m).
Since there is a path down the tree starting at xβ where Mα does not increase,
we are able to choose xα. 3

Lemma 3.3 R is computably random.

Proof: Suppose Me is total. Let α = TMG ∩ [0, e]. If α ⊆ γ, γ′ = γ ∪ {i},
max(γ) < i and γ′ ⊆ TMG, then for each x, xγ � x ≺ xγ′ ,

pαMe(x) ≤ Mγ(x) ≤ Mγ(xγ) < 2,

Thus Me(x) < 2/pα for each x ≺ R. 3

Lemma 3.4 There is a MG L ≤T A which succeeds on R. In fact,

∃∞x ≺ R L(x) ≥ b|x|/4c

Proof: For a string z, let r(z) = b|z|/2c. We let L =
∑

α Lα, where Lα is a
MG with initial capital Lα(λ) = 2−nα which bets everything along xα from
xα � r(xα) on. More precisely, if xα is undefined then Lα is constant with
value 2−nα . Otherwise, let x = xα � 2r(xα), and

• let Lα(y) = 2−nα unless x � r(x) � y

• in that case, if x, y are incompatible, let L(y) = 0

• else let L(y) = 2−nα2min(|y|−r(x),r(x))
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Then Lα(xα) = r(xα) − nα. Since r(xα) ≥ 2nα, this implies Lα(xα) ≥
b|xα|/4c.

It remains to check that L ≤T A. Given input y, it suffices to determine
Lα(y) for each α such that nα ≤ |y|. Using g, see if some string x, |x| ≤ 2|y| is
xα. If not, Lα(y) = 2−nα . Else we determine Lα(y) from x using the definition
of Lα. 3

(ii) Note that, in the proof of (i), the MG L succeeds effectively on R.
Thus R is Schnorr random, but not Schnorr random relative to A. Hence, if
A is of hyper-immune degree, then A is not S-low. �

4 Final Remarks

The theorem 3.1 proved two lowness properties for reals, namely: all real A
which is low for computably random has hyper-immune free degree and all
real A which is S-low has hyper-immune free degree. These results partially
solves the problems 4.5 and 4.8 enunciated by Ambos-Spies and Kučera in [1].
Nies in very recent work has announced a negative solution to 4.8, namely all
low for computably random oracles are computable.
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