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Abstract. We study weak 2 randomness, weak randomness relative to ∅′
and Schnorr randomness relative to ∅′. One major theme is characterizing the

oracles A such that ML[A] ⊆ C, where C is a randomness notion and ML[A]
denotes the Martin-Löf random reals relative to A. We discuss the connections

with LR-reducibility and also study the reducibility associated with weak 2-
randomness.

1. Introduction

Martin-Löf randomness has been criticized for not being strong enough to ap-
propriately formalize our intuition of a random set. For instance, left-c.e. sets, like
Ω, and superlow sets can be Martin-Löf random. On the other hand, it is the ran-
domness notion that interacts best with computability theoretic concepts. Many
examples of such interaction are given in [Nie09] (see beginning of Chapter 4 for an
overview).

This paper serves two purposes, the second being the principal:
(1) We study randomness notions between Martin-Löf randomness and

2-randomness.
(2) We provide some new interactions of these randomness notions with

computability theoretic concepts.
Purpose (1). In Section 2 we consider Martin-Löf randomness, Schnorr ran-
domness relative to 0′, weak randomness relative to 0′, and weak 2-randomness.
We study the computational complexity and provide various separations of these
classes. In particular, we show that within the Martin-Löf random sets, weak ran-
domness relative to any oracle can be separated from weak 2-randomness.

The notions of randomness we study are displayed in Table 1, together with the
symbols for them. Recall that a set is Martin-Löf random if it passes all Martin-Löf
tests. That is, it is not a member of any class of the form

⋂
j Uj such that (Uj)

is a uniformly c.e. sequence of open sets with µ(Uj) ≤ 2−j . Here µ denotes the
usual product measure on Cantor space. In the following, Martin-Löf random sets
may be referred to simply as “random”. Also recall that 2-randomness is Martin-
Löf randomness relative to ∅′. A set is weakly random (or Kurtz random) if it is
not a member of any null Π0

1 class. Similarly, it is weakly 2-random if it is not a
member of any null Π0

2 class. A set is Schnorr random if no computable martingale
succeeds on it quickly. Equivalently, it passes all Martin-Löf tests with the special
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property that their members have uniformly computable measure. The following
implications hold:

(1.1) ML[∅′] ⇒ SR[∅′] ⇒ W2R ⇒ Kurtz[∅′] ∩ML ⇒ ML

None of the implications in (1.1) can be reversed; see Section 2.

Martin-Löf randomness ML

weak randomness relative to ∅′ Kurtz[∅′]
weak 2-randomness W2R

Schnorr random relative to ∅′ SR[∅′]
2-randomness ML[∅′]

Table 1. Randomness notions and the symbols used to denote them.

For more background on algorithmic randomness and unexplained notions we refer
to Chapter 3 of [Nie09].
Purpose (2). We provide some new interactions of the randomness notions in
Table 1 with computability theoretic concepts.

Given two classes M and N , define High(M,N ) to be the class containing all
oracles A such that MA ⊆ N . For instance, High(ML,SR[∅′]) is the set of oracles
A that are computationally complex in the sense that each set that is Martin-Löf
random in A is already SR[∅′]. The results are summarized in the following table.
We prove the characterizations in (a)–(d) and observe (f). The equivalence (e) is
due to Kjos-Hanssen/Miller/Solomon [KHMSxx] (also see [Nie09] or [Sim07] for
a proof). Recall from [DS04] that A is uniformly almost everywhere dominating
(u.a.e. dominating, for short) if it computes a function that dominates all Turing
functionals on almost all oracles.

(a) A ∈ High(ML,Kurtz[∅′])
∅′ is non-d.n.c. by A

(b) A ∈ High(ML,W2R)

(c) A ∈ High(ML,SR[∅′]) ∅′ is c.e. traceable by A

(d) A ∈ High(W2R,ML[∅′])
A is u.a.e. dominating

(e) A ∈ High(ML,ML[∅′])

(f) A ∈ High(Kurtz,ML) impossible

Table 2. Highness classes with respect to randomness notions and
their equivalent computability-theoretic characterizations.

Some of the properties on the right column of Table 2 are obtained by partial
relativization, indicated with the preposition “by”, from standard notions. This
means that we only relativize certain components of the notions, rather than all of
them as in complete relativization. For example, we say that Y is c.e. traceable by
A if there is a computable function h such that for each function f ≤T Y there is
an A-c.e. trace for f with bound h. Recall that a sequence of sets (Ti) is a trace
for a function f if f(n) ∈ Tn for all n ∈ N. Also, (Ti) has bound h if |Tn| < h(n)
for all n ∈ N. By the method of [TZ01], if Y is c.e. traceable by A, then the bound
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of the required trace can be any non-decreasing unbounded computable function.
See [Nie09, 8.2.3].

Let DNC[A] be the class of diagonally non-computable functions relative to A.
That is, the functions g such that g(e) 6= ΦA

e (e) for all e such that ΦA
e (e) ↓ (where

Φe is the e-th Turing functional). We say that Y is non-d.n.c. by A if Y does not
compute any function in DNC[A].

There are earlier examples of notions that were obtained by partial relativiza-
tion,1 such as the LR relation that was defined in [Nie05]. A set A is LR reducible to
a set B (denoted by A ≤LR B) if every B-random (i.e., Martin-Löf random relative
to B) is A-random. This notion was obtained by partially relativizing the notion
of low for random from [KT99].2 The notion of u.a.e. dominating set (also in Table
2) can also be obtained in this way: it was shown in Kjos-Hanssen/Miller/Solomon
[KHMSxx] that a set A is u.a.e. dominating iff ∅′ ≤LR A. Note that, by definition,
A ∈ High(ML,ML[∅′]) iff ∅′ ≤LR A.

Generalizing the process that led to ≤LR, for each randomness notion C we have
an associated reducibility ≤C given by

A ≤C B ⇔ CA ⊇ CB .
Namely if A can find “regularities” in a set in the sense of C, then so can B. In
Section 4 we study the reducibility associated with weak 2-randomness, denoted it
by ≤W2R, and its connections with ≤LR. We show that ≤LR and ≤W2R coincide on
the ∆0

2 sets, as well as the low for Ω sets. Recall that a set is low for Ω if Ω is Martin-
Löf random relative to it. Given that the low for Ω sets are downward closed with
respect to ≤LR, it follows that the two reducibilities have interesting common initial
segments. On the other hand, we show that they differ on the class of ∆0

3 sets. These
(weak) reducibilities induce equivalence relations ≡LR and ≡W2R respectively, and
therefore degree structures. We show that ≡LR, ≡W2R coincide on all sets. Hence,
although the degree structures differ as partially ordered sets, the actual degrees
as equivalence classes coincide. Barmpalias/Lewis/Soskova [BLS08a] proved that
there are continuum many sets ≤LR ∅′. We finish Section 4 with a similar result,
proving that there are continuum many sets ≤W2R ∅′′. Therefore, A ≤W2R B does
not imply that A ≤T B′, which is interesting because it follows from a result of
Kjos-Hanssen/Miller/Solomon [KHMSxx] that A ≤LR B and A ≤T B′ together
imply that A ≤W2R B.

Weak 2-randomness is a very natural notion of randomness and it has a very
simple definition. Its exact relation with Martin-Löf randomness was clarified by a
result of Hirschfeldt/Miller (see Section 5.3 in [Nie09]) as follows: a set is weakly
2-random iff it is Martin-Löf random and it forms a minimal pair with ∅′. This
characterization provides some evidence that weak 2-randomness is much closer
to Martin-Löf randomness than it is to 2-randomness. Further evidence for this
claim can be seen in Table 2, in particular the second and the fourth line of the
table. The complexity required for an oracle A to lift Martin-Löf randomness to

1In [CS07, Sim07] some notions obtained by partial relativization were shown to play an im-

portant role in the study of mass problems and the degrees of difficulty. For example, we mention
the notion of bounded limit recursiveness and jump-traceability. However we will not study these

notions in this paper.
2We say that A is low for random if every A-random is random. The full relativization of this

notion is as follows: A is low for random relative to B if every B-random is A ⊕ B random. A

classic example of full relativization is the class GL1. It contains the oracles A such that ∅′ is
complete relative to A.
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weak 2-randomness is just the property ‘∅′ non-d.n.c. by A’ (which coincides with
non-lowness in the ∆0

2 degrees). This is much less than u.a.e. domination, which is
the complexity required for A to lift weak 2-randomness to 2-randomness.

Clearly, there is no weakly 2-random ∆0
2 set. In Section 5 we show that there is

a weakly 2-random set Z ≤LR ∅′. In fact, we show that there is a weakly 2-random
that is K-trivial relative to ∅′. This shows that some weakly 2-random sets are very
close to ∅′. On the other hand, we show that there is no weakly 2-random set LR-
below a low ∆0

2 set. We also show that no weakly 2-random has a non-K-trivial ∆0
2

set LR-below it. In particular, no weakly 2-random can have complete LR degree.

2. Notions between 1 and 2-randomness

Consider the notions of randomness in Table 1. The first implication of (1.1)
follows from the definitions. The second follows from the observation that every
null Π0

2 class is contained in a Schnorr test. The third follows in a similar way
(every Π0

1[∅′] class is a Π0
2 class) and the fourth is trivial.

The strictness of the first implication follows by relativizing the well known fact
that some Schnorr random is not Martin-Löf random. Recall that B is generalized
low (GL1) if A′ ≤T ∅′ ⊕A. For the second, notice that there is a weakly 2-random
set that is not GL1 by [LMN07], while all sets Schnorr random relative to ∅′ are
GL1 by Proposition 2.1. The strictness of the third implication in (1.1) is shown in
Theorem 2.3 below. Finally for the strictness of the fourth implication, notice that
some Martin-Löf random set is computable from ∅′, and hence a Π0

1[∅′] singleton.

Proposition 2.1. SR[∅′] ⊆ GL1.

Proof. Uniformly in e, ∅′ can compute a stage s so large that e goes into A′ after
stage s for at most measure 2−e oracles A. Let f be the ∅′ computable function
that computes s from e. Given e and s = f(e), the oracles A such that e goes
into A′ after stage s form a Σ0

1 class Ve. Since µVe < 2−e, ∅′ can uniformly form a
Σ0

1[∅′] class Ue that contains Ve and has measure exactly 2−e. Then Wi =
⋃

e>i Ue

is a SR[∅′] test, and if A is not covered by this test, then (except finitely often)
e ∈ A′ ↔ e ∈ A′

f(e). �

Another strengthing of Martin-Löf randomness is Demuth randomness. See
[Nie09, 3.6.24]. Note that Demuth randomness is incomparable with weak 2-
randomness. Also SR[∅′] is contained in both the weakly 2-random and the Demuth
random sets. A more complex argument than in the previous result shows that each
Demuth random set is in GL1 (see [Nie09, 3.6.26]).

We next investigate the dubious power of Kurtz[A] randomness, for an arbitrary
oracle A. It is easy to see that there is no oracle A such that every Kurtz random
relative to A is Martin-Löf random. In other words High(Kurtz,ML) = ∅, hence
clause (f) of Table 2. This follows from purely topological considerations. The
universal Martin-Löf test makes it clear that the non-ML random reals form a
comeager class. On the other hand, for any A, the union of all measure zero Π0

1[A]
classes is meager. Hence by the Baire category theorem, there is a Kurtz random
relative to A that is not Martin-Löf random. One must work harder to answer
the following question: what does Kurtz randomness relative to A imply if Z is
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already Martin-Löf random? We show that there is no oracle A such that Martin-
Löf randomness and Kurtz[A] randomness is enough to imply weak 2-randomness.
First, we need the following lemma.

Lemma 2.2. Let P ⊆ 2ω be a nowhere dense Π0
1 class. There is a null Π0

2 class Q
such that Q ∩ P is dense in P .

Proof. We will define Q to cover the left endpoints of maximal open intervals in
P = 2ω − P . Since P is nowhere dense, these points are dense in P . It will be
helpful to use the euclidean metric on 2ω; that is, for X, Y ∈ 2ω we take |X −Y | to
be distance between the reals numbers in [0, 1] whose binary expansions are given
by X and Y .3 We also use the natural order on 2ω and let F ⊆ 2ω represent the
sequences with finitely many ones. For s ∈ ω, let

Vs = {X : (∃t ≥ s)(∃A,B ∈ F) X ∈ Ps and X < A < B and

[A,B] ∩ Pt = ∅ and |A−X| < |B −A|/s}.

It should be clear that Vs is a Σ0
1 class. It is also easy to see that if X is the

left endpoints of a maximal open interval in P , then X ∈ Vs. Hence, letting
Q =

⋂
s∈ω Vs, we have X ∈ Q. All that remains to prove is that µ(Q) = 0, for

which it is sufficient to show that lims µ(Vs) = 0.
Fix s ∈ ω. Let (Y, Z) be a maximal interval in P and let ` = |Z − Y | be its

length. Say that X is added to Vs with witnesses A,B ∈ (Y,Z). If X /∈ (Y, Z),
then it must be the case that X < Y and |Y −X| < |A−X| < `/s. Thus we have
µ(Vs) ≤ (1 + 1/s)µ(P ). On the other hand, this estimate includes the measure of
all the sequences in Ps, but these have been excluded in the definition of Vs. So in
fact, we have µ(Vs) ≤ (1 + 1/s)µ(P ) − µ(Ps). But both (1 + 1/s)µ(P ) and µ(Ps)
approach µ(P ) as s goes to infinity. Therefore, lims µ(Vs) = 0. �

Now we are ready to separate Kurtz[A] from the weakly 2-randoms within the class
of Martin-Löf randoms, for an arbitrary oracle A.

Theorem 2.3. For any A, there is a Martin-Löf random Z that is Kurtz[A] but
not weakly 2-random.

Proof. Let P be a Π0
1 class containing only Martin-Löf random reals. Let Q be

the measure zero Π0
2 class from the lemma. We will, as in the remarks before

Lemma 2.2, use the Baire category theorem, but this time with respect to the
compact subspace P . Note that Q ∩ P is a Gδ set relative to P and it is dense in
P , hence it is comeager in P . Next, consider a measure one Σ0

1[A] class V . Let
σ ∈ 2<ω. If [σ] ∩ P 6= ∅, then it is a nonempty Π0

1 class containing a Martin-
Löf random, so µ([σ] ∩ P ) > 0 (see, for example, [Nie09]). Hence V ∩ [σ] ∩ P is
nonempty. Therefore, V ∩P is dense in P . Since it is an open set relative to P , it is
also comeager in P . By the Baire category theorem relative to P , there is a Z ∈ P
in the intersection of Q with (the countable collection of) all measure one Σ0

1[A]
classes. Clearly Z is Kurtz random relative to A. Since Z ∈ P , it is Martin-Löf
random. Finally, Z ∈ Q implies that it is not weakly 2-random. �

3Strictly speaking, this is not a metric on 2ω since the two distinct sequences representing a
dyadic rational have distance zero from each other.
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Note that we could recast the proof of Theorem 2.3 as an initial segment construc-
tion, were we so inclined.

3. Characterizing highness notions

In this section we show the equivalences between highness properties (a)–(c) of
Table 2 and the corresponding computability theoretic notions. We begin with
High(ML, W2R). We show that, despite the fact that W2R is a stronger random-
ness notion than ML ∩ Kurtz[∅′], the complexity that is required for an oracle A to
turn ML[A] into a subclass of Kurtz[∅′] is the same as the complexity required to
turn it into a subclass of W2R. Also, we give a characterization of this highness
property High(ML,W2R) in computability theoretic terms. We start with the fol-
lowing lemma, which is a partial relativization of a result from [GM09]; the proof
is due to the second author.

Lemma 3.1. If A ∈ High(ML,Kurtz[Y ]), then Y does not compute a DNC[A]
function.

Proof. Assume that f ≤T Y is a DNC[A] function. We show that Y computes an
infinite subset D of a set that is ML-random in A. This shows that there is a set
that is Martin-Löf random in A but is in a null Π0

1[Y ] class, thus not in Kurtz[Y ].
Let Q be a non-empty Π0

1[A] class of ML[A]-random sets. By a well known lemma
of Kučera [Kuč85], we may assume that if P ⊆ Q is a nonempty Π0

1[A] class, then
we can compute, uniformly from an index for P , a k such that 2−k < µP .

Using f we compute a sequence d0 < d1 < · · · such that, for each n, the
Π0

1[A] class {Z ∈ Q : d0, . . . , dn−1 ∈ Z} is non-empty. Let D = {d0, d1, d2, . . .}.
By compactness {Z ∈ Q : D ⊆ Z} is non-empty. Suppose we have determined
d0 < · · · < dn−1 such that the Π0

1[A] class

Pn = {Z ∈ Q : d0, . . . , dn−1 ∈ Z}

is non-empty. The set G = {m : ∀Z ∈ Pn [Z(m) = 0]} is c.e. in A uniformly in an
index for Pn. We will determine dn 6∈ G. Since Pn ⊆ Q is nonempty, compute k
such that 2−k < µPn and hence |G| ≤ k.

Let ω<ω be the set of finite sequences of natural numbers. We denote concatena-
tion of strings by ∗. Let (Sσ)σ∈ω<ω be a uniformly computable sequence of sets such
that S∅ = N and for each σ, (Sσ∗i)i∈N is an infinite partition of Sσ into non-empty
sets. Define a Turing functional Ψ as follows. Let ΨA(σ) = i if i is the first number
such that some element of Sσ∗i is enumerated in G. Let α be a computable function
such that JA(α(σ)) ' ΨA(σ) for all σ ∈ ωω, where J is the jump functional (i.e.,
JA(e) ' ΦA

e (e), where (Φe) is an effective list of all Turing functionals). Since f is
d.n.c. relative to A, we have f(α(σ)) 6= ΨA(σ) for each σ.

Now let σ0 = ∅ and σi+1 = σi ∗ f(α(σi)) for i < k. Clearly G ∩ Sσk
= ∅ since

for each i < k some element of G is in some Sσi∗r for r 6= f(α(σi)) (unless already
G ∩ Sσi

= ∅). Choose dn > dn−1 in Sσk
. Then dn is as desired, and the sequence

(di) is computable in Y . So
⋂

i Pi is a non-empty Π0
1[Y ] class of measure 0 and it

is contained in Q. Therefore there is a Martin-Löf random set relative to A that is
not in Kurtz[Y ]. �

Theorem 3.2. For A ∈ 2ω, the following are equivalent:
(i) A ∈ High(ML,W2R),
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(ii) A ∈ High(ML,Kurtz[∅′]),
(iii) ∅′ does not compute a DNC[A] function.

Proof. (iii)⇒(i) Assume that {Vn}n∈ω is an effective sequence of Σ0
1 classes such

that µ(Vn) → 0. It suffices to show that
⋂

n Vn is contained in a Martin-Löf test
relative to A. Note that ∅′ computes a function f such that µ(Vf(k)) ≤ 2−k, for all
k ∈ ω. For a Σ0

1 class V and rational ε > 0, let (V )ε denote the Σ0
1 class uniformly

obtained by enumerating V as long as the measure does not exceed ε. Since ∅′ does
not compute a DNC[A] function, there are infinitely many k such that f(k) = JA(k),
where J denotes the jump functional. Therefore, Wm =

⋃
k>m(VJA(k))2−k covers⋂

n∈ω Vn, for each m (where VJA(k) is taken to be empty if JA(k) ↑). By definition,
µ(Wm) ≤ 2−m, so {Wm}m∈ω is a Martin-Löf test relative to A that covers

⋂
n Vn.

Hence A ∈ High(ML,W2R).
Since every Π0

1[∅′] class is a Π0
2 class, we have (i)⇒(ii). Finally, (ii)⇒(iii) follows

by Lemma 3.1 for Y = ∅′. �

Note that by the Arslanov completeness criterion relative to A, ∅′ ⊕A computes a
function in DNC[A] iff ∅′ is Turing complete relative to A, that is, A is GL1. Thus,
by (iii) of Theorem 3.2, if A is not GL1, then it is in High(ML,W2R). For the
special case where A is ∆0

2 we get the following.

Corollary 3.3. If A is ∆0
2, the following are equivalent:

(i) A ∈ High(ML,W2R),
(ii) A ∈ High(ML,Kurtz[∅′]),
(iii) A is not low.

Next, we consider the class High(ML,SR[∅′]). Recall that Y is c.e. traceable
by A if there is a computable function h such that for each f ≤T Y there is an
A-c.e. trace for f with bound h. The next theorem with Y = ∅′ characterizes
the condition that A ∈ High(ML,SR[∅′]), clause (c) in Table 2. First, we need the
following consequence of the Lebesgue density theorem.

Lemma 3.4 ([Nie09], Lemma 8.3.4). Suppose that
⋂

i Ui ⊆ R for open sets Ui, R
with µ(R) < q < 1. Then there is a string τ and d ∈ N such that µτ (R) < q and
µτ (Ud −R) = 0.

Recall that µτ (S) is the measure of S relative to [τ ] = {X | τ ⊂ X}. That is,
µτ (S) = µ([τ ] ∩ S)/2−|τ |.

Theorem 3.5. For A, Y ∈ 2ω, the following are equivalent:
(i) MLA ⊆ SR[Y ], and
(ii) Y is c.e. traceable by A.

Proof. For (ii) ⇒ (i) it suffices to show that every Schnorr test relative to Y is
contained in a Martin-Löf test relative to A. Let (Vi) be a Schnorr test relative to
Y , i.e., a Martin-Löf test relative to Y where the sequence (µ(Vi)) is Y -computable.
Without loss of generality we can assume that µ(Vn) = 2−n−1 for each n ∈ N. Now
let (Di) be an effective sequence of all finite sets. There is a Y -computable function
f such that Vn =

⋃
i Df(n,i) and µ(Df(n,i)) ≤ 2−n−i for all n, i ∈ N. Now consider

a trace of f(n, i) which is computable in A with bound n + i. That is, an A-
c.e. sequence (Tn,i) such that |Tn,i| ≤ n + i and f(n, i) ∈ Tn,i for all n, i ∈ N.
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Without loss of generality we can assume that Tn,i only contains numbers j such
that µ(Dj) ≤ 2−n−i. Define Un =

⋃
i

⋃
j∈Tn,i

Dj . Clearly Vn ⊆ Un for all n ∈ N.
Also,

µ(Un) ≤
∑

i

(n + i) · 2−n−i

which means that (Un) is a Martin-Löf test relative to A (modulo a computable
shift of the indices).

For (i) ⇒ (ii), suppose f ≤T Y and we wish to build an A-c.e. trace for f . It
suffices to build an A-c.e. trace for g(n) := nf(n) + n. Let Bk,n be the set of
reals that have n consecutive 0s after the kth digit. Clearly, µ(Bk,n) = 2−n for all
k, n ∈ N. It is easy to check that the sets Ud =

⋃
n>d Bg(n),n form a Schnorr test

relative to Y . Let R be the second member of the universal Martin-Löf test relative
to A, so that µ(R) < 2−2. Since MLA ⊆ SR[Y ] we have

⋂
d Ud ⊆ R. By Lemma 3.4

there is a string τ and d ∈ N such that µτ (R) < 2−2 and µτ (Bg(n),n − R) = 0 for
all n > d. Now let nN denote the multiples of n and consider the following trace:

(3.1) Tn = {k ∈ nN | µτ (Bk,n −R) < 2−k−3}.

Since Bk,n clopen and R is Σ0
1[A], the sequence (Tn) is uniformly c.e. in A. On the

other hand, g(n) ∈ Tn for all n > d, by the choice of d, τ .
It remains to show that the sequence |Tn| is computably bounded. By (3.1) we

have µτ (
⋃

k∈Tn
Bk,n −R) < 2−2, which implies that

µτ (2ω −
⋃

k∈Tn

Bk,n) + µτ (R) ≥ 1− 2−2.

Since µτ (R) < 2−2, this means that µτ (2ω −
⋃

k∈Tn
Bk,n) > 2−1. On the other

hand, µτ (Bk,n) = 2−n for n > |τ |. Since Tn consists of multiples of n, the sets Bk,n

are independent and

µτ (2ω −
⋃

k∈Tn

Bk,n) = (1− 2−n)Tn

for n > |τ |. Hence (1−2−n)|Tn| > 2−1 which shows that |Tn| < 2n, for n > |τ |.4 �

We note that the proof of Theorem 3.5 is an adaptation of the proof of Theorem
8.3.3 in [Nie09].

4. The reducibility associated with weak 2-randomness

We say that a class C ⊆ 2ω is bounded if µC < 1. Kjos-Hanssen [KH07] proved
that the following are equivalent for X, Y ∈ 2ω: (a) X ≤LR Y ; (b) there exists
a bounded Σ0

1[Y ] class V such that UX − V = ∅, where U is a member of a
universal oracle Martin-Löf test. Instead of the relevant classes being empty, one
can equivalently state that they are null.

Lemma 4.1. The following are equivalent for X, Y ∈ 2ω:
(a) X ≤LR Y ,
(b) There exists a bounded Σ0

1[Y ] class V such that µ(UX − V ) = 0, where U
is a member of a universal oracle Martin-Löf test.

4This follows from the fact that (1− 1/k)k < e−1 for any k ≥ 1.
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Proof. We have (a) ⇒ (b) from the Theorem of Kjos-Hanssen, so it suffices to show
that (b) ⇒ (a). Choose a bounded Σ0

1[Y ] class V such that µ(UX − V ) = 0, and
a rational q < 1 such that µ(V ) < q. We claim that µσ(V ) = 1 for all σ such that
[σ] ⊆ UX . Otherwise there is a σ such that µσ(V ) < 1 and [σ] ⊆ UX . This implies

µ(UX − V ) ≥ µ([σ]− V ) > 2−|σ|(1− µσ(V )) > 0

which contradicts the hypothesis (b). Now if we let

F = {τ | τ is minimal such that µτ (V ) > q},

then we have UX ⊆ [F ] and [F ] is a Σ0
1[Y ] class. If (ρi) is a list of the strings in F ,

then
q · µ([F ]) ≤

∑
i

2−|ρi|µρi
(V ) = µ(V ∩ [F ]) ≤ µ(V ) < q,

which implies that µ(F ) < 1, proving (a). �

Theorem 4.2. The following are equivalent for X, Y ∈ 2ω:
(a) X ≤LR Y ,
(b) Every weakly 2-random relative to Y is Martin-Löf random relative to X.

Hence, ≤W2R implies ≤LR.

Proof. By definition of ≤LR we have (a) ⇒ (b). For (b) ⇒ (a) suppose that
X 6≤LR Y . We construct a sequence Z that is weakly 2-random relative to Y but
not Martin-Löf random relative to X.

Let (Ui) be a universal oracle Martin-Löf test. By Lemma 4.1 we know that for
every τ ∈ 2<ω, every Σ0

1[Y ] class V Y and every i ∈ N, if µ([τ ]−V Y ) > 0 then there
exists [σ] ⊆ UX

i such that τ ⊂ σ and µ([σ]− V Y ) > 0. Otherwise, (2ω − [τ ]) ∪ V Y

would satisfy part (b) of Lemma 4.1. Let (Se
j ) be a double sequence of Σ0

1[Y ] classes
such that Se

j+1 ⊆ Se
j and every Π0

2[Y ] class is of the form
⋂

j Se
j for some e. We

build Z =
⋃

s σs and a sequence of open sets (Rs) in stages.
Let σ0 = ∅ and R0 be S0

j for the least j such that µ(S0
j ) < 2−2 if there is such,

and ∅ otherwise. Inductively assume that µ([σs] − Rs) > 0 and at stage s + 1 we
choose some σ ⊃ σs such that σ ∈ UX

s and µ([σ] − Rs) > 0. Let σs+1 = σ. Let
q > 0 be a rational such that µ([σs+1]−Rs) > q and let Rs+1 = Rs ∪ S where S is
Ss+1

j for the least j such that µ(Ss+1
j ) < q if there is such, and ∅ otherwise. Notice

that µ([σs+1]−Rs+1) > 0.
The construction is well defined since Rs is Σ0

1[Y ] for all s ∈ N, so the required
string σ will be found at every stage s + 1. Moreover [σs] 6⊆ Rs for all s ∈ N and
Rt ⊆ Rs for all t < s. So Z =

⋃
s σs is not in any Rt, which shows that it is not in

any null Π0
2[Y ] class. On the other hand Z ∈

⋂
i UX

i so it is not 1-random relative
to X. �

Notice that A ∈ High(W2R,ML[∅′]) iff ∅′ ≤LR A by Theorem 4.2. This yields line
(d) in Table 2. By the remarks before Theorem 3.2 we have GL1 ⊆ High(ML,W2R),
while Theorem 4.2 states that High(W2R,ML[∅′]) = LR-complete. As explained in
the introduction, this gives evidence that the class ML is closer to W2R than W2R
is to ML[∅′].

The sets that are low for Ω are, by definition, closed downward with respect to
≤LR; in other words, they form an initial segment of the LR degrees.



10 GEORGE BARMPALIAS, JOSEPH S. MILLER, AND ANDRÉ NIES

Theorem 4.3. The relations ≤W2R and ≤LR coincide on the LR initial segment
of sets that are low for Ω.

Proof. Let X, Y be low for Ω reals such that X ≤LR Y . In view of Theorem 4.2 it
suffices to show that X ≤W2R Y . By a theorem in [Mil] we have that X ≤T Y ′. But
by a theorem of Kjos-Hanssen/Miller/Solomon [KHMSxx] (see 5.6.9. in [Nie09]) we
have that if X ≤LR Y and X ≤T Y ′ then every Π0

2[X] class is contained in a Π0
2[Y ]

class of the same measure. This means that every weakly 2-random real relative to
Y is also weakly 2-random relative to X, i.e., X ≤W2R Y . �

By the theorem of Kjos-Hanssen/Miller/Solomon mentioned in the proof of Theo-
rem 4.3, we also get the following.

Corollary 4.4. The relations ≤LR,≤W2R coincide on the class of ∆0
2 sets.

In contrast, the relations ≤W2R and ≤LR differ on every LR-lower cone of a non-
K-trivial ∆0

2 set.

Theorem 4.5. If Y is ∆0
2 and Y 6≤LR ∅, then for all Z ≥T ∅′ there exists X ≤LR Y

such that X ⊕ ∅′ ≡T Z.

Proof. By [Bar] we know that there is a perfect Π0
1 class P such that A ≤LR Y for

all A ∈ P . We use P and a standard coding to define X ∈ P in stages s by finite
extensions σs. Let σ0 = ∅ and if σs is defined, find (with oracle ∅′) the least node
τ ⊃ σs such that both τ ∗ 0, τ ∗ 1 are extendible in P . Then define σs+1 = τ ∗Z(s).
Clearly Z ≡T X ⊕ ∅′ and X ≤LR Y since X belongs to P . �

Corollary 4.6. If Y is ∆0
2 and Y 6≤LR ∅, then there exists X ≤LR Y such that

X 6≤W2R Y .

Proof. Let X be as in Theorem 4.5 for Z = ∅′′′. It suffices to find a set A that is
not weakly 2-random relative to X but is weakly 2-random relative to Y . Let A be
a 3-random that is recursive in ∅′′′. Since Y ≤T ∅′, the set A is (weakly) 2-random
relative to Y (i.e., A ∈ ML[Y ′]). However,

A ≤T ∅′′′ ≤T X ⊕ ∅′ ≤T X ′.

so A belongs to a null Π0
2[X] class; in fact, {A} is Π0

2[X]. Hence, A is not weakly
2-random relative to X. �

The following result contrasts with Corollary 4.4. It follows by using lowness in the
proof of Corollary 4.6.

Corollary 4.7. The relations ≤LR,≤W2R do not coincide on the class of ∆0
3 sets.

Proof. Notice that the set X separating ≤LR, ≤W2R that was constructed in the
proof of Theorem 4.5 is computable in ∅′ ⊕ Z. Now in the statement of Corollary
4.6, pick Y such that Y ′ ≡T ∅′ and Y 6≤LR ∅. We modify the proof so that we
separate ≤LR, ≤W2R within ∆0

3. Consider the X given by Theorem 4.5 for Z = ∅′′.
Let A be 2-random and computable in ∅′′. Since Y is low, the set A is 2-random
relative to Y , i.e., A ∈ ML[Y ′]. In particular, it is weakly 2-random relative to Y .
However

A ≤T ∅′′ ≤T X ⊕ ∅′ ≤T X ′.
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so A belongs to a null Π0
2[X] class. Hence, it is not weakly 2-random relative to X.

Finally, note that Y is ∆0
2 and X ≤T ∅′ ⊕ Z ≡T ∅′′ is ∆0

3. �

From [Nie05] (also see [Sim07] for a relevant discussion) we know that if A ≡LR B
then A′ ≡tt B′. This, combined with the theorem of Kjos-Hanssen/Miller/Solomon
that was mentioned above gives the following.

Corollary 4.8. For all sets A,B we have A ≡LR B if and only if A ≡W2R B.

Hence the equivalence classes induced by ≤W2R coincide with those induced by
≤LR, but the ordering of them differs as was shown in Corollary 4.6. Despite the
above results, we do not have a characterization of ≤W2R. One possibility is given
by the observation that if every Π0

2[A] null class is contained in a Π0
2[B] null class,

then A ≤W2R B. The converse is open:

Question 4.9. Does A ≤W2R B imply that every Π0
2[A] null class is contained in

some Π0
2[B] null class?

Kjos-Hanssen/Miller/Solomon [KHMSxx] studied a stronger condition, that ev-
ery Π0

2[A] class is contained in a Π0
2[B] class of the same measure. They proved

that this condition is equivalent to A ≤LR B and A ≤T B′. We can separate this
stronger condition from A ≤W2R B by proving that A ≤W2R B does not imply
A ≤T B′. Recall from [BLS08a] that there are uncountably many sets ≤LR ∅′.
Since every lower Turing cone is countable, A ≤LR B does not imply A ≤T B′. We
follow a similar approach for ≤W2R.

Theorem 4.10. The class of sets {X : X ≤W2R ∅′′} is uncountable.

Proof. It suffices to build a perfect tree T and a Martin-Löf test (Ui) relative to
∅′′ with the following property: for all X ∈ [T ], every null Π0

2[X] is contained in⋂
i Ui. Recall that a perfect tree is a function from strings to strings that preserves

the prefix and incompatibility relations. Level n of T is the set of strings T (σ) such
that |σ| = n. We build T level by level, computably in ∅′′. At stage e we define level
e and enumerate into the open sets Si, i ≤ e. We ensure that the total measure of
Si is at most 2−i. Our Martin-Löf test relative to ∅′′ will be Uj :=

⋃
i>j Si.

Consider a double sequence (Ve,j) of oracle Σ0
1 classes such that V X

e,j+1 ⊆ V X
e,j for

all e, j ∈ N and all sets X. Notice that every Π0
2[X] class is of the form

⋂
j V X

e,j for
some e ∈ N. We refer to the map X →

⋂
j V X

e,j as the oracle Π0
2 class with index e

(the eth oracle Π0
2 class). Level e of T will be devoted to dealing with the eth oracle

Π0
2 class. For each string σ, let Tσ be the full subtree of T above node T (σ).5 We

consider a countable set of requirements that are sufficient for the proof. For each
e ∈ N and each Tσ for σ of length e, we require that one of the following holds:

• for all X ∈ [Tσ] the eth Π0
2[X] class is not null, or

• for some j ∈ N and all X ∈ [Tσ] we have V X
e,j ⊆ Se.

To see that this is sufficient, suppose that X ∈ [T ] and let F =
⋂

j V X
e,j be a null

Π0
2[X] class. Then we can show that F ⊆ Sk for infinitely many k. Indeed, let

k0 ∈ N be given and let e > k0 be an index of F . Let σ be the string of length e
such that X ∈ [Tσ]. Since F is null, the construction will ensure that V X

e,j ⊆ Se for
some j ∈ N and all X ∈ [Tσ]. In particular, F ⊆ Se.

5Our trees are ‘growing’ upward.
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The requirements can be written as follows:

Re : ∀σ ∀X
[
|σ| = e ∧ X ∈ [Tσ] ⇒

(
µ

( ⋂
j

V X
e,j

)
> 0 ∨ ∃j V X

e,j ⊆ Se

)]
.

At level/stage e we first define splittings of the strings in the previous level, in order
to ensure that T is perfect. After this preliminary step, we make a decision about
how to deal with the eth Π0

2 class (above each string of this level). In particular,
for each node T (ρ) on the eth level of T , we check if we can force

⋂
j V X

e,j to be
non-null for all X ∈ [Tρ]. That is, for an appropriately small value 2−t, we check if
for all τ ⊇ T (ρ) and all i ∈ N there exists γ ⊇ τ such that µ(V γ

e,i) > 2−t. In that
case we let f(ρ) = 0 to declare this fact. In later stages we define T above ρ to
ensure that µ(

⋂
j V X

e,j) ≥ 2−t for all X ∈ [Tρ].
Otherwise for some n > 1 and ζ ⊇ T (ρ), the oracle class Ve,n has the uniform

bound 2−t on the measure of V X
e,n for all X extending ζ. To declare this fact, we let

f(ρ) = n and move T (ρ) to ζ.6 By choosing appropriate extensions in later stages,
under this hypothesis we will be able to enumerate into Se all V X

e,n for X ∈ Tρ while
keeping the measure of Se small.7

To sum up, at stage e the following actions determine level e:
• split the strings of the previous level,
• define extensions of the current paths according to the decisions that have

been made in previous stages about Ri, for i < e, and
• make a decision about how to satisfy Re above each node of level e.

Construction. At stage 0 define T (∅) = ∅ (where ∅ is the empty sequence here).
At stage e > 0 we can assume that all previous levels of T have been defined. Given
σ of length e we define T (σ) in e substages, corresponding to the indices of the first
e oracle Π0

2 classes (starting from index 1). We define τ0, . . . , τe−1 successively, and
set T (σ) ⊇ τe−1. Define τ0 so that incompatibility is met: let i be the last digit of
σ and define τ0 := T (σ−) ∗ i, where σ− is the predecessor of σ. Now if τj , j < k
have been defined and k < e, let ρk = σ � k. If f(ρk) = 0, let τk be an extension
of τk−1 such that µ(V τk

k,e) > 2−2k−1. Otherwise let τk be an extension of τk−1 such
that

(4.1) µ(V τ
k,f(ρk) − V τk

k,f(ρk)) ≤ 2−2(e+1)−1 for all τ ⊇ τk.

When τe−1 is defined, using ∅′′ as an oracle determine if the following is true:

(4.2) ∀i∀ρ ⊇ τe−1∃γ ⊇ ρ [µ(V γ
e,i) > 2−2e−1].

If (4.2) holds, set f(σ) = 0 and T (σ) = τe−1. Otherwise choose an n ∈ N and
ρ ⊇ τe−1 such that µ(V γ

e,n) ≤ 2−2e−1 and

(4.3) µ(V γ
e,n − V ρ

e,n) ≤ 2−2(e+1)−1,

for all γ ⊇ ρ. Let T (σ) = ρ and f(σ) = n.
Finally, for all k < e such that f(ρk) > 0 enumerate V

T (σ)
k,f(ρk) into Sk.

6The final value of T (ρ) is only fixed at the end of stage e.
7The method in this case is the same as in the proof in [BLS08a] that the class of sets ≤LR ∅′

is uncountable.
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Verification. First we note that the construction is well defined. That is, when the
construction defines a string according to (4.1) or (4.3), the search halts. Otherwise,
we could inductively push up the measure of V τ

k,f(ρk) (or V γ
e,n) as high as we would

like, which is impossible.
Second, we show that µ(Se) ≤ 2−e for all e ∈ N. Notice that the only ‘strategies’

that enumerate into Se are the nodes T (ρ) with |ρ| = e and f(ρ) > 0. There are at
most 2e such nodes ρ, so fix one. Let Se(ρ) be the part of Se that is enumerated
by Tρ. Consider the full subtree Tρ of T above T (ρ).

By the construction, µ(V τ
e,f(ρ)) ≤ 2−2e−1 for all strings τ ∈ Tρ. In particular,

µ
(
V

Tρ(∅)
e,f(ρ)

)
≤ 2−2e−1. Also, by the way we define Tρ we have

µ
(
V

Tρ(η)

e,f(ρ) − V
Tρ(η−)

e,f(ρ)

)
≤ 2−2(e+|η|)−1 for all η ∈ 2<ω with |η| > 0.

Hence,
µ(Se(ρ)) ≤ 2−2e−1 +

∑
i>0

2i · 2−2(e+i)−1 = 2−2e,

and so µ(Se) ≤ 2e · 2−2e = 2−e.
Third, we argue for the satisfaction of Re. At stage e the construction defines

f(ρ) for all strings ρ of length e. Fix such a string ρ. If f(ρ) = 0 the subtree Tρ

is defined such that µ(V X
e,i) > 2−2(e+1)−3 for all X ∈ [Tρ] and all i ∈ N. Therefore

µ(
⋂

i V X
e,i) > 0 for all X ∈ [Tρ]. On the other hand, if f(ρ) > 0 the construction

enumerates V X
e,f(ρ) into Se, for all X ∈ [Tρ]. �

Corollary 4.11. A ≤W2R B does not imply A ≤T B′.

5. Weakly 2-random sets and ≤LR

Note that ≤LR is a Σ0
3 relation implied by ≤T . In many ways ≤LR is similar to

≤T [BLS08a, BLS08b]. In this section we relate ≤LR to weak 2-randomness. Since
the LR upper cone above a ∆0

2 set X 6≤LR ∅ is null and Σ0
3 we have the following.

Proposition 5.1. If Z is weakly 2-random then every ∆0
2 set A ≤LR Z is K-trivial.

Proof. Assume otherwise. Then there is a bounded oracle Σ0
1 class V such that

UA ⊆ V Z , where U is a member of the universal oracle Martin-Löf test. But then
Z is a member of the class

{X | UA ⊆ V X} =
⋂
n,s0

⋃
s>s0

{X | UA�n[s] ⊆ V X}

which is Π0
2 and it is null since non-trivial LR upper cones are null by a theorem

of Stephan (see [BLS08a]). This is a contradiction. �

The LR lower cone below a ∆0
2 set is only Σ0

4 in general, and it turns out to be
possible to have a weakly 2-random set LR-below a ∆0

2 set (see Theorem 5.3). If the
oracle (the top of the lower cone) is low then its lower cone has lower complexity,
thus allowing us to show the following.

Proposition 5.2. If B′ ≤T ∅′ then there is no Z in W2R (and in fact no Z in
Kurtz[∅′]) such that Z ≤LR B.
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Proof. If Z ≤LR B then Z belongs to

(5.1) {X | ∀n∃s UX�n ⊆ V B [s]}

for some oracle Σ0
1 class V (where U is a member of the universal oracle Martin-Löf

test) which is a Π0
1[B

′] class. If B′ ≤T ∅′ then (5.1) is a Π0
1[∅′] class (and so a Π0

2

class). Also it is null since lower LR cones have measure 0 [BLS08a], so Z cannot
be Kurtz random relative to ∅′ (or weakly 2-random). �

Recently there has been an interest in understanding the class of oracles ≤LR ∅′, see
for example Section 5.6 of [Nie09]. In [BLS08a] it was shown that it is uncountable
and in [BLS08b] it was shown that it contains sets of hyperimmune-free Turing
degree. In the following we show that it contains a weakly 2-random set. Notice
that by definition of ≤LR it does not contain 2-random sets.

Theorem 5.3. There is a weakly 2-random Z that is K-trivial relative to ∅′. Thus
Z ⊕ ∅′ ≤LR ∅′. Moreover, Z can be chosen of hyperimmune-free Turing degree.

Proof. By Nies [Nie09], a set Z is K-trivial relative to ∅′ iff Z ⊕ ∅′ ≤LR ∅′. In
particular, this notion is closed downward with respect to ≤T . Kučera and Nies
(see [Nie09, Exercise 1.8.46 and its solution]) have shown the following. Let P be
a non-empty Π0

1 class. Suppose that B >T ∅′ is Σ0
2. Then there is a set Z ∈ P of

hyperimmune-free Turing degree such that Z ′ ≤T B.
Now let P be a non-empty Π0

1 class of ML-randoms. The members of P that
form a minimal pair with ∅′ are weakly 2-random (see [Nie09, Section 5.3]). Let
B >T ∅′ be a Σ0

2 set that is K-trivial relative to ∅′. This exists by a relativization
of the well known construction of a non-computable c.e. K-trivial set. By applying
the above theorem we get Z is as required. Indeed, since Z is of hyperimmune
degree, it forms a minimal pair with ∅′. Hence it is weakly 2-random. Moreover it
is computable from B, therefore it is K-trivial relative to ∅′. �

Theorem 5.3 does not hold if we replace ‘weakly 2-random’ with SR[∅′]. Indeed,
exercise 5.5.10 in [Nie09] shows that no Schnorr random set is K-trivial; the rel-
ativization of this argument to ∅′ shows that no set in SR[∅′] is K-trivial relative
to ∅′. Also, notice that any K-trivial relative to ∅′ is computable from ∅′′. This
follows by relativization of the fact from [Nie09] that every K-trivial is ∆0

2.
We note that if for some A there is a weakly 2-random ≤LR A this does not

necessarily mean that there is a weakly 2-random in the same LR degree as A. For
example, Exercise 5.6.22 in [Nie09] shows that the only c.e. LR degree that contains
a Martin-Löf random set is the LR degree of ∅′. Also notice that by Theorem 5.1
there is no weakly 2-random in the LR degree of ∅′. We do not know whether the
property of LR bounding a weakly 2-random is an LR-completeness criterion for
∆0

2 sets; in other words, if the condition that ‘B is low’ in Theorem 5.2 can be
replaced with ‘B is ∆0

2 and not LR complete’.
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