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Eliminating concepts
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Four classes of sets have been introduced independently by various re-
searchers: low for K, low for ML-randomness, basis for ML-randomness
and K-trivial. They are all equal. This survey serves as an introduction
to these coincidence results, obtained in [24] and [10]. The focus is on
providing backdoor access to the proofs.

1. Outline of the results

All sets will be subsets of N unless otherwise stated. K(x) denotes the prefix
free complexity of a string x. A set A is K-trivial if, within a constant, each
initial segment of A has minimal prefix free complexity. That is, there is
c ∈ N such that

∀n K(A � n) ≤ K(0n) + c.

This class was introduced by Chaitin [5] and further studied by Solovay
(unpublished). Note that the particular effective epresentation of a number
n by a string (unary here) is irrelevant, since up to a constant K(n) is
independent from the representation.

A is low for Martin-Löf randomness if each Martin-Löf random set is
already Martin-Löf random relative to A. This class was defined in Zambella
[28], and studied by Kučera and Terwijn [17].

In this survey we will see that the two classes are equivalent [24]. Further
concepts have been introduced: to be a basis for ML-randomness (Kučera
[16]), and to be low for K (Muchnik jr, in a seminar at Moscow State, 1999).
They will also be eliminated, by showing equivalence with K-triviality. All
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the equivalent definitions show different aspects of the same notion. In
particular, while low for K, low for random and basis for ML-randomness
are forms of computational weakness, K-trivial intuitively means being far
from random.

Solovay (1975) proved the existence of a non-computable K-trivial.
Kučera and Muchnik each showed the existence of a non-computable set
in the class introduced. For the class of low for ML-random sets, existence
was only shown in 1997 [17]. All examples were c.e., except for Solovay’s
example of a K-trivial, which was only ∆0

2. Later this was improved to a
c.e. example by Kummer (unpublished), and Calude & Coles [3].

The main purpose of this paper is to survey the coincidence results
obtained in [24] and [10] and to present the proof ideas in an accessible
way. However, in Subsection 3.2 we provide some new facts about the cost
function construction of a K-trivial set. We also include a sketch of a proof
that each K-trivial is low via the golden run method, which is simplest
application of this method. Facts quoted without reference can be found
in [8], or in my forthcoming book [20]. However, for the ease of the reader
we recall some facts here. Throughout, “Martin-Löf” will be abbreviated
by “ML”. Schnorr’s Theorem states that Z is ML-random iff for some c,
∀n K(Z � n) ≥ n− c. Thus Z is ML-random if for each n, K(Z � n) is near
its maximal value n + K(0n). To say that A is K-trivial means that A is
far from ML-random, because K(A � n) is minimal (all up to constants).

An example of a ML-random set is Chaitin’s halting probability,

Ω =
∑

U(σ)↓ 2−|σ|,

where U is the reference universal prefix free machine.
If x, y are expressions, then x ≤+ y denotes that x ≤ y+c for a constant

c independent of the values of x and y.

2. Computational weakness

2.1. Three classes

First we will discuss the low for K sets, the low for ML-randomness sets,
and the bases for ML-randomness.

In general, adding an oracle A to the computational power of the uni-
versal machine decreases K(y). A is low for K if this is not so. In other
words,

∀y K(y) ≤+ KA(y).
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Let M denote this class, introduced by Andrej A. Muchnik in 1999, who
proved that there is a c.e. noncomputable A ∈ M. We defer a proof of
existence till later. Here is a useful observation.

Proposition 2.1: If A is low for K, then A is GL1, namely, A′ ≤T A⊕∅′.

Proof: If t is least such that e ∈ A′
t, then KA(t) ≤+ 2 log e. To see this,

recall that the number e has the prefix free code 0|σ|1σ where σ is the
string representing e in binary. Consider the prefix free machine with or-
acle A that, on input a prefix free code for e searches for t such that
JA(e) converges at stage t. This machine shows that KA(t) ≤+ 2 log e.
Also K(t) ≤+ KA(t) by hypothesis on A, so K(t) ≤ 2 log e + c for some
constant c. Now ∅′ can compute s = max{U(σ) : |σ| ≤ 2 log e + c}, where
U is the reference universal prefix free machine. Then e ∈ A′ ⇔ e ∈ A′

s.

Let MLR denote the class of Martin-Löf-random sets. Because an oracle
A increases the power of tests, MLRA ⊆ MLR. In general one would expect
this inclusion to be proper. Zambella [28] defined A to be low for ML-
randomness if

MLRA = MLR. (2.1)

In 1997, Kucera and Terwijn proved that there is a non-computable c.e.
set that is low for ML-randomness [17]. To see that low for K implies low for
ML-randomness, first note that Schnorr’s Theorem relativizes: Z is Martin-
Löf random relative to A iff for some c, ∀n KA(Z � n) ≥ n− c. Now, since
MLR can be defined in terms of K, and MLRA in terms of KA, low for K

implies low for ML-randomness. Thus, the existence of a non-computable
c.e. set that is low for ML-randomness also follows from Muchnik’s result.

Kučera [16] introduced a further concept expressing computational
weakness. He studied sets A such that

A ≤T Z for some Z ∈ MLRA.

That is, A can be computed from a set that is ML-random relative to
A. While Kučera used the term “basis for 1-RRA”, we will call such a set
a basis for ML-randomness. There is no connection to basis theorems.

If A is low for ML-randomness then A is a basis for ML-randomness. For,
by the Kučera-Gács Theorem there is a ML-random Z such that A ≤T Z.
Then Z is ML-random relative to A.
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2.2. The existence and equivalence theorems

In the following We will discuss two theorems:
Theorem 2.2: There is a c.e. non-computable basis for ML-randomness [16].
Theorem 2.5: Each basis for ML-randomness is low for K [10].

Now two concepts are gone. For, we have already obtained the easy
inclusions

low for K ⇒ low for ML-randomness ⇒ basis for ML-randomness.

Then, by the second Theorem, all three classes are the same. In par-
ticular, the Theorems together imply the result of Muchnik that there is a
non-computable c.e. low for K set.

How about the fourth concept, K-triviality? While the implication “low
for K ⇒ K-trivial” is immediate, the converse, “K-trivial ⇒ low for K”,
is hard. The proof is carried out separately from all of the above and will
be discussed in Section 3.

Chaitin [5] proved that each K-trivial set is ∆0
2, by an elegant short

argument involving the coding theorem. Thus a set that is low for ML-
randomness is ∆0

2. This answers an open question of Kučera and Terwijn
[17]. I first gave a direct proof of this [21], introducing techniques which I
later extended in order to prove Theorem 2.6 below.

We now proceed to the first Theorem.

Theorem 2.2: Kučera [16]. There is a c.e. non-computable set A that is
a basis for ML-randomness.

The proof sketched here differs a bit from Kučera’s original one. One com-
bines the following two results. The first comes from Kučera’s priority free
solution to Post’s problem. A function f : N 7→ N is called diagonally
non-computable if ∀e¬ f(e) = Φe(e).

Theorem 2.3: Kučera [15]. Let Z be ∆0
2 and diagonally non-computable.

Then there is a simple set A ≤T Z.

Each ML-random set is diagonally non-computable. So we may apply
Theorem 2.3 to a low ML-random set Z (say), and then use the following
lemma of Hirschfeldt, Nies and Stephan in order to obtain a simple basis
for ML-randomness.

Lemma 2.4: [10]. If Z <T ∅′ is ML-random and A ≤T Z is c.e., then Z

is already ML-random relative to A.
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To prove the Lemma, one argues that one can turn a ML-test relative
to A which Z fails into a plain ML-test. This uses the incompleteness of Z.

Theorem 2.3 is easier to prove under the stronger hypothesis that Z is
ML-random, and this is the only case we need here. Under this stronger
hypothesis, it can be proved without using the Recursion Theorem. In fact,
Kučera had first thought of this special case, and only later he generalized it
to diagonally non-computable Z, where the Recursion Theorem is needed.
We sketch the proof of Theorem 2.3 for a ML-random set Z.

Proof: A Solovay test G is given by an effective enumeration of strings
σ0, σ1, . . ., such that

∑
i 2−|σi| < ∞. It is not hard to see that Z is ML-

random iff for each Solovay test G = σ0, σ1, . . ., for almost all i, σi 6� Z.
We will enumerate A and a Solovay test G. To make A simple, we meet

the requirements

Se : |We| = ∞⇒ A ∩We 6= ∅.

Construction. At stage s > 0, if Se is not satisfied yet, see if there is
an x, 2e ≤ x < s, such that

x ∈ We,s −We,s−1 & ∀tx<t<s Zt � e = Zs � e.

If so, put x into A. Put the string σ = Zs � e into G. Declare Se satisfied.
Clearly A is simple (in fact, A can even be made promptly simple). Also,

G is a Solovay test since the requirement Se contributes at most 2−e to G.
To see A ≤T Z, choose s0 such that σ 6� Z for any σ enumerated into

G after stage s0. Given an input x ≥ s0, using Z, compute t > x such that
Zt � x = Z � x. Then x ∈ A ⇔ x ∈ At, for if we put x into A at a
stage s > t for the sake of Se, then e < x, so we also put σ into G where
σ = Zs � e = Z � e. This contradicts the fact that σ 6� Z.

Note that the enumeration into A is heavily restrained. If Z � e changes
another time at stage s, then no x < s can be enumerated after s for the
sake of Se. Z can restrict Se in this way as late and as often as it wants.

Now we discuss the second result, which we call the hungry sets theorem.

Theorem 2.5: Hirschfeldt, Nies, Stephan [10]. If A is a basis for ML-
randomness, then A is low for K.

We actually obtained the conclusion that A is K-trivial, by a very similar
proof. A full proof of the present version is in [20].
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The Kraft-Chaitin Theorem. We use the KC-Theorem as a tool. A
c.e. set W ⊆ N× 2<ω is a Kraft-Chaitin set (KC set) if∑

〈r,y〉∈W 2−r ≤ 1.

(Note that some values of r can occur several times in this sum.) The KC-
Theorem states that, from a Kraft-Chaitin set L, one can effectively obtain
a prefix free machine M such that

∀r, y[〈r, y〉 ∈ L ⇔ ∃w (|w| = r & M(w) = y)].

Thus, we enumerate requests 〈r, y〉 (“give a description of y that has length
r”). The weight of this request is 2−r. If their total weight is at most 1, then
each request will be fulfilled: there actually is an M -description of length
r. A critical point in proofs applying the KC-theorem is to verify that the
set of requests is in fact KC, namely the total weight is at most 1. We will
now outline proof of the hungry sets theorem, and reveal the reason for
its culinary name. To ensure the sets enumerated are KC-sets, we use the
method of accounting.

Proof: Given a Turing functional Φ, we define a ML-test (V X
d )d∈N+ rela-

tive to oracle X (later, we use this test for X = A). Suppose A = ΦZ . The
goal is this: if Z 6∈ V A

d then A is low for K, with constant d + O(1).
To realise this goal, we also build a uniformly c.e. sequence (Ld)d∈N+ of

KC sets. For each computation of the universal prefix free machine U,

Uη(σ) = y where η � A,

(that is, whenever y has a description σ with oracle A), we want to ensure
there is a description without an oracle that is only by a constant longer.
Thus we want to put a request

〈|σ|+ d + 1, y〉

into Ld. The problem is that we don’t know A, so we don’t know which η’s
to take. So Ld could fail to be KC. To avoid this, the description Uη(σ) = y

first has to prove itself worthy.
Recall that we are building an auxiliary ML-test (Vd) relative to A. If

Z 6∈ Vd then Ld works. We effectively enumerate open sets Cη
d,σ and let

V A
d =

⋃
η≺A Cη

d,σ.

While µ(Cη
d,σ) < 2−|σ|−d, Cη

d,σ is hungry. We feed it with fresh oracle strings
α, where η ≺ Φα.
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All the open sets [Cη
d,σ]� are disjoint. When µ(Cη

d,σ) exceeds 2−|σ|−d−1,
we put the request 〈|σ| + d + 1, y〉 into Ld. We can account the weight of
those requests against the measure of the sets Cη

d,σ, since the measure of
Cη

d,σ is greater than the weight of the request. This shows that each Ld

is a KC set. Because Z is ML-random relative to A, there is some d such
that whenever Uη(σ) = y in the relevant case that η � A, the request
〈|σ|+ d + 1, y〉 we are after is enumerated into Ld. Thus the following fact
(named to honor the Brazilian president Lula) can be verified.

Fome Zero Lemma. Suppose Z 6∈ Vd. Then for each description
Uη(σ) = y, where η ≺ A, µ(Cη

d,σ) = 2−|σ|−d. In other words, µ(Cη
d,σ)

is hungry no more at the end of time.

Discussion. For each partial computable functional Φ, let SΦ
A = {Z : A =

ΦZ}. For each n > 0, let SΦ
A,n = [{σ : A � n = Φσ}]� . Then SΦ

A,n is open
and c.e. relative to A, uniformly in n. Moreover, SΦ

A =
⋂

n SΦ
A,n. Thus SΦ

A

is a Π0
2 class relative to A, and µSΦ

A = 0 is equivalent to limn µSΦ
A,n = 0.

Let us compare a few facts related to this.

- If A is non-computable, then µSA = 0 [26].
- If A is ML-random, then (after leaving out the first few compo-

nents), (SΦ
A,n)n∈N is a ML-test relative to A, a fact from [19]. In

other words, there is c such that ∀n µSA,n ≤ 2−n+c.
- By the proof of the hungry sets theorem, based on Φ, one can build

an oracle ML-test (Vd) such that, whenever A is not low for K, then
SA ⊆

⋂
d V A

d . Then, since there is a universal ML test, the whole
class {Z : A ≤T Z} is ML-null relative to A. (The converse holds
as well: if A is low for K then Ω ≥T A is ML-random relative to
A, so the class is not ML-null relative to A.)

These facts suggest that, the more random A is, the fewer sets compute
it, where “fewer” is taken in the sense of how effective the null set SΦ

A is.
The only case where SΦ

A is merely a Π0
2 null set is when A is low for K, or

equivalently, K-trivial.

2.3. Lowness for other randomness notions

Next, we digress a bit in order to study lowness for randomness notions
implied by ML-randomness (for more details, see [8]). The definition of
those classes is the exact analog of (2.1). Each computable set is low for the
randomness notion in question. The question is whether there are others,
and if so, how to characterize the class. Unexpected things happen.
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For my purposes, a martingale is a function M : {0, 1}∗ 7→ Q+
0 such

that

M(x0) + M(x1) = 2M(x)

(here Q+
0 is the set of non-negative rationals). M succeeds on Z if

lim supn M(Z � n) = ∞, and the class of the sets where M succeeds is
denoted Success(M). Z is computably random if no computable martingale
M succeeds on Z. That is, M(Z � n) is bounded.

While a martingale always bets on the next position, a non-monotonic
betting strategy can choose some position that has not been visited yet.
Z is Kolmogorov-Loveland random (KLRand) if not even a non-monotonic
betting strategy can succeed on Z. It is easy to verify that

MLR ⊆ KLR ⊂ CR,

where MLR, KLR and CR denote the classes of Martin-Löf-random, KL-
random and computably random sets, respectively. Whether the first inclu-
sion is proper is a major open problem [18] .

Let us discuss the associated lowness notions. Recall that each low
for ML-randomness set is a basis for ML-randomness, hence low for ML-
randomness implies low for K by Theorem 2.5. First we consider a strength-
ening of this result, which actually is the version in which it first appeared.

Theorem 2.6: [24]. If MLR ⊆ CRA then A is low for K.

The converse implication is easy, since low for K implies low for ML-
randomness by Schnorr’s Theorem, as discussed above.

We sketch the proof of Theorem 2.6.

Proof: Let R be any c.e. open set such that µR < 1 and Non-MLRand ⊆ R,
for instance, R = {Z : ∃nK(Z � n) ≤ n − 1}. We will define a Tur-
ing functional L such that LA is a martingale. If MLR ⊆ CRandA then
Success(LA) ⊆ Non-MLRand, and the following lemma applies to N = LA.
It says that there is a basic open cylinder [v] 6⊆ R such that, for each x

extending v, if N(x) is large, then x is not too random as a string because
x is in R.

Lemma 2.7: Let N be any martingale such that Success(N) ⊆ Non-MLR.
Then there are v ∈ 2<ω and m ∈ N such that [v] 6⊆ R, and

∀x � v [N(x) ≥ 2m ⇒ x ∈ R]. (2.2)
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To prove the Theorem, let us at first assume we know the witnesses v,m

in the Lemma. Thus

∀x � v [LA(x) ≥ 2m ⇒ x ∈ R].

The proof parallels the proof of the hungry sets theorem. (The present
argument actually was given first, in [24].) Once again, when we see a
description Uη(σ) = y where η � A, we want a corresponding set Cη

σ such
that µCη

σ ≥ 2−|σ|−c, c some constant (there is no analog of the parameter
d here). While µCη

σ < 2−|σ|−c, the set is hungry. The sets for different
descriptions have to be disjoint. We feed a set Cη

σ in small servings, as
follows: at stage s, pick a clopen set D, µD = ε of long strings x � v,
D∩Rs = ∅. Here ε is an appropriate small quantity. Define Lη(x) ≥ 2m for
each x ∈ D and put D into Cη

σ . If η ≺ A, then D will go into R eventually.
Once this happens, repeat with a new set, but again of measure ε, as long
as Cη

σ is hungry. The fact that the old set D has to enter R before we pick a
new one enables us to stuff the right sets up to the desired measure, while
the ones where η 6≺ A only get a small serving outside of R. To make the
sets Cη

σ disjoint, we simply ensure the different portions outside R they are
fed with are disjoint.

Actually, we do not know the right witnesses v,m. But it is enough to let
L be an infinite weighted sum, over all possible witnesses, of the martingales
obtained for those witnesses. See [24] for the rather tricky details.

Next we consider the class of low for KL-random sets If A is low for
KLRand, then

MLR ⊆ KLR = KLRA ⊆ CRA.

Therefore, the following is a consequence of Theorem 2.6.

Corollary 2.8: Each low for KL-random set is low for K.

As one would expect, it is an open problem whether the two classes are
the same.

Next we show that the only low for computably random sets are the
computable ones [24]. An earlier result in this direction was obtained in
joint work with Benjamin Bedregal, then at UFRN, Natal, Brazil.

Theorem 2.9: [2]. Each low for computably random set A is of hyper-
immune free degree.
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But also, by Theorem 2.6 each low for computably random set is K-
trivial, and hence ∆0

2. Since the only hyper-immune free ∆0
2 sets are the

computable ones, we have

Theorem 2.10: [24]. Each low for computably random set A is com-
putable.

This answers Question 4.8 in Ambos-Spies and Kucera [1] in the nega-
tive. It was conjectured this way by R. Downey.

An order function is a non-decreasing unbounded computable function.
A notion weaker still than computable randomness is the following. Z is
Schnorr random (SRand) if no computable martingale M succeeds fast on
Z, in the sense that there is an order function h (for instance, h(n) =
blog nc) such that M(Z � n) ≥ h(n) for infinitely many n. Equivalently, Z

passes each Schnorr test, namely each ML-test (Vn)n∈N such that µ(Vn) =
2−n. Just as in the case of lowness for ML-randomness, the associated
lowness notion can be characterized in a combinatorial way. A is computably
traceable if the value f(x) of each f ≤T A is in a small effectively given set
Dg(x): g is a computable function depending on f , and |Dg(x)| ≤ h(x) for
an order function h not depending on g. Each computably traceable set is
hyper-immune free.

A is low for Schnorr tests if for each Schnorr test (Vn)n∈N relative to A,
there is a Schnorr test (Sn)n∈N such that

⋂
n Vn ⊆

⋂
m Sm. Clearly each set

that is low for Schnorr tests is low for Schnorr randomness. Terwijn and
Zambella [27] proved that A is low for Schnorr tests iff A is computably
traceable. They asked if this is also the same as being low for Schnorr
randomness. In fact a stronger result holds.

Theorem 2.11: [14]. The following are equivalent.

(i) Each computably random set is Schnorr random relative to A

(ii) A is computably traceable.

One key ingredient is Theorem 2.9, which persists when one weakens
the hypothesis to: each computably random set is Schnorr random relative
to A.

3. Far from random

3.1. Brief introduction to K-triviality.

For a string y, up to constants, K(|y|) ≤ K(y), since one can compute |y|
from y (where |y| is represented in binary). A set A is K-trivial if, for some
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b ∈ N

∀n K(A � n) ≤ K(0n) + b,

namely, the K complexity of all initial segments is minimal up to a constant.
This notion is opposite to ML-randomness: Schnorr’s Theorem (see [8]) says
that Z is ML-random iff ∃b∀n K(Z � n) ≥ n− b. Thus Z is ML-random if
all the complexities K(Z � n) are near the upper bound n + K(n), while Z

is K-trivial if they have the minimal possible value K(n) (all within con-
stants). If one defines K-triviality using the plain Kolmogorov complexity
C instead of K, then one obtains nothing beyond the computable sets [4].
However, Chaitin still managed to prove that the K-trivial sets are ∆0

2 [5].
As mentioned in the introduction, Solovay (unpublished, 1975) constructed
a non-computable K-trivial set A , which was ∆0

2, as expected, but not c.e.

3.2. Constructions

In [9] a short “definition” of a promptly simple K-trivial set is given, which
had been anticipated by various researchers (for instance Kummer and Zam-
bella) and is similar to the earlier construction of a non-computable c.e. low
for ML-randomness set [17]. We meet the prompt simplicity requirements

Se: |We| = ∞⇒ ∃s∃x [x ∈ We,s −We,s−1 & x ∈ As].

The key ingredient is the “cost function”

c(x, s) =
∑

x<y≤s

2−Ks(y).

The c.e. set A is given by letting A0 = ∅ and, for s > 0,

As = As−1 ∪ {x : ∃e
We,s ∩As−1 = ∅ we haven’t met e-th prompt simplicity requirement
x ∈ We,s −We,s−1 we can meet it, via x

x ≥ 2e to make A co-infinite
c(x, s) ≤ 2−e} to ensure A is K-trivial.

To see that each Se is met, note that

∀e∃y∀s > y [c(y, s) < 2−e]. (3.1)

So if x ≥ y enters We at a stage s > y then x can be enumerated into
A.
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The K-triviality of A is shown by enumerating a KC-set L such that
〈K(n) + 2, A � n〉 ∈ L for each n. By convention, let K0(y) = ∞ for each
y. When r = Ks(y) < Ks−1(y) we enumerate a request 〈r + 2, As � y〉 into
L. The total weight of those requests is ≤ Ω/4. When x enters A to meet
Se, then all the initial segments of A from x + 1 on change. So for each
y such that x < y < s, we enumerate a request 〈Ks(y) + 2, As � y〉. The
weight added to L is c(x, s)/4. Since each Se is active at most once, the
total weight added in this way is at most (

∑
e 2−e)/4 = 1/2.

Reverse computability theory. Recall the fragments of Peano arith-
metic IΣ1 (induction over Σ1 formulas) and BΣ1 (for each Σ1 function f

and each x, f([0, x]) is bounded). For each M |= IΣ1, there is a promptly
simple K-trivial set in M (Hirschfeldt and Nies). It suffices to verify (3.1)
in M. Suppose it fails for e ∈ M. Consider the Σ1 formula φ(m, e) given by

∃u [|u| = m & ∀i (0 ≤ i < m ⇒ c(ui, ui+1) > 2−e)].

By IΣ1 and the failure of (3.1) for e, M |= ∀m φ(m, e). Now let m = 2e + 1
and u ∈ M be the witness for m. Then, in M,

Ω ≥
∑

0≤i≤2e

c(ui, ui+1) ≥ (2e + 1)2−e > 1,

contradiction.
On the other hand, BΣ1 is not sufficient to verify the construction,

because of work of Chong and Slaman. Let M |= I∆1. A ⊆ M is regular
if for each n ∈ M, A � n is a string of M (i.e., encoded by an element of
M). Each K-trivial set A ⊆ M is regular, since A � n has a prefix free
description in M, for each n. There is a saturated M |= BΣ1 with a Σ1

cofinal f whose domain is the standard part. In such an M, each regular
c.e. set A is computable.

Necessity of the cost function method, c.e. case. Suppose the c.e.
set A is K-trivial via a constant b. Then one can think of A as being built
by the cost function construction, when restricting to an appropriate com-
putable set of stages {si : i ∈ N}. For each s, one can effectively determine
an f(s) > s such that ∀n < s K(A � n) ≤ K(n)+ b [f(s)]. Let s(0) = 0 and

s(i + 1) = f(s(i)). (3.2)

Proposition 3.1: Let A be c.e. and K-trivial via b. Then
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∑
{c(x, s(i)) : x < s(i) is minimal s.t. As(i)(x) 6= As(i+1)(x)} ≤ 2b.

Proof: Let xi < s(i) be minimal such that As(i)(x) 6= As(i+1)(x). For
each y, xi < y ≤ s(i), by definition there is at stage s(i + 1) a prefix free
description of As(i+1) � y of length ≤ Ks(i+1)(y) + b. Let Di be the open
set generated by such descriptions of a As(i+1) � y, xi < y ≤ si. Since A is
c.e., the strings A � y described at different stages s(i + 1) are distinct, so
that Di ∩Dj = ∅ for i 6= j. Hence

∑
i µDi ≤ 1.

Since

c(x, si) =
∑

xi<y≤s(i) 2−Ks(i)(y) ≤
∑

xi<y≤s(i) 2−Ks(i+1)(y) ≤ 2bµDi,

this shows
∑

i c(xi, s(i)) ≤ 2b, as required.

Using deeper methods, Proposition 3.1 can be extended to all K-trivial
sets. See Subsection 3.4.

We have seen two constructions of a non-computable c.e. K trivial set
A. Both are injury free.

(i) Take an ML-random Z <T ∅′, and build A ≤T Z using Kučera’s
method in Theorem 2.3. Then A is a basis for ML-randomness,
hence low for K, and hence K-trivial.

(ii) The cost function construction.

By the extended form of Proposition 3.1, each K-trivial set can be
thought of as being obtained via a cost function construction. It is an open
question whether each K-trivial set can be obtained via (i):

Question 3.2: If A is K-trivial, is there a ML-random set Z <T ∅′ such
that Z is Turing above A?

In Subsection 3.4. we will see that each K trivial set is Turing below a
c.e. K-trivial set. So there is no need to require that the given K-trivial set
A is c.e. See [18] for more details.

3.3. A is K-trivial iff A is low for K

We will get there in small steps. First we consider the fact that each K-
trivial is wtt-incomplete. Showing the downward closure of the K-trivials
under ≤wtt is easy: Suppose B = ΓA, where Γ is a wtt reduction procedure
with a computable bound f on the use. Then, for each n, within constants,

K(A � n) ≤ K(A � f(n)) ≤ K(f(n)) ≤ K(n).
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Now, since the wtt-complete set Ω is ML-random and hence not K–trivial,
no K–trivial set A satisfies ∅′ ≤wtt A. To introduce some new techniques,
we give a direct proof of wtt-incompleteness.

Suppose that ∅′ ≤wtt A for a K-trivial A. We build an c.e. set B, and by
the Recursion Theorem we can assume we are given a total wtt-reduction
Γ such that B = ΓA, whose use is bounded by a computable function g.

We also build a KC-set L. Thus we enumerate requests 〈r, n〉 and have
to ensure the total weight is at most 1. By the Recursion Theorem, we may
assume the coding constant d for L is given in advance. Then, putting 〈r, n〉
into L causes K(n) ≤ r + d and hence K(A � n) ≤ r + b + d, where b is the
triviality constant. (In fact we apply the Double Recursion Theorem.)

Let

k = 2b+d+1

Let n = g(k) (the use bound). We wait till ΓA(k) converges, and put the
single request 〈r, n〉 into L, where r = 1. Our total cost is 1/2.

Each time the opponent (named Otto here) has a prefix free description
of A � n of length ≤ r + b + d, we force A � n to change, by putting into
B the largest number ≤ k which is not yet in B. If we reach k + 1 such
changes, then his total cost is

(k + 1)2−(b+d+1) > 1,

contradiction.
Turing-incompleteness. Consider the more general result that each

K-trivial set is T-incomplete [9]. There is no recursive bound on the use of
ΓA(k). The problem now is that Otto might, before giving a description of
As � n, move this use beyond n, thereby depriving us of the possibility to
cause further changes of A � n. The solution is to carry out many attempts
in parallel, based on computations ΓA(m) for different m. Each time the use
of such a computation changes, the attempt is cancelled. What we placed
in L for this attempt now becomes garbage. We have to ensure that the
weight of the garbage does not build up too much, otherwise L is not a KC
set.

More details: j-sets The following is a way to keep track of the number
of times Otto had to give new descriptions of strings As � n. We only
consider the stages s(0) < s(1) < s(2) < . . . where A looks K-trivial with
constant b, defined as in 3.2. We write stage (in italics) when we mean a
stage of this type.

At stage t, a finite set E is a j-set if for each n ∈ E
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- first we put a request 〈rn, n〉 into L

- and then j times at stages s < t Otto had to give new descriptions
of As � n of length rn + b + d.

A c.e. set with an enumeration E =
⋃

Et is a j-set if Et is a j-set at
each stage t.

For E ⊆ N, the weight is defined by wt(E) =
∑
{2−rn : n ∈ E}. The

weight of a k-set is at most 1/2.

Lemma 3.3: If the c.e. set E is a k-set, k = 2b+d+1 as defined above, then
wt(E) ≤ 1/2.

This is so because k times Otto has to match our description of n, which
has length rn, by a description of a string As � n that is at most b + d

longer.
Procedures. Assume A is K-trivial and Turing complete. As in the

case of wtt-incompleteness, we attempt to build a k-set Fk of weight > 1/2
and reach a contradiction.

The procedure Pj (2 ≤ j ≤ k) enumerates a j-set Fj . The construction
begins calling Pk, which calls Pk−1 many times, and so on down to P2,
which enumerates L (and F2).

Each procedure Pj is called with rational parameters q, β ∈ [0, 1]. The
goal q is the weight it wants Fj to reach. When the procedure reaches its
goal it returns. The garbage quota β is how much garbage it is allowed to
produce.

Decanter model. We visualize this construction by a machine similar
to Lerman’s pinball machine. However, since we enumerate rational quan-
tities instead of single objects, we replace the balls there by amounts of a
precious liquid, 1955 Biondi-Santi Brunello wine.

Our machine consists of decanters Fk, Fk−1, . . . , F0. At any stage Fj is
a j set. Fj−1 can be emptied into Fj .

The procedure Pj(q, β), 2 ≤ j ≤ k, wants to add a weight of q to Fj . In
the beginning it picks a new number m targeted for B. It fills Fj−1 up to
q and then returns, by emptying it into Fj . All numbers put into Fj−1 are
above γA(m). The emptying is done by enumerating m into B and hence
causing another A-change.

The emptying device for Fj−1 is the γA(m)-marker. It is depicted as a
hook, which besides being used once on purpose may go off finitely often
by itself (this is the visualization of a premature A-change). When Fj−1 is
emptied into Fj then Fj−2, . . . , F0 are spilled on the floor.
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Though the recursion starts by calling Pk with goal 1, wine is first
poured into the highest decanter F0, and thereby into the left domain of
L. We want to ensure that at least half the wine we put into F0 reaches
Fk. Recall that the parameter β is the amount of garbage Pj(q, β) allows.
If v is 1+the number of times the emptying device γA(m) has gone off by
itself, then Pj lets Pj−1 fill Fj−1 in portions of 2−vβ (ie it calls Pj−1 with
goal 2−vβ as often as necessary). Then, when Fj−1 is emptied into Fj , at
most 2−vβ can be lost because of being in higher decanters Fj−2, . . . , F0.
Alltogether the garbage due to Pj(q, β) is at most β

∑
v≥1 2−v = β.

Let us stress this key idea: when we have to cancel a run Pj(q, β) because
of a premature A-change, what becomes garbage is not Fj−1, but rather
what the sub-procedures called by this run were working on. The set Fj−1

already is a j−1-set, so all we need is another A-change, which is provided
here by the cancellation itself, as opposed to being caused actively once the
run reaches its goal.

Who enumerates L? The bottom procedures P2(q, β), which is where
the recursion reaches ground. It puts requests 〈rn, n〉 into L and the top
decanter F0, where n is large and 2−rn = 2−vβ for v as above. Once it sees
the corresponding A � n description, it empties F0 into F1. However, if the
hook γA(m) belonging to P2 moves before that, then F0 is spilled on the
floor, while F1 is emptied into F2.

So much for the discussion of Turing incompleteness. Next, we improve
this to lowness.

Theorem 3.4: Each K-trivial set is low.

Proof: Let JA(e) denote ΦA
e (e). A procedure Pj(q, β) is started when

JA(e) newly converges. The goal q is α2−e, where α is the garbage quota
of the procedure of type Pj+1 that called it (assuming j < k).

For different e they run in parallel, so we now have a tree of decanters.
This could be avoided by letting a new convergence JA(e′), e′ < e, cancel
a run for JA(e).

We cannot change A actively any more (and we are happy if it doesn’t).
However, this creates a new type of garbage, where Pj(q, β) reaches its goal,
but no A change happens after that would allow us to empty Fj−1 into Fj .
In this case no more procedures are started because of a new convergence
of JA(e). So the total weight of garbage of this type is ≤

∑
e 2−eα, which

can be tolerated.
The man with the golden run. The initial procedure Pk never re-

turns, since it has goal 1, while a k-set has weight at most 1/2 by Lemma
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3.3. So there must be a golden run of a procedure Pj+1(p, α): it doesn’t
reach its goal, but all the subprocedures it calls either reach their goals
or are cancelled by premature A changes. The golden run shows that A is
low: When the run of the subprocedure Pj based on a computation JA(e)
returns, then we guess that JA(e) converges. If A changes below the use of
JA(e), then Pj+1 receives the fixed quantity 2−eα. In this case we change the
guess back to “divergent”. This can only happen r times where r = 2ep/α,
else Pj+1 reaches its goal. (Note that α is chosen of the form 2−l.)

This proof actually shows that A is super-low: the number of changes
in the approximation of A′ is computably bounded. The lowness index is
not obtained uniformly: we needed to know which run is golden. This non-
uniformity is necessary [9, 23].

We are now ready for the full result.

Theorem 3.5: A is K-trivial iff A is low for K.

This was obtained joint with Hirschfeldt, via a modification of my result
that the K-trivial sets are closed downward under ≤T . It implies lowness,
as we have seen an easy proof that each low for K set is GL1, and each
K-trivial set is ∆0

2.

Proof: A procedure Pj(q, β) is started when UA(σ) = y newly converges.
The goal q is α2−|σ|. Thus the construction is similar to the one in the
proof of Theorem 3.4, but it is now necessary to call procedures based on
different inputs σ in parallel. So we necessarily have a tree of decanters.
At the golden run node Pj+1(p, α), we can show that A is low for K, by
emulating the cost function construction of a low for K set. When Pj(q, β)
associated with UA(σ) = y returns, we have the right to put a request
〈|σ|+ c, y〉 into a set W (where c = 1+log2(p/α)). An A change has a cost,
since we put a request for a wrong computation. The fact that Pj+1 does
not reach its goal implies that the cost is bounded. Hence W is a KC-set.

3.4. Further applications of the golden run method.

Here are two further applications.
1. The cost function construction is necessary even for K-trivial ∆0

2 sets
A . This can be used to show that there is a c.e. K-trivial set Turing above
A [24].

2. A real number r is left-c.e. if {q ∈ Q : q < r} is c.e. For each K-trivial
set A, the relativized Chaitin probability ΩA is left-c.e. [7]. (The converse
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also holds here, in case that A is ∆0
2: if ΩA is left-c.e. then it is Turing

complete, so A is a basis for ML-randomness, hence K-trivial.)

4. Effective descriptive set theory.

Π1
1 sets of numbers are a high-level analog of the c.e. sets, where the steps of

an effective enumeration are recursive ordinals. For details see [25]. Hjorth
and Nies [12] have studied the analogs of K and of ML-randomness based on
Π1

1-sets. The analog of K in the Π1
1 setting is denoted K̃. The analogs of the

KC-theorem and Schnorr’s Theorem hold, but the proofs take considerable
extra effort due to the extra complication of limit stages. There is a Π1

1-set
of numbers which is K̃-trivial and not hyperarithmetical. In contrast,

Theorem 4.1: If A is low for Π1
1-ML-randomness, then A is hyperarith-

metical.

So K-trivial and low for ML-randomness differ in the Π1
1-setting.

Proof: First we show that ωA
1 = ωCK

1 . This is used to prove that A is in
fact K̃-trivial at some η < ωCK

1 , namely

∀n K̃η(A � n) ≤ K̃η(n) + b.

Then A is hyperarithmetical, by the same argument Chaitin used to show
that K-trivial sets are ∆0

2: The collection of Z which are K̃-trivial at η

form a hyperarithmetical tree of width O(2b).

5. Subclasses.

Next we look at subclasses of the K-trivial sets, downward closed under
Turing reducibility, which may be proper. We will mostly restrict ourselves
to the c.e. K-trivial sets, which is a minor restriction here since each K-
trivial is Turing below a c.e. one, see subsection 3.4.

5.1. ML-coverable and ML-noncuppable sets

We have already seen a subclass of the c.e. K-trivials that is downward
closed: the c.e. sets A such that there a ML-random set Z <T ∅′ Turing
above A. Let us call a c.e. set of that kind ML-coverable. In Question 3.2
we ask if each (c.e.) K-trivial set is ML-coverable.

A ∆0
2 set A is ML-cuppable if
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A⊕ Z ≡T ∅′ for some ML-random Z <T ∅′.

Here is a further subclass: the c.e. sets that are not ML-cuppable (this
recent development was initiated by Kučera in 2004).

Many sets are ML-cuppable: If A is not K-trivial, then A 6≤T ΩA by the
hungry sets theorem 2.5, and A′ ≡T ΩA ⊕ A ≥T ∅′. If A is also low, then
Z = ΩA <T ∅′, so A is ML-cuppable. This shows for instance that each c.e.
non-K-trivial set B is ML-cuppable, since one can split it into low c.e. sets,
B = A0∪A1, and one of them is also not K-trivial. So the ML-noncuppable
c.e. sets are K-trivial.

Theorem 5.1: [22]. There is a promptly simple set which is not ML-
cuppable.

The proof combines cost functions with the priority method.

Question 5.2: Can a K-trivial set be ML-cuppable?

The cost functions in the proof Theorem 5.1 are much more restricting
then the one used to characterize the K-trivial sets. This gives some weak
evidence that the question has an affirmative answer. The same applies to
the Kučera construction of a simple A below a ∆0

2 ML-random Z � e related
to Question 3.2. Recall here that, if Z � e changes another time at s, then
[0, s) becomes taboo for Se. This can happen as often and as late as the
computable approximation of Z determines.

5.2. A common subclass

By recent work of Hirschfeldt and Nies, and later Miller, there is natu-
ral class L which is a subclass of both the ML-coverable and the ML-
noncuppable sets. L determines an ideal in the c.e. Turing degrees. The
following notion is the key. B is almost complete if ∅′ is K-trivial relative
to B. That is, there is c ∈ N such that

∀n KB(∅′ � n) ≤ KB(0n) + c

Such a set is high, in fact ∅′′ ≤tt B′. One can obtain incomplete almost
complete sets via Jockusch-Shore pseudojump inversion.

Theorem 5.3: [13]. For each c.e. operator W there is a c.e. set C such
that

WC ⊕ C ≡T ∅′.
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I observed in [24] that pseudojump inversion, applied to the c.e. oper-
ator W given by the cost function construction, yields an incomplete but
almost complete c.e. set. A recent result shows that pseudojumps can also
be inverted via ML-random sets.

Theorem 5.4: Nies 2006, see [20]. The conclusion of the Theorem 5.3
also holds for “C ML-random”.

The proof, which was simplified with the help of J. Miller, combines the
techniques to prove the Low Basis Theorem with the methods used in the
proof of Theorem 5.3.

Corollary 5.5: There is a ML-random almost complete ∆0
2-set.

Now let

L = {A : A is c.e. & ∀Z
Z ML-random, almost complete ⇒ A ≤T Z}.

Clearly, L determines an ideal in the Turing degrees. Hirschfeldt proved
that there is a promptly simple set in L. By the previous corollary, each
A ∈ L is ML-coverable, and hence K-trivial.

Surprisingly, L also is a subclass of the ML-noncuppable sets. The reason
for this inclusion is that each potential ∆0

2 ML-random cupping partner Z

of a K-trivial A is almost complete. The proof, due to Hirschfeldt (Dec.
2005), involves a relativization of the van Lambalgen Theorem: for any sets
Z,B and A such that Z ∈ MLRA, we have B⊕Z ∈ MLRA iff B ∈ MLRZ⊕A.
Now argue as follows. For each set B,

B ∈ MLRZ ⇒ B ⊕ Z ∈ MLR

⇒ B ⊕ Z ∈ MLRA

⇒ B ∈ MLRZ⊕A

⇒ B ∈ MLR∅
′
.

Thus ∅′ is low for ML-randomness relative to Z, and hence ∅′ is K-trivial
relative to Z (using that Z ≤T ∅′).

Unless L coincides with the class of c.e. K-trivial sets, L is an ideal of
the type we were looking for. The proof that there is a promptly simple set
in L later was both simplified and generalized.
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Theorem 5.6: Hirschfeldt, Miller 2006. Let C be a Σ0
3 null class. Then

there is a promptly simple A such that A ≤T Z for each ML-random Z ∈ C.

Proof: The proof uses a cost function argument. First suppose that C is
a Π0

2-class. Then C =
⋂

x Vx for an effective sequence (Vx)x∈N of Σ0
1-classes

such that Vx ⊇ Vx+1 for each x. Let (Vx,s)s∈N be an effective ascending se-
quence of clopen sets approximating Vx, and let c(x, s) = µVx,s. Then (3.1)
holds because limx µVx = 0. Now run the cost function construction from
subsection 3.2, using this new definition of c(x, s), and obtain a promptly
simple set A. When x enters A at stage s, enumerate Vx,s into a Solovay
test G (that is, put σ into G, for all σ of length s such that [σ] ⊆ Vx,s). The
construction ensures that G is indeed a Solovay test, by the definition of
c(x, s). To see that A ≤T Z for any ML-random Z ∈ C, choose s0 such that
σ 6� Z for any σ enumerated into G after stage s0. Given an input x ≥ s0,
using Z, compute t > x such that Z ∈ Vx,t. Then x ∈ A ⇔ x ∈ At, for if
we put x into A at a later stage, this would throw Z out of Vx,t.

If C is a Σ0
3-class, we extend the argument slightly: we have C =⋃

i

⋂
x(V i

x)i,x∈N, for an effective double sequence (V i
x)i,x∈N of Σ0

1-classes
such that V i

x ⊇ V i
x+1 for each i, x. Run the cost function construction from

subsection 3.2, now based on the function

c(x, s) =
∑

i 2−iµV i
x,s.

To show (3.1) for this new cost function, note that, given k, there is x0 such
that

∀i ≤ k + 1 ∀x ≥ x0 µV i
x ≤ 2−k−1.

Then c(x, s) ≤ 2−k for all x ≥ x0 and all s, since the total contribution of
terms 2−iµV i

x,s for i ≥ k + 2 to c(x, s) is bounded by 2−k−1.
For each i, build a Solovay test Gi, by enumerating V i

x,s into Gi when
x enters A at stage s. The sum of all 2−|σ|, for strings σ enumerated into
Gi, is bounded by 2i+1. If Z ∈ C is ML-random, then choose i such that
Z ∈

⋂
x V i

x , and argue as before that A ≤T Z using Gi.

To obtain a promptly simple set in L, it is now sufficient to observe that
the Σ0

3-class of almost complete sets is a null class (for instance, because
the larger class of high degrees has measure 0, but one can also give a direct
proof).

If C = {Z}, for a ML-random ∆0
2 set Z. Then C is a Π0

2 class: let
Zx be the string of length x approximating Z at stage x, and let Vx,s =
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⋃
x<y<s[Zy � my], where my is least such that Zy(my) 6= Zy−1(my), so that

C =
⋂

x Vx. Now the proof turns into the proof of Kučera’s Theorem 2.3,
for the special case that Z is a ML-random set, discussed in subsection 2.2.

5.3. Is there a characterization of K-triviality independent

of randomness and K?

Figueira, Nies and Stephan [11] have tried the following strengthening of
super-lowness:

For each unbounded nondescending computable function h, A′ has an
approximation that changes at most h(x) times at x. They build a c.e.
noncomputable such set, via a construction that resembles the cost function
construction. No relationship to K-triviality is known.
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1. K. Ambos-Spies and A. Kučera. Randomness in computability theory. In
Peter Cholak, Steffen Lempp, Manny Lerman, and Richard Shore, editors,
Computability Theory and Its Applications: Current Trends and Open Prob-
lems. American Mathematical Society, 2000.

2. B. Bedregal and A. Nies. Lowness properties of reals and hyper-immunity.
In Wollic 2003, volume 84 of Electronic Notes in Theoretical Computer
Science. Elsevier, 2003. Available at
http://www.elsevier.nl/locate/entcs/volume84.html.

3. Cristian S. Calude and Richard J. Coles. Program-size complexity of initial
segments and domination reducibility. In Jewels are forever, pages 225–237.
Springer, Berlin, 1999.

4. G. Chaitin. A theory of program size formally identical to information the-
ory. J. Assoc. Comput. Mach., 22:329–340, 1975.

5. G. Chaitin. Information-theoretical characterizations of recursive infinite
strings. Theoretical Computer Science, 2:45–48, 1976.

6. P. Cholak, N Greenberg, and J. Miller. Uniform almost everwhere domina-
tion. J. Symbolic Logic, to appear.

7. R. Downey, D. Hirschfeldt, J. Miller, and A. Nies. Relativizing Chaitin’s
halting probability. J. Math. Logic 5, No. 2 (2005) 167-192. .

8. R. Downey, D. Hirschfeldt, A. Nies, and S. Terwijn. Calibrating randomness.
Bull. Symb. Logic, to appear

9. Rod G. Downey, Denis R. Hirschfeldt, André Nies, and Frank Stephan.
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