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FINITELY GENERATED GROUPS AND FIRST-ORDER LOGIC

A. MOROZOV, A. NIES

Abstract

We prove that the following classes of finitely generated (f.g.) groups have Π1
1–complete first–order

theories: all f.g. groups, the n–generated groups, and the strictly n–generated groups (n > 2).
Moreover, all those theories are distinct. Similar techniques show that quasi-finitely axiomatizable
(QFA) groups have a hyperarithmetical word problem, where a f.g. group is QFA if it is the only
f.g. group satisfying an appropriate first–order sentence [8]. The Turing degrees of word problems
of QFA groups form a cofinal set in the Turing degrees of hyperarithmetical sets.

Given a first order theory, two fundamental tasks are to determine its computa-
tional complexity and its expressivity. The theory Th(E) of a class E of groups is the
set of first–order sentences which are true in all the members of E . We determine
the complexity for various theories Th(E). Our main results in this direction are:

– The theory T of the class of finitely generated (f.g.) groups is Π1
1-complete.

– For n ≥ 2, the theories Tn of all n-generated groups, and the theories T !
n of all

strictly n-generated groups are Π1
1-complete.

Here a group is strictly n-generated if it is n-generated but not (n− 1)-generated.
An example of a Π1

1-complete set from arithmetic is the set of all sentences of the
form ∀Xφ(X) which hold in N, for any Σ1-formula φ involving the arithmetical
operations and expressions “t ∈ X” for some term t. For another related example,
the set of (indices for) recursive subtrees of ω<ω which have no infinite path is Π1

1-
complete. We first verify that all those theories are in Π1

1. Then we prove that it is
as hard as it could possibly be to determine whether a first–order sentence φ holds
in all f.g. groups, and similarly for the other classes: the theories are Π1

1-complete.
Theories of classes of groups and their complexity have been studied for a long

time. A. Tarski [16] was the first to prove undecidability of the theory of groups in
1949. Many other results on decidability and undecidability of theories of classes
of groups were obtained by A. I. Mal’cev and Yu. L. Ershov in the 1960’s (see [17]
for details and bibliography) and later. Szmielev [15] proved that the theory of all
abelian groups is decidable, and O. Kharlampovich and A. Myasnikov announced
that the theory of a free groups is decidable [3]. Other theories, while being unde-
cidable, have a comparatively low complexity, like the theory of all groups, which
is in Σ0

1, or the theory of finite groups, which is in Π0
1. Nies [8, Cor 5.5] showed

that the theory of many classes of groups have the same complexity as true arith-
metic Th(N,+,×), for example the class of finitely presented groups, or the class
of f.g. groups of nilpotency class c (c ≥ 2 fixed). In one case the theory of a class of
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groups was shown to be Π1
1–complete. A.S.Morozov proved this for the class of all

subgroups of the group of computable permutations [6].
Fragments of theories have been considered as well. The universal theory of the

f.p. groups is undecidable by the unsolvability of the word problem. Slobodskoi [14]
showed that the universal theory of finite groups is undecidable.

Besides the complexity, one wants to determine the expressive power of first order
theories. Kharlampovich and Myasnikov [3] also announced that all non-abelian free
groups have the same first–order theory, thereby answering a long–open question
of Tarski. The result was later confirmed by Sela [12]. This exposes a weakness in
the expressiveness of first–order logic for free groups. On the other hand, Nies [8]
shows that many natural classes of groups have distinct theories, for instance the
classes of finite, finitely presented (f.p.), f.g., and of all groups (or, equivalently,
all countable groups). In this paper we also show that all the theories T, Tn and
T !

n introduced above are distinct. Thus all the inclusions in the diagram below are
proper:

T !
n+1 T !

n T !
2

∪ ∪ ∪
T ⊂ . . . ⊂ Tn+1 ⊂ Tn ⊂ . . . ⊂ T2

The class of f.g. groups is very rich; for instance, it has uncountably many iso-
morphism types. Thus, at first sight it may seem that all consistent first-order
properties of groups are already realized in a f.g. group. However, Kueker gave an
example of a sentence which holds in the Prüfer group C2∞ , but fails in any f.g.
group (we thank G. Sabbagh for pointing out this example to us). The sentence ex-
presses that the group is abelian, divisible by 2, and has an element of order 2. For
the non-abelian case, in [8] Nies obtains a sentence which holds in Hall’s universal
locally finite group H [2], the unique countable locally finite group which embeds
every finite group and has the further property that any two isomorphic finite sub-
groups are conjugate. Nies shows that H, but no f.g. group, satisfies a first-order
property related to definability with parameters of finite subsets in this group. By
our result that T is Π1

1 complete, T is, in fact, vastly different from the theory of
all groups, which is merely Σ0

1. The reason for this difference is that, if G is f.g., we
have a way to recognize standardness of a copy of Z which is coded within G via
first-order formulas with parameters. Consider a Π1

1–complete set A ⊆ ω given by
some condition

n ∈ A⇔ 〈Z,+,×〉 |= ∀X ϕ(n,X) (0.1)

where ϕ(n,X) is a first order formula in an appropriate language. For instance, let
ϕ(n,X) express that (under suitable encodings) the function encoded by X is not
a path on the n-th recursive subtree of ω<ω. (We can ensure that ϕ is Σ1.)
The concrete case. For each X ⊆ ω we construct a group G, first-order encoding a
model G̃ including a copy Z̃ of 〈Z,+,×〉. Some elements of G will encode the set
X (in what way will be described below). Here we make extensive use of permu-
tation groups, refining methods from Morozov [6]. The groups G are 2-generated
permutation groups on Z, and G̃ is in fact a two-sorted model also including G and
its natural action on Z̃: G “mirrors itself”. In this way, we have the full expressive
power of arithmetic to talk about our permutations within the language of G.
The abstract case. We also write a finite list of first-order axioms satisfied by each
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GX , in a way that, if an abstract group G is f.g. and satisfies those axioms, then
it can be viewed as a group GX for some X. Since we can require basic axioms
of arithmetic and of the action in a first-order way, the main problem will be to
ensure that the Z-component of G̃ is in fact a copy of the standard integers Z. The
principal non-technical idea of this paper is how to use being f.g. in order to achieve
this (see details in the beginning of Section 2). Now we obtain a reduction of the set
A to T : n ∈ A iff for all f.g. groups G satisfying the axioms, an effective translation
of φ into G̃ holds.

The argument above proves in fact that T ∩ Σk is Π1
1-complete for some k (de-

pending on the fixed collection of formulas we use to define G̃).
In [8] Nies defined a f.g. group to be quasi-finitely axiomatizable (QFA) if it is

the only finitely generated group satisfying an appropriate first–order sentence. He
showed that the restricted wreath product Zp o Z (p any prime) and UT3

3(Z) are
QFA. Given classes C ⊂ D of f.g. groups closed under isomorphism, a good way to
separate their theories is to find a QFA group H in D−C (if H is axiomatized by φ,
then ¬φ ∈ Th(C)−Th(D). For instance, via H = Zp oZ he separates the theories of
C =“f.p.” from D=“f.g.”. We will call this type of separation a QFA-separation of
theories. Via permutation groups, we obtain many new examples of QFA-groups:
there is a strictly n-generated QFA group with solvable word problem, for each
n ≥ 3 (Zp o Z does the case n = 2). This implies that most inclusions of theories in
the diagram above can in fact be QFA-separated.

We also analyze the complexity of word problems: for each recursive ordinal
α, there is a QFA group whose word problem is Turing equivalent to ∅(α). On
the other hand, we prove each such word problem is hyperarithmetical (that is,
Turing below some such iterate of the jump). Thus, we obtain a group theoretic
characterization of hyperarithmetical sets: X is hyperarithmetical iff X ≤T W for
some word problem W of a QFA group.
Notation. We use standard primitive recursive coding s = 〈a0, . . . , ak−1〉 of se-
quences of natural numbers together with the primitive recursive predicate seq(x)
which distinguishes numbers of sequences, the primitive recursive function lh(x)
that gives the length of a sequence coded by x if seq(x), and a primitive recursive
function (x)i that yields an ith member of a sequence coded by x in case seq(x)
(see [13]).

The set of all integers will be denoted by Z. Let ẑ be the successor function on
Z. (Note that z 7→ ẑ is a permutation on Z.)

1. Π1
1–complete theories

Proposition 1. The theories T , Tn and T !
n are in Π1

1.

Proof. Note that each subset X ⊆ ω codes a ternary relation {〈(x)0, (x)1, (x)2〉 |
x ∈ X}. If this relation defines a group operation then this relation is the diagram
of the uniquely defined group, denoted by GX .

Informally,

(i) a sentence ϕ is true in all f.g. groups if and only if

∀X ∀m ((X codes the diagram of an m–generated group) → GX |= ϕ);
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(ii) a sentence ϕ is true in all n–generated groups if and only if

∀X ((X codes the diagram of an n–generated group) → GX |= ϕ).

(iii) a sentence ϕ is true in all strictly n+ 1–generated groups if and only if

∀X (X codes the diagram of a strictly (n+ 1)–generated group → GX |= ϕ).

Let pϕq be the Gödel number of a formula ϕ. We will translate the statements
in the right hand side of each of these equivalences into the form

∀X∃x∀yΨ(pϕq, x, y,X)

uniformly in n and ϕ (in the first case n is redundant), which proves all these
problems to be in Π1

1.
It is clear how to write a predicate that says “X codes a group” in the language

of arithmetic extended by a unary predicate for X, and we omit this step.
To express the property “to be n–generated”, we need to code group terms

in generators x1, . . . , xn. For a term x
εi1
i1

· . . . · xεik
ik

, i1, . . . , ik ∈ {1, 2, . . . , n},
εi1 , . . . , εik

∈ {1,−1} we let

code(xεi1
i1

· . . . · xεik
ik

) = 〈〈i1, εi1 + 1〉 , . . . , 〈ik, εik
+ 1〉〉 .

The property “y is a code of a term of first n variables x1, . . . xn” can be expressed
by the following formula in the language of arithmetic:

seq(y) & ∀j < lh(y)[1 6 ((y)j)0 6 n & (((y)j)1 = 0 ∨ ((y)j)1 = 2)].

Our next predicate in this language is “m codes a term and y is its value on
x1 = (x)1, x2 = (x)2, . . . , xk = (x)k, . . .”. We just say that there exists a v which
codes the sequence of intermediate results of computations of terms xεi1

i1
, xεi1

i1
x

εi2
i2

,
x

εi1
i1
x

εi2
i2
x

εi3
i3

,. . . :

(m codes a term) & ∃v [(((m)0)1 = 2 & (v)0 = (x)((m)0)0∨

((m)0)1 = 0 & (v)0 = ((x)((m)0)0)
−1 in the group coded by X) &

∀j < lh(m)− 1 [((m)j+1)1 = 2 &
〈
(v)j , (x)((m)j)0 , (v)j+1

〉
∈ X∨

((m)j+1)1 = 0 &
〈
(v)j+1, (x)((m)j)0), (v)j

〉
∈ X]].

The condition “GX is an n–generated group” is expressed by:
there exists an x such that for all j ∈ {1, . . . , n} (x)j ∈ (X)0; and for each
y ∈ (X)0 there exists an m which codes a term of x1, . . . , xn whose value
on (x)1, . . . , (x)n equals y,

which can be rewritten as a formula in the language of arithmetic extended by a
unary symbol for X.

The condition GX |= ϕ can be uniformly in ϕ translated into a formula of arith-
metic extended by a unary predicate for X.

In each case (1)–(3) we can write a formula of kind ∀XΦϕ(X) where Φϕ(X)
is in the language of arithmetic extended by a unary predicate for X uniformly
in parameters ϕ and n. Using standard quantifier techniques (for instance, from
[10, Chapters 15, 16]) in each of the cases above, we can construct a formula
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Ψ(m,x, y,X) such that

∀XΦϕ(X) ⇔ ∀X∃x∀yΨ(pϕq, x, y,X).

Theorem 1.

(I) The theory T of all f.g. groups is Π1
1–complete.

(II) The theory Tn of all n–generated groups is Π1
1–complete for each n > 1.

(III) The theory T !
n of all strictly n–generated groups is Π1

1–complete for each
n > 1.

(IV) All the theories T, Tn, T
!
n, n > 1, are distinct.

Proof. After Proposition 1, it suffices to show that some Π1
1-complete set A is

many-one reducible to each of the theories. We rely on the following.

Lemma 1 (Main Lemma). There exists a formula Standard(x, y, z) in the first
order language of groups such that the following conditions are satisfied:

(i) (Concrete case) For each group G 6 Sym(Z) which possesses an f such that
each g ∈ G is T–reducible to f and which contains all finitary permutations
and the permutation ẑ(x) = x+ 1,

G |= Standard(ẑ, (0, 1), (0,−1)).

(ii) (Abstract case) Assume G is a f.g. group and z, τ0, τ1 are elements such that
G |= Standard(z, τ0, τ1). Then the two–sorted model

G̃ = 〈G,Z; +,×, s, <, 0, ap〉

is elementary definable in G with parameters z, τ0, τ1 via a fixed collection
of formulas, where
(a) Z is the set of standard integers and +,×, s are usual addition, multi-

plication, and successor operations, < is the usual ordering on Z, 0 is
the usual zero element;

(b) ap(h, x) is the application operation which takes each pair (h, x) to the
result ap(h, x). If h̃ is the function x → ap(h, x) (x ∈ Z), then f̃ = g̃
implies f = g. In this way, G can be viewed as a subgroup of Sym(Z);

(c) Viewing the elements of G as permutations, there exists a permutation
f such that any permutation g ∈ G is Turing–reducible to f .

(iii) For each n > 0, there exist a sentence θn such that for each f.g. group G,
G |= ∃x∃y∃z Standard(x, y, z), the following holds.

G |= θn ⇔ G is n–generated.

If the elements ζ, τ0, τ1 satisfy G |= Standard[ζ, τ0, τ1] then they are called stan-
dard parameters. We defer the proof of this Lemma to Section 2.

Since the formulas which establish the interpretation in this Lemma do not de-
pend on the group, we can effectively transform a formula ψ(u0, . . . , uk) in the
language of G̃ where all the variables have type G into an equivalent formula
ψ∗(u0, . . . , uk, ζ, τ0, τ1) in the language of groups. That is, for all triples of stan-
dard parameters ζ, τ0, τ1 and for all g0, . . . , gk ∈ G the following is true:

G̃ |= ψ(u0, . . . , uk) ⇔ G |= ψ∗(u0, . . . , uk, ζ, τ0, τ1).
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(I). We code subsets X of ω by permutations f as follows (saying f α-codes X):
any permutation f on Z defines a set

X = {n | 3(n + 1)
f→ 3(n + 1) + 1

f→ 3(n + 1) + 2
f→ 3(n + 1)}.

On the other hand, each set X ⊆ ω can be α-coded by some f , the product of
3–cycles:

f = fX =
∏
k∈X

(3(k + 1), 3(k + 1) + 1, 3(k + 1) + 2). (1.1)

We have chosen this particular way of coding because in what follows we will
need some groups to be 2–generated.

The formula ϕ̂(n, f) is obtained from ϕ(n,X) by replacing all subformulas of the
kind X(t) by the formula which says t is in the set α-coded by f .

The Π1
1-complete set A was introduced in (0.1). We claim that

n ∈ A ⇔ ∀f ∀z, a0, a1(Standard(z, a0, a1) → ϕ̂∗(sn(0), f, z, a0, a1)) ∈ T (1.2)

The implication (⇒) follows from the “abstract case”, (ii) of the Main Lemma.
For the implication (⇐), take an arbitrary X ⊆ ω and consider the group G gener-
ated by the following two permutations: ẑ (the successor on Z) and h = fX · (0, 1).
This group contains elements ẑ, (0, 1) = h3. Therefore it contains all permutations
of finite support. So, by the “concrete case” (i) of the Main Lemma it has standard
parameters ẑ, a0 = (0, 1), a1 = (0,−1). Taking f = fX and ẑ, a0, a1 as values
under the quantifiers in this formula, we obtain that ϕ̂∗(sn(0), f, ẑ, a0, a1) holds,
and thus ϕ(n,X). Since X was arbitrary, ∀X ϕ(n,X) holds, as required.

Thus, there exists a computable sequence (ψn)n<ω of first order group for-
mulas such that n ∈ A ⇔ ψn is true on each f.g. group., which establishes Π1

1–
completeness of T .

(II). If we restrict the class of groups we are considering while keeping the ones
from the concrete case, then the proof goes through as before. Thus, since the group
generated by ẑ and (0, 1) · fX is 2–generated, we have also proved Π1

1–completeness
of the theories Tn, n > 1.

(III). First assume that n = 2. T !
2 is the theory of 2-generated groups, so by

the last remark, the proof goes through. However, if n ≥ 3, we need to modify
the proof in order to make sure that the permutation groups used in the concrete
case are strictly n-generated. We introduce a more elaborate way of coding sets by
permutations. A permutation f on Z β-codes a set X if

X = {n ∈ ω | the 2nth prime p2n is the minimal (1.3)

prime divisor of some x with the property ẑ(x) = f(x)}

and

ω \X = {n ∈ ω | the (2n+ 1)th prime p2n+1 is the minimal

prime divisor of some x with the property ẑ(x) = f(x)}.

Note that X is Turing reducible to f , since X and ω \X are r.e. in π1.
If f β-codes X, we write X = Xf . One verifies that the relations “x ∈ Xf”

and “f β-codes a set” are first order definable in any model G̃ defined by standard
parameters in G. Moreover, each set X ⊆ ω has the form Xf for some f ∈ G.

As before, we need to check the equivalence
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n ∈ A⇔ ∀f∀z, a0, a1 [(Standard(z, a0, a1) & (f β-codes a set) →

→ ϕ̃ ′(sn(0), f, z, a0, a1))] (1.4)

is true in all strictly n—generated groups

where ϕ̃(n, f) is obtained from ϕ(n,X) by replacing all subformulas of kind X(t)
with the formula which expresses t ∈ Xf .

The implication (⇒) in (1.4) follows as before from the abstract case (ii) of
the Main Lemma. For the other direction, we replace groups generated by ẑ and
fX · (0, 1) by groups Gn,X introduced next.

Lemma 2. For each X ⊆ ω and for each n ≥ 3, there exists a strictly n–
generated group G = Gn,X 6 Sym(Z) such that

(i) ẑ, (0, 1) ∈ G;
(ii) For some g ∈ G, all elements of G are Turing reducible to g;
(iii) G contains some f which β-codes X.

The proof will be given in Section 3
(IV). The sentences θn were introduced in (iii) of Lemma 1. For n ≥ 2 let Φn be

the sentence

θn & ¬θn−1 & ∃x, y, z Standard(x, y, z).

Then, for each f.g. group G such that G |= ∃x, y, z Standard(x, y, z),

G |= θn ⇔ “ the least possible number of generators of G is n”.

Note that a sentence φ is consistent with a theory S = Th(E) if not S ` ¬φ, that
is, G |= φ for some G ∈ E . The theories in the list T , (Tn)n≥2 and (T !

n)n≥2 can be
distinguished as follows.

– The theory Tn of n–generated groups (n > 1) is the only theory in this list
such that the sentences Φ2, . . . ,Φn are consistent with it and all other sentences
Φn+1, Φn+2, . . . are not consistent with it.

– The theory T !
n of strictly n–generated groups (n ≥ 2) is the only theory in this

list such that the sentence Φn is consistent with it and all other sentences Φi,
i ∈ {2, 3, . . .} \ {n} are not consistent with it.

2. Proof of the Main Lemma

The formula Standard(x, y, z) will be a conjunction of a finite family of formulas,
called axioms, which describe properties of triples x, y, z. We will at the same time
investigate properties of abstract f.g. groups which satisfy the axioms we formulated,
and we check that all these axioms are true in the concrete case, namely in a group
satisfying the following:
(∗) G ≤ Sym(Z); G contains the successor ẑ and at least one 2–cycle (a, b); G

contains an f such that g 6T f for all g ∈ G.
Our overall goal is to introduce a finite family of group axioms which will enable

us to consider elements of these groups as permutations on a copy of the integers
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defined in the group, and then use this structure of integers to express some facts
about their computability, working with terms, tuples of permutations, etc. The
most difficult thing here will be to ensure that this copy of the integers is actually
the standard integers. Of course, by Löwenheim–Skolem type results it is impossible
to do so in general case. Here we use the extra condition that the group is f.g., which
is of course not a first-order property. We use that, if G is f.g., then each element can
be expressed by a standard term in some (finite) generating set. So we can formulate
the concept of standardness of integers defined in the group in first–order logic by
looking at the minimal lengths of such terms. Since our axioms ensure that G is
infinite, the lengths of these terms will form a set cofinal in N, which will enable us
to distinguish standard integers.

In the concrete case, we want to define the action of G ≤ Sym(Z) on Z within
G. The idea is to distinguish 2–cycles in G (we call them transpositions) and then
to consider elements x ∈ Z as associated with pairs of transpositions of the kind
(a, x), (x, b), a 6= b. We will say that this pair holds an element x. One can easily
check that two transpositions τ0, τ1 hold some element if and only if they do not
commute. Thus, elements of x ∈ Z can be associated with families of pairs of non–
commuting transpositions that hold x. It is possible to define the action of G on
elements of Z coded by families of these pairs, etc.; see details below.

Now we start presenting the axioms. Some properties we postulate as axioms
could be derived from the axioms we enumerated so far. When it is convenient, we
do not prove and just postulate them.
Axiom 0. In [5, Lemma 0], R. McKenzie has proven that if a group G ≤ Sym(Z)
contains all permutations with finite support, then its transpositions are distin-
guished by the formula

tr(x) = ¬(x = 1) & (x2 = 1) & ∀y
(
[x, y]6 = 1

)
.

Our first axiom says that there is at least one pair of non–commuting transposi-
tions:

∃x∃y (tr(x) & tr(y) & [x, y] 6= 1).

Axiom 1. One checks that the formula

E(x0, x1, y0, y1) =
∧

i,j∈{0,1}

(xiyj)3 = 1 &

∧
i,j∈{0,1}

(xi = yj & x1−i 6= y1−j → x1−i 6= x−1
i y1−jxi)

is true for transpositions π0, π1, τ0, τ1 such that [π0, π1] 6= 1 & [τ0, τ1] 6= 1 if and
only if the elements held by the pairs of transpositions 〈π0, π1〉, 〈τ0, τ1〉 are equal.
This axiom says that the relation

〈π0, π1〉 ∼ 〈τ0, τ1〉
df⇔ E(π0, π1, τ0, τ1)

is an equivalence on the set

{〈x0, x1〉 | G |= tr(x0) & tr(x1) & [x0, x1] 6= 1}.
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Axiom 2. Clearly, if a pair of transpositions 〈τ0, τ1〉 holds the element x and
f ∈ Sym(Z) then the pair

〈
fτ0f

−1, fτ1f
−1
〉

holds f(a). This enables us to define
a faithful action of the group G on classes 〈τ0, τ1〉 /∼ as follows:

(〈τ0, τ1〉 /∼)f =
〈
fτ0f

−1, fτ1f
−1
〉
/∼.

This axiom says that this action is defined correctly and is faithful and transitive,
and each transposition moves exactly two elements, and that for each two elements
there exists a transposition which permutes them.

Remark. If a group G satisfies the axioms (0)–(2) then it can be considered as
a subgroup of the symmetric group of the set

ZG = {〈x0, x1〉 | G |= tr(x0) & tr(x1) & [x0, x1] 6= 1}/∼.

In the concrete case, i.e., G satisfying (∗), the set ZG can be identified with the set
of integers.

In developing the next group of axioms, we try to define on the group G along
with ZG a structure of model of integers and postulate some of its properties.

Since any group G with distinguished element z which satisfies the axioms (0)–(2)
can be viewed as a subgroup of Sym(ZG), we may introduce the notion of support
of f as

sp(f) = {x ∈ ZG | f(x) 6= x}.

First we will define the structure of Z in any group G which satisfies (∗). The
so obtained formulas will serve in the next axioms we will formulate. The very
possibility to define the structure of Z in this way proves everything we formulate
to be compatible with the class of f.g. groups.

The next thing we have to do is to define the order relation x < y on Z = ZG

with parameter z provided G satisfies (∗). At first glance, it would seem enough to
say that

x < y ⇔ ∃f ∈ G[x, y ∈ sp(f) &

x is the only element such that z−1(x) /∈ sp(f) &

y is the only element such that z(y) /∈ sp(f) ].

Denote the subformula ∃f ∈ G[. . .] in the right hand part of the equivalence
above by R(x, y, f, z) and observe that in a group satisfying (∗) it may happen that
for some f, f ′ ∈ G both conditions R(x, y, f, z) and R(y, x, f ′, z) are satisfied, for
instance, when x = 0, y = 2, sp(f) = {0, 1, 2}, sp(f ′) = {0,−1,−2, . . .}∪{2, 3, . . .}.
Thus the definition above does not work and we should be more careful.

The idea is that there are two types of sp(f) such that R(x, y, f, z), but just one
of them is finite. The finite support can be mapped by a finitary permutation into
any other support sp(f ′) for which R(x, y, f ′, z).

The following definition will work:

x < y ⇔ ∃f [R(x, y, f) &

∀f ′[(R(x, y, f ′) ∨R(y, x, f ′)) → ∃h ∈ G(ap(h, sp(f)) ⊆ sp(f ′))]].
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This gives us a first order definition for x < y. Actually, this definition contains z
as a parameter, and it would be correct to use notation <z, but we will omit indices
like this when it will be clear what is meant.

Exploiting the definition for <, we can easily write a first order definition for the
successor function s, which depends on the parameter z. We will sometimes denote
it by sz.

Now we need to pick the zero in ZG. It could be done by taking a pair a0, a1 of
two non–commuting transpositions as new parameters which hold the element we
suppose to be zero. For groups satisfying (∗), we can take a0 = (0, 1), a1 = (0,−1).

For an abstract group satisfying axioms (0)–(2) and transpositions a0, a1, a0a1 6=
a1a0, we define the zero element 0z,a0,a1 as their common element.

Now we define addition +z,a0,a1 and multiplication ·z,a0,a1 on the set of “natural
numbers” Nz,a0,a1 = {x ∈ ZG | x > 0z,a0,a1}. We will sometimes omit subscripts in
these notations for operations.

One can check that
– x + y = t if and only if there exists an f ∈ G such that it takes 0 to x, y

to t and for each u which satisfies the condition 0 6 u < y it is true that
f(s(u)) = s(f(u)).

– x · y = t if and only if there exists an f ∈ G which takes 0 to 0, y to t and for
each u which satisfies the condition 0 6 u < y it is true that f(s(u)) = x+f(u),
where + is defined above.

These properties can be expressed in first-order logic, and may be taken as defini-
tions of the operations + and ·.
Axiom 3. s, +, and · are total operations on Nz,a0,a1 .

Fix a family Q of axioms for arithmetic which suffices to represent all computable
functions and predicates. We use the one mentioned in [13], in which this theory is
called N . Here is the list of axioms of Q:
1) s(x) 6= 0; 6) x · s(y) = (x · y) + x;
2) s(x) = s(y) → x = y; 7) ¬(x < 0);
3) x+ 0 = x; 8) x < s(y) ↔ x < y ∨ x = y;
4) x+ s(y) = s(x+ y); 9) x < y ∨ x = y ∨ y < x.
5) x · 0 = 0;

It will be important that this theory derives the equivalence:

∀i < sm(0) ϕ(i, . . .) ↔ ϕ(0, . . .) & ϕ(s(0), . . .) & . . . ϕ(sm−1(0), . . .). (2.1)

Axiom 4. The so defined operations 0z,a0,a1 , sz,a0,a1 , +z,a0,a1 , ·z,a0,a1 on Nz,a0,a1

satisfy the finite set of axioms Q and <z has neither maximal nor minimal elements.

Axiom 5. It says that the “positive” and “negative” parts of ZG are symmetric,
namely,

(i) for each x < 0 there exists the unique x′ > 0 and a group element f
which isomorphically maps the model 〈{t | x 6 t 6 0}, <〉 onto the
model

〈
{t | 0 6 t 6 x′}, <−1

〉
.

(ii) for each x > 0 there exists the unique x′ < 0 and a group element f
which isomorphically maps the model 〈{t | 0 6 t 6 x}, <〉 onto the
model

〈
{t | x′ 6 t 6 0}, <−1

〉
.
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Note that if the axioms listed so far are satisfied then ZG, with the operations
+z,a0,a1 , ·z,a0,a1 , sz, and relation <z, looks like this: it contains a standard “mid-
dle part” surrounding zero which is isomorphic to usual integers and maybe some
nonstandard elements.

Denote for each x its unique x′ which exists by Axiom 5 by −x.
The following axioms are needed to recognize (in f.g. groups) those triples of

parameters z, a0, a1 for which the set Nz,a0,a1 with the operations +z,a0,a1 , ·z,a0,a1 ,
sz, 0z,a0,a1 is a standard model of arithmetic. First we need a way to deal with
(maybe nonstandard-) finite families of permutations.

Before we formulate the axiom, recall that Turing reducibility is an arithmetical
relation on sets, since for some computable function ρ

A ≤T B ⇔ ∃n ∀x, y
(
χA(x) = y ↔ ∃u+u−

(
〈x, y, u+, u−〉 ∈Wρ(n)

& Du+ ⊆ B & Du− ⊆ B
))
.

(Here Wn denotes nth computably enumerable set and Dn denotes nth standard
finite set, see [10]) If n is a witness in the right hand part of this equivalence, we
say that the index n reduces A to B. If m reduces a function f to a function g, we
write g = {m}f .

Axiom 6. Here we want to say that G contains a Turing complete element, i.e.,
there exists f ∈ G such that g 6T f , for all g ∈ G. A slight difficulty is that
instead of natural numbers we have integers. But we may select some computable
way to code integers by natural numbers, for instance, let 2m be the code of m > 0
and 2(−m) − 1 be the code for m < 0 and, as a part of this axiom, we state that
this coding is one–to one. We denote code of a as ζ(a). Clearly, the fact ζ(a) = b
is first order definable in the model 〈ZG,+z,a0,a1 , ·z,a0,a1 , sz, <z, 0z,a0,a1〉. Now we
understand the reducibility f 6T g for f, g ∈ G as the reducibility ζfζ−1 6T ζgζ−1.

The next part of the axiom states that “There exists f such that for each per-
mutation g there is an index that T–reduces g to f”.

The set of axioms obtained so far is still consistent, since it is true in any group
satisfying (∗) with parameters z(x) = x + 1, (0, 1), (0,−1). In view of the above
axiom, the property to be a Turing-complete permutation is first order definable in
such groups by formulas with parameters z, a0, a1 in any model. If m is an index
which reduces g to a permutation f , we will say g has f–index m.

Axiom 7. Fix formulas which represent functions (x)i, lh(x), seq(x), pn (nth
prime) in the theory Q.

This axiom says
– these formulas define total functions on Nz,a0,a1 ;
– ∀x,m, k ∈ Nz,a0,a1∃x′(∀i < m((x)i = (x′)i) & (x′)m = k);
– ∀s∀m∃s′(lh(s′) = m & ∀i < m((s)i = (s′)i)).
This axiom is needed since we wish to deal with nonstandard natural numbers.

We need to be sure we can code all finite sequences of elements of ZG.

Now everything is ready to express the property “to be standard”. The idea is
to describe a formula which says n = 〈n1, . . . , nk〉 codes a tuple of f–indices of
elements of G and m is the minimal length of a term τ({n1}f , . . . , {nk}f ) whose
value is x. If n ∈ ω ⊆ Z, n = 〈n1, . . . , nk〉 is the code of a finite tuple of generators
{n1}f , . . . , {nk}f of G then the set Mn of such m’s for different x’s is cofinal in
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ω and thus its downward closure M̂n = {y ∈ ω | ∃m ∈ Mn(y 6 m)} equals ω. If
n does not code a tuple of generators then the corresponding set M̂n can happen
to be finite either can contain a nonstandard element of ZG. Anyway, if G is f.g.
then the intersection of all possible sets M̂n having no maximal element equals ω,
i.e., the set of all standard non-negative elements of Z. This intersection can be
defined by a formula. In carrying out the details, we must be careful because of the
presence of nonstandard integers.

We first need to define some more formulas. We say that m ∈ Nz,a0,a1 codes a
family of elements of G if the set

{{(m)i}f | i < lh(m)}

consists of permutations given by elements of G. This is expressed by the following
formula:

CodFamily (m, f, z, a0, a1) = ∀i < lh(m)∃g∀x
[
ap(g, x) = {(m)i}f (x)

]
.

Note that by Axiom 7, each finite series of elements of a group has a code.
The property “t codes a term” is expressed by the following formula:

CodTerm (t, f, z, a0, a1) = ∀i < lh(t) [((t)i)1 ∈ {0, 2}] .

The property “t codes a term, n codes a series of elements, and the maximal
number of a variable is less than the length of a sequence coded by n” that expresses
an opportunity to compute this term with values given by n can be expressed by
the formula:

CanCompute (t, n, f, z, a0, a1) = CodTerm (t, f, z, a0, a1) &
CodFamily (m, f, z, a0, a1) &
∀i < lh(t) (((t)i)0 < lh(n)) .

Express now by a formula the property that a term whose code is t can be
computed on the following values of its variables: x0 = {(n)0}f , x1 = {(n)1}f , . . .
and that the value of this computation is y:

Val (t, n, y, f, z, a0, a1) = CanCompute (t, n, f, z, a0, a1) &

∃s(((((t)0)1 = 2 & (s)0 = (n)0) ∨ (((t)0)1 = 0 & {(s)0}f · {(n)0}f = id)) &

∀i < lh(t)− 1 [(((t)i+1)1 = 2 & {(s)i+1}f = {(s)i}f · {(n)i+1}f )∨

(((t)i+1)1 = 0 & {(s)i+1}f = {(s)i}f · ({(n)i+1}f )−1)] & y = {(s)lh(t)−1}f ).

Let G be a f.g. group which has elements satisfying all axioms listed so far
and let z, a0, a1 be its parameters whose properties are described in these axioms.
Fix a series of generators g0, . . . , gk and an element f ∈ G which satisfies the
formula saying it is Turing maximal, and fix standard f–indices of the generators:
{n0}f = g0, {n1}f = g1,. . . ,{nk}f = gk. By Axiom 7, there exists a standard
element n such that lh(n) = k + 1 and (n)i = ni, for all i = 0, . . . , k. Denote by
L(g, n, f, z, a0, a1) the minimal length of a term which generates g from g0, . . . , gk.
It is of course standard.

Let l be any standard natural number. We check that

L(g, n, f, z, a0, a1) = l⇔ ∃t(Val (t, n, g, f, z, a0, a1) & lh(t) = l &
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∀t′(Val (t′, n, g, f, z, a0, a1) → lh(t′) > l)).

This is not so obvious because we consider this formula over a nonstandard model!
(⇐) Take a witness t in the right hand part of the equivalence. We see that

lh(t) = sl(0) is standard. Making use the property (2.1) of Q, replace all quantifiers
bounded by lh(t) or by lh(t) − 1 by finite conjunctions. We see then that the so
obtained formula expresses the fact that g is really the value of a term of g0, . . . , gk

of length l. Assume this l is not a minimal possible length of a term, i.e., there exists
a shorter term τ of g0, . . . , gk whose value is g. By Axiom 7, this term possesses a
code, say t′. To prove Val (t′, n, g, f, z, a0, a1) is true, take a required s that codes a
sequence of f–indices of intermediate results in computation of τ(g0, . . . , gk). Such s
exists by Axiom 7. Again making use the property (2.1) of Q, Val (t′, n, g, z, a0, a1)
is true. Then lh(t′) > l, which contradicts the fact that the term coded by t′ is
shorter than that of t.

(⇒) Similarly, we use the fact that l is standard and apply (2.1).
Let

L∗(n, f, z, a0, a1) = {x ∈ Nz,a0,a1 | ∃l∃g (x 6 L(g, n, f, z, a0, a1))}.

Thus, the standard natural numbers can be defined as the set:

N∗
f,z,a0,a1

=
⋂
{L∗(n, f, z, a0, a1) | L∗(n, f, z, a0, a1) 6= ∅ &

L∗(n, f, z, a0, a1) has no <z–maximal element}.
Clearly, this set is first order definable from the parameters z, a0, a1.

Axiom 8. Each element in Nz,a0,a1 is in N∗
f,z,a0,a1

(i.e., is standard).
Denote the conjunction of the axioms (0)–(8) and of the property that z, a0, a1

are standard parameters by Standard(a, z).
(iii) follows since to be n–generated can be expressed by a first order formula in

the model G̃.
This complete the proof of the Main Lemma.

3. Proof of Lemma 2

First note that the free group Fn of rank n is strictly n–generated, see [4, Propo-
sition 2.7].

It suffices to prove the following.

Claim 1. For arbitrary m ∈ N, there exists a f.g. group G which is not m− 1-
generated and satisfies the properties in Lemma 2, i.e. ẑ, (0, 1) ∈ G; for some
g ∈ G, all elements of G are Turing reducible to g; and G contains some f which
β-codes X.

If so, let us fix a desired number of generators n, n > 3. By the Claim, there is such
a group G which is strictly k-generated for some k > n. We start with the subgroup
ofG generated by z, (0, 1)·h, where h β-codesX, and an f which has greatest Turing
degree among elements of G. This group is either 2–generated or 3–generated. Then
we add one by one the members of an arbitrary family of generators of the group G.
After each such step, the minimal number of generators is increased by at most one
(it may also decrease). Thus, in the process of introducing new generators, there
exists a step when the group with these generators is strictly n-generated.
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We prove the Claim by constructing, for each m ∈ ω and X ⊆ ω, permutations
π1, . . . , πm−1 such that π1 β-codes X, ẑ, π2, . . . , πm−1 6T π1, and ẑ, π1, . . . , πm−1

satisfy no nontrivial relations. To prove the groups is not m−1-generated, consider
the canonical homomorphism from the group G = ((0, 1), ẑ, π1, . . . , πm) onto its
quotient modulo the normal subgroup Fin of all permutations with finite support.
The images of elements ẑ, π1, . . . , πm−1 are free generators of the quotient, because if
there was a nontrivial relation r = r(ẑ/Fin , π1/Fin , . . . , πm−1/Fin ) = 1 on these
images, then r(ẑ, π1, . . . , πm−1) ∈ Fin . Hence r(ẑ, π1, . . . , πm−1)l = 1 for some
nonzero natural number l, which is only possible in case r(ẑ, π1, . . . , πm−1) = 1.
Thus, the elements ẑ, π1, . . . , πm−1 satisfy a nontrivial relation as well, contradic-
tion. The group G = ((0, 1), ẑ, π1, . . . , πm) has an epimorphic image which is not
m− 1-generated, and hence is not generated by fewer than m elements itself.

We construct the permutations π1, . . . , πm−1 in stages. At each stage we define
a finite part of the permutations. We fix an effective numbering τ0, τ1, . . . of non–
reducible group terms in z, π1, . . . , πm. In step 1 of stage t, we make the term τt
nontrivial, by finding a q such that τ(q) is defined and does not coincide with q. In
step 2 we extend π1 in order to code more of X. In step 3, we extend π1, . . . , πm so
they will become permutations.

STAGE t
Step 1. We make the term

τt = (ẑα1πβ1
i1

)(ẑα2πβ2
i2

) . . . (ẑαsπβs

is
)ẑαs+1

nontrivial, where s, β1, β2, . . . , βs 6= 0 and if il = il+1 then αl+1 6= 0, for l =
1, . . . , s−1. (We write af instead of f(a).) We need to extend the πi’s so that there
exists an m with

m(ẑα1πβ1
i1

)(ẑα2πβ2
i2

) . . . (ẑαsπβs

is
)ẑαs+1 > m. (3.1)

Consider the following cases:

Case 1. (i1 6= i2 and β1 > 0) or (i1 = i2 and β1, β2 > 0).
Take an m so that mẑα1 /∈ dom(πi1). Define mẑα1πi1 so that for the new πi1

mẑα1πi1 /∈ dom(πi1), then define mẑα1πi1πi1 so that mẑα1πi1πi1 /∈ dom(πi1),
etc. and finally that mẑα1πβi−1

i1
/∈ dom(πi1). At last, define mẑα1πβi

i1
so that

mẑα1πβ1
i1
ẑα2 /∈ dom(πi2).

Case 2. (i1 6= i2 and β1 < 0) or (i1 = i2 and β1, β2 < 0).
Take an m so that mẑα1 /∈ range(πi1). Define mẑα1π−1

i1
so that for the new πi1

mẑα1π−1
i1

/∈ range(πi1), then definemẑα1π−1
i1
π−1

i1
so thatmẑα1π−1

i1
π−1

i1
/∈ range(πi1),

etc. and finally that mẑα1πβi+1
i1

/∈ range(πi1). At last, define mẑα1πβi

i1
so that

mẑα1πβ1
i1
ẑα2 /∈ range(πi2).

Case 3. i1 = i2 and β1 > 0, β2 < 0. Select an m so that mẑα1 /∈ dom(πi1). Define
mẑα1πi1 so that for this new πi1 mẑ

α1πi1 /∈ dom(πi1). Then define mẑα1πi1πi1 so
that mẑα1πi1πi1 /∈ dom(πi1), etc. Eventually, we will have mẑα1πβ1−1

i1
/∈ dom(πi1).

Then define mẑα1πβ1−1
i1

πi1 so that mẑα1πβ1−1
i1

πi1 ẑ
α2 /∈ range(πi1). The last exten-

sion of πi1 is possible since in that case α2 6= 0.

Case 4. i1 = i2 and β1 < 0, β2 > 0. Select an m so that mẑα1 /∈ range(πi1). Define
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mẑα1π−1
i1

so that for this new πi1 mẑ
α1π−1

i1
/∈ range(πi1). Then define mẑα1π−1

i1
π−1

i1

so that mẑα1π−1
i1
π−1

i1
/∈ range(πi1), etc. Eventually, we will have mẑα1πβ1+1

i1
/∈

range(πi1). Then define mẑα1πβ1+1
i1

π−1
i1

so that the number mẑα1πβ1+1
i1

π−1
i1
ẑα2 /∈

dom(πi1). The last extension of πi1 is possible since in that case α2 6= 0.
Then we iterate this procedure for πi2 , etc.
While processing the last bracket, we are looking for the extension of πis

such
that (3.1) holds.

There is one more restriction we must obey here.

Restriction. While doing this step, we should not change the set β–coded in
π1. By this, when carrying this instruction out, we should never add new pairs of
kind 〈a, ẑ(a)〉 to π1.

Since each time we can select an element in an infinite set of possible values, this
restriction can be easily obeyed.

Step 2. Choose a minimal m ∈ ω such that none of the conditions below is true:
(i) There exists a natural number x such that π1(x) = ẑ(x) and p2m is the

minimal prime divisor of x.
(ii) There exists a natural number x such that π1(x) = ẑ(x) and p2m+1 is the

minimal prime divisor of x.
Take a minimal k ∈ ω so that

(i) its minimal prime divisor is greater than p2m, p2m+1 and
(ii) p2mk, ẑ(p2mk), p2m+1k, ẑ(p2m+1k) are not in dom(π1)∪ range(π1), for cur-

rent value of π1 enumerated so far.
If m ∈ X then extend π1 by letting π1(p2mk) = ẑ(p2mk). If m /∈ X then extend

π1 by letting π1(p2m+1k) = ẑ(p2m+1k).
Step 3. Extend all permutations we are constructing by extending their domains

and ranges with minimal elements which are not contained in them yet. While doing
this, we obey the Restriction above.

This ends STAGE t.
Clearly each πi, i = 1, . . . ,m is computable in X. On the other hand, X is

computable in π1, as remarked above. Hence all permutations in this group are
Turing reducible to π1.

This completes the proof of Lemma 2.

4. The complexity of the word problem for QFA–groups

Recall that HYPω is the minimal admissible set which contains the model 〈ω,<〉
as an element (see Barwise [1]).

Theorem 2. The word problem of each QFA–group is hyperarithmetical.

Proof. If a QFA–group G is axiomatized by a first order sentence ϕ, then it is
determined up to isomorphism by the infinitary sentence

Φ = ϕ ∧
∨
n∈ω

∃x1 . . . xn∀y

(∨
τ

y = τ(x1, . . . , xn)

)
.

Since the sentence Φ is in the admissible fragment LHYPω
and it has, up to iso-
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morphism, only one countable model, by [7], it has a model in HYPω. We give an
idea of the proof assuming the reader is familiar with the monograph [1]. The Bar-
wise Completeness Theorem [1, p. 99] together with Löwenheim–Skolem Theorem
imply that for each sentence ψ ∈ LHYPω it is true that

(` Φ → ψ) ∨ (` Φ → ¬ψ),

where ` ϑ means “there exists a HYPω–proof of θ”. By this, the property Φ `
ψ is a ∆–property. Consider some fragment L ∈ HYPω containing the sentence
Φ and a countable family of new constants (ci)i∈ω ∈ HYPω. The usual Henkin
construction yields a model of Φ which is in HYPω. So the word problem of G is
hyperarithmetical.

Next we prove that the degrees of word problems of QFA–groups are cofinal
within the degrees of hyperarithmetic sets. Recall that a set S ⊆ ω is called arith-
metical singleton if there exists a formula ϕ(X) in the language of arithmetic ex-
tended by a new unary predicate symbol X that for each P ⊆ ω, ϕ(P ) is true in
the standard model of arithmetic if and only if P = S. It is well known that each
arithmetical singleton is a hyperarithmetical set and that each hyperarithmetical
set is Turing reducible to an arithmetical singleton [9, 10, 11], a suitable iterate of
the jump ∅(α), α a recursive ordinal.

Theorem 3.
(i) For each arithmetical singleton S, there exists a 2–generated QFA–group G

whose word problem W (G) satisfies

S 6T W (G) 6T S′.

(ii) For each arithmetical singleton S and for each n > 3 there exists an n–
generated QFA–group G such that W (G) is Turing equivalent to S.

Proof. (i) Consider the group G generated by ẑ, (0, 1) · f , which is constructed
as in the proof (i) of Theorem 1, where f = fS α-codes S. Clearly, f ≡T S.

To prove that this group is QFA, consider a sentence ϕ which says that this
group possesses standard parameters, and with respect to the model G̃ given by
these standard parameters, there exists a permutation

f = (0, 1) ·
∏

m∈S

(3(m+ 1), 3(m+ 1) + 1), 3(m+ 1) + 2)

such that f, z generate the whole group. The latter is expressed by a sentence which
says the following:

– the only 2–cycle of f is (0, 1);
– if f moves an element n then this n is contained in a 3–cycle of the kind

(3(u+ 1), 3(u+ 1) + 1, 3(u+ 1) + 2);
– the set {u | f(3(u+1)) = 3(u+1)+1 & f(3(u+1)+1) = 3(u+1)+2 & f(3(u+

1) + 2) = 3(u+ 1)} satisfies ϕ(X).
Clearly, this axiomatizes G amongst the f.g. groups.
We prove S 6T W (G). Note that each f.g. groupG has aW (G)–computable copy;

so we may consider G as a W (G)–computable model. Since all transpositions can be
obtained by conjugation from a single transposition, the set of transpositions of G
is W (G)–computably enumerable. Since the model G̃ = 〈G,Z, ap〉 is defined over G
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by means of quantifier–free formulas, there exists a W (G)–computable presentation
of it. Using this presentation, we can effectively in this presentation recognize the
set S using the following property:

k ∈ S ⇔ f(s3(k+1)+1(0)) 6= s3(k+1)+1(0).

Thus, S 6T W (G).
On the other hand, the word problem of this group is S′–computable, since for

each term t, t(ẑ, f) = 1 ⇔ ∀x(ap(τ(ẑ, f), x) = x). Hence W (G) 6T S′.
To prove (ii), reconsider the group G generated by elements ẑ, (0, 1), π1, π2, . . . as

in the proof Lemma 2, where π1 β-codes S, and all other πi’s are Turing reducible to
π1. Again, the model 〈G,Z, ap〉 is W (G)–computable. The set S can be computed
in this model, which follows from the following two equivalences:

x ∈ S ⇔ ∃x[ẑ(x) = π1(x) & the minimal prime which divides x is p2x]

x ∈ ω \ S ⇔ ∃x(ẑ(x) = π1(x) & the minimal prime which divides x is p2x+1].

By this, S 6T W (G).
To prove W (G) 6 S, consider an arbitrary word

w = w1τw2τw3τ . . . wkτwk+1

on τ = (0, 1), π1, . . . , πn, where wi do not contain τ . We have

w = (w1τw
−1
1 )w1w2τw3τ . . . wkτwk+1 =

= (w1τw
−1
1 )(w1w2τ(w1w2)−1)w1w2w3τ . . . wkτwk+1 =

etc.

Eventually we arrive at an expression

(u1τu
−1
1 )(u2τu

−1
2 ) . . . (ukτu

−1
k )v,

in which u1, u2, . . . , uk, v do not contain τ . Then in case v 6= 1 we have w 6= 1,
since as is already noted above, the elements π1/Fin , π2/Fin admit no nontrivial
relations and (u1τu

−1
1 ), (u2τu

−1
2 ), . . . , (ukτu

−1
k ) ∈ Fin . If v = 1 then we can ef-

fectively in S compute the elements which are moved by transpositions (u1τu
−1
1 ),

(u2τu
−1
2 ), . . . , (ukτu

−1
k ) and then check whether this product of transpositions

equals 1. Recall that in this case this product equals w. Thus, W (G) 6T S.
The group is QFA, since it is axiomatized amongst the f.g. groups by the sentence

which expresses, for some fixed m ∈ ω,
– the group contains standard parameters with respect to which there exists a

permutation f which β–codes the set S and
– the group is generated by permutations π0 = {(m)0}S , π1 = {(m)1}S , . . . to-

gether with ẑ and the 2–cycle (0, 1),

Question. Does (ii) of Theorem 3 hold for n = 2?

Corollary 1. For each n ≥ 2, there is a strictly n-generated QFA group with
solvable word problem.

Proof. For n = 2 this was proved in [8], via the 2-generated group Z2 o Z. For
n ≥ 3, take the group Gn,∅.
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We say that an inclusion S′ ⊇ S of theories can be QFA–separated if there exists
a QFA–group G such that G |= S but G 2 S′.

Corollary 2. Let 2 ≤ n < m.
(i) The inclusion Tn ⊃ Tm can be QFA-separated.
(ii) The inclusion T !

m ⊃ Tm can be QFA-separated.

Proof. (i). Take H = Gm,∅. (ii) Let H be a 2-generated group Zp o Z, which is
QFA by [8].
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