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NON-CUPPING AND RANDOMNESS

ANDRÉ NIES

Abstract. Let Y ∈ ∆0
2 be Martin-Löf-random. Then there is a promptly

simple set A such that, for each Martin-Löf-random set Z, Y ≤T A ⊕ Z ⇒
Y ≤T Z. When Y = Ω, one obtains a c.e. non-computable set A which is

not weakly Martin-Löfcuppable. That is, for any Martin-Löf-random set Z, if
∅′ ≤T A⊕ Z then ∅′ ≤T Z.

1. Introduction

The interaction between K-triviality and Martin-Löf randomness via Turing re-
ducibility is not very well understood at present. There are numerous results indi-
cating a strong interaction, but as many open questions remain. Recall that a set
A ⊆ N is K-trivial if, up to a constant, the initial segments of A have minimum
complexity, namely (∀n) K(A � n) ≤ K(n) + O(1). (Here K(x) is the prefix free
complexity of x, and one identifies a string σ in 2<ω with the natural number n such
that the binary representation of n + 1 is 1σ.) This notion is opposite to Martin-
Löf-randomness (ML-randomness, for short), since Z is ML-random iff there is a
constant b such that (∀n) K(Z � n) ≥ n− b, namely the initial segments of Z have
close to maximal complexity. K-trivial sets have been studied for instance in [3, 11].
An example of an interaction between K-triviality and Martin-Löf randomness via
Turing reducibility is the following result from [4].

Theorem 1.1. Let A be c.e. If A ≤T Z for some ML-random set Z such that
∅′ 6≤T Z, then A is K-trivial.

In [5], Kučera provides an injury-free solution of Post’s Problem. To do so, given
any ∆0

2 ML-random set Z (and in fact any ∆0
2 diagonally non-computable set), he

builds a non-computable c.e. set A ≤T Z. Then, since there is a low ML-random
set, a non-computable set A satisfying the hypotheses of the theorem exists. It is
an open question whether each K-trivial set is of this kind [8, Question 4.6].
Here I address the case where the interaction between the K-trivial and the ML-
random set is not having join above ∅′. If A is c.e. and not K-trivial, then A⊕Z = ∅′
for some ML-random Z <T ∅′, see Theorem 2.2 below. We say that such a set A is
ML-cuppable. Thus, in analogy to Theorem 1.1, if a c.e. set A is not ML-cuppable
then A is K-trivial. (The hypotheses are quite different, though: in Theorem 1.1
the existence of an incomplete Martin-Löf-random set above A is required, while
here we require that no incomplete Martin-Löf- random set cups with A to ∅′.)
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How about existence of a non-computable A in the non-cupping case? That is,
is there a c.e. non-computable set which is not ML-cuppable? Our main result
provides an affirmative answer. In fact one may choose A promptly simple. We
obtain the answer as a corollary to a more general non-cupping result: if Y is ∆0

2

and ML-random, then there is a promptly simple set A which does not help any
ML-random set Z to compute A, namely Y ≤T A ⊕ Z ⇒ Y ≤T Z. Now let
Y = Ω be Chaitin’s halting probability, a Turing complete ML-random set. Note
that each promptly simple set cups to ∅′ by a low c.e. set [12, Thm XIII.4.2]. So A
is not ML-cuppable but cups to ∅′ in the usual sense.
It is still an open question whether all K-trivial sets fail to be ML-cuppable [8,
Question 4.8]. We will return to this question in the last Section, after Corollary
3.5.

2. Background

The notion of ML-cuppability comes in two versions, depending on whether the
cupping partner is merely not above ∅′, or strictly below ∅′ .

Definition 2.1. A set A is weakly ML-cuppable if A⊕Z ≥T ∅′ for some ML-random
set Z 6≥ ∅′. A is ML-cuppable if one can choose Z <T ∅′.

Kučera drew attention to Martin-Löf cuppability during his talk at a 2004 Cor-
doba meeting. In particular, he raised the question of which ∆0

2 sets are (weakly)
ML-cuppable, and whether one of the notions is equivalent to K-triviality (see [8,
Question 4.8]). Quite a bit is known already. Let ΩA be Chaitin’s halting proba-
bility relativized to A (see [1]). If the ∆0

2 set A is not K-trivial, then A is weakly
ML-cuppable, via Z = ΩA. For Z 6≥T ∅′ by Theorem 1.1, and ∅′ ≤T A′ ≡T A⊕ΩA.
If A is low then in fact ΩA <T ∅′. Thus, each ∆0

2 set A with a low non-K-trivial
set below it is ML-cuppable. This includes:

a) any ML-random set A, since A ∩ 2N is low [1, Thm. 3.4]
b) any non-low2 and any c.e.a. non K-trivial set, as each one of these is the

supremum of a pair of 1-generic sets, and each 1-generic set is generalized
low (see [7, Ex. IV.3.15] for the first)

c) any c.e. non-K-trivial set A, because A is a disjoint union of c.e. low sets
A0, A1, and at least one of them is not K-trivial [3].

By c) we have an analog of Theorem 1.1.

Theorem 2.2. If a c.e. set A is not ML-cuppable, then A is K-trivial.

The question whether each non K-trivial ∆0
2 set is ML-cuppable is still not com-

pletely settled. An interesting case of a non K-trivial ∆0
2 set which is not ML-

cuppable by any of the reasons above is a set of minimal degree which is properly
low2 [7, Ex. IX.2.7].
Notation. We let µ denote the usual product measure in Cantor space 2ω. The
variable σ denotes a string in 2<ω. For a set Z ∈ 2ω, Z � n denotes Z(0) . . . Z(n−1).
For G ⊆ 2<ω, we let [G]� denote the open set generated by G, that is, {Z : ∃σ ∈
G σ ≺ Z}. We write µG for µ([G]�).
For a set A and a string σ, we let A ⊕ σ be the string ρ of length 2|σ| such that
ρ(2i) = A(i) and ρ(2i + 1) = σ(i). Thus if Γ is a Turing functional, then ΓA⊕σ(x)
is defined only when the use on the A-side is at most |σ|.
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Given an expression E that is approximated during stages s, E[s] denotes its value
at stage s.
A Solovay test is a c.e. set S of strings such that the weight

∑
σ∈S 2−|σ| is finite.

It is known that Z is ML-random iff for each Solovay test S, σ 6≺ Z for almost all
σ ∈ S [2].
A c.e. set A is promptly simple if A is co-infinite and there is an effective approxi-
mation (As)s∈N of A such that, for each e, the requirement

Se: |We| = ∞⇒ ∃s∃x [x ∈ We,s −We,s−1 & x ∈ As]
is met.

3. Main result

Our main theorem implies the existence of a non-computable c.e. set A which is
not ML-cuppable. By Theorem 2.2, such a set A is K-trivial.

Theorem 3.1. Let Y ∈ ∆0
2 be Martin-Löf-random. Then there is a promptly

simple set A such that, for each Martin-Löf-random set Z,

(3.1) Y ≤T A⊕ Z ⇒ Y ≤T Z.

Proof.
I use [9, Lemma 4.2], in relativized form.

Lemma 3.2 ([9]). Let Y be ML-random relative to A. Then for each partial
computable functional Γ, there is a constant c such that for each n,

(3.2) µ{σ : Y � n = ΓA⊕σ � n} ≤ 2−n+c.

As the authors of [9] have pointed out, this is best proved via a supermartingale
whose undergraph is c.e. in A. Let

M(η) = 2|η|µ{σ : ΓA⊕σ � η}.
Then, for each η, M(η0) + M(η1) ≤ 2M(η), that is, M is a supermartingale.
Moreover, {〈q, η〉 : q ∈ Q & q ≤ M(η)} is c.e. relative to A. Since Y is ML-random
relative to A, there is c such that M(η) ≤ 2c for each η, which is (3.2).
Proof of Theorem 3.1, outline. Fix some effective approximation (Ys)s∈N of Y .
To ensure that Y is ML-random relative to A, we make A K-trivial; then A is low
for ML-random (namely each ML-random set is already ML-random relative to A)
by [11, Thm 6.2]. To ensure that A is promptly simple, we meet the requirements
Se introduced above. Finally, we meet the non-cuppability requirements

NΓ,c : Y = Γ(A⊕ Z) & c is as in (3.2) & Z ML-random ⇒ Y ≤T Z.
Throughout, N will denote some non-cuppability requirement. We define a ∆0

2 set
∆ = ∆N , which is an attempt to build a functional for Y ≤T Z by emulating
Γ. Thus, when Y � n = ΓA⊕σ � n, we put the pair 〈σ, Y � n〉 into ∆. When
A � |σ| changes later, then this pair is removed from ∆. At each stage, ∆ has the
monotonicity properties of a functional, namely σ0 � σ1 & 〈σi, ηi〉 ∈ ∆ ⇒ η0 � η1.
We also enumerate a Solovay test S = SN for each non-cuppability requirement N ,
which represents the “mistakes” we make due to A changes: when a pair 〈σ, y〉 is
removed from ∆, then we put σ into S. If the hypothesis of N is correct and we
can ensure that S indeed is a Solovay test, then, since Z is ML-random, σ 6∈ S
for almost all σ ≺ Z. Thus, eventually a pair 〈σ, Y � n〉 such that σ ≺ Z is not
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removed from ∆, and we can pretend ∆ is c.e. just like a Turing functional, which
shows Y ≤T Z.
Fix some effective priority ordering of the requirements of the form N = NΓ,c and
the prompt simplicity requirements Se. To ensure SN is a Solovay test we have
to minimize the number of A-changes. A requirement Se can at most add weight
2−e to SN , for any requirement N of higher priority. To give Se a chance, for each
string y of length n, at each stage s we only allow a maximum measure of 2−n+c+2

for the set of σ’s such that 〈σ, y〉 is in ∆N,s. Lemma 3.2 ensures that still we don’t
miss the right σ, namely the shortest σ ≺ Z such that ΓA⊕σ � n = Y � n.

Details. The construction consists in letting the requirements at stage s carry out
their strategies below, in the order of their priority, up to s− 1.
Strategy for N = NΓ,c. Let ∆N,0 = SN,0 = ∅. At stage s > 0,

• (adding to ∆) For n = 0, . . . , s− 1, do the following: while

(3.3) µ{σ : 〈σ, Ys−1 � n〉 ∈ ∆N,s−1} ≤ 2−n+c+2,

if there is σ 6∈ dom(∆N,s−1) such that
– 〈σ′, Ys−1 � n− 1〉 ∈ ∆N,s−1 for some σ′ � σ and
– Ys−1 � n = ΓAs−1⊕σ

s−1 � n
then let σ be such a string of minimal length and put 〈σ, Ys−1 � n〉 into
∆N .

• (removing from ∆) If 〈σ, y〉 entered ∆ at stage t < s and s is minimal such
that As � |σ| 6= At � |σ|, then remove 〈σ, y〉 from ∆, and put σ into SN .

Strategy for Se. Let Kt(y) be the approximation of K(y) at stage t, and let
cost(x, t) =

∑
x<y≤t 2−Kt(y) be the usual cost function from [3] (also see [11]).

For each N = NΓ,c, let

costN (x, t) = µ{σ : ∃y 〈σ, y〉 ∈ ∆N,t−1 & x < |σ|}
be the cost, in the sense of increasing the weight of N ’s Solovay test SN , one would
incur by putting x into A at stage t. At stage s, suppose Se is not satisfied and there
is x ∈ We,s −We,s−1, x ≥ 2e, such that cost(x, s) ≤ 2−e−1 and costN (x, s) ≤ 2−e

for each requirement of type N of higher priority. If x 6∈ As yet then put x into As.
Declare Se satisfied.

Verifications. A is K-trivial by the usual argument involving the cost function (see
[3] or [11, Prop 4.1]). Also SN is a Solovay test for each requirement N . To see
this, note that each requirement Se acts at most once. Thus the requirements of
stronger priority than N contribute a finite weight, and each requirement Se of
lower priority than N contributes at most weight 2−e to SN , so their total is at
most 2.

Lemma 3.3. A is promptly simple.

Proof. Clearly A is co-infinite. Thus we only need to verify that each requirement
Se is met. It suffices to show that for each requirement of type N , for sufficiently
large x,

(3.4) ∀s ≥ x costN (x, s) ≤ 2−e.
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For then, if x ≥ 2e enters We at stage s then x can be enumerated into A in case
x is so large that cost(x, s) ≤ 2−e−1 and, for all N type requirements of stronger
priority than Se, costN (x, s) ≤ 2−e.
To show that (3.4) holds for sufficiently large x, we split the cost into two parts,
depending on whether a computation ΓA⊕σ(k)[s] for k < e+c+3 would be destroyed
by the enumeration of x into A or not.
Bounding the cost of the first type. Fix i, and let r ∈ N be given. We show
that, for sufficiently large x the cost incurred by enumerating x into A and thereby
destroying a computation ΓA⊕σ(k), k < i (that is, removing a pair 〈σ, y〉 from ∆N

where |y| = i) can be kept below 2−r+1. We later will apply this to all i ≤ e+c+3,
for r = e + i + 2, so that the contribution is at most 2−i−e−1 for sufficiently
large x. The argument is similar to the one of Kučera and Terwijn [6] in their
construction of a non-computable low for ML-random set. Consider the open A-c.e.
set BA

i = {σ : ΓA⊕σ � i ↓}, with the usual approximation BA
i [t] = {σ : ΓAt⊕σ

t � i ↓},
and let

costi(x, s) = µ{σ ∈ BA
i [s− 1] : x < |σ|}.

(By the convention in Section 2, x < |σ| implies x < use ΓAs⊕σ
s � i. Note that there

is no dependence here between the costs for different i: for smaller i we have more
pairs 〈σ, y〉 in ∆ where |y| = i but the use on A is smaller; for larger i there are
fewer pairs but the use is larger.) We claim that, for each r there is x such that

∀s ≥ x costi(x, s) ≤ 2−r+1.
To show this, recall that each Sk acts at most once. So if no Sk, k ≤ r, acts
from stage t0 on, then for each t ≥ t0, for each s ≥ t, µBA

i [s] ≥ µBA
i [t] − 2−r.

That is, µBA
i [t] can only decrease by 2−r after stage t0. Thus, for each t ≥ t0,

µBA
i [t] ≤ µBA

i + 2−r. Now choose x ≥ t0 so that µBA
i [x] ≥ µBA

i − 2−r, with Ax

correct on the use of the relevant computations ΓA⊕σ(k), k < i. Then for all s ≥ x,
costi(x, s) ≤ 2−r+1.
Bounding the cost of the second type. Let s0 be a stage so that ỹ = Ys � e + c + 3 is
stable from s0 on. By the usual conventions, enumeration of x ≥ s0 into A cannot
destroy any computation ΓA⊕σ(k) existing at stage s0. So if x ≥ s0 we only have
to consider the contribution of pairs 〈σ, y〉 to the cost of the second type (i.e. where
|y| ≥ e + c + 3) which entered ∆ after stage s0. In this case ỹ � y. For s ≥ s0, let

Fs = {ρ : 〈ρ, ỹ〉 ∈ ∆s}.
Then Fs is an antichain and, by (3.3), µFs ≤ 2−(e+c+3)+c+2 = 2−e−1.
Now consider the situation where x ≥ s0 and a pair 〈σ, y〉 entered ∆ at stage u ≥ s0

and is in ∆t for all t, u ≤ t ≤ s. If |σ| > x then this pair is counted in the calculation
of costN (x, s). If |y| > e+c+3, then by choice of s0, ỹ � y. In the construction, we
ensured that 〈ρ, ỹ〉 ∈ ∆u for some ρ � σ. Then 〈ρ, ỹ〉 ∈ ∆s since Au � |ρ| = As � |ρ|,
and hence σ ∈ [Fs]�. So one can bound the cost of the second type by µFs.
Summarizing the two separate arguments we obtain (3.4): for x sufficiently large,
costN (x, s) ≤

∑
i≤e+c+3 2−i−e−1 + 2−e−1 ≤ 2−e. �

Lemma 3.4. If Y = Γ(A⊕ Z) and Z is ML-random then Y ≤T Z.

Proof. Since A is K-trivial, Y is ML-random relative to A [11, Thm 7.2]. Let c be
as in Lemma 3.2, and let N = NΓ,c. First we make two observations.
(a) For each p, a pair 〈σ, Y � p〉 enters ∆N , where σ ≺ Z.
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To see this, informally speaking, we have to show that the measure condition (3.3)
is not too restrictive. Choose t such that Ys � p = Yt � p for each s ≥ t, and no
requirement Sk acts after t for k ≤ p. For any n ≤ p, by Lemma 3.2,

µ{σ : ΓA⊕σ � n = Y � n} ≤ 2−n+c.
Then at any stage s ≥ t, µ{σ : 〈σ, Y � n〉 ∈ ∆N,s} ≤ 2−n+c + 2−n ≤ 2−n+c+1,
because a requirement Sk, k > p, has to ensure that costN (x, s) ≤ 2−k and hence
µ{σ : 〈σ, Y � n〉 ∈ ∆N,s} can decrease at most 2−n after stage s. So by the first
stage s ≥ t where ΓAs⊕Z

s � p = Y � p, for all n = 0, . . . , p we may put a pair
〈σ, Y � n〉 where σ ≺ Z into ∆N if it is not there already.
(b) Since SN is a Solovay test and Z is ML-random, there is s0 such that if 〈σ, y〉
enters ∆N at a stage s ≥ s0 where σ ≺ Z, then σ 6∈ SN , and hence 〈σ, y〉 remains
in ∆N forever. Thus As � |σ| is stable and hence y ≺ Y .

We now give a procedure with oracle Z which for almost all inputs m returns Y (m).
Wait for a stage s such that 〈σ, y〉 enters ∆N at s, where σ ≺ Z and |y| > m. Then
output y(m). By (a) the procedure terminates, and by (b) the output is correct for
almost all m, namely, whenever s ≥ s0. Thus Y ≤T Z. Theorem is proved. �

Corollary 3.5. There is a (necessarily K-trivial) promptly simple set A which is
not weakly ML-cuppable.

Proof. Let Y be Chaitin’s halting probability Ω. Since Y ≡T ∅′, the result follows
from Theorem 3.1. �

Discussion. Let us compare our construction of a promptly simple set A in the
proof of Theorem 3.1 with the usual cost function construction of a promptly simple
K-trivial set ([3] or [11, Prop 4.1]). Typically, a cost functions c(x, s) restricts a
prompt simplicity requirement Se by stipulating that at stage s, x can enter A
for the sake of Se only if c(x, s) ≤ 2−e. First consider the usual cost function for
achieving K-triviality, cost(x, s) =

∑
x<y≤s 2−Ks(y). Then for x > s, cost(x, s) = 0.

If at a later stage t > s, we have c(x, t) > 2−e, then we may as well assume
that the entire interval [x, t) becomes unusable for Se (as the numbers with short
descriptions at stage t might be close to t). So Se will have to look for future
candidates among the numbers ≥ t. Now, for the usual cost function this process
of intervals becoming unusable can repeat at most 2e times, as it corresponds to
an increase in the measure of the domain of the universal machine by 2−e. A cost
functions costN has a similar restraining behavior on Se, but now the process of
intervals becoming unusable can repeat arbitrarily often. To see this, recall how we
bounded the cost of the second type, in the proof of Lemma 3.3. When Y � e+c+3
changes another time at t, then we have to restrict Se to numbers ≥ t in order to
make the argument work. This is similar to Kučera’s construction of a promptly
simple set A below a ML-random ∆0

2 set Z. Here, when Z � e changes at stage t,
then all numbers < t become unusable for Se (see [10, Chapter 3]).
By [11, Thm 7.3], the K-trivial sets are precisely the ones that can be obtained via a
cost function construction in terms of the usual function cost(x, s). Our discussion
gives some evidence that the sets obtain by Kučera’s construction (Theorem 1.1
and the remark after) form a proper subclass of the K-trivial sets. However, for
the non-cupping construction, if Y = Ω, then the process of restricting Se to larger
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intervals can only repeat 2e+c+3 times. So there is no clear evidence if the non-ML
cuppable sets form a proper subclass of the K-trivial sets.
To what extent does A in Theorem 3.1 depend on Y ? At this stage we don’t even
know whether there is a non-computable (c.e.) set A such that (3.1) holds for
all ML-random Y,Z. The construction in the proof of the Main Theorem can be
modified in order to obtain A which satisfies (3.1) for all ML-random Y,Z such
that Y ≤wtt ∅′ (that is, Y is ω-c.e.).

Corollary 3.6. There is a promptly simple set A such that, for all ML-random
sets Y ≤wtt ∅′ and Z,

Y ≤T A⊕ Z ⇒ Y ≤T Z.

Proof. We sketch the necessary modifications. Let (Ψi)i∈N be an effective list-
ing of wtt-reduction procedures and Yi = Ψi(∅′). We have an approximation
Yi,s(x) ' Ψi(∅′)[s], which may have the value ‘undefined’, but can change its value
only finitely often. We now satisfy requirements N = NΓ,c,i which refer to Yi in-
stead of Y . The strategy is as before, except that N can only put a pair 〈σ, Yi,s � n〉
into ∆ at stage s when Yi,s(k) is defined for all k < n. In the proof of Lemma 3.3
(which did not use that Y is ML-random), there still is a stage s0 from which on
Yi,s � e + c + 3 is stable. If some value Yi,s0(k) is undefined for k < e + c + 3,
then there is no contribution to the cost of the second type. Else we may argue as
before. �
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