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ABSTRACT
We answer a question of Ambos-Spies and Kučera in the affirmative. They asked
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1. Introduction

In an influential 1966 paper [9], Martin-Löf proposed an algorithmic formaliza-
tion of the intuitive notion of randomness for infinite sequences of 0’s and 1’s. His
formalization was based on an effectivization of a test concept from statistics, by
means of uniformly computably enumerable (c.e.) sequences of open sets. Martin-
Löf’s proposal addressed some insufficiencies in an earlier algorithmic concept of
randomness proposed by Church [3], who had formalized a notion now called com-
putable stochasticity. However, Schnorr [13] criticized Martin-Löf’s notion as too
strong, because it was based on a c.e. test concept rather than a computable notion
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2 Schnorr random reals

of tests. He suggested that one should base a formalization of randomness on com-
putable betting strategies (also called martingales), in way that would still overcome
the problem that Church’s concept was too weak. In present terminology, a real Z

is computably random if no computable betting strategy succeeds along Z; that is,
for each computable betting strategy there is a finite upper bound on the capital
that it reaches. The real Z is Schnorr random if no martingale succeeds effectively.
Here effective success means that the capital at Z�n exceeds f(n) infinitely often,
for some unbounded computable function f . See [1] for more on the history of this.

We recall some definitions. The Cantor space 2ω is the set of infinite binary
sequences; these are called reals and are identified with set of integers, i.e., subsets
of ω. If σ ∈ 2<ω, that is, σ is a finite binary sequence, then we denote by [σ] the
set of reals that extend σ. These form a basis of clopen sets for the usual discrete
topology on 2ω. Write |σ| for the length of σ ∈ 2<ω. The Lebesgue measure µ

on 2ω is defined by stipulating that µ[σ] = 2−|σ|. With every set U ⊆ 2<ω we
associate the open set [U ]� =

⋃
σ∈U [σ]. The empty sequence is denoted λ. If

σ, τ ∈ 2<ω and σ is a prefix of τ , then we write σ � τ . If σ ∈ 2<ω and i ∈ {0, 1}
then σi denotes the string of length |σ|+ 1 extending σ whose final entry is i. The
concatenation of two strings σ and τ is denoted στ . The empty set is denoted ∅
and inclusion of sets is denoted by ⊆. If A is a real and n ∈ ω then A�n is the
prefix of A consisting of the first n bits of A. Letting A(n) denote bit n of A, we
have A�n = A(0)A(1) · · ·A(n− 1).

Given α ∈ 2<ω and a measurable set C ⊆ 2ω, we let µαC = µ(C∩[α])
µ[α] . For an

open set W we let

W |σ =
⋃{

[τ ] : τ ∈ 2<ω, [στ ] ⊆ W
}

.

Note in particular that µσW = µ(W |σ) and µλW = µW .
Fixing some effective correspondence between the set of finite subsets of ω and

ω, we let De be the eth finite subset of ω under this correspondence. In other words,
e is a strong, or canonical, index for the finite set De. Similarly, we let Se be the
eth finite subset of 2<ω under a suitable correspondence. So Se is a finite set of
strings, and [Se]� = ∪σ∈Se

[σ] is then the clopen set coded by e ∈ ω. We use the
Cantor pairing function, the bijection p : ω2 → ω given by p(n, s) = (n+s)2+3n+s

2 ,
and write 〈n, s〉 = p(n, s).

A Martin-Löf test is a set U ⊆ ω × 2ω such that µUn ≤ 2−n, where Un denotes
the nth section of U , and Un is a Σ0

1 class, uniformly in n. If in addition µUn is a
computable real, uniformly in n, then U is called a Schnorr test. Z is Martin-Löf
random if for each Martin-Löf test U there is an n such that Z 6∈ Un, and Schnorr
random if for each Schnorr test U there is an n such that Z 6∈ Un. The notion
of Schnorr randomness is unchanged if we instead define a Schnorr test to be a
Martin-Löf test for which µUn = 2−n for each n ∈ ω.

Concepts encountered in computability theory are usually based on some notion
of computation, and therefore have relativized forms. For instance, we may rela-
tivize the tests and randomness notions above to an oracle A. If C = {X : X is
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Martin-Löf random} then the relativization is CA = {X : X is Martin-Löf random
relative to A} (meaning that Σ0

1 classes are replaced by Σ0,A
1 classes). In general,

if C is such a relativizable class, we say that A is low for C if CA = C. If C is a ran-
domness notion, more computational power means a smaller class, namely, CA ⊆ C
for any A. Being low for C means to have small computational power (in a sense
that depends on C). In particular, the low for C reals are closed downward under
Turing reducibility.

The randomness notions for which lowness was first considered are Martin-Löf
and Schnorr randomness. Kučera and Terwijn [6] constructed a non-computable
c.e. set of integers A which is low for Martin-Löf randomness, answering a question
of Zambella [16]. In the paper [14] it is shown that there are continuum many reals
that are low for Schnorr randomness.

An important difference between the two randomness notions is that for Martin-
Löf randomness, but not for Schnorr randomness, there is a universal test R. Thus,
Z is not Martin-Löf random iff Z ∈

⋂
b∈ω Rb. Therefore, in the Schnorr case, an

apparently stronger lowness notion is being low for Schnorr tests, or S0-low in the
terminology of [1]: A is low for Schnorr tests if for each Schnorr test UA relative
to A, there is an unrelativized Schnorr test V such that

⋂
n UA

n ⊆
⋂

n Vn. This
implies that A is low for Schnorr randomness, or S-low in the terminology of [1].
Ambos-Spies and Kučera asked if the two notions coincide. We answer this question
in the affirmative.

Terwijn and Zambella [14] actually constructed oracles A which are low for
Schnorr tests. They first gave a characterization of this lowness property, via a
notion of traceability, a restriction on the possible sequence of values of the functions
computable from A. They showed that A is low for Schnorr tests iff A is comput-
ably traceable (see formal definition in the next section). Then they constructed
continuum many computably traceable reals. We answer the question of Ambos-
Spies and Kučera by showing that each real which is low for Schnorr randomness is
in fact computably traceable.

Towards this end, it turns out to be helpful to have a more general view of
lowness. We consider lowness for any pair of randomness notions mathcalC, D
with C ⊆ D.
Definition 1.1. A is in Low(C,D) if C ⊆ DA. We write Low(C) for Low(C, C).

Clearly, if C ⊆ C̃ ⊆ D̃ ⊆ D are randomness notions, and the inclusions relativize
(so D̃A ⊆ DA for each real A), then Low(C̃, D̃) ⊆ Low(C,D). That is, we make
the class Low(C̃, D̃) larger by decreasing C or increasing D. Let MR,CR and SR

denote the classes of Martin-Löf random, computably random (defined below) and
Schnorr random reals, respectively. Thus for instance Low(MR,CR) is the class of
oracles A such that each Martin-Löf random real is computably random in A. We
will characterize lowness for any pair of randomness notions C ⊆ D with C,D ∈
{MR,CR,SR}.

Recall that Ω denotes the halting probability of a universal prefix machine. Ω is
a Martin-Löf random computably enumerable real, i.e., a real that can be effectively
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approximated from below. Given D ⊇ MR, an interesting lowness notion obtained
by weakening Low(MR,D) is Low({Ω},D). That is, instead of MR ⊆ DA one merely
requires that Ω ∈ DA. We denote this class by Low(Ω,D). In [11], the case D = MR

is studied. They show that the class coincides with Low(MR) on the ∆0
2 reals, but

not in general. In fact, a Martin-Löf random real is 2-random iff it is in Low(Ω,MR).
Here we investigate the class Low(Ω,SR). We show that A is Low(MR, SR) iff A

is c.e. traceable. Moreover, the weaker assumption Ω ∈ SRA still implies that A is
array computable (there is a function f ≤wtt ∅′ bounding all functions computable
from A, on almost all inputs). So for c.e. sets of integers A, A being Low(MR,SR) is
in fact equivalent to Ω ∈ SRA by Ishmukhametov [5]. We also provide an example
of a real A which is array computable but not Low(Ω,SR).

2. Main concepts

2.1. Martingales

For our purposes, a martingale is a function M : 2<ω 7→ Q (where Q is the
set of rational numbers) such that (i) the domain of M is 2<ω, or 2≤n = {σ ∈
2<ω : |σ| ≤ n} for some n, (ii) M(λ) ≤ 1, and (iii) M has the martingale property
M(x0)+M(x1) = 2M(x) whenever the strings x0, x1 belongs to the domain of M .
A martingale M succeeds on a sequence Z ∈ 2ω if

lim sup
n→∞

M(Z�n) = ∞.

A real is computably random if no computable martingale succeeds on it.
A martingale M effectively succeeds on a sequence Z if there is a nondecreasing

and unbounded computable function h : ω −→ ω such that

lim sup
n→∞

M(Z�n)− h(n) > 0.

Equivalently (since we are considering integer-valued functions), ∃∞n M(Z�n) >

h(n). We can now state the characterization of Schnorr randomness in terms of
martingales: a real Z is Schnorr random if and only if no computable martingale
effectively succeeds on Z.

2.2. Traceability

Let We denote the eth c.e. set of integers in some standard list. A real A is c.e.
traceable if there is a computable function p, called a bound, such that for every
f ≤T A, there is a computable function r such that for all x, we have |Wr(x)| ≤ p(x)
and f(x) ∈ Wr(x).

The following is a stronger notion than c.e. traceability. A is computably traceable
if there is a computable p such that for every f ≤T A, there is a computable r such
that for all x, we have |Dr(x)| ≤ p(x) and f(x) ∈ Dr(x).
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It is interesting to notice that it does not matter what bound p one chooses as
a witness for traceability:
Proposition 2.1 (Terwijn and Zambella [14]). Let A be a real that is computably
traceable with bound p. Then for any monotone and unbounded computable function
p′, A is computably traceable with bound p′. The same holds for c.e. traceability.

The result of Terwijn and Zambella is
Theorem 2.2 ([14]). A real A is low for Schnorr tests iff A is computably traceable.

3. Statement of the main result

Theorem 3.1.

(I) A is Low(MR,SR) iff A is c.e. traceable.

(II) A is Low(CR,SR) iff A is Low(SR) iff A is computably traceable.

We make some remarks about the proofs, and fill in the details in the next
Section. We obtain Theorem 3.1(I) by modifying the methods in [14] to the case of
c.e. traces instead of computable ones.

As for Theorem 3.1(II), by Theorem 2.2 if A is computably traceable then A is
low for Schnorr tests. Hence A is certainly Low(SR), and therefore also Low(CR,SR).
It remains only to show that each real A ∈ Low(CR,SR) is computably traceable.
To see that this is so, take the following three steps:

1. Recall that A is hyperimmune-free if for each g ≤T A, there is a computable
f such that for all x, we have g(x) ≤ f(x). As a first step towards proving Theorem
3.1(II), Bedregal and Nies [2] showed that each A ∈ Low(CR,SR) is hyperimmune-
free (see Lemma 4.9 below). To see this, assume that A is not, so there is a
function g ≤T A not dominated by any computable function f . Define a martingale
L ≤T A which succeeds in the sense of Schnorr, with the computable lower bound
h(n) = n/4, on some Z ∈ CR. One uses here that g is infinitely often above the
running time of each computable martingale. (Special care has to be taken with
the partial martingales, which results in a real Z that is only ∆0

3.)
2. If A is hyperimmune-free and c.e. traceable, then A is computably traceable.

For let g ≤T A, then the first stage where g(x) appears in a given trace for g can
be computed relative to A.

3. Now each A in Low(CR,SR) is c.e. traceable by Theorem 3.1(I), hence by the
above computably traceable, and Theorem 3.1(II) follows.

We discuss lowness for the remaining pairs of randomness notions. Nies has
shown that A is Low(MR,CR) iff A is Low(MR) iff A is K-trivial, where A is K-
trivial if ∀n K(X�n) ≤ K(n) + O(1) (see [10]). Here K(σ) denotes the prefix-free
Kolmogorov complexity of σ ∈ 2<ω. Finally, he shows that a real A which is
Low(CR) is computable. Namely, A is both K-trivial and hyperimmune-free. Since
all K-trivial reals are ∆0

2, and all hyperimmune-free ∆0
2 reals are computable, the

conclusion follows.
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4. Proof of the Main Result

We first need to develop a few useful facts from measure theory.
Definition 4.1. A measurable set A has density d at a real X if

lim
n→∞

µ(X�n)A = d.

A basic result is the following
Theorem 4.2 (Lebesgue Density Theorem). Let Ξ(A) = {X : A has density 1 at
X}. If A is a measurable set then so is Ξ(A), and the measure of the symmetric
difference of A and Ξ(A) is zero.
Corollary 4.3. Let C be a measurable subset of 2ω with µC > 0. Then for each
δ < 1, there is an α ∈ 2<ω such that µαC ≥ δ.

We will use the following consequence of Corollary 4.3.
Lemma 4.4. Let 0 < ε ≤ 1. If Un, n ∈ ω and V are open subsets of 2ω with⋂

n∈ω Un ⊆ V and µV < ε, then there exist σ and n such that µσ(Un − V ) = 0 and
µσV < ε.
Proof. Suppose otherwise; we shall obtain a contradiction by constructing a real
in
⋂

n∈ω Un − V . Let σ0 = λ and assume we have defined σn such that µσn
V < ε.

By hypothesis µσn
(Un−V ) > 0, so there is a [τ ] ⊆ Un such that µσn

([τ ]−V ) > 0. In
particular τ � σn and µτV < 1. Let C = 2ω−V , a closed and hence measurable set.
By Corollary 4.3 applied to C (and with 2ω replaced by [τ ]), there exists σn+1 � τ

such that µσn+1V < ε. Let X be the real that extends all σn’s constructed in this
way. Since [σn+1] ⊆ Un for all n we have that X ∈

⋂
n∈ω Un. But [σn] 6⊆ V for

every n, so, since V is open, X 6∈ V . This contradiction completes the proof. �
We now get to the proof of Theorem 3.1. First we show Theorem 3.1(I), namely,

A is Low(MR, SR) iff A is c.e. traceable. We start with the “⇐” direction.
Lemma 4.5. If A is c.e. traceable then A is Low(MR,SR).
Proof. Assume that A is c.e. traceable and UA is a Schnorr test relative to A.
Let UA

n,s, n, s ∈ ω be clopen sets, UA
n,s ⊆ UA

n,s+1, UA
n =

⋃
s∈ω UA

n,s, such that the
UA

n,s are ∆0,A
1 classes uniformly in n and s. As µUA

n = 2−n, we may assume that
µUA

n,s > 2−n(1− 2−s). Let f be an A-computable function such that [Sf(〈n,s〉)]� =
UA

n,s. Since A is c.e. traceable and f ≤T A, we can let T be a c.e. trace of f . By
Proposition 2.1, we may choose T such that in addition |Tx| ≤ x for each x > 0.

We now want to define a sub-trace T̂ of T , i.e., T̂〈n,s〉 ⊆ T〈n,s〉 for each n, s. The
intent is that the open sets defined via T̂ are small enough to give us a Martin-Löf
test containing ∩n∈ωUA

n , and nothing important is in T〈n,s〉 − T̂〈n,s〉. So let T̂〈n,s〉
be the set of e ∈ T〈n,s〉 such that 2−n(1− 2−s) ≤ µ[Se]� ≤ 2−n and [Se]� ⊇ [Sd]�

for some d ∈ T̂〈n,s−1〉, where T̂〈n,−1〉 = ω. Let

Vn =
⋃{

[Se]� : e ∈ T̂〈n,s〉, s ∈ ω
}

.

Then µVn ≤ 2−n|T̂〈n,0〉| +
∑

s∈ω 2−s2−n|T̂〈n,s〉|. Since |T̂〈n,s〉| ≤ |T〈n,s〉| ≤ 〈n, s〉
for 〈n, s〉 6= 0, and 〈n, s〉 has only polynomial growth in n and s, it is clear that
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s∈ω 2−s2−n|T̂〈n,s〉| is finite and goes effectively to 0 as n → ∞, hence the same

can be said of µVn. Hence there is a recursive function f such that µVf(n) ≤ 2−n.
Let Ṽn = Vf(n). Then Ṽ is a Martin-Löf test, and

⋂
n UA

n ⊆
⋂

n Ṽn. That is, each
Schnorr test relative to A is contained in a Martin-Löf test. It follows that each
real that is Martin-Löf random is Schnorr random relative to A, and the proof is
complete. �

Next we will show the “⇒” direction of Theorem 3.1(I). The proof is similar to
the “⇒” of Theorem 2.2.
Definition 4.6. For k, l ∈ ω define the clopen set

Bk,l =
⋃{

[τ1k] : τ ∈ 2<ω, |τ | = l
}

,

where 1k is a string of 1’s of length k.
Note that µBk,l = 2−k for all l.

Lemma 4.7. If A ∈ 2ω is Low(MR,SR) then A is c.e. traceable.
Proof. Note that A is Low(MR,SR) iff for every Schnorr test UA relative to A,⋂

n∈ω UA
n ⊆

⋂
b∈ω Rb (recall that R is a universal Martin-Löf test).

Oversimplifying a bit, one can say that the proof below goes as follows. We
code a given g ≤T A into a Schnorr test Ug relative to A. Then by hypothesis,⋂

n Ug
n ⊆

⋂
n Rn; in fact we will only use the fact that

⋂
n Ug

n ⊆ R3. We then define
a c.e. trace T , namely Tk is the set of l such that Bk,l − R3 has small measure in
some sense. Since R3 has rather small measure, Bk,l − R3 will tend to have big
measure, which means that there will be only a few l for which Bk,l −R3 has small
measure; in other words, Tk has small size. Moreover we make sure T is a trace for
g and so A is c.e. traceable.

We now give the proof details. Suppose we want to find a trace for a given
function g ≤T A. We define the test Ug by stipulating that

Ug
n =

⋃
k>n

Bk,g(k).

It is easy to see that µUg
n can be approximated computably in A, so after taking a

subsequence of Ug
n, n ∈ ω, we may assume Ug is a Schnorr test relative to A. Hence

by assumption
⋂

Ug ⊆
⋂

b∈ω Rb. Thus V = R3 contains
⋂

Ug and µV < 1
4 . We

may assume throughout that g(k) ≥ k for every k because from a trace for g(k)+ k

one can obtain a trace for g with the same bound. By Lemma 4.4, there exist σ

and n such that µσ(Ug
n − V ) = 0 and µσV < 1/4. As Ug

0 ⊇ Ug
1 ⊇ · · · , we can

choose σ and n with the additional property n ≥ |σ|. Hence for each k > n, we
have g(k) ≥ k > n ≥ |σ| and hence g(k) ≥ |σ|.

Let Ṽ = V |σ, let g̃(k) = max{0, g(k)− |σ|}, and

Tk =
{

l : µ(Bk,l − Ṽ ) < 2−(l+3)
}

.

Note that for each l ∈ ω, if l ≥ |σ| then Bk,l|σ = Bk,l−|σ|. So since g(k) ≥ |σ|,

Ug
n|σ =

⋃
k>n

Bk,g(k)|σ =
⋃
k>n

Bk,g(k)−|σ| = U g̃
n,
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so µ(U g̃
n − Ṽ ) = µσ(Ug

n − V ) = 0. Hence g̃(k) ∈ Tk for all k > n.
Since Ṽ is a Σ0

1 class, it is evident that T is a c.e. set of integers; indeed Bk,l− Ṽ

is a Π0
1 class, so we can enumerate the fact that certain basic open sets [σ] are

disjoint from it, until the measure remaining is as small as required. A trace for g

is obtained as follows:

Gk =

{
{l + |σ| : l ∈ Tk} if k > n;
{g(k)} if k ≤ n.

We now show that G is a trace for g, i.e. for all k ∈ ω, g(k) ∈ Gk. If k ≤ n

then this holds by definition of Gk; so suppose k > n. Then g(k) > k > n > |σ|, so
g̃(k) = g(k)− |σ| so g(k) = g̃(k) + |σ|. As k > n, g̃(k) ∈ Tk and hence g(k) ∈ Gk.

Clearly G is c.e.; so it remains to show that |Gk| is computably bounded, in-
dependently of g. As |Gk| = |Tk| for k > n and |Gk| = 1 for k ≤ n, this is a
consequence of Lemma 4.8 below. �
Lemma 4.8. If Ṽ is a measurable set with µṼ < 1

4 , and Tk = {l : µ(Bk,l − Ṽ ) <

2−(l+3)}, then for k ≥ 1, |Tk| < 2kk.
Proof. Observe that by definition of Tk,

∑
l∈Tk

µ(Bk,l − Ṽ ) <
∑
l∈Tk

2−(l+3) ≤ 1
8

∑
l∈ω

2−l =
1
4
,

so

µ
⋃

l∈Tk

Bk,l − µṼ ≤ µ
⋃

l∈Tk

(Bk,l − Ṽ ) ≤ 1
4
.

As µṼ < 1
4 we obtain that

µ
⋃

l∈Tk

Bk,l <
1
2
.

As observed above µBk,l = 2−k. Moreover, for k fixed, the Bk,l’s are mutually
independent as soon as the l’s are taken sufficiently far apart. In fact sufficiently
far here means a distance of k. So for k ≥ 1, we let T ∗

k be a subset of Tk consisting

of
⌊
|Tk|

k

⌋
elements all of which are sufficiently far apart. (Here bac is the greatest

integer ≤ a.) To show such a set exists we may assume we are in the worst case,
where the elements of Tk are closest together: say Tk = {0, . . . , |Tk| − 1}. Then let
T ∗

k = {mk : 0 ≤ m ≤
⌊
|Tk|

k

⌋
− 1}. As

(⌊
|Tk|

k

⌋
− 1
)

k ≤ |Tk| − k ≤ |Tk| − 1 ∈ Tk,

this makes T ∗
k ⊆ Tk. Write α =

⌊
|Tk|

k

⌋
. We now have

µ
⋂

l∈Tk

(2ω −Bk,l) ≤ µ
⋂

l∈T∗
k

(2ω −Bk,l) = (1− 2−k)α

and hence
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1− (1− 2−k)α ≤ 1− µ
⋂

l∈Tk

(2ω −Bk,l) = µ2ω − µ
⋂

l∈Tk

(2ω −Bk,l)

≤ µ

(
2ω −

⋂
l∈Tk

(2ω −Bk,l)

)
= µ

⋃
l∈Tk

Bk,l <
1
2
.

From the inequality above we obtain, letting m = 2k − 1,(
1− 1

m + 1

)α

= (1− 2−k)α >
1
2

or
(

m+1
m

)α
< 2. Now suppose α ≥ m. Then

(
m+1

m

)α ≥ (m+1
m

)m ≥ 2 as (m+1)m ≥
mm + mm−1

(
m
1

)
= 2mm. So we conclude α < m = 2k − 1. Now by definition of α,

we have Tk

k ≤ α + 1 < 2k and so |Tk| < 2kk; this completes the proof. �
In order to prove Theorem 3.1(II), recall that, by Theorem 2.2, each computably

traceable real is Low(SR). Thus it suffices to show that each Low(CR,SR) real is
computably traceable. The first ingredient to show this is the following result from
[2].
Lemma 4.9. If A is Low(CR,SR) then A is hyperimmune-free.
Proof. Suppose A is not hyperimmune-free, so there is a function g ≤T A not
dominated by any computable function. Thus for each computable f , ∃∞x f(x) ≤
g(x). We will define a computably random real X and an A-computable martingale
L which succeeds on X in the sense of Schnorr, so A is not Low(CR, SR). In the
following α, β, γ denote finite subsets of ω, and nα =

∑
i∈α 2i (here n∅ = 0).

Let {Me}e∈ω be an effective listing of all partial computable martingales with
range included in [1/2,∞). At stage t, we have a finite portion Me[t] whose domain
is a subset of some set of the form 2≤n for some n. If X is not computably random,
then limn→∞ Me(X�n) = ∞ for some total Me by [13]. Let

TMG = {e : Me is total}.
For finite sets α, β, let us in this proof say that α is a strong subset of β (denoted

α ⊆+ β) if α ⊆ β and moreover for each i ∈ ω, if i ∈ β−α then i > max(α). So the
possibility that β contains an element smaller than some element of α is ruled out.

For certain α, and all those included in TMG, we will define strings xα, in such
a way that α ⊆+ β ⇒ xα � xβ . We choose the strings in such a way that Me(xα)
is bounded by a fixed constant (depending on e), for each total Me and each α

containing e. Then the set of integers

X =
⋃

e∈ω xTMG∩[0,e]

is a computably random real. On the other hand we are able to define an A-
computable martingale L which Schnorr succeeds on X. We give an inductive
definition of the strings xα, “scaling factors” pα ∈ Q+ (positive rationals) (we do
not define p∅) and partial computable martingales Mα such that, if xα is defined
then
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Mα(xα) converges in g(|xα|) steps and Mα(xα) < 2. (1)

It will be clear that A can decide if y = xα given inputs y and α.
Let x∅ = λ, and let M∅ be the constant zero function (we may assume g is such

that M∅(λ) converges in g(0) steps). Now suppose α = β ∪ {e} where e > max(β),
and inductively suppose that (1) holds for β. Let

pα = 1
22−|xβ |(2−Mβ(xβ)),

and let Mα = Mβ + pαMe. Since Me is a martingale on its domain, Me(z) ≤ 2|z|

for any z. So writing b = Mβ(xβ), we have Mα(xβ) = b+pαMe(xβ) < b+pα2|xβ | =
b + 1

2 (2− b) = 1 + b
2 < 1 + 2

2 = 2 if Mα(xβ) is defined.
To define xα, we look for a sufficiently long x � xβ such that Mα does not

increase from xβ to x and Mα(x) converges in g(|x|) steps. In detail, for larger and
larger m > |xβ |, m ≥ 4nα, if no string y, |y| < m has been designated to be xα as
yet, and if Mα(z) (i.e., each Me(z), e ∈ α) converges in g(m) steps, for each string
z of length ≤ m, then choose xα of length m, xβ ≺ xα such that Mα does not
increase anywhere from xβ to xα.
Claim 4.10. If α ⊆ TMG, then xα and pα (the latter only if α 6= ∅) are defined.
Proof. The lemma is trivial for α = ∅. Suppose it holds for β, and α = β ∪ {e} ⊆
TMG, where e > max(β). Since the function

f(m) = µs∀e ∈ α∀x [ |x| ≤ m ⇒ Me(x) converges in s steps ]
is computable, there is a least m ≥ 4nα, m > |xβ | such that g(m) ≥ f(m). Since
there is a path down the tree starting at xβ where Mα does not increase, the choice
of xα can be made. �
Claim 4.11. If β ⊆+ α are finite sets then Mβ(x) ≤ Mα(x) for all x.
Proof. This is clear by induction from the case α = β ∪ {e}, i.e., the case where
α− β has only one element. �
Claim 4.12. X is computably random.
Proof. Suppose Me is total. Let α = TMG ∩ [0, e]. Suppose α ⊆ γ, γ′ = γ ∪ {i},
max(γ) < i and γ′ ⊆ TMG. Then α ⊆+ γ ⊆+ γ′. Hence by Claim 4.11, for each x

with xγ � x � xγ′ , we have
pαMe(x) ≤ Mα(x) ≤ Mγ′(x) ≤ Mγ′(xγ) < 2,

hence Me(x) < 2/pα for each x ≺ X, and so the capital of Me on X is bounded. �
Claim 4.13. There is a martingale L ≤T A which effectively succeeds on X. In
fact,

∃∞x ≺ X L(x) ≥ b|x|/4c.
Proof. For a string z, let r(z) = b|z|/2c. We let L =

∑
α Lα, where Lα is a

martingale with initial capital Lα(λ) = 2−nα which bets everything along xα from
xα�r(xα) on. More precisely, if xα is undefined then Lα is constant with value 2−nα .
Otherwise, for convenience we let x = xα�2r(xα) and work with x instead of xα;
and define Lα on a string y as follows.

• If y does not contain “half of x”, i.e. if x�r(x) 6� y then just let Lα(y) = 2−nα .
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• If y does contain “half of x” but y and x are incompatible, then let Lα(y) = 0.

• If y contains “half of x” and x and y are compatible, then let Lα(y) =
2−nα2min(|y|−r(x),r(x)).

So if y contains x then Lα(y) = 2r(x)−nα , so we make no more bets once we
extend xα, and if x contains y then Lα(y) = 2|y|−r(x)−nα , i.e. we double the capital
for each correct bit of x beyond x�r(x).

Note that L(λ) =
∑

α 2−nα and, as each k ∈ ω has a unique binary expansion
and hence is equal to nα for a unique finite set α, we have L(λ) =

∑
k∈ω 2−k = 2.

Moreover it is clear that each Lα satisfies the martingale property Lα(x0)+Lα(x1) =
2Lα(x) hence so does L.

L effectively succeeds on X. Indeed, as |xα| ≥ 4nα, we have Lα(xα) = 2r(xα)−nα ≥
2b|xα|/2c−b|xα|/4|c ≥ 2b|xα|/4c ≥ b|xα|/4c since 2q ≥ q for each q ∈ ω.

Finally, we show that L ≤T A. Given input y, we use g to see if some string x,
|x| ≤ 2|y| is xα. If not, Lα(y) = 2−nα . Else we determine Lα(y) from x using the
definition of Lα. �

The second ingredient to the proof of Theorem 3.1(II) is the following fact of
independent interest.
Proposition 4.14. If A is hyperimmune-free and c.e. traceable, then A is comput-
ably traceable.
Proof. Let f ≤T A and let h be as in the definition of c.e. traceability. Let
g(x) = µs.f(x) ∈ Wh(x),s (where We,s is the approximation at stage s to the c.e.
set We). Then g ≤T A and so since A is hyperimmune-free, g is dominated by a
computable function r. So if we replace Wh(x) by Wh(x),r(x), we obtain a computable
trace for f . �

Lemma 4.9 and Proposition 4.14 together establish Theorem 3.1(II): if A is
Low(CR,SR), then A is c.e. traceable by Theorem 3.1(I), and hyperimmune-free by
Lemma 4.9. Thus by Proposition 4.14, A is computably traceable.

As a corollary, we obtain an answer to the question of Ambos-Spies and Kučera.
Corollary 4.15. A real A is S-low if and only if it is S0-low.
Proof. This follows by Theorem 2.2 and Theorem 3.1(II), since each computably
traceable real is S0-low. �

5. Lowness notions related to Chaitin’s halting probability

Recall that A is array computable if there is a function f ≤wtt ∅′ bounding all
functions computable from A on almost all inputs.
Theorem 5.1. If Ω ∈ SRA then A is array computable.
Proof. We show that the function β(x) = µs Ωs�3x = Ω�3x dominates each
function α ≤T A. Since β ≤wtt Ω ≤wtt 0′, this shows that A is array computable.

Given α ≤T A, consider the A-computable martingale M =
∑

p Mp, where Mp

is the martingale which is has the value 2−p on all strings of length up to p, and
then doubles the capital along the string y = Ωα(p)�3p, so that Mp(y) = 2p. Note
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that M(z) is rational for each z. If α(p) > β(p) for infinitely many p, then M

Schnorr succeeds on Ω, contradiction. �
Corollary 5.2. If A is c.e. then Ω ∈ SRA iff A is c.e. traceable.
Proof. For c.e. A, array computable implies c.e. traceable by Ishmukhametov [5].
�

In [12] it is shown that c.e. traceable degrees do not contain diagonally non-
computable functions, hence by a result of Kučera [7], the c.e. traceable degrees
have measure zero. On the other hand every real A which is Martin-Löf random
relative to Ω satisfies that Ω is MRA, by van Lambalgen’s theorem [15], and hence
the measure of the set of A such that Ω is SRA is one; so A c.e. traceable is not
equivalent to Ω ∈SRA. Also, Ω ∈SRA is not equivalent to A being array computable,
as we now show.

The following notion of forcing appears implicitly in [4].
Definition 5.3. A tree T is a set of strings σ ∈ 2<ω such that if σ ∈ T and τ is a
substring of σ then τ ∈ T . A tree T is full on a set F ⊆ ω if whenever σ ∈ T and
|σ| ∈ F , then σ0 ∈ T and σ1 ∈ T . Let Fn, n ∈ ω be finite sets such that each Fn is
an interval of ω, |Fn+1| > |Fn| and

⋃
n Fn = ω. The sequence Fn, n ∈ ω is called a

very strong array. Let P be the set of computable perfect trees T such that T is full
on Fn for infinitely many n. Order P by T1 ≤P T2 if T1 ⊆ T2. The partial order
(P,≤P ) is a notion of forcing we call very strong array forcing.
Theorem 5.4. For each real X there is a hyperimmune-free real A such that no
real computable from X is in SRA. In particular, as hyperimmune-free implies array
computable, there is an array computable real A such that Ω 6∈ SRA.
Proof. Let A be sufficiently generic for very strong array forcing. Then A is
hyperimmune-free, as may be proved by modifying the standard construction of a
hyperimmune-free degree [8] to work with trees that are full on infinitely many Fn,
n ∈ ω.

Moreover, for each real B computable from X, there is an n (hence infinitely
many n) such that A agrees with B on Fn. Indeed, given a condition T a condition
extending T and ensuring the existence of such an n is obtained as a full subtree of
T .

Hence no real B computable from X is Schnorr random relative to A. Indeed
the measure of the set of those oracles B that agree with A on infinitely many Fn

is zero, and it is easy to see that the measure of those B such that for some k > n,
A and B agree on Fk, goes to zero effectively as n →∞. Hence there is a Schnorr
test relative to A which is failed by any such B, as desired. �
Question 5.5. Characterize the (c.e.) sets of integers A such that Ω is computably
random relative to A. Does this depend on the version of Ω used?
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