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Abstract. We show that there is a complete, consistent Borel theory which

has no “Borel model” in the following strong sense: There is no structure

satisfying the theory for which the elements of the structure are equivalence
classes under some Borel equivalence relation and the interpretations of the

relations and function symbols are Borel in the natural sense.

We also investigate Borel isomorphisms between Borel structures.

1. Introduction

The completeness theorem states that each consistent first-order theory T has a
model M no larger than the size of the language. If the language is countable then
M can be defined from T . If the language is effectively given then the elementary
diagram of M is computable relative to T . On the other hand, if the language is
uncountable, the proof of the completeness theorem relies on the axiom of choice.

We investigate theories and structures the size of the continuum. Here a natural
way to impose an effectivity condition is to use a first order language that can
be seen as a standard Borel space, and to require that the theory is Borel. A
Borel structure is one where the elements of the structure are equivalence classes
under some Borel equivalence relation E and the interpretations of the relations and
function symbols are Borel. For example, the field of reals with constants naming
each element, and a unary function symbol naming each continuous function, is
a Borel structure. A further example of a Borel structure is the Boolean algebra
P(ω) modulo the ideal of finite sets. In this case it is unknown whether there is an
injective Borel representation, namely one where E is equality.

Our main result is that an effective version of the completeness theorem fails at
the Borel level: we build a complete consistent Borel theory without a Borel model.

We also begin to investigate Borel isomorphism between Borel structures. For
instance, there are continuum many Borel presentations of (R,+) that are not
Borel isomorphic. We leave to future investigations a closer look at the “Borel
dimension”, the number of Borel representations that are not Borel equivalent.

We begin with some basic definitions and facts.

Definition 1.1. A set A equipped with a σ-algebra B is said to be a standard Borel
space if there is Polish topology for which B is the resulting class of Borel sets.

Theorem 1.2. (Kuratowski, see [Kec95]) Let X be a standard Borel space and let
B ⊂ X be a Borel set. Then B equipped with the canonical σ-algebra

{A ⊂ B : A is Borel in X}
is a standard Borel space.
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For us, Borel set will always mean a Borel subset of some Polish or standard
Borel space equipped with the above σ-algebra of Borel subsets. The next few
observations are completely routine. Details can be found in [Kec95].

Lemma 1.3. Every countable set S equipped with the collection of all subsets,
P(S), is a standard Borel space.

Consequently, we will always think of a countable set equipped with the collection
of all its subsets as a standard Borel space.

Lemma 1.4. A finite product of standard Borel spaces is standard Borel.

Here we equip the finite product of standard Borel spaces,
∏

i≤N Xi with the
σ-algebra generated by all cylinder sets∏

i≤N

Ai,

where each Ai is a Borel subset of Xi.

Lemma 1.5. The countable disjoint union of standard Borel spaces is again a
standard Borel space.

Here we equip the countable disjoint union of standard Borel spaces, ˙⋃
i∈NXi

with the σ-algebra consisting of all sets of the form ˙⋃
i∈NAi, where each Ai is a

Borel subset of Xi.
Putting the above lemmas together, if B is a standard Borel space and S is

a countable set, then we first obtain that B∪̇S is a standard Borel space in the
canonical Borel structure indicated above, then that each

(B∪̇S)N =
∏
i≤N

B∪̇S

is standard Borel, and then finally that

(B∪̇S)<∞ =
⋃̇

N∈N
(B∪̇S)N

is a standard Borel space.

Definition 1.6. A Borel signature is a Borel set L such that the sets

{R ∈ L : a is R relation symbol of arity n}

and
{f ∈ L : a is f function symbol of arity n}

are all Borel. Using Polish notation one can naturally identify formulas in the
resulting first order language with finite strings in

L ∪ {¬,∨,∧,∀,∃, v0, v1, ...},

where v0, v1, ... are our variable symbols. In other words, the collection of well
formed first order formulas, Lω,ω is a subset of

(L ∪ {¬,∨,∧,∀,∃, v0, v1, ...})<ω.

It is then easily verified that Lω,ω is a Borel subset of (L∪{¬,∨,∧,∀,∃, v0, v1, ...})<ω.
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Definition 1.7. Let L be a Borel signature. Then a Borel first order theory in L
is a Borel subset of T ⊂ Lω,ω, where we equip

Lω,ω ⊂ (L ∪ {¬,∨,∧,∀,∃, v0, v1, ...})<∞

with the σ-algebra of Borel subsets in its canonical standard Borel structure.

Definition 1.8. We say that an equivalence relation E on a standard Borel space
X is Borel if it is Borel as a subset of X ×X, in the canonical Borel structure on
the product space X ×X. For x ∈ X we use [x]E to denote the equivalence class
of x.

Definition 1.9. Let L be a Borel signature. Let M be an L structure. We will
say that M is a Borel L presentation if there is a standard Borel space X and a
Borel equivalence relation E ⊂ X ×X such that

M = X/E = {[x]E : x ∈ X};

and for each R ∈ L a relation symbol of arity n

{(a0, ..., an−1) ∈ Xn : M |= R([a0]E , ..., [an−1]E)}

is Borel as a subset of Xn; further, for each f ∈ L a function symbol of arity n,

{(a0, ..., an−1, b) ∈ Xn : M |= f([a0]E , ..., [an−1]E) = [b]E}

is Borel as a subset Xn+1. We say that a structure N is Borel if there is a Borel
presentation M which is isomorphic to N .

We will usually denote presentations as (X, E; ...) where M = X/E and the (...)
refers to the interpretations of the various non-logical symbols of L.

In many cases our Borel presentations will arise as structures on actual standard
Borel space, rather than a quotient object of the form X/E. In this case we will
say that the model has an injective presentation. These can also be thought of as
Borel models in the above sense by taking E to be the identity relation.

In [HKMN08] it is shown that some Borel structure fails to have an injective
presentation. The real point of the non-completeness theorem is not just that there
is a complete, consistent Borel theory with no Borel injectively presented model,
but the theory in question has no Borel model even in our more generous sense.

We give some examples of Borel structures. Let =∗ denote the equivalence
relation of eventual agreement on infinite binary sequences.

(1) The fields (R,+,×) and (C,+,×) are Borel structures. So are these fields
in the extended language with names for all elements and for all continuous
functions from the field to itself.

(2) All Büchi automatic structures (see [HKMN08]) are Borel structures.
(3) In particular, the Boolean algebras B = (P(N),⊂) and B/ =∗ are Borel

structures. It is unknown whether B/ =∗ has an injective presentation.
However, the example in [HKMN08] of a Büchi automatic structure without
an injective Borel presentation is closely related to B/=∗.

(4) Second order arithmetic, namely, the structure (N,P(N), 0, 1,+,×,∈), is
Borel.

In fact, most structures one finds in books related to analysis such as [LZ96] are
Borel. To obtain a structure of size the continuum that is not Borel one can use
tools from mathematical logic:
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Proposition 1.10. [HKMN08] The linear order (ω1,≤) is not Borel.

Proof. Assume for a contradiction that B is a Borel presentation of (ω1,≤). Then
the class of linear orderings of N which embed in B is Σ1

1∼
. This contradicts the

boundedness theorem for WF [Kec95, Thm 31.2] which implies that every Σ1
1∼

set
of well-orderings is bounded by some ordinal γ < ω1. �

A stronger result of Harrington and Shelah [HS82] states that every Borel pre-
sentable preorder can be mapped in an order preserving way into 2α, the functions
α → 2 with the lexicographical order, for some countable ordinal α. Note that 2α

is separable. Hence such a preorder has no subset of order type ω1.
The structure B/ =∗ in (3) above is an ω1-saturated Borel model of size the

continuum for the theory of dense Boolean algebras. (This determines the Boolean
algebra B/ =∗ up to isomorphism under CH.) An example to the contrary is the
theory of dense linear order without end points. Any of its ω1-saturated models of
size the continuum has an ω1-chain, and is therefore not Borel by [HS82].

There are a few basic facts about Borel structures to which we will make repeated
appeal. For instance, recalling that a set is Σ∼

1
1 if it is the Borel image of a Borel

set, one has that a set is Borel if and only if both it and its complement are Σ∼
1

1
.

Further, a function between two standard Borel spaces is Borel measurable if and
only if its graph is Borel as a subset of the product space. See [Kec95].

The following well-known theorem in Descriptive Set Theory will be essential.
See Example 1.6 in [Hjo].

Theorem 1.11. There is no Borel function F : P(N) → P(N) such that

X =∗ Y ⇔ F (X) = F (Y )

for each X, Y ⊆ N.

Acknowledgement. We thank Bakhadyr Khoussainov for his suggestion to study
Borel dimension.

2. Borel isomorphism

Definition 2.1. Two Borel presentations (X, E; ...), (Y, F ; ...) are said to be Borel
isomorphic if there is a Borel function

f : X → Y

with the following properties:
(i) for all x1, x2 ∈ X, x1Ex2 if and only if f(x1)Ff(x2);
(ii) for all y ∈ Y there exists x ∈ X with f(x)Fy;
(iii) the function

X/E → Y/F

[x]E 7→ [f(x)]F
provides an isomorphism of the two models.

A Borel structure M is Borel categorical if any two Borel presentation of it are
Borel isomorphic. More generally, one can define the Borel dimension of a Borel
structure M to be the number of equivalence classes modulo Borel isomorphism on
the set of Borel presentations of M. This is analogous to computable dimension in
the area of recursive model theory. It was suggested by Bakhadyr Khoussainov.
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Note that M is Borel categorical iff it has Borel dimension 1. Presently we only
know examples of Borel dimensions 1 or 2ℵ0 .

Examples of Borel categorical structures are:
(1) The Boolean algebra (P(N),⊂).
(2) The linearly ordered set (R,≤).
(3) The field (R,+,×).

For the first see [HKMN08]. For the second and third one uses the fact that
the structures have isomorphic dense countable substructures. The isomorphisms
between these substructures can naturally be extended to the main structures.

We show that the structure of reals under addition has the maximal Borel di-
mension 2ℵ0 .

Theorem 2.2. There are continuum many Borel presentations of (R,+) that are
not Borel isomorphic.

Proof. We exploit that any Borel isomorphism between Polish groups must be a
homeomorphism (see for instance Section 1.2 of [BK96]).

For each p > 1 recall the Banach space

`p = {~x ∈ RN :
∑

n

|xn|p < ∞},

where the norm is |~x|p = (
∑

n |xn|p)1/p. Let Gp be the abelian group underlying `p.
Clearly as abstract groups these are all isomorphic, being vector spaces of dimension
2ℵ0 over Q. It suffices to show that Gp is not Borel isomorphic to Gq for p 6= q.
Otherwise let ϕ : Gp

∼= Gq be a Borel isomorphism of Polish groups. Then, by the
above remark, ϕ will be a continuous, and then linear. But for 1 < p < q there is
no continuous linear bijection between `p and `q. See [LZ96, top of pg. 54]. �

3. Borel theories without Borel completions

The case of countable languages is special due to the following theorem of Harvey
Friedman, 1979, published in [Ste85]. The idea is to use indiscernibles to obtain a
large model.

Theorem 3.1. Let T be a consistent first order theory in a countable language.
Then T has an injective Borel model of size the continuum. The model can be
chosen so that its elementary diagram is Borel.

Theorem 3.1 does cannot be extended to theories over a language the size of the
continuum.

Theorem 3.2. [HKMN08] There exists a consistent Borel theory which has no
Borel model and no Borel completion.

Proof. Let U be a free ultrafilter on N. We will consider a Borel subset of the atomic
diagram of the structure (P (N),U), such that any model of it codes a free ultrafilter
on N. This contradicts the easy fact that there are no free Borel ultrafilters on N;
see for instance [Kec95, Exercise 8.50].

The signature of our theory contains a unary predicate U and a constant symbol
cA for each A ⊆ N. The theory consist of the following sentences:

• cA 6= cB , for every A 6= B ⊆ N;
• U(cN);
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• U(cA) → U(cB), for every pair of sets such that A ⊂ B ⊂ N;
• U(cA) ↔ ¬U(cN\A), for every A ⊂ N;
• U(cA) & U(cB) → U(cA∩B), for every A,B ⊂ N;
• ¬U(cA), for each finite set A ⊂ N.

Clearly, this theory is Borel (even Π0
1). The theory is consistent as it has the model

(P (N),U) extended by constants naming each subset of N. However, it does not
have any Borel presentable model X . Otherwise, {A ⊂ N : cXA ∈ UX } is a Borel
free ultrafilter on N.

Likewise, if T is a completion of our theory which is Borel, then

{A ⊂ N : T |= cA ∈ U}

is a Borel free ultrafilter. �

We mention another example of a theorem that is proved using the axiom of
choice and has no version for Borel objects: each partial order can be extended to
a linear order on the same domain. The counterexample for Borel objects is due to
Antonio Montalbán.

Proposition 3.3. There is a Borel relation R ⊆ X ×X, where X = {0, 1}ω, such
that R is a partial order without a Borel linear extension.

Proof. Let P be any Borel preorder with an ω1-chain, such as P(N) with almost
inclusion ⊂∗. We equip each equivalence class for this preorder with the lexico-
graphical order ≤lex. Thus we define

Rxy ⇔ (Pxy & ¬Pyx) ∨ (Pxy & Pyx & x ≤lex y),

where x, y ⊆ N. Then R is a Borel partial order that has no Borel linear extension
by [HS82], as remarked after Prop. 1.10. �

4. An anticompleteness theorem for Borel theories

Our main result is an “anticompleteness theorem” at the Borel level:

Theorem 4.1. There is a complete, consistent Borel theory with no Borel model.

Part of the difficulty in proving this theorem stems from the fact that we also
have to rule out non-injective Borel presentations.

The proof works in stages: First we construct a Borel theory T. Second we
show that all its omega models (in a sense to be made specific later) have the same
theory. Third we let T∗ be the theory of those omega models, which is Borel as
well. Fourth we observe that T∗ has no Borel model: such a model would contain
a function that contradicts Theorem 1.11.

In the following we identify 2ω with the collection of all subsets of ω.

4.1. The theory T. We first define a Borel theory with several sorts.

(1): C. This includes interpretations of the constant symbols {cx : x ∈ 2ω}. There
is a relation E defined on C with

cxEcy

if and only if x =∗ y. E is an equivalence relation on C with all equivalence classes
infinite.
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(2): F . Every element of F is an onto function from C and B (where B is discussed
in the section on T below). We require that

∀f ∈ F∀x, y ∈ C [xEy ⇔ f(x) = f(y)].

We require that identity in F is determined by its value as a function:

∀f, g ∈ F(f 6= g ⇒ ∃d(f(d) 6= g(d)).

Moreover for each n we introduce the axiom which states that given d1, d2, ..., dn

in C which are E-inequivalent and given b1, ..., bn ∈ B we have ∀g ∈ F∃f ∈ F

(f(d1) = b1 ∧ f(d2) = b2 ∧ ... ∧ f(dn) = bn) ∧ ∀x 6Ed1, . . . , dn f(x) = g(x).

(3): A. This has constant symbols (en)n∈ω and unary predicates (Ux)x∈2ω defined
over elements of A. We will have the further sentences in our theory:

(a) Whenever x, y, z ∈ 2ω with z = x∩y then ∀e ∈ A((Ux(e)∧Uy(e)) ⇔ Uz(e)).
(b) Whenever z = ω \ x we have ∀e ∈ A(Ux(e) ⇔ ¬Uz(e)).
(c) Whenever z ⊆ y we have ∀e ∈ A (Uz(e) ⇒ Uy(e)).
(d) If n /∈ x then ¬Ux(n).
(e) If n ∈ x then Ux(n).

(4): T : This in turn consists of two types, T and B. There is a function L defined
on T , taking values in A. We also have a relation Q defined between elements of
B and elements of T . There is a binary relation S on T .

The intuition is as follows.
• We think of T as elements of a tree.
• S provides the successor relation.
• L assigns levels to those elements.
• B is a collection of infinite branches.
• Q tells us which of the branches are above which of the nodes.

Thus we have the following axioms.
∃!t ∈ T (L(t) = e0).
∀t ∈ T∃t0, t1(t0St ∧ t1St ∧ t0 6= t1 ∧ ∀t′(t′St ⇒ (t′ = t0 ∨ t′ = t1))).
∀t, t′ ∈ T ((t′St ∧ L(t) = en) ⇒ L(t′) = en+1).
∀b ∈ B∀e ∈ A∃!t ∈ T (L(t) = e ∧Q(b, t)).
∀t ∈ T∀b ∈ B(Q(b, t) ⇒ ∃!t′(t′St ∧Q(b, t))).
∀t ∈ T∃b ∈ B(Q(b, t)).
∀b, b′ ∈ B(b 6= b′ ⇒ ∃t ∈ T (Q(b, t)∧ 6 Q(b′, t))).

We will have one last list of sentences in our theory which is designed to make
the functions in F behave in a highly homogeneous manner. For this we introduce
one further ternary relation R which should be thought of as measuring the dis-
agreement between elements of F . R will only hold when the first two coordinates
are in F and the last in A.
∀f, g ∈ F∃!e ∈ A(R(f, g, e)).
∀f, g ∈ F∀e ∈ A(R(f, g, e) ⇒ R(g, f, e)).
∀f, g, h ∈ F∀e ∈ A((R(f, g, e) ∧R(g, h, e) ⇒ R(f, h, e)).
For each n we further introduce the sentence which says that, for all f, g ∈ F , if

R(f, g, en) then there are exactly n equivalence classes on which f and g disagree.

Definition 4.2. Let T be the above theory. L(T) denotes its language.
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4.2. Some properties of the theory T.

Lemma 4.3. Each Borel model M of T is an ω-model in the sense that

(A)M = {(en)M : n ∈ ω}.

Proof. Otherwise choose e ∈ (A)M which does not equal (en)M for any n ∈ ω. We
obtain a Borel free ultrafilter U on 2ω by letting

x ∈ U ⇔M |= Ux(e),

which is impossible as already mentioned after Theorem 3.2. �

In the following let T be a perfect binary tree (that is to say, T is isomorphic to
2<ω under inclusion). Let [T ] denote the branches through T . We say that S ⊂ [T ]
is dense if ∀c ∈ T∃b ∈ S [c � b].

Lemma 4.4. (Malitz [Mal68]) Suppose the countable sets S, S′ ⊂ [T ] are dense.
Then there is an automorphism π of T with {π(b) : b ∈ S} = S′.

Malitz’s result is used to prove the following key lemma.

Lemma 4.5. Let L0 be a finite subset of L(T) including C,F ,A, T , E, R,L, S, Q.
Let L1 = L0 ∪ {en : n ∈ ω}. Let M0,M1 be countable models of T|L1 which are
ω-models in the sense that (A)Mi = {(en)Mi : i ∈ ω} for i = 0, 1. Then M0

∼= M1.

Proof. Let [x0]=∗ , [x1]=∗ , ..., [xM ]=∗ enumerate the equivalence classes of {x : cx ∈
L0}. Choose f ∈ FM0 . Choose N such that for all i 6= j ≤ M there exists
t0 6= t1 ∈ TM0 with

M0 |= L(t0) = eN ,M0 |= L(t1) = eN ,

M0 |= Q(f(cxi
), t0),M0 |= Q(f(cxj

), t1).

Let TM0
N , TM1

N respectively be the sets

{t ∈ TM0 : ∃n ≤ NM0 |= L(t) = en},
{t ∈ TM1 : ∃n ≤ NM1 |= L(t) = en}.

Let
σ : TM0

N
∼= TM1

N

preserve the successor relation. Choose b1, ..., bN ∈ BM1 such that for all t with

M0 |= L(t) = eN ,

and all i ≤ M , we have

M0 |= Q(f(cxi
), t) iff M1 |= Q(bi, σ(t)).

Now let (ti)i∈ω enumerate nodes in TM0 such that
(a) ti is not used in any of the branches associated to any of the cxj

’s (i.e.
∀j ≤ NM0 |= ¬Q(f(cxj

), ti)).
(b) ti is an immediate successor of a branch used in some cxj

(i.e.
∃t, jM0 |= tiSt,QM0(f(cxj ), t)).
Let (t̂i)i∈ω be defined similarly in TM1 but for the branches b1, ..., bN :
(a) ∀j ≤ NM1 |= ¬Q(bj , t̂i).
(b) ∃t, jM1 |= t̂iSt,M1 |= QM0(bj , t).
We can do this so that

(M0 |= L(ti) = en) ⇒ (M1 |= L(t̂i, en)),
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and if there exists t with
M0 |= Q(f(cxj

), t), tiSt

then there exists t̂ with
M1 |= Q(bj , t̂), t̂iSt̂.

At each i, let T i be the set of t in TM0 which have ti as an ancestor. With the
structure endowed by M0 this becomes a perfect binary tree – think of this intu-
itively as the tree of points whose last contact with one of the branches associated
to one of the xj ’s is equal to ti. Similarly we let T̂ i be the set of t̂ ∈ TM1 such that
t̂i is an ancestor of t̂. Let

Bi = {b : M0 |= Q(b, ti)},

B̂i = {b : M1 |= Q(b, t̂i)}.
We can then apply Malitz’s lemma to find

π : T i ∼= T̂ i

with induced
πi[Bi] = B̂i.

Let
π : TM0 ∼= TM1

be the result of patching these together and assigning

π(f(cxj )) = bj .

Fix f̂ ∈ FM1 with f̂(cxj
) = bj all j ≤ M . (The axioms listed under (2) above

make this possible.)
We now extend π to become an isomorphism of structures. For c ∈ CM0 we let

π(c) = (cx)M1

if c = (cx)M0 some x, and otherwise simply choose π(c) so that

f̂M1(π(c)) = π(fM0(c));

this is possible since π at the level of BM0 → BM1 is one to one and onto, and
in the axioms at (1) give f̂ as an isomorphism between C/E and B. Since each E
class is infinite, we can do this so that π provides a bijection

([c]E)M0 ∼= ([π(c)]E)M1 .

The fact that M0,M1 are ω-models in terms of A, along with axioms at (2)
ensure that FM0 and FM1 consist of exactly all the functions

(C/E)M0 → BM0

and
(C/E)M1 → BM1

which agree with f and f̂ respectively on all but finitely many values. From this it
is clear how to extend π to an isomorphism between FM0 and FM1 .

It only remains to define π on AM0 – but here we simply send

(en)M0 7→ (en)M1 ,
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and for the predicate symbols of the form Ux in the common language, our axiom-
atization at (3) ensures we have at each x, n

M0 |= Ux(en) ⇔M1 |= Ux(en).

�

4.3. The theory T∗.

Notation 4.6. Let AT be the set of M as described in Lemma 4.5: That is to
say, M is a countable ω-model of T|L1 for some finite subset L0 of L(T) including
C,F ,A, T , E, R,L, S, Q, and for L1 = L0 ∪ {en : n ∈ ω}. Note that AT can be seen
as a Borel set in a standard Borel space.

Definition 4.7. Let T∗ be the set of ϕ ∈ L(T) such that there exists M∈ AT with

M |= ϕ.

Lemma 4.8. T∗ is Borel.

Proof. In the light of 4.5 we have ϕ ∈ T∗ if and only if

∃M ∈ AT [M |= ϕ],

if and only if
∀M ∈ AT [L(ϕ) ⊂ L(M) ⇒M |= ϕ].

Thus T∗ is Borel as both it and its complement are Σ∼
1

1
. �

Lemma 4.9. T∗ is complete.

Proof. This is immediate by the structure of the definition of T∗. �

Lemma 4.10. T∗ is consistent.

Proof. From 4.5 and the definition of T∗, we have that for any finite L0 ⊂ L(T∗)
there is a countable model of T∗|L0 . �

Theorem 4.11. T∗ has no Borel model.

Proof. First we show that there is no injective Borel model M of T∗. Assume
otherwise. By lemma 4.3 and T∗ ⊃ T,

(A)M = {(en)M : n ∈ ω}.

Let (tn)n∈ω enumerate elements of (T )M. For each b ∈ BM, we let

ρ(b) = {n : M |= Q(b, tn)}.

Fix f ∈ (F)M. Define θ : 2ω → 2ω by

θ(x) = ρ((f(cx))M).

Then for all x, y ∈ 2ω,
x =∗ y ⇔M |= cxEcy,

by the axioms at (1),
⇔M |= f(cx) = f(cy),

by the axioms at (2),

⇔ ρ((f(cx))M) = ρ((f(cy))M),
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by the axioms at (4) describing B as a collection of branches through T . Thus we
obtain a Borel function θ with

x =∗ y ⇔ θ(x) = θ(y),

contradicting Theorem 1.11. �

As already mentioned above, even if we allow Borel models where equality in M,
(=)M, does not actually correspond to true = in the outside world, there still is no
Borel model of T∗. The only adjustment to the above argument is to let (tn)n∈ω

be a complete sequence of representatives for elements of (T )M.
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