
BENIGN COST FUNCTIONS AND LOWNESS PROPERTIES

NOAM GREENBERG AND ANDRÉ NIES

Abstract. We show that the class of strongly jump-traceable c.e. sets can be

characterised as those which have sufficiently slow enumerations so they obey a

class of well-behaved cost function, called benign. This characterisation implies
the containment of the class of strongly jump-traceable c.e. Turing degrees in

a number of lowness classes, in particular the classes of the degrees which lie

below incomplete random degrees, indeed all LR-hard random degrees, and all
ω-c.e. random degrees. The last result implies recent results of Diamondstone’s

and Ng’s regarding cupping with supwerlow c.e. degrees and thus gives a use

of algorithmic randomness in the study of the c.e. Turing degrees.

1. Introduction

K-triviality has become central for the investigation of algorithmic randomness.
This property of a set A ∈ 2ω expresses that A is as far from random is possible,
in that its initial segments are as compressible as possible: for all n, K(A �n) ≤+

K(n).1 The robustness of this class is expressed by its coincidence with several
notions indicating that the set is computationally feeble (Nies; Hirschfeldt and
Nies; Hirschfeldt, Nies and Stephan; see [16, 9, 15]):

• lowness for Martin-Löf randomness: as an oracle, the set A ∈ 2ω cannot
detect any patterns in a Martin-Löf random set.
• lowness for K: as an oracle, the set A cannot compress any strings beyond

what can be done computably.
• base for Martin-Löf randomness: A is so feeble that some A-random set

can compute A.

The key for this equivalence is the notion of cost functions and obeying them. The
by-now standard constructions of a promptly simple K-trivial set ([6]) shows that
a set which is low for Martin-Löf randomness ([11]) has similar dynamic properties
as a set which is low for K (Mučnik, see [2]). The requirements, which want
to enumerate numbers into the set A which is being built, are restrained from
doing so not by discrete negative requirements, such as in the standard Friedberg
construction of a low set, but by a cost function, which has a more continuous
nature. It is this resemblance between the constructions of “typical” representatives
in the classes mentioned above, which was the seed for the proofs of equivalence of
these notions. Technically, this is summarised in the Main Lemma of [15, Section
5.5], which indeed yields the hard implication. An application of that Main Lemma
characterizes the class of K-trivial sets by the standard cost function cK: a ∆0

2 set
A is K-trivial if and only if there is a computable approximation 〈As〉 of A such

Both authors were partially supported by the Marsden Fund of New Zealand.
1Here K denotes prefix-free Kolmogorov complexity.

1

2 NOAM GREENBERG AND ANDRÉ NIES

that ∑
s<ω

cK(x, s)[[x is least such that As(x) 6= As+1(x)]]

is finite (here cK(x, s) =
∑
x<y<s 2−Ks(y)). In some sense, the canonical way to

construct K-trivial sets is the only way to construct these sets.
All known characterisations of the class of K-trivial sets involve an analytic

component such as Lebesgue measure or prefix-free Kolmogorov complexity. A
still standing question is whether this class can be defined using purely combinato-
rial tools, as used in computability theory outside its interaction with algorithmic
randomness. A one-time candidate was the class of strongly jump-traceable sets.
Traceability was introduced into computability theory by Terwijn and Zambella
[20] for their study of another lowness notion, that of lowness for Schnorr random-
ness; a variant was also used by Ishmukhametov [10] in his study of strong minimal
covers in the Turing degrees. A third variant, jump-traceability, was introduced by
Nies in [17]. The strong version of jump-traceability was defined by Figueira, Nies
and Stephan [7]. They showed that a non-computable strongly jump-traceable c.e.
set exists. For the formal definitions, recall that a c.e. trace for a partial function ψ
is a uniformly c.e. sequence 〈Tx〉 of finite sets such that for all x ∈ domψ we have
ψ(x) ∈ Tx. An order function is a computable, non-decreasing and unbounded
function h : ω → ω \ {0}. A c.e. trace 〈Tx〉 is bounded by an order function h if
for all x, |Tx| ≤ h(x). Finally, a set A is strongly jump-traceable if for every order
function h, every partial function ψ : ω → ω which is partial computable in A has
a c.e. trace which is bounded by h.

In [3], Cholak, Downey and Greenberg showed that the attempt to define K-
triviality using strong jump-traceability fails, but that in fact, restricted to the c.e.
degrees, the strongly jump-traceable degrees form a proper sub-ideal of the ideal
of K-trivial degrees. This was the first known example of such an ideal. Several
questions remained open:

(1) How does the ideal of strongly jump-traceable c.e. sets relate to other ideals
and classes of degrees, most of which are known to be contained in the
K-trivial degrees but are not yet known to be distinct from the ideal of K-
trivial degrees? Here we mostly think of classes derived from algorithmic
randomess, such as the collection of degrees which are bounded by an in-
complete random degree. Cholak, Downey and Greenberg showed in their
paper that the strongly jump-traceable degrees are all ML-non-coverable,
another example for such a class, but no further examples were known.

(2) Can the strongly jump-traceable sets be characterised by cost functions?
Related to that is the question of the complexity of this ideal. Can trace-
ability for some fixed order ensure strong jump-traceability? Is this ideal a
Σ0

3 ideal, like the K-trivial ideal, or is it more complicated?
(3) What is the status of non-c.e. strongly jump-traceable sets? The notion

of K-triviality is inherently enumerable; the cost function characterisation
implies that every K-trivial set is computable from a c.e. one. Does the
same hold for strong jump-traceability?

(4) Are there other characterisations of the strongly jump-traceable sets, which
would indicate that this notion is robust?

BENIGN COST FUNCTIONS AND LOWNESS PROPERTIES 3

(5) Are there other natural ideals between the strongly jump-traceable de-
grees and the K-trivial degrees? Are there natural proper sub-ideals of the
strongly jump-traceable degrees?

The main results. We answer the first two questions. Indeed it is the solution for
the second question which gives a unified approach to one kind of “box-promotion”
constructions, two examples of which were first given in [3], which imply our solu-
tions to the first question. We give a few definitions following [15].

A monotone cost function is a computable function c which associates with every
number x < ω and stage s < ω a “cost” c(x, s), a non-negative rational number, of
changing the approximation As(x) for membership of x in A at stage s. We require
that for each x, the sequence 〈c(x, s)〉s<ω is non-decreasing, and converges to a
limit c(x); we require that the limit cost function c(x) is non-increasing with x, and
indeed, that for any fixed stage s, the cost 〈c(x, s)〉x<ω at stage s is non-increasing.

We say that a computable approximation 〈As〉 of a ∆0
2 set A obeys a cost function

c if the sum ∑
s<ω

c(x, s)[[x least such that As(x) 6= As+1(x)]]

is finite. We say that a ∆0
2 set obeys a cost function c if there is some computable

approximation 〈As〉 for A which obeys c. In this terminology, Nies’s result above
is that a ∆0

2 set is K-trivial if and only if it obeys the standard cost function cK.
We note, by the way, that if A is a c.e. set which obeys a cost function c, then A
has a computable enumeration which obeys c.

We usually require our cost functions to satisfy the limit condition limx→∞ c(x) =
0, where again c(x) = lims c(x, s). In this paper we introduce a class of cost function
that satisfy the limit condition in a restrained and predictable manner.

Definition 1.1. A (monotone) cost function c is benign if there is a computable
function g such that for every positive rational ε, g(ε) bounds the size of any
collection I of pairwise disjoint intervals of natural numbers such that for all [x, s) ∈
I we have c(x, s) ≥ ε.

For example, the standard cost function cK is benign: for any ε > 0, any I as
in the definition cannot have size greater than 1/ε, because the witnesses, in the
universal machine, for cK(x, s) ≥ ε for [x, s) ∈ I must all be distinct; this is because
the intervals in I are disjoint.

Here is another way to understand the definition of benignity. Let ε > 0. Set
yε0 = 0, and if yεk is defined, and there is some s such that c(yεk, s) ≥ ε, then set
yεk+1 to be the least such s. If c satisfies the limit condition limx c(x) = 0, then
this process has to halt after finitely many iterations. Then c is benign iff there is
a computable (in ε) bound on the number of iterations of this process.

Our main theorem settles the first part of Question (2) above.

Theorem 1.2. A c.e. set A is strongly jump-traceable if and only if it obeys all
benign cost functions.

Since cK is benign, this implies the main result of [3], that every strongly jump-
traceable c.e. set A is K-trivial.

As for the second part of Question (2), we show the following.

Theorem 1.3. For any benign cost function c, there is a c.e. set A which obeys c
and is not strongly jump-traceable.

4 NOAM GREENBERG AND ANDRÉ NIES

In light of Theorem 1.2, this says that for every benign cost function c there
is another, more stringent, and yet still benign, cost function d, such that there
is a c.e. set which obeys c but not d. Theorem 1.3 implies Cholak, Downey and
Greenberg’s result from [3] that the ideal of strongly jump-traceable degrees is
strictly contained in the ideal of K-trivial degrees.

Together with Proposition 2.2, which is a uniform version of the proof of the
easy direction of Theorem 1.2, Theorem 1.3 implies Ng’s result [12] that no single
order function h can ensure strong jump-traceability. Indeed, in the same paper,
Ng went on to show that the index-set for the collection of strongly jump-traceable
c.e. sets is Π0

4-complete, and so certainly is not Σ0
3.

Applying Theorem 1.2. The main theorem allows us to unify constructions
which show that the strongly jump-traceable degrees are a subclass of most of the
subclasses of the K-trivial degrees which are considered in the study of algorithmic
randomness.

Recall that Y ≤LR X if every X-random set is Y -random. The class LRH of sets
X such that ∅′ ≤LR X, or LR-hard sets, is also known as the class of “high for
random” sets. A set is LR-hard if and only if it is (uniformly) almost everywhere
dominating (Kjos-Hanssen, Miller, Solomon; see [18, 15]).

Theorem 1.4. Every strongly jump-traceable c.e. set is computable from any LR-
hard random set.

As an immediate corollary we see that in the c.e. degrees, the collection of
strongly jump-traceable degrees is contained in the collection of degrees which are
bounded by incomplete random degrees. We remind the reader that it is still un-
known if this latter collection coincides with the collection of K-trivial degrees.

Hirschfeldt showed that if A is an incomplete c.e. set, X is an incomplete random
set, and ∅′ ≤T A ⊕ X, then X is LR-hard (see [15, Theorem 8.5.15]). Hence
Theorem 1.4 implies the result from [3], that no strongly jump-traceable c.e. set is
ML-cuppable. Again, it is unknown whether the class of ML-non-cuppable sets
coincides with the K-trivials.

The authors were surprised to discover the following result.

Theorem 1.5. Every strongly jump-traceable c.e. set is computable from any ω-c.e.
random set.

In contrast with the situation regarding the LR-hard random sets, we can show
(Theorem 5.3) that there is a K-trivial set which is not computable in some ω-c.e.
random set. Indeed, recent research by the authors together with D. Hirschfeldt
shows the coincidence of the c.e. strongly jump-traceable sets and the sets which
are computable from every ω-c.e. random sets.

Theorem 1.5 can be improved as follows. In [8], the authors define a binary
relation which is a very strong version of weak truth-table reducibility: Y ≤T (tu) X
(Y is reducible to X with tiny use) if for every order function h, there is a reduction
of X to Y whose use function is bounded by h. By making our cost functions
stringent, we can in fact show that if A is c.e. and strongly jump-traceable, and X
is an ω-c.e. random set, then A is reducible to X with tiny use (Proposition 5.2).

The analogy between Theorem 1.4 and Theorem 1.5 leads to the following def-
inition. For a class C of sets, we let C♦ be the class of all c.e. sets A which are
computable in every random set in C. Thus, these two theorems can be stated as

BENIGN COST FUNCTIONS AND LOWNESS PROPERTIES 5

the inclusions
SJT ⊆ LRH♦

and
SJT ⊆ (ω-c.e.)♦,

where SJT denotes the collection of strongly jump-traceable c.e. sets.
We recall that Hirschfeldt and Miller (see [19] or [15]) showed, via a cost function

construction, that if C is a null Σ0
3 class, then C♦ contains a promptly simple c.e.

set. Thus the content of Theorems 1.4 and 1.5 is that if for a given C, Hirschfeldt
and Miller’s construction happens to use a benign cost function, then every strongly
jump-traceable c.e. set can be viewed as being produced by their construction.

Applying randomness in degree theory. The class (ω-c.e.)♦ has an unexpected
application. Recall that a set B is superlow if B′ ≤wtt ∅′. A problem in c.e. degree
theory, which turned out to be quite difficult to solve, was whether superlow cup-
pability coincided with low cuppability (which in turn was shown to be equivalent
to having a promptly simple degree in the classic [1]). This question was recently
settled in the negative by Diamondstone [5]. In parallel, Ng [13] showed that in
analogy with the almost deep degree of [4], there is a c.e. degree which joins every
superlow c.e. degree to a superlow degree; he called such degrees almost superdeep.
We show in Section 5, using the class (ω-c.e.)♦, that every strongly jump-traceable
c.e. set is almost superdeep, thus extending the results of both Diamondstone and
Ng.

The remaining questions. To end this introduction, we discuss the status of
Questions (3)-(5) from Page 2. In yet unpublished work, Downey and Greenberg
showed that in contrast with the jump-traceable sets, every strongly jump-traceable
set is ∆0

2. Theorem 1.2 seems to indicate that like K-triviality, strong jump-
traceability is a notion which is inherently enumerable. Downey and Greenberg
currently conjecture that every strongly jump-tracable set is computable in a c.e.
one; this would imply that all the results in this paper extend to all strongly jump-
traceable sets. It seems likely that the characterisation of strong jump-traceability
in terms of cost functions will play an important role in the verification of this
conjecture.

For the fourth question, recent preliminary results of the authors together with
Hirschfeldt indicate that the class of strongly jump-traceable degrees is indeed ro-
bust, as it may coincide with some of the “diamond classes” defined above, such
as (ω-c.e.)♦, Superlow♦ and Superhigh♦. Again these results use benign cost func-
tions in a fundamental way. However, no natural classes which lie strictly between
the strongly jump-traceable and the K-trivial degrees have yet been found. Ng
[14] has defined and investigated an ideal which is strictly contained in the strongly
jump-traceable degrees. This ideal is obtained by partially relativising strong jump-
traceability to all c.e. sets, and seems to be Π0

5-complete. In contrast with the
strongly jump-traceable degrees, the degrees in this small ideal cannot be promptly
simple. Not much is currently known beyond these results.

2. Proof the main theorem

In this section we prove Theorem 1.2. We first prove the easy direction: that
if A is a c.e. set which obeys every benign cost function, then A is strongly jump-
traceable. This is implied by the following Proposition 2.1. Recall that for any

6 NOAM GREENBERG AND ANDRÉ NIES

set A, JA denotes a universal A-partial computable function; to show that a set
is strongly jump-traceable, it is sufficient to show that for every order function h,
JA has a c.e. trace which is bounded by h. Note that if A obeys every benign
cost function, then it obeys cK, and so is K-trivial. It follows ([17],[16]) that A
is jump-traceable: every A-partial computable function has a c.e. trace which is
bounded by some order function. Hence it is sufficient to prove the following.

Proposition 2.1. Let A be a c.e., jump-traceable set, and let h be an order func-
tion. Then there is a benign cost function c such that if A obeys c, then JA has a
c.e. trace which is bounded by h.

Proof. Since A is c.e., tracing JA(n) is equivalent to tracing the correct JA(n)
computation. In other words, let ψA(n) be the stage at which JA(n) converges
with an A-correct computation. Since A is jump-traceable, there is a c.e. trace
〈Sn〉 for ψA which is bounded by some order function g.

Suppose that JAr (n)↓. We say that this computation is certified if there is some
t < r such that Ar �u= At �u (where u is the use of the computation) and such that
t ∈ Sn at stage r. We want to make sure that the cost of all x < u at stage r is at
least 1/h(n). Hence we let

c(x, s) = max
{

1
h(n)

: ∃ r ≤ s
(
JAr (n) is certified, with use u > x

)}
.

Note that this definition indeed makes c monotone.
We first argue that c is benign. Let ε > 0 and suppose that I is a set of pairwise

disjoint intervals of natural numbers such that for all [x, s) ∈ I, c(x, s) ≥ ε. Find
some n∗ such that h(n∗) > 1/ε. Let [x, s) ∈ I. Then there is some n < n∗ and
r ≤ s such that JAr (n), with use u > x, is certified. Say that t < r witnesses that
JAr (n) is certified. The key is that t ∈ (x, s) (as x < u < t < r ≤ s), and so, since
the intervals in I are pairwise disjoint, and t ∈ Sn, we have

|I| ≤
∑
n<n∗

|Sn| ≤
∑
n<n∗

g(n).

Since n∗ is obtained effectively from ε and g is computable, this bound on |I| is
also effective.

Now suppose that A obeys c. Let
〈
Âs

〉
be a computable enumeration of A such

that ∑
s<ω

c(x, s)[[x least such that Âs(x) 6= Âs+1(x)]] < 1.

Enumerate a trace 〈Tn〉 for JA as follows: enumerate J bAs(n) into Tn at stage s if
there is some r < s such that Ar �u= Âs �u, where u is the use of the computation
J

bAs(n), and this computation gets certified at stage r.
Let n < ω and let s0 < s1 < · · · < s|Tn|−1 be the stages at which we enumerate

numbers into Tn; say that the computation J bAsk (n) gets certified at stage rk < sk.
Let uk be the use of that computation. For each k < |Tn| − 1 there is some stage
wk ∈ [rk, rk+1) such that Âwk

�uk
6= Âwk+1 �uk

, as by stage sk+1, the computation
J

bAsk (n) is injured by some number below uk entering A. By design,

c(uk − 1, wk) ≥ c(uk − 1, sk) ≥ 1/h(n).

Hence |Tn| − 1 ≤ h(n). Now replacing h by h− 1 completes the proof. �

BENIGN COST FUNCTIONS AND LOWNESS PROPERTIES 7

In fact, the proposition can be uniformised:

Proposition 2.2. For every order function h there is a benign cost function c such
that for any c.e. set A which obeys c, JA has a c.e. trace which is bounded by h.

The proof of Proposition 2.2 uses the notion of a universal trace for an order
function h. Let h̃ =

⌊√
h
⌋
. There is an effective listing

〈
S1, S2, S3, . . .

〉
of all c.e.

traces which are bounded by h̃. Let Tn =
⋃
e<eh(n) S

e
n. Then 〈Tn〉 is a c.e. trace

which is bounded by h, and for every partial function ψ, if ψ has a c.e. trace which
is bounded by h̃, then for almost all n ∈ domψ, ψ(n) ∈ Tn, so 〈Tn〉 almost traces
ψ. We call 〈Tn〉 a universal trace for h.

Proof of Proposition 2.2. By [17], there is an order function g̃ such that for everyK-
trivial set A, every A-partial computable function has a c.e. trace which is bounded
by g̃. Let g = g̃2, and let 〈Tn〉 be a universal trace for g.

Now let c be the cost function which is obtained by running the proof of Propo-
sition 2.1 using the c.e. trace 〈Tn〉 and all possible c.e. oracles A. Namely, we say
that a computation JWe,r (n) is certified if We,r �u= We,t �u where u is the use of
the computation, and t ∈ Tn at stage r. We let

c(x, s) = max
{

1
h(n)

: ∃ e, r ≤ s
(
JWe,r (n) is certified, with use u > x

)}
.

Again this definition makes c monotone, and the argument in the proof of Propo-
sition 2.1 shows that c is benign.

Since both c and cK are benign, so is the cost function c+ cK. If A is a c.e. set
which obeys c + cK, then it obeys both c and cK. It follows that A is K-trivial,
so the converging time function ψA for JA has a c.e. trace bounded by g̃; so ψA

is almost traced by 〈Tn〉. The last paragraph of the proof of Proposition 2.1 now
shows that JA is almost traced by a c.e. trace which is bounded by h. Of course a
finite modification gives a full trace. �

We now turn to the proof of the harder direction of Theorem 1.2: we show that
if A is c.e. and strongly jump-traceable, then A obeys every benign cost function.
The argument is a generalisation of the box-promotion method proof from [3] which
shows that every strongly jump-traceable c.e. set A is K-trivial. Indeed, we prove
a converse of the uniform Proposition 2.2:

Proposition 2.3. For any benign cost function c, there is an order function h such
that for any c.e. set A, if JA has a c.e. trace bounded by h, then A obeys c.

Instead of using the recursion theorem as in [3, 15], we rely on universal traces.
We first note that for every order function h′ there is an order function h such
that for any set X, if JX has a c.e. trace bounded by h, then every X-partial
computable function has a c.e. trace which is bounded by h′ (we say that X is
h′-jump-traceable). This is because every X-partial computable function is coded
in the jump function, and we can uniformly limit the rate of growth of the functions
which give the coding locations. So if 〈Tn〉 is a universal trace for h̃ = (h′)2, then
if JX has a c.e. trace bounded by h, then every X-partial computable function is
almost traced by 〈Tn〉.

8 NOAM GREENBERG AND ANDRÉ NIES

The general idea of any box-promotion construction with c.e. oracle A is to
certify certain A-configurations up to varying degrees of certainty. To this end,
we define an A-partial computable function ΨA; to certify As �u we define, at
stage s, ΨAs(z) for various z with use u and output s; the configuration is then
certified at a later stage t if At �u= As �u and s ∈ Tz at stage t. The degree of
certainty this certification gives us depends on the bound h̃(z) we have for the size
of Tz; we know that we cannot make more than h̃(z)− 1 many mistakes. So if, for
example, h̃(z) = 1, and As �u is certified at stage t, then we know that A�u= As �u.
Unfortunately, though, for almost all z we have h̃(z) > 1.

Specifically, to find an enumeration
〈
Âs

〉
of A which obeys c, we want to speed

up a given enumeration 〈As〉 of A and only accept sufficiently certified configu-
rations of A. To ensure obedience to c, if Âs(x) changes on some x such that
c(x, s) ≥ 2−n, say, then we want to make progress, in the sense that the previous
version of A�x+1 was certified by some Tz such that h̃(z) ≤ n. The idea is to ensure
that because of this limit on |Tx|, this won’t happen more than n times. Hence the
sum ∑

s<ω

c(x, s)[[x is least such that Âs(x) 6= Âs+1(x)]]

will be bounded by ∑
n<ω

n2−n

which is finite.
The part of the construction which deals with those x’s for which c(x, s) ≥ 2−n,

call it requirement Rn, may ignore those x’s for which c(x, s) ≥ 2n−1, as these need
to be certified in even stronger “boxes” Tz. All of these certification processes need
to work in concert; in general, at a given stage s, we will have u1 < u2 < u3 < . . .
such that As �u1 has to be certified with strength 2−1 (by R1), As �u2 has to be
certified with strength 2−2 (by R2), etc. The problem is that not every ΨA(z) is
traced by Tz; there are finitely many exceptions. Hence for every d < ω, a version
of the construction indexed by d will guess that ΨA(z) is traced by Tz for each z

such that h̃(z) ≥ d. Almost all versions will be successful. To keep the various
versions from interacting, each version will control its own (infinite) collection of
boxes Tz. That is, for every z, only one version of the construction will attempt to
make definitions of ΨA(z).

A common feature of all box-promotion constructions, is that certification takes
place along a whole block of boxes Tz which together form a “meta-box”. The
point is that to ensure that Rn only certifies n− 1 many wrong initial segments of
A, we need each failure to correspond to an enumeration into the same Tz. On the
other hand, if a correct initial segment is tested on some Tz, then this z is never
again available for testing other, longer initial segments of A. The idea is that if
one meta-box B used by Rn is promoted (by some s ∈ Tz for all z ∈ I discovered
to be wrong), then we break B up into many sub-boxes, and so on. The fact that c
is benign, witnessed by a computable bound function g, allows us to set in advance
the size of the necessary meta-boxes, thus making h̃ computable. A meta-box for
Rn can be broken up at most n times, so the necessary size for an original Rn
meta-box is (g(2−n))n+1.

BENIGN COST FUNCTIONS AND LOWNESS PROPERTIES 9

Definition of h̃ and the initial meta-boxes. Let 〈In〉n≥1 be consecutive, pairwise

disjoint intervals of ω such that |In| = n(g(2−n))n+1. For all z ∈ In, let h̃(z) = n.
Next, we split each In into intervals I1

n, I
2
n, . . . , I

n
n , each of size (g(2−n))n+1. The

interval Idn will be used by the d-version of Rn, which we denote by Rdn. So we set
Bdn,0, the initial meta-box for Rdn, to be Idn.

At any stage s, Bdn,s will be an interval of ω whose size is a power of g(2−n). For
k ∈ {1, 2, . . . , g(2−n)}, we let Bdn,s(k) be the kth subinterval of Bdn,s of Bdn,s of size
|Bdn,s|/g(2−n).

d-stages and certification. As mentioned above, the d-version of the construction
guesses that for all n ≥ d, for all z ∈ Idn, if ΨA(z)↓ then ΨA(z) ∈ Tz. The d-stages
sdi are defined by recursion; these are the stages at which this guess looks correct.

We let sd0 = 0. Given sdi , let sdi+1 be the least stage s > sdi such that for every
n ∈ [d, i], for all z ∈ Idn, either ΦAs(z)↑ or ΦAs(z) ∈ Tz,s. We ensure that the
d-version of the construction only makes definitions of ΦA at d-stages. Hence, if
the d-version of the construction guesses correctly, there will be infinitely many
d-stages.

For a d-stage s = sdi+1, let s̄ = sdi be the previous d-stage. We say that As �u is
certified if

As �u= As̄ �u .

Definition of Φ. Fix d < ω and n ≥ d. Let i > n and s = sdi . We describe the
action of Rdn at stage s. Recall the sequence

〈
y2−n

k

〉
from the introduction, which

we rename 〈ynk 〉: yn0 = 0, and if ynk is defined, then ynk+1 is the least s such that
c(ynk , s) ≥ 2−n, if such a stage s exists; otherwise, ynk+1 is not defined. At a stage s
we can compute all ynk for which ynk ≤ s. We know that yng(2−n) is not defined.

The aim is that by the end of stage s, if k ≥ 1, ynk ≤ s̄ is defined and As �yn
k

is
certified, then we will have ΦAs(z)↓ with use ynk for all z ∈ Bdn,s(k): we say that
As �yn

k
is tested in Bdn,s(k). The inductive hypothesis on the construction is that

this indeed holds for all such k at the end of stage s̄, whereas if ynk is not defined at
stage s̄, or it is defined but As̄ �yn

k
is not certified, then for all z ∈ Bdn,s̄(k) we have

ΦAs̄(z)↑.
First, to see if Rdn can make progress, we check if there is some k ≥ 1 such that

As̄ �yn
k

was tested in Bdn,s̄(k), and such that

As �yn
k
6= As̄ �yn

k
.

If so, then Rdn can promote its meta-box Bdn: We reset

Bdn,s = Bdn,s̄(k),

where k is the least witness. We note that in this case, for every z ∈ Bdn,s we have,
before we make any new definitions, ΦAs(z)↑, because at stage s̄ we have ΦAs̄(z)↓
with use ynk . Hence we can define ΦAs(z) for such z as we like: for all l ∈ [1, k),
As �yn

l
is certified, and so for all z ∈ Bdn,s(l) we define ΦAs(z) = s with use ynl .

Now if Rdn does not promote its meta-box at stage s, then Bdn,s = Bdn,s̄; for all
k ≥ 1 such that As̄ �yn

k
was tested at stage s̄, As �yn

k
is still certified, and is still

tested in Bdn,s(k) = Bdn,s̄(k). If there are k such that ynk ≤ s and As �yn
k

is certified,

10 NOAM GREENBERG AND ANDRÉ NIES

but As̄ �yn
k

was not tested at stage s̄, then for all z ∈ Bdn,s(k) = Bdn,s̄(k) we have
ΦAs̄(z)↑, so we can define ΦAs(z) = s with use ynk for all such z.

This ends the construction. Before we define the enumeration
〈
Âs

〉
of s and

show that the enumeration obeys c, we need to make sure that the construction is
consistent, in that the instructions can always be carried out. We can easily verify
that the inductive hypothesis holds and the end of stage s: if ynk < s and As �yn

k
is

certified, then it is tested in Bdn,s(k); otherwise, for all z ∈ Bdn,s(k) we have ΦAs(z)↑.
Another issue is to verify that each requirement Rdn can always promote its meta-
box Bdn when that is required, that is, it can divide Bdn,s(k) to at least g(2−n) many
sub-intervals. This follows from the size of the original meta-box Bdn,0 = Idn and
the following lemma:

Lemma 2.4. The procedure Rdn does not promote its meta-box more than n times.

Proof. Let r < t be two stages at which Rdn promotes its box. Note for all s ≥ r, for
all z ∈ Bdn,s(z), if ΦAs(z)↓ then ΦAs(z) ≥ r: when Bdn,r is redefined at stage r, we
have ΦAr (z) undefined, and all new definitions, at stage r or afterwards, are made
with the value being the stage number. Let k be such that Bdn,t = Bdn,t̄(k). By the
conditions for promotion, we have At̄ �yn

k
certified and tested, so ΦAt̄(z) ∈ Tz,t (by

the definition of a d-stage, which t is). Hence there is a number s ∈ [r, t) in Tz for
all such z.

Also, if t is the first stage at which Bdn is promoted, then the same argument
shows that there is a number smaller than t in Tz for all z ∈ Bdn,t.

The meta-boxes are nested, so if Bdn were promoted n + 1 times, say for the
n+1st time at stage s, we’d have n+1 distinct numbers in Tz for all z ∈ Bdn,s. This
contradicts the fact that Bdn,s ⊂ Idn and for all z ∈ Idn we have n = h̃(z) ≥ |Tz|. �

We turn to define
〈
Âs

〉
and show that this enumeration of A obeys c.

Fix some d such that for all n ≥ d, for all z ∈ Idn, if ΦA(z)↓ then ΦA(z) ∈ Tz. So
there are infinitely many d-stages. From now, we drop the superscript d from Rdn,
d-stage, sdi , B

d
n,s, etc.

By recursion we define a sub-sequence of stages. Let q(0) = 0, and given q(r),
let q(r + 1) be the least stage s greater than q(r) at which As �q(r) is certified.
For all r < ω, let Âr = Aq(r+2) �r. For all r, let xr be the least x such that
Âr−1(x) 6= Âr(x) (so xr < r). Let nr be the unique n such that

2−n ≤ c(xr, r) < 2−(n−1).

Hence, showing that
〈
Âr

〉
obeys c is equivalent to showing that∑

r

2−nr

is finite.

Lemma 2.5. For any r, there is some stage s ∈ (q(r + 1), q(r + 2)] at which Rnr

promotes its meta-box.

BENIGN COST FUNCTIONS AND LOWNESS PROPERTIES 11

Proof. Let n = nr and x = xr. Let k be the greatest such that ynk is defined and
ynk ≤ r. We have x < ynk , for otherwise, by monotonicity of c, we’d have

c(ynk , r) ≥ c(x, r) ≥ 2−n

which would imply that ynk+1 is defined and is not greater than r.
Hence ynk ≤ r ≤ q(r). The choice of x and the fact that x < ynk shows that

Aq(r+2) �yn
k
6= Aq(r+1) �yn

k
.

However, by the definition of q(r + 1) and the fact that ynk ≤ q(r), Aq(r+1) �yn
k

is
certified, so is tested on Bn,q(r+1)(k) at stage q(r + 1). We get a change on As �yn

k

by stage q(r + 2), so if s is the least stage beyond q(r + 1) at which As �yn
k

is not
certified, then s ≤ q(r + 2) and Rn promotes its meta-box at stage s. �

It follows that for all n,
{r : nr = n}

has size at most n, and so ∑
r

2−nr ≤
∑
n

n2−n

which is finite. This completes the proof of Proposition 2.3.

3. No single benign cost function suffices for strong
jump-traceability

In this section we prove Theorem 1.3: if c is a benign cost function, then there
is some c.e. set A which obeys c but is not strongly jump-traceable.

Let g be a computable bound function which witnesses that c is benign. In this
construction, for notational convenience, we replace g by g + 1, so g(ε) is strictly
greater than the number of pairwise disjoint intervals [x, s) such that c(x, s) ≥ ε.

To prove the theorem, we enumerate a c.e. set A; the enumeration 〈As〉 which
we define will obey c. To ensure that A is not strongly jump-traceable, we design
an order function h and build a functional Ψ; we meet the requirements Re, which
say that the eth c.e. trace 〈Sex〉 with bound h does not trace ΨA. The idea is that
Re will work with potential witnesses in some interval Ie of natural numbers; we
will define h(x) = e for all x ∈ Ie, and so Re will want to change the value of ΨA(x)
for some x ∈ Ie at least e times. To ensure that 〈As〉 obeys c, we sometimes need to
abandon a witness, because the cost of redefining ΨA(x), by enumerating the use
of the computation into A, becomes too large. It is the fact that c is benign, that
allows us to calculate in advance the total number of possible such abandonments
Re may need to concede, and so a bound on the size of Ie; which is, of course,
necessary, since we need to make h computable.

To make the situation clear, we consider the first few requirements. At attempt
to meet R1 would have a witness x ∈ I1 for which we first define, at some stage s0,
ΨA(x) = s0 with use s0 + 1. At a later stage s1, s0 appears in S1

x, and we want
to enumerate s0 into A and redefine ΨA(x) = s1, meeting the requirements since
|S1
x| ≤ 1. If the cost c(s0, s1) is greater than the quota, say 1/2, allocated to R1,

then we need to abandon x and start afresh with a new witness. This can happen
only fewer than g(1/2) many times, so we need |I1| ≥ g(1/2).

Now consider R2. The process is similar, except that if x is not abandoned at
stage s1, then s1 may still appear in S2

x at a yet later stage s2, at which point we
want to enumerate s1 into A. We are now in a double bind, because enumerating

12 NOAM GREENBERG AND ANDRÉ NIES

s0 into A at stage s1 has already cost R2 the amount of c(s0, s1), which was smaller
than R2’s quota (say another 1/2), but yet positive. If c(s1, s2) is greater than
what’s left to spend (1/2 − c(s0, s1)), then we need to abandon x and start with
a fresh witness, with a net loss of c(s0, s1) for R2 and no gain whatsoever. The
strategy is to take into consideration all possible such failures and “spread out
the investment”. Instead of being willing to spend it all each time, R2 declares
a quantity of 1/4 which is reserved to spending at a stage like s2, i.e., when it is
ready to meet the requirement. This means that it may abandon the witness at
the stage s2 fewer than g(1/4) many times. Between such abandonments, it may
spend one unreturned cost at a stage s1; so the amount it is willing to spend at a
stage s1 should be no more than 1/4g(1/4). So between abandoning witnesses at
an s2 stage, we may abandon fewer than

g

(
1

4g
(

1
4

))
witnesses. It follows that we need

|I2| ≥ g
(

1
4

)
g

(
1

4g
(

1
4

)) .
In general, Re’s total capital allotment is e2−e, and it is willing to overall spend

2−e at each level – stages s1, s2, . . . , se, or as we name them from now, by procedures
P e1 , P

e
2 , . . . , P

e
e .

Each procedure P ek calls a procedure P ek−1 and expects it to return, at some
stage sk, with a witness x and some sk−1 such that ΨA(x) = sk−1 with use sk−1,
and such that |Sex| ≥ k at stage sk. It will then either violate that computation
by enumerating sk−1 into A, redefining ΨA(x) = sk with use sk + 1, wait for sk
to appear in Sex, so that |Sex| ≥ k + 1 and P ek can return to the procedure P ek+1

which called it. If k = e then the requirement is met. Or, if the cost csk
(sk−1) of

enumerating sk−1 at stage sk is too big, bigger than a threshold δek, then x gets
cancelled, and a new run of P ek−1 is called.

We calculate the necessary thresholds δek and a bound nek on the total number
of times a procedure P ek can be called. We call P ee once, so let nee = 1. Hence
δee = 2−e, and nee−1 = g(δee). Inductively, given nek for k > 0, we set

δek =
2−e

nek

and
nek−1 = nek g (δek) .

We require |Ie| = ne0. This defines h.

We now describe the action of each procedure.
A procedure P e0 , called at some stage s0, chooses a fresh x ∈ Ie, defines ΨA(x) =

s0 with use s0 + 1, and waits for s0 to appear in Sex. When this happens, the
procedure returns, with output x and s0.

A procedure P ek , for 1 ≤ k ≤ e, calls a procedure P ek−1. When that procedure
returns at stage sk, with a witness x such that ΨA(x) = sk−1 with use sk−1 + 1,
we compare c(sk−1, sk) and δek:

• If c(sk−1, sk) > δek, then we cancel x, and call a new run of P ek−1.

BENIGN COST FUNCTIONS AND LOWNESS PROPERTIES 13

• Otherwise, we enumerate sk−1 into A, and redefine ΨA(x) = sk with use
sk+1. We wait for sk to show up in Sex. When this happens, the procedure
returns, with the witness x.

Note that we don’t want the different requirements Re to interfere with each
other, so when a procedure P ek defines ΨA(sk) with use sk + 1, while waiting for
sk to appear in Sex, if A �sk+1 changes due to the action of procedures working for
other requirements, then P ek redefines ΨA(x) with same value and use.

The construction runs P ee or each e.

The verification follows the basic plan.

Lemma 3.1. If k > 0, then a single run of a procedure P ek calls at most g(δek)
many procedures P ek−1.

Proof. Let t1, t2, . . . , tm be the stages at which a P ek−1 procedure returns, with
witnesses x1, x2, . . . xm, but the run of P ek does not return, necessarily because
c(rl, tl) ≥ δek, where rl = ΨAtl (xl) is the stage at which the run of P ek−1 which
returns at tl has defined ΨA(xl). Since rl > tl−1, the intervals in

{[rl, tl) : l = 1, 2, . . . ,m}
are pairwise disjoint, so m < g(δek). �

Lemma 3.2. For each k ≤ e, at most nek runs of P ek are ever called.

Proof. This is proved by reverse induction on k. For k = e this is clear; the
induction step uses Lemma 3.2, noting that we defined nek−1 = nek g(δek). �

Corollary 3.3. A run of P e0 can always choose a fresh x ∈ Ie as a witness.

Lemma 3.4. If a run of P ek returns with a witness x at some stage, then |Sex| ≥ k
at that stage.

Proof. This is proved by (forward) induction on k. It is clear for k = 0. Suppose
that this holds for k−1. Suppose that a run of P ek returns at some stage sk+1. Then
there was a stage sk at which a procedure P ek−1, called by this run of P ek , returned
with the same witness x, and by induction, at that stage sk, we had |Sex| ≥ k − 1.
The run of P ek then defined ΨA(x) = sk. Note that sk is not in Sex at stage sk. On
the other hand, sk appears in Sex at stage sk+1, so at that later stage we must have
|Sex| ≥ k. �

Lemma 3.5. Each requirement Re is met.

Proof. Lemma 3.4 implies that the original run of P ee cannot return. By induction
we see that there must be some k ≤ e such that some run of P ek never returns but,
if k > 0, every run of P ek−1 which is called by that run of P ek does return (we can
call that a golden run of P ek).

By Lemma 3.2, there is a last run of P ek−1 which is called by the golden run of
P ek , and returns with witness x at some stage sk. (If k = 0 then s0 is the stage at
which the golden run of P e0 is called, and x is the witness which is chosen.) The
golden run of P ek goes on to define ΨA(x) = sk and waits for ever for sk to show
up in Sex. At the end of times we have ΨA(x) = sk so 〈Sex〉x is not a trace of ΨA,
which means that Re is met. �

Lemma 3.6. The enumeration 〈As〉 obeys c.

14 NOAM GREENBERG AND ANDRÉ NIES

Proof. For every e and every k = 1, 2, . . . , e, at most nek runs of P ek ever return, and
each time one such run returns, it enumerates into A a number whose cost at the
time is bounded by δek. Hence the total amount spent by all the runs of P ek is

nek δ
e
k = 2−e.

It follows that∑
s<ω

c(x, s)[[x least such that As(x) 6= As+1(x)]] ≤
∑
e

e2−e

which is finite. �

Corollary 3.7 (Ng [12]). For every order function h there is an order function h̃

such that there is a c.e. set which is h jump-traceable but is not h̃ jump-traceable.
Hence, there is no order function h such that the strongly jump-traceable degrees
coincide with the h jump-traceable degrees.

As mentioned in the introduction, it follows that the index-set of the strongly
jump-traceable sets is not Σ0

3.

Proof. Because of the proximity between the tracing of all A-partial computable
functions and tracing JA, it is sufficient to show that for every order function h
there is a c.e. set A which is not strongly jump-traceable, but such that JA has a
c.e. trace bounded by h.

Given an order function h, by Proposition 2.2, let c be a benign cost function
such that for every c.e. set A which obeys c, JA has a c.e. trace bounded by h.
By Theorem 1.3, there is a c.e. set A which obeys c and is not strongly jump-
traceable. �

4. The diamond class for being LR-hard

In this section we prove Theorem 1.4: every strongly jump-traceable c.e. set is
computable in every LR-hard random set. The class LRH is Σ0

3 by the equivalence
of LR and LK-reducibility (see [15, 8.5.12]). Nonetheless, it is somewhat hard to
work with. We actually show that SJT is a subclass of a H♦, where H is a class
which contains LRH and is nicer than LRH. The class H we use is the class of
∅′-tracing sets.

Definition 4.1. A set X is ∅′-tracing if there is some order function h such that
every ∆0

2 function f has an X-c.e. trace which is bounded by h.

Importantly, this definition is not a true relativisation of the notion of c.e. trace-
ability. If it was, we would say that ∅′ is c.e. traceable relative to X if there is some
X-computable non-decreasing, unbounded function h such that every f ≤T ∅′ ⊕X
has an X-c.e. trace bounded by h. Full relativisation of c.e. traceability, and in
fact of many other notions, does not yield useful concepts, at least not as useful
of partial relativisation as in Definition 4.1. It seems, though, that all appropriate
prepositions, such as ‘over’ and ‘in’, were already used by various authors to denote
full relativisation. Because of that (or possibly because of not being native English
speakers) the authors of this paper will instead use the new preposition “plop” to
indicate partial relativisation as in Definition 4.1. So a set X is ∅′-tracing iff ∅′ is
c.e. traceable plop X.

BENIGN COST FUNCTIONS AND LOWNESS PROPERTIES 15

Proposition 4.2. Every set X ∈ LRH is ∅′-tracing.

Proof. Even more is true: Simpson [18], relying on work of Kjos-Hanssen, Miller
and Solomon, extended the fact that every K-trivial is jump-traceable, and showed
that every X ∈ LRH is JT -hard, which means that ∅′ is jump-traceable plop X:
there is an order function h such that J∅

′
has an X-c.e. trace bounded by h. �

Now, the plan is to find some ∆0
2 function f and a benign cost function c such

that if A obeys c and X is a random set which traces f , then A ≤T X. Let h be
an order function. We can then fix a universal oracle trace for h: a uniformly c.e.
sequence 〈Vn〉 of operators, such that for every oracle X ∈ 2ω,

〈
V Xn
〉

is an X-c.e.
trace bounded by h, such that every function f which has an X-c.e. trace bounded
by
√
h is almost traced by

〈
V Xn
〉
.

Given h, and consequently 〈Vn〉, we are interested in functions f such that for
all n, the measure of {

Y : f(n) ∈ V Yn
}

is at most 2−n. For the rest of this section, we will call such functions f rarely
traced for h. Namely, for few oracles Y is

〈
V Yn
〉

a trace for f .

Lemma 4.3. Suppose h is an order function and f ≤T ∅′ is rarely traced for h.
Then there is a cost function c such that A ≤T Y for every c.e. set A which obeys
c, and every random set Y such that

〈
V Yn
〉

almost traces f . If f is also ω-c.e. then
c is benign.

Lemma 4.4. For every order function h, there is an ω-c.e. function f which is
rarely traced for h.

Proof of Theorem 1.4, given Lemmas 4.3 and 4.4. LetA be a strongly jump-traceable
c.e. set, and let Y be an LR-hard random set. By Proposition 4.2, Y is ∅′-tracing.
Let h̃ be an order function such that every ∆0

2 function has a Y -c.e. trace bounded
by h̃. Let h = h̃2. Then letting 〈Vn〉 be the universal oracle trace for h, we know
that

〈
V Yn
〉

almost traces every ∆0
2 function.

By Lemma 4.4, there is an ω-c.e. function f which is rarely traced for h. By
Lemma 4.3, there is a benign cost function c such that if A is a c.e. set which obeys
c, then A ≤T Y . By the main Theorem 1.2, A obeys c. �

Before we continue, we show the following:

Proposition 4.5. The ideal LRH♦ properly contains SJT.

Proof. As mentioned in the proof of 4.2, if X ∈ LRH, then ∅′ is jump-traceable plop
X. In fact, Simpson [18] showed that there is a there is a single order function h
such that for every X ∈ LRH, JX is c.e. traceable with bound h, and so that there
is a single cost function h such that every ∆0

2 set is almost traced by
〈
V Xn
〉
, where

〈Vn〉 is the universal oracle trace for h. The proof of Theorem 1.4 now holds with a
single cost function c which is obtained by applying Lemma 4.3 to a single function
given by Lemma 4.4. By Theorem 1.3, there is a c.e. set which obeys that cost
function but is not strongly jump-traceable. �

This proof does not hold for the potentially smaller class (∅′-tracing)♦; of course,
the proof above of Theorem 1.4 shows that

SJT ⊆ (∅′-tracing)♦,

16 NOAM GREENBERG AND ANDRÉ NIES

but it is possible that these ideals coincide.

We turn to prove Lemmas 4.3 and 4.4. The proof of the latter uses ideas of
Hirschfeldt and the following measure theoretic version of the pigeon hole principle.

Fact 4.6. Let ε > 0 and k < ω. Let B be a collection of measurable subsets of 2ω

which has size greater than k/ε, such that every B ∈ B has measure at least ε.
Then there is some C ⊆ B of size k + 1 such that⋂

C

is non empty (indeed, is not null).

Proof. [15, Ex. 1.9.15] Suppose that the intersection of any k + 1 sets in B is null.
Let

f =
∑
B∈B

1B ,

where 1B is the indicator function of B. The assumption implies that on a co-null
set, f(x) ≤ k, so

∫
f(x) dx ≤ k. On the other hand, for every B ∈ B,

∫
1B(x) dx ≥ ε

and so ∫
f(x) dx =

∑
B∈B

∫
1B(x) dx >

k

ε
ε = k,

which is a contradiction. �

Proof of Lemma 4.4. Let h be an order function and let 〈Vn〉 be the associated
universal oracle trace. We define an increasing approximation 〈fs〉 for the function
f , starting with f0(n) = 0 for all n.

The idea is to keep, for each n, the measure of

(1)
{
Y : fs(n) ∈ V Yn,s

}
not greater than 2−n. So if we see at stage s that the measure of{

Y : fs−1(n) ∈ V Yn,s
}

is exceeding 2−n, then we redefine fs(n) = s, to keep the measure of the set (1)
bounded by 2−n at stage s.

To show that f is ω-c.e. (and well-defined), we see that for each n, the value
fs(n) changes at most 2nh(n) many times. For if m = fs−1(n) and fs(n) = s, then
the set

Bnm =
{
Y : m ∈ V Yn

}
has measure at least 2−n. The intersection of Bnm for more than h(n) many such
m’s is empty, because

∣∣V Yn ∣∣ ≤ h(n) for every Y . Fact 4.6 implies that there can be
no more than h(n)/2−n many m’s which are discarded as values for fs(n). �

Proof of Lemma 4.3. Let h be an order function, 〈Vn〉 the associated universal or-
acle trace, and let 〈fs(n)〉 be a computable approximation of a function f which is
rarely traced for h. By speeding up the approximation of f , we may assume that
at every stage s, the measure of{

Y : fs(n) ∈ V Yn,s
}

is bounded by 2−n.
We first explain the main ideas behind the proof. Suppose that Y is a random

set and that
〈
V Yn
〉

almost traces f , and that A is a c.e. set which will obey the cost

BENIGN COST FUNCTIONS AND LOWNESS PROPERTIES 17

function c that we will define. We want to show that Y computes A; suppose that
at stage s, for every n, we have committed that Y �u(n) computes As �k(n), where
u(n) is a use marker and k(n) is a target marker. The main challenge, of course, is
to ensure the correctness of the computation once A�k(n) changes. The mechanism
for doing that is enumerating a sequence of c.e. open classes 〈Un〉, where Y ∈ Un
will roughly imply that Y �u(n) has committed to compute a wrong initial segment
of A. We will ensure that the sets 〈Un〉 together add up to a Solovay test, in the
sense that

∑
n µ(Un) is finite; we would then know that Y can be in at most finitely

many Un’s, and so (from some point) must compute A correctly.
The challenge then moves to make the sum

∑
n µ(Un) finite. This is where

we utilise the assumption that
〈
V Yn
〉

traces f . A näıve strategy for limiting the
damage is setting k(n) = n, waiting for fs(n) ∈ V Yn,s, with some use u(n) and then
mapping Y �u(n) to As �n. Since the measure of the set of Z’s which trace fs(n)
in V Zn is at most 2−n, it would seem that this ensures that the measure of Un too
is bounded by 2−n. This, however, does not take into account the fact that ft(n)
may change after stage t; following the näıve strategy would have us enumerate
a weight of 2−n for each possible value of ft(n), and this does not have a finite
total. The problem becomes acute when the following sequence of events occurs:
we have three approximations for f(n), at stage s1, s2 and s3. At stages t1 and
t3 (s1 < t1 < s2 < s3 < t3), the current value of f(n) is traced in V Yn and so Y
computes both At1 �n and At3 �n. However, these are distinct, because a number
below n entered A between stages s2 and s3 (and fs2(n) does not appear in V Yn).
The cost function c that we build can extract a “payment” from A only when A
changes, so that single change should not allow us to enumerate Y into Un.

The solution is to share the responsibility down the ladder. First, instead of just
waiting for fs(n) to appear in V Yn,s, we wait for fs(m), for all m ≤ n, to appear in
V Ym,s (or, if

〈
V Yn
〉

only traces f from some m∗ onwards, all m ∈ [m∗, n]). Then,
at any stage at which ft(m) changes, we let Y �u(m) be responsible for computing
A�n; that is, we set k(m) ≥ n. This will correspond to setting c(n, t) ≥ 2−m. Then,
if A �n changes, then we look at the least m such that k(m) ≥ n. This is the least
m such that the approximation for f(m) has changed since stage s. It follows that
the approximation for f(m− 1) has not changed since stage s, and so the current
value of f(m − 1) is in V Ym−1,s. This allows us to enumerate Y into Um, and thus
record the change in A�n.

We can now give the formal details. First, we define the cost function c and
show that it is benign.

For all x < ω, let c(x, 0) = 2−x. For any stage s > 0, let yt be the least number
y such that fs(y) 6= fs−1(y). We let, for all x < s,

c(x, s) = max{c(x, s− 1), 2−yt},

(and leave c(x, s) unchanged for all x ≥ s). A short examination will reveal that
c is monotone and satisfies the limit condition. If 〈fs〉 is an ω-c.e. approximation
– say the mind-change function is bounded by a computable function g – then c
is benign: suppose that I is a set of pairwise disjoint intervals of natural numbers
such that for all [x, s) ∈ I we have c(x, s) ≥ 2−n. If [x, s) ∈ I and x > n, then

18 NOAM GREENBERG AND ANDRÉ NIES

fr(m) 6= fr−1(m) for some m ≤ n and r ∈ [x, s). Hence

|I| ≤ (n+ 1) +
∑
m≤n

g(m),

which is a computable bound.
Let 〈As〉 be an enumeration of a c.e. set A which obeys c.
We introduce some notation: for any stage t ≥ n, let sn(t) be the least stage

s ≤ t such that for all r ∈ [s, t], fr(n) = fs(n). By changing fn(n), we may assume
that for all t,

fsn(t)(n) 6= fsn(t)−1(n),

so sn(t) ≥ n for all t ≥ n.
At stage t, let n be the least such that

At �sn(t) 6= At−1 �sn(t) .

For that n, enumerate all the sets Y such that

ft(n− 1) ∈ V Yn−1,t

into Un.
We note that by our assumption that the approximation for f is a “rarely traced”

one, that the measure of the collection of sets which are enumerated into Un at a
given stage is at most 2−(n−1). Let nt be the unique number n such that sets are
enumerated into Y at stage t (let nt =∞ is there is no such n). So∑

n

µ(Un) ≤ 2
∑
t

2−nt .

Secondly, if sets are enumerated into Un at a stage t, then there is some x <
sn(t) such that At(x) 6= At−1(x), and such that c(x, t) ≥ 2−n. So letting mt =
− log2 c(xt, s), where xt is the least number x such that At(x) 6= At−1(x), we get
mt ≤ nt for all t, so ∑

t

2−nt ≤
∑
t

2−mt .

The assumption that 〈As〉 obeys c means that the sum on the right is finite. Hence∑
n µ(Un) is finite as well.
By standard randomness arguments (for example, thinking of the union of the

Un’s as a Solovay test), if Y is random, then Y /∈ Un for almost all n. Let Y be
a random set, and suppose that

〈
V Yn
〉

almost traces f . To complete the proof, we
need to show that A ≤T Y . Let n∗ be large enough so that:

• Y /∈ Un for all n > n∗, and
• f(n) ∈ V Yn for all n ≥ n∗.

Let s∗ be a stage late enough so that

fs �n∗+1= f �n∗+1

for all s ≥ s∗, and such that no sets are enumerated into any Um for m ≤ n∗ after
stage s∗.

Let n > n∗. We claim that:
If t > s∗ and for all m ∈ [n∗, n) we have ft(m) ∈ V Ym,t, then
At �sn(t)= A�sn(t).

BENIGN COST FUNCTIONS AND LOWNESS PROPERTIES 19

For suppose, for contradiction, that there is a stage u > t such that Au �s 6= Au−1 �s,
where s = sn(t). Let m be the least such that Au �sm(u) 6= Au−1 �sm(u). Since u > s∗,
we have m > n∗; but also m ≤ n because sn(u) ≥ sn(t) = s.

Now we claim that fu(m−1) ∈ V Ym−1,u. For by assumption, ft(m−1) ∈ V Ym−1,t,
the latter set is a subset of V Ym−1,u, and if fu(m− 1) 6= ft(m− 1) then sm−1(u) >
t ≥ s, which would contradict the minimality of u. Hence Y gets enumerated into
Um at stage u, which is a contradiction.

Now as sn(t) ≥ n for all n, we certainly have A ≤T Y . �

5. (ω-c.e.)♦ and Superlow♦

We show that SJT ⊆ (ω-c.e.)♦ (Theorem 1.5) and that Superlow♦ is properly
contained in the K-trivial degrees (Theorem 5.3). Of course, Superlow ⊆ ω-c.e. and
so (ω-c.e.)♦ ⊆ Superlow♦.

Theorem 1.5 is an immediate consequence of the main Theorem 1.2 and the
following proposition.

Proposition 5.1. Let Y be a ∆0
2 random set. Then there is a cost function c such

that every c.e. set which obeys c is computable from Y . If, further, Y is ω-c.e.,
then c is benign.

Proof. This is similar to the proof of Lemma 4.3. Let 〈Ys〉 be a computable ap-
proximation for Y . The idea is to let Y �n−1 compute A�s if Ys �n 6= Ys−1 �n. So let
c(x, 0) = 2−x, and for s > 0, if n = ns is the least such that Ys �n 6= Ys−1 �n, then
we let, for all x < s,

c(x, s) = max{c(x, s− 1), 2−n}.
Again it is easy to verify that c is monotone (and satisfies the limit condition). If,
further, the number of stages s such that Ys(m) 6= Ys−1(m) is bounded by g(m),
where g is a computable function, and I is a set of pairwise disjoint intervals of
natural numbers such that for all [x, s) ∈ I we have c(x, s) ≥ 2−n, then for all
[x, s) ∈ I such that x > n, there is some t ∈ (x, s] such that Yt �n 6= Yt−1 �n, so

|I| ≤ (n+ 1) +
∑
m<n

g(m).

Thus if 〈Ys〉 is an ω-c.e. approximation for Y , then c is benign.
Now suppose that 〈As〉 is an enumeration of a c.e. set A which obeys c. For all n

and t ≥ n, let sn(t) be the least stage s ≤ t such that for all r ∈ [s, t], Yr �n= Yt �n.
Again, without loss of generality, sn(t) ≥ n for all t ≥ n. At a stage t, if n is least
such that At �sn(t) 6= At−1 �sn(t), then we enumerate Yt �n−1 into a Solovay test G.
The fact that 〈As〉 obeys c implies that indeed, the sum

∑
σ∈G 2−|σ| is finite, with

an argument which mirrors the one in the proof of Lemma 4.3.
Since Y is random, only finitely many initial segments of Y are enumerated into

G; suppose that the last one is enumerated at some stage s∗. We now claim that if
t > s∗ and

Y �n−1= Yt �n−1,

then
A�sn(t)= At �sn(t) .

For otherwise, let u > t be a stage at which Au �sn(t) 6= Au−1 �sn(t); let m be the
least such that Au �sm(u) 6= Au−1 �sm(u). We know that m > n∗ because u > s∗, and
m ≤ n because sn(u) ≥ sn(t).

20 NOAM GREENBERG AND ANDRÉ NIES

At stage u, we enumerate Yu �m−1 into G. By minimality of m, we have
sm−1(u) < s ≤ t, which implies that Yu �m−1= Yt �m−1⊆ Yt �n−1 which is an
initial segment of Y . This contradicts u > s∗. �

In fact, we can improve Proposition 5.1 to show that the use of the reduction
of A to Y can grow as slowly as we like. Already we see that the proof gives us
A ≤wtt Y , indeed A ≤ibT Y : A is reducible to Y with the use of the reduction
bounded by the identity function. In fact, we can have the use grow as slowly as
we like.

Proposition 5.2. If A is a strongly jump-traceable c.e. set and Y is an ω-c.e.
random set, then for every order function h there is a Turing reduction of A to Y
whose associated use function is bounded by h.

In the terminology of [8], A ≤T (tu) Y : A is reducible to Y with tiny use.

Proof. The formulation which we prove is: if h is a strictly increasing recursive
function, then there is a Turing functional Φ such that Φ(Y) = A and such that
for all n, |Φ(Y �n)| ≥ h(n).

We modify the proof of Proposition 5.1. Let h be an increasing recursive function.
Define, for all x,

c(x, 0) = max
{

2−n : h(n) ≤ x
}

and for s > 0, if n is the least such that Ys �n 6= Ys−1 �n, let, for all x < h(s),

c(x, s) = max
{
c(x, s− 1), 2−n

}
.

The argument in the proof of Proposition 5.1 shows that if the number of stages s
such that Ys(m) 6= Ys−1(m) is bounded by a computable function g, and I is a set
of pairwise disjoint intervals of numbers such that for all [x, s) ∈ I, c(x, s) ≥ 2−n,
then

|I| ≤ h(n) + 1 +
∑
m≤n

g(m),

so c is benign.
Say that 〈As〉 obeys c. Again we let, for all n and t ≥ h(n), sn(t) be the least

stage s ≤ t such that for all r ∈ [s, t] we have Yr �n= Yt �n; by manipulating
the approximation 〈Ys〉, we may assume that for all n, for all t ≥ h(n), we have
sn(t) ≥ h(n). The rest of the proof now follows the proof of Proposition 5.1
verbatim, to show that for almost all t, if Y �n−1= Yt �n−1, then A�sn(t)= At �sn(t).
This gives us a Turing functional Φ such that Φ(Y) = A and such that for all n,
|Φ(Y �n)| ≥ h(n) as required. �

We turn to prove:

Theorem 5.3. There is a K-trivial degree which is not in Superlow♦.

Theorem 5.3 follows from Proposition 5.4, applied to any Π0
1 class which only

contains random sets.

Proposition 5.4. If P is a non-empty Π0
1 class, then there is some superlow Y ∈ P

and a K-trivial c.e. set B such that B is not computable from Y .

Proof. This is an elaboration on the (super)low basis theorem. At stage s, we define
a sequence 〈P0,s,P1,s, . . . ,P2s,s〉 as follows.

• Let P0,s = P.

BENIGN COST FUNCTIONS AND LOWNESS PROPERTIES 21

• Given P2e,s, if we see at stage s that JX(e)↓ for all X ∈ P2e,s, then we let
P2e+1,s = P2e,s; otherwise, we let

P2e+1,s = {X ∈ P2e,s : JX(e)↑}.
• Given P2e+1,s, we try to meet the requirementRe which states that Φe(Y) 6=
B. Each such requirement will choose a witness xe. If we see, at stage s,
that for all X ∈ P2e+1,s we have Φe(X,xe) ↓= 0,then we let P2e+2,s =
P2e+1,s (and enumerate xe into B if not done so already). Otherwise, we
let

P2e+2,s = {X ∈ P2e+1,s : Φe(X,xe)↑ ∨ Φe(X,xe)↓= 1}.
At the beginning of the next stage, witnesses for the requirements Re are updated:
if P2e+1,s 6= P2e+1,s−1, then we pick a fresh witness for Re. At stage s, let is(e) be
the number of stages s at which P2e+1,s 6= P2e+1,s−1. If cK(xe, s+ 1) > 2−(e+is(e)),
then we pick a new, fresh witness for Re. Here again cK is the standard cost
function for K-triviality.

Now by induction, we can show that the Π0
1 classes Pk reach a limit, and indeed

there is a computable bound on the number of changes of each Pk. As usual, after
P2e,s has stabilised, P2e+1,s changes at most once. So if there are at most n2e

versions of P2e,s, then there are at most n2e+1 = 2n2e versions of P2e+1,s.
As long as P2e+1,s does not change, xe can change at most 2e+is(e) many times

(as cK is benign with bound 2n). Beyond those changes, P2e+2,s can change at
most once before it is injured by a change in P2e+1,s. So there are at most

n2e+2 =
∑

i≤n2e+1

(
2e+i + 1

)
changes in P2e+2,s. The map k 7→ nk is computable.

It follows that
⋂

Pk is a singleton {Y }, that Y is superlow, and that Y does not
compute B. Since B obeys cK, it is K-trivial. �

We finish with an application to c.e. degree theory. We first need a plopification
– again, more than a mere relativisation – of the superlow basis theorem.

Proposition 5.5. Let P be a non-empty Π0
1 class, and let B ∈ 2ω. Then there is

some Y ∈ P such that
(Y ⊕B)′ ≤tt B

′.

Proof. For a string τ , let

Qτ =
{
Y ∈ P : ∀ e < |τ |

[
τ(e) = 0→ JY⊕B(e)↑

] }
.

Note that Qτ is a Π0
1(B) class, uniformly in τ . Emptyness of such a class is a Σ0

1(B)
condition, so there is a computable function g such that

Qτ = ∅ ↔ g(τ) ∈ B′.
Thus, there is a Turing functional Ψ such that ΨX is total for each oracle X, and
Ψ(B′, e) = τe, where τe is the leftmost string τ of length e + 1 such that Qτ is
non-empty. Let Y ∈

⋂
eQτe

. Then

e ∈ (Y ⊕B)′ ↔ τe(e) = 1,

so (Y ⊕B)′ ≤tt B
′. �

22 NOAM GREENBERG AND ANDRÉ NIES

Corollary 5.6 (Ng [13]). There is an almost superdeep c.e. degree: a c.e. degree
a such that for every superlow c.e. degree b, a ∨ b is also superlow.

Indeed, every strongly jump-traceable c.e. degree is almost superdeep.

Proof. Let A be a strongly jump-traceable c.e. set, and let B be a superlow set (in
fact we don’t need the hypothesis that B is c.e.). By Proposition 5.5 applied to a
Π0

1 class of random sets, there is a random set Y such that

Y ′ ≤tt (Y ⊕B)′ ≤tt B
′ ≤tt ∅′,

so Y is superlow. By Theorem 1.5, we have A ≤T Y , so

(A⊕B)′ ≤tt (Y ⊕B)′ ≤tt ∅′,

so A⊕B is superlow as well. �

Corollary 5.7 (Diamondstone [5]). There is a promptly simple c.e. degree which
does not join to ∅′ with any superlow c.e. set.

Proof. Certainly if a degree is almost superdeep, then it does not join to ∅′ with any
superlow c.e. set. In [7], the authors show that there is a strongly jump-traceable
c.e. set which is promptly simple. By our proof of Corollary 5.6, such a set is almost
superdeep. �

References

[1] Klaus Ambos-Spies, Carl G. Jockusch, Jr., Richard A. Shore, and Robert I. Soare. An al-
gebraic decomposition of the recursively enumerable degrees and the coincidence of several

degree classes with the promptly simple degrees. Trans. Amer. Math. Soc., 281(1):109–128,

1984.
[2] Richard Beigel, Harry Buhrman, Peter Fejer, Lance Fortnow, Piotr Grabowski, Luc Longpre,

Andrej Muchnik, Frank Stephan, and Leen Torenvliet. Enumerations of the Kolmogorov

function. J. Symbolic Logic, 71(2):501–528, 2006.
[3] Peter Cholak, Rod Downey, and Noam Greenberg. Strong jump-traceabilty I: The computably

enumerable case. Adv. Math., 217(5):2045–2074, 2008.

[4] Peter Cholak, Marcia J. Groszek, and Theodore A. Slaman. An almost deep degree. J. Sym-
bolic Logic, 66(2):881–901, 2001.

[5] David Diamondstone. Promptness does not imply superlow cuppability. To appear.

[6] Rod G. Downey, Denis R. Hirschfeldt, André Nies, and Frank Stephan. Trivial reals. In
Proceedings of the 7th and 8th Asian Logic Conferences, pages 103–131, Singapore, 2003.

Singapore Univ. Press.
[7] Santiago Figueira, André Nies, and Frank Stephan. Lowness properties and approximations

of the jump. Ann. Pure Appl. Logic, 152(1-3):51–66, 2008.

[8] Johanna Franklin, Noam Greenberg, Frank Stephan and Guohua Wu. Reducibilities with
tiny use. In preparation.

[9] Denis R. Hirschfeldt, André Nies, and Frank Stephan. Using random sets as oracles. J. Lond.

Math. Soc. (2), 75(3):610–622, 2007.
[10] Shamil Ishmukhametov. Weak recursive degrees and a problem of Spector. In Recursion

theory and complexity (Kazan, 1997), volume 2 of de Gruyter Ser. Log. Appl., pages 81–87.

de Gruyter, Berlin, 1999.
[11] Antońın Kučera and Sebastiaan A. Terwijn. Lowness for the class of random sets. J. Symbolic

Logic, 64(4):1396–1402, 1999.

[12] Keng Meng Ng. On strongly jump traceable reals. Ann. Pure Appl. Logic, 154(1):51–69, 2008.
[13] Keng Meng Ng. Almost superdeep degrees. In preparation.

[14] Keng Meng Ng. Beyond strong jump-traceablity. To appear.
[15] André Nies. Computability and randomness. To appear in the series Oxford Logic Guides.

[16] André Nies. Lowness properties and randomness. Adv. Math., 197(1):274–305, 2005.

BENIGN COST FUNCTIONS AND LOWNESS PROPERTIES 23

[17] André Nies. Reals which compute little. In Logic Colloquium ’02, volume 27 of Lect. Notes

Log., pages 261–275. Assoc. Symbol. Logic, 2006.

[18] Stephen G. Simpson. Almost everywhere domination and superhighness. Math. Log. Q., 53(4-
5):462–482, 2007.

[19] Stephen G. Simpson. Mass problems and almost everywhere domination. Math. Log. Q.,

53(4-5):483–492, 2007.
[20] Sebastiaan A. Terwijn and Domenico Zambella. Computational randomness and lowness. J.

Symbolic Logic, 66(3):1199–1205, 2001.

	1. Introduction
	The main results
	Applying Theorem ??
	Applying randomness in degree theory
	The remaining questions

	2. Proof the main theorem
	3. No single benign cost function suffices for strong jump-traceability
	4. The diamond class for being LR-hard
	5. (-c.e.) and Superlow
	References

