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Abstract. This is the second update on the status of open problems
in Computability and Randomness [17]. The first appeared in March
2011.
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1. Chapter 3

3.4.15. Determine whether the sequence of bits of Ω in even positions can
be superlow for some optimal machine.

Solved negatively by Frank Stephan and Noam Greenberg, Nov 2010.
Thus, we have a natural example of a low, but not superlow set.

(1) Recall that J(e) = ϕe(e) whenever this is defined; otherwise J(e) is
undefined.

(2) Let B = Ω(0)Ω(2)Ω(4) . . .. Define a function f such that

f(e) ∈ B′ iff J(e) is defined and B(J(e)) = 1;

note that B(J(e)) = Ω(2J(e)).
(3) Now assume that B′ is wtt-reducible to Ω wit‘h bound g(n). There is

a recursive sequence of numbers a0, a1, . . . such that for each n,

an + g(f(an)) < J(an) < an+1.

Now one could use the wtt-reduction to compute Ω(2J(an)) from Ω(0)Ω(1)...Ω(2J(an)−
1) and hence build a partial computable martingale which succeeds on Ω,
contradiction.

It works in fact for any ML-random set Z wtt above Halting problem in
place of Ω.

3.6.9. To what extend does van Lambalgen’s (3.4.6) hold for weak 2-randomness?
In [4, Corollary 2.1] it is shown that there is a weakly 2-random of the form
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A⊕B such that A is not weakly 2-random relative to B (and B is not weakly
2-random relative to A). Thus, one direction of van Lambalgens theorem
does not hold for weak 2-randomness.

A somewhat weaker, answer was later found in Kautz’s PhD thesis [15].
However, the other direction holds: if A is weakly 2-random relative to B

and B is weakly 2-random, then A⊕B is weakly 2-random.

3.6.23. Is there a characterization of weak 2-randomness via the growth
of the initial segment complexity?

A partial affirmative answer is given in [14].

2. Chapter 5

G(b) is the number of sets that are K-trivial with constant b.

5.2.16. It is not hard to verify that G ≤T ∅(3). Determine whether
G ≤T ∅(2). (This may depend on the choice of an optimal machine.)

Barmpalias and Sterkenburg [6] have shown that G ≤T ∅(2) for any ma-
chine. This problem also appears in [11, Section 10.1.4].

Let C be an index set for a class of c.e. sets, namely e ∈ C ∧ We = Wi →
i ∈ C. We say that C is uniformly Σ0

3 if there is a Π0
2 relation P such that

e ∈ C ↔ ∃b P (e, b) and there is an effective sequence (en, bn)n∈N such that
P (en, bn) and ∀e ∈ C ∃nWe = Wen . In other words, C is the closure, under
having the same index, of a projection of a c.e. relation contained in P . For
instance, let P (e, b) be ∀n ∀s ∃t > s [Kt(We,t �n) ≤ Ks(n) + b].

5.3.33. Is every Σ0
3 index set of a class of c.e. sets uniformly Σ0

3?

Answered negatively by Frank Stephan, Nov 2010. See the 2010 Logic
blog.

5.5.8. Are there c.e. Turing degrees a,b such that the K-trivial degrees
coincide with [0,a] ∩ [0,b]?

A negative answer was given in [3] based on results from [2].

5.5.19. Characterize lowness for Demuth randomness.

Downey and Ng [12] have shown that lowness for Demuth randomness
implies being computably dominated. This is a partial answer. Using this,
[7] have given a full characterization via a concept called BLR-traceability,
which implies jump traceability defined in Section 8.4. They build a perfect
Π0

1 class of sets that are low for Demuth randomness.

3. Chapter 6

6.3.17. Decide whether ∅′ ≤LR C ⇔ ∃B ≤T C [∅′ ∈ K(B)].

6.3.17. Is there a minimal pair of c.e. sets that are uniformly a.e. domi-
nated?

Downey and Greenberg are working on some results under the stronger
hypothesis that ∅′ is sjt by each set.



STATUS OF PROBLEMS FROM COMPUTABILITY AND RANDOMNESS BY NIES 3

4. Chapter 7

7.5.13. Decide whether for each high (c.e.) set C there is a (left-c.e.) set
Z ≡T C such that Z is partial computably random.

The answer is NO in the general case. A high set C can be jump traceable
by Ex. 8.6.2, but a partial computably random Z cannot be jump traceable
by Theorem 7.6.7. The c.e. case it is still open.

7.6.11. Decide whether the weaker hypothesis suffices in Theorem 7.6.7
that ∀r ∈ S [C(Z �r) ≤ b log r] for some infinite computable set S and b ∈ N.

5. Chapter 8

8.1.13. If {X : X ≤LR B} is countable, is B low for Ω?

Barmpalias and Lewis [5] have given an affirmative answer.

8.2.14. Decide whether each weakly 2-random set is array computable.

Barmpalias, Downey and Ng in [4] have shown that not all weakly 2-
random sets are array computable. In fact, for each function g, there is a
weakly 2-random Z and a function f ≤T Z such that f is not dominated by
g.

8.3.16. Characterize the class Low(W2R,SR). In particular, determine
whether it coincides with being c.e. traceable.

This class was shown to coincide with Low(MLR, SR), that is, c.e. trace-
ability, by Bienvenu and Miller (May 2010).

8.4.9. Characterize the sets that are low for Ω and jump traceable (each
K-trivial set is). Characterize the sets that are computably traceable and
jump traceable.

8.4.22. Decide whether A ≤CT B ⇔ SRB ⊆ SRA for each A,B.

Miyabe [16, Thm. 4] has given an affirmative answer.

8.4.28. Is each strongly jump traceable set strongly superlow?

Diamondstone et al. [10] have given an affirmative answer. Also see the
upcoming BSL survey of Greenberg and Turetsky on strong jump traceabil-
ity.

8.5.26. Is the class Shigh of superhigh sets Σ0
3? Is each strongly jump

traceable c.e. set in Shigh♦?

The second question has been answered in the affirmative by Hirschfeldt,
Greenberg and Nies [13]. In fact Shigh♦ coincides with sjt on the c.e. sets.

8.6.4. We ask whether no further implications hold in Fig. 8.2 on page 362.
(i) Can a c.e. traceable set be LR-hard?
(ii) Can a set that bounds only GL1 sets be LR-hard?
(iii) Can a set that is low for Ω be superhigh?

(i) has been answered in the negative by Barmpalias [1]. In fact, he
shows that if ∅′ is c.e. traceable by A, then A is not array computable,
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and in particular, not c.e. traceable. This yields a new implication in the
diagram Fig 8.1 from array computable to not ≥LR ∅′.
8.6.5. Decide whether the sets that are computably dominated and in GL1

are closed downward under ≤T.

6. Chapter 9

A generalized Π1
1-ML-test is a sequence (Gm)m∈N of uniformly Π1

1 open
sets such that

⋂
mGm is a null class. Z is Π1

1-weakly 2-random if Z passes
each generalized Π1

1-ML-test.

9.2.17. Is Π1
1-weak 2-randomness stronger than Π1

1-ML-randomness?

An affirmative answer has been given by Chong and Yu [9]. A some-
what simpler proof was subsequently provided by Bienvenu, Greenberg and
Monin [8, Section 5.2]. Each proof shows that in fact higher Ω is not higher
weakly 2-random.

9.4.11. Is each set that is low for Π1
1-randomness in ∆1

1? Greenberg and

Monin (Higher randomness and genericity, Forum of Mathematics: Sigma,
to appear) have answered the question in the affirmative. This relied on
Monin’s earlier work on calculating the Borel rank of the set of Π1

1 random
sequences.
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