
Bounded Combinatorial Width and Forbidden Substructures

by

Michael John Dinneen
B�S�� University of Idaho� ����

M�S�� University of Victoria� ����

A Dissertation Submitted in Partial Ful�llment

of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in the Department of Computer Science

We accept this dissertation as conforming

to the required standard

Dr� Michael R� Fellows� Supervisor �Department of Computer Science�

Dr� Hausi A� M�uller� Department Member �Department of Computer Science�

Dr� Jon C� Muzio� Department Member �Department of Computer Science�

Dr� Gary MacGillivray� Outside Member �Department of Math� and Stats��

Dr� Arvind Gupta� External Examiner �School of Computing Science� Simon Fraser

University�

c� MICHAEL JOHN DINNEEN� ����

University of Victoria

All rights reserved� This dissertation may not be reproduced in whole or in part�

by mimeograph or other means� without the permission of the author�



ii

Supervisor� M� R� Fellows

Abstract

A substantial part of the history of graph theory deals with the study and classi�	

cation of sets of graphs that share common properties� One predominant trend is to

characterize graph families by sets of minimal forbidden graphs �within some partial

ordering on the graphs�� For example� the famous Kuratowski Theorem classi�es

the planar graph family by two forbidden graphs �in the topological partial order��

Most� if not all� of the current approaches for �nding these forbidden substructure

characterizations use extensive and specialized case analysis� Thus� until now� for a

�xed graph family� this type of mathematical theorem proving often required months

or even years of human e
ort� The main focus of this dissertation is to develop a

practical theory for automating �with distributed computer programming� this clas	

sic part of graph theory� We extend and �more importantly� implement a variation

of the seminal work done by Fellows and Langston regarding computing �nite	basis

characterizations�

The recently celebrated Robertson�Seymour Graph Minor Theorem establishes that

many natural graph families are characterizable by a �nite set of graphs� In particular�

if a graph family is closed under the three basic minor operations �i�e�� isolated vertex

deletions� edge deletions� and edge contractions� then there exists �by a nonconstruc	

tive argument� a �nite set of forbidden graphs� Two examples are the well	known

k�VertexCover and k�FeedbackVertexSet graph families� In this disserta	

tion� we characterize� for the �rst time� these parameterized families� among others�

for small k�

Our forbidden graph computations use a restricted search space consisting of graphs

of bounded combinatorial width �where pathwidth and treewidth are two important

metrics�� Using an algebraic enumeration scheme for graphs� we have implemented a

terminating algorithm that will �nd all minor	order forbidden graphs for each �xed

pathwidth� For a targeted graph family� this algorithm requires a mathematical

description given in one of many acceptable forms �or combinations thereof�� such as a

�nite	index congruence or a set of automaton	generating tests� Our main assumption

is that an upper bound on the pathwidth �or treewidth� of the largest forbidden graph

of a particular graph family is more readily available than its order �or size��



iii

A byproduct of our bounded width approach is that we give practical linear time

membership algorithms in the form of dynamic programs �over parsed graph struc	

tures of bounded width� for several graph families �e�g�� k�MaximumPathLength

and OuterPlanar��

Examiners�

Dr� Michael R� Fellows� Supervisor �Department of Computer Science�

Dr� Hausi A� M�uller� Department Member �Department of Computer Science�

Dr� Jon C� Muzio� Department Member �Department of Computer Science�

Dr� Gary MacGillivray� Outside Member �Department of Math� and Stats��

Dr� Arvind Gupta� External Examiner �School of Computing Science� Simon Fraser

University�



iv

Contents

Abstract ii

Table of Contents iv

List of Figures viii

List of Tables xi

Acknowledgements xii

� Introduction �

��� The Graph Theory Setting � � � � � � � � � � � � � � � � � � � � � � � � 

��� Some Finitely Characterizable Graph Families � � � � � � � � � � � � � �

��� A Historical Perspective on Computing Obstructions � � � � � � � � � ��

��� An Overview of Our Computational Technique � � � � � � � � � � � � � ��

�� A Survey of The Dissertation � � � � � � � � � � � � � � � � � � � � � � ��

I The Basic Theory ��

� Bounded Combinatorial Width ��

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� Treewidth and k	trees � � � � � � � � � � � � � � � � � � � � � � ��

����� Pathwidth and k	paths � � � � � � � � � � � � � � � � � � � � � � ��

����� Other graph	theoretical widths � � � � � � � � � � � � � � � � � ��

��� Algebraic Graph Representations � � � � � � � � � � � � � � � � � � � � ��



v

����� The t	parse operator set � � � � � � � � � � � � � � � � � � � � � ��

����� Some t	parse examples � � � � � � � � � � � � � � � � � � � � � � ��

����� Other operator sets � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Simple Enumeration Schemes � � � � � � � � � � � � � � � � � � � � � � �

����� Canonic pathwidth t	parses � � � � � � � � � � � � � � � � � � � ��

����� Canonic treewidth t	parses � � � � � � � � � � � � � � � � � � � � �

� Graph Minors and Well�Quasi�Orders ��

��� Preliminaries � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� The Graph Minor Theorem � � � � � � � � � � � � � � � � � � � � � � � �

��� Other Graph Partial Orders � � � � � � � � � � � � � � � � � � � � � � � �

� Finding Forbidden Minors �	

��� Key t	parse Properties � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� A Simple Procedure for Finding Obstructions � � � � � � � � � � � � � ��

��� Proving t	parses Minimal or Nonminimal � � � � � � � � � � � � � � � � �

����� Direct proofs of nonminimality � � � � � � � � � � � � � � � � � ��

����� Proofs based on a dynamic programming algorithm � � � � � � ��

����� Proofs obtained by a randomized search � � � � � � � � � � � � ��

����� Proofs based on a testset congruence � � � � � � � � � � � � � � �

��� Making the Theory Practical � � � � � � � � � � � � � � � � � � � � � � � ��

����� Pruning at disconnected t	parses � � � � � � � � � � � � � � � � ��

����� Searching via universal distinguishers � � � � � � � � � � � � � � ��

����� Using other �nite	index congruences � � � � � � � � � � � � � � ��

����� Finding uses of randomization � � � � � � � � � � � � � � � � � � ��

� The Implementation and The Future 
�

�� Using Distributed Programming � � � � � � � � � � � � � � � � � � � � � ��

�� Software Summary � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

�� Future Research Goals � � � � � � � � � � � � � � � � � � � � � � � � � � ��

���� Second	order congruence research � � � � � � � � � � � � � � � � ���

���� Approximation algorithms based on partial obstruction sets � ���



vi

II Obstruction Set Characterizations ���

� Vertex Cover �VC� ���

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� A Finite State Algorithm � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� The VC Obstruction Set Computation � � � � � � � � � � � � � � � � � ���

��� The VC Obstructions � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

�� Independent Set and Clique Families � � � � � � � � � � � � � � � � � � ��

 Feedback Vertex�Edge Sets �FVS and FES� ���

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� The FVS Obstruction Set Computation � � � � � � � � � � � � � � � � � ���

����� A �nite state algorithm � � � � � � � � � � � � � � � � � � � � � � ���

����� A complete FVS testset � � � � � � � � � � � � � � � � � � � � � ���

��� The FVS Obstructions � � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� The FES Obstruction Set Computation � � � � � � � � � � � � � � � � � ���

����� A direct nonminimal FES test � � � � � � � � � � � � � � � � � � ���

����� A complete FES testset � � � � � � � � � � � � � � � � � � � � � ��

�� The FES Obstructions � � � � � � � � � � � � � � � � � � � � � � � � � � ��

	 Some Generalized VC and FVS Graph Families ��	

��� Path Covers � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

����� A path	cover congruence � � � � � � � � � � � � � � � � � � � � � ���

��� Cycle Covers � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� Path�Cycle Cover Testsets � � � � � � � � � � � � � � � � � � � � � � � � ���

����� Some maximum path�cycle testsets � � � � � � � � � � � � � � � ���

����� A maximum path automaton example � � � � � � � � � � � � � ���

����� Some generic cycle	cover testsets � � � � � � � � � � � � � � � � ���

��� Other VC�FVS Generalizations � � � � � � � � � � � � � � � � � � � � � ���

�� The Path and Cycle Cover Obstructions � � � � � � � � � � � � � � � � ���


 Outer�Planar Graphs �	

��� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���



vii

��� The ��OuterPlanar Computation � � � � � � � � � � � � � � � � � � ���

����� An outer	planar congruence � � � � � � � � � � � � � � � � � � � ���

����� A �nite	state algorithm � � � � � � � � � � � � � � � � � � � � � � ��

��� The ��OuterPlanar Obstructions � � � � � � � � � � � � � � � � � � ���

����� Some other surface obstructions � � � � � � � � � � � � � � � � � ���

III Applied Connections ���

�� Pathwidth and Biology ��

���� VLSI Layouts and DNA Physical Mappings � � � � � � � � � � � � � � ���

���� An Equivalence Proof � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Some Comments � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

�� Automata and Testsets ���

���� Introduction � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� Finding a Minimum Testset is NP	hard � � � � � � � � � � � � � � � � ���

���� A Testset Example� Building Membership Automata � � � � � � � � � ���

������ Using tree automata for bounded treewidth � � � � � � � � � � ���

���� Quickly Finding Obstructions using Automata � � � � � � � � � � � � � ���

�� Computing Pathwidth by Pebbling ���

���� Preliminaries � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

���� A Simple Linear	Time Pathwidth Algorithm � � � � � � � � � � � � � � ���

���� Further Directions � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

�� Conclusion ���

���� A Summary of the Main Results � � � � � � � � � � � � � � � � � � � � � ���

���� Two Key Applications � � � � � � � � � � � � � � � � � � � � � � � � � � ���

Annotated Bibliography ���

Index ���



viii

List of Figures

��� Kuratowski�s planar obstructions� � � � � � � � � � � � � � � � � � � � � �

��� Illustrating a partial order of graphs and a family�s obstructions O�F�� �

��� Projective plane embeddings of Kuratowski�s planar obstructions� � � �

��� Induced forbidden chordal graphs �asteroidal triples�� � � � � � � � � � �

�� Demonstrating the �edge contraction� operation for the minor order� � �

��� All connected minor	order obstructions for k�EdgeBounded IndSet�
for k � �� �� � � � � �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� Some non	trivial knots� � � � � � � � � � � � � � � � � � � � � � � � � � � �

��� The minor	order obstructions for the linkless graph family� � � � � � � �

��� Two graphs that are members of both the ��VertexCover and
��FeedbackVertexSet graph families� � � � � � � � � � � � � � � � ��

���� Example of our enumeration order for graphs of pathwidth �� � � � � � ��

���� Actual search tree for the �EdgeBounded IndSet graph family�s
obstructions� pathwidth � �� � � � � � � � � � � � � � � � � � � � � � � � ��

��� Demonstrating graphs with bounded treewidth �and pathwidth�� � � � �

��� A partial order of several bounded	width families of graphs� � � � � � ��

��� The obstructions to �a� pathwidth � and �b� treewidth �� � � � � � � � 

��� The minor	order obstructions to treewidth �� � � � � � � � � � � � � � � 

��� Illustrating an edge contraction poset� � � � � � � � � � � � � � � � � � �

��� A map � from boundaried graphs to edge	colored graphs� � � � � � � � �

��� Illustrating the �a� lift and �b� fracture graph operations� � � � � � � � ��

��� The weak immersion order obstruction set for ��Cutwidth� � � � � � ��

��� A typical t	parse search tree �each edge denotes one operator�� � � � � ��



ix

��� A general independence algorithm I	d�p� for pathwidth t	parses� � � � ��

��� The set T �
HC of �	boundaried graph tests for Hamiltonicity� � � � � � � ��

�� Schematic view of our distributed obstruction set software� � � � � � � ��

�� Some available run	time options for obstruction set computations� � � ���

�� Building an NFA that accepts the union of minor	containment families� ���

��� A general vertex cover algorithm for t	parses� � � � � � � � � � � � � � ���

��� Actual search tree for ��VertexCover with graphs of pathwidth �� ���

��� Connected obstructions for �� and �� VertexCover� � � � � � � � � ���

��� Connected obstructions for ��VertexCover� � � � � � � � � � � � � ���

�� Connected obstructions for ��VertexCover� � � � � � � � � � � � � ���

��� Connected obstructions for �VertexCover� � � � � � � � � � � � � ���

��� A general feedback vertex set algorithm for t	parses� � � � � � � � � � � ���

��� Connected obstructions for ��FeedbackEdgeSet� � � � � � � � � � ��

��� Connected obstructions for ��FeedbackVertexSet� � � � � � � � � ��

��� Connected obstructions for ��FeedbackEdgeSet� � � � � � � � � � ��

�� Connected obstructions for ��FeedbackVertexSet� pathwidth � �� �

��� Known connected obstructions for ��FeedbackEdgeSet� � � � � � ��

��� Biconnected ��FeedbackEdgeSet obstructions without degree �
vertices� pathwidth � �� � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� Biconnected �FeedbackEdgeSet obstructions without degree �
vertices� pathwidth � �� � � � � � � � � � � � � � � � � � � � � � � � � � ��

��� The vertex operator subcases for the proof of Theorem ���� � � � � � � ���

��� Illustrating the pi � � case for the proof of Theorem ���� � � � � � � � ���

��� The smallest biconnected non	Hamiltonian graph� � � � � � � � � � � � ���

��� Four types of �	boundaried tests for theMaxPath�p� andMaxCycle�l�
graph families� l � p� � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

�� The automaton for MaxPath��� corresponding to Table ���� � � � � ���

��� A t	boundaried test example �in �k
t � for k�CycleCover���� � � � � ���

��� Connected obstructions for ��PathCover���� � � � � � � � � � � � � ���

��� Connected obstructions for ��PathCover���� � � � � � � � � � � � � ���



x

��� Known connected obstructions for ��PathCover���� � � � � � � � � ���

���� Known connected obstructions for ��PathCover���� � � � � � � � � ��

���� Connected obstructions for ��CycleCover���� pathwidth � �� � � � ���

��� All � vertex outer	planar dual trees �duals minus outer face vertex�� � ���

��� The smallest outer	planar graph with pathwidth �� � � � � � � � � � � ���

��� Illustrating the proof of Lemma ��� � � � � � � � � � � � � � � � � � � ���

��� A commutative diagram for the proof of Theorem ���� � � � � � � � � ���

�� Known connected obstructions for ��OuterPlanar� � � � � � � � � ���

��� Figure �� continued� ��OuterPlanar obstructions� � � � � � � � � ���

��� All connected obstructions with at most �� vertices for ��Planar� � ���

��� Figure ��� continued� small obstructions for ��Planar� � � � � � � � ���

��� A dense symmetric toroidal obstruction with pathwidth �� � � � � � � ��

���� The three smallest �� vertices� toroidal obstructions� � � � � � � � � � ��

���� Illustrating the k	CVS and k	ICG problems� � � � � � � � � � � � � � � ���

���� The AMT automaton M built from an MTC instance� � � � � � � � � ��

���� A graph connectivity testset for �	boundaried graphs� � � � � � � � � � ���

���� A graph connectivity membership automaton for �	parses� � � � � � � ���

���� Embedding pathwidth tree obstructions Tree	t in binary trees� � � � � ���

���� Illustrating our linear time pathwidth algorithm� � � � � � � � � � � � � ���



xi

List of Tables

��� Number of connected and disconnected minor	order obstructions for
k�EdgeBounded IndSet� for k � �� �� � � � � ��� � � � � � � � � � � � � ��

�� Source code breakdown by area for our VACS software �subdirectories�� ���

��� Vertex cover state tables computed �columns� for Example ���� � � � ���

��� Summary of obstruction set computation for vertex cover� � � � � � � ��

��� Feedback vertex set state tables computed for Example ���� � � � � � ���

��� Summary of our ��FeedbackVertexSet obstruction set computa	
tion� pathwidth �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ���

��� The transition diagram for the MaxPath��� automaton� � � � � � � � ���

��� The MergeGaps function for the outer	planar algorithm� � � � � � � � ���

���� Tractability bounds for various parameterized lower ideals� � � � � � � ���



xii

Acknowledgements

I acknowledge my thesis advisor Dr� Mike Fellows for introducing the topic

for this dissertation and being enthusiastic about the results� Special thanks

are due to my friend Dr� Kevin Cattell who contributed several years of C		

programming and research towards the realization of our software project�

Without him� many of the following results would still be on the waiting list�

I thank my Los Alamos mentor Dr� Vance Faber for providing me with an

opportunity to do research in a productive atmosphere �including access to

the vast computer resources at The Laboratory�� I thank Dr� Arvind Gupta

for being my external examiner and for his detailed comments� I also thank all

of my friends at the University of Victoria �notably� Todd Wareham� and in the

United States for the relaxing times away from research� Lastly� I appreciate

my family in Idaho for enduring my transient lifestyle�

Kevin Cattell assisted me in the following areas�

� He programmed all of the database code� the t	parse canonicity al	

gorithm� some of the primitive t	parse algorithms �e�g�� our edge	

contraction algorithm on page ���� and several shell scripts�

� He contributed valuable research towards our vertex cover characteriza	

tions �CD��� �which includes some of the results of Chapter ��� vigorously

proof	read our �CDF�a� paper� and helped prove that our pathwidth al	

gorithm runs in linear time �CDF�b��

� He monitored �jointly� several obstruction set searches� and often �ne

tuned the software for better e�ciency� �Some of our searches required

many time	consuming restarts and took several months of CPU time to

complete��



Chapter �

Introduction

One of the most famous results in graph theory is Kuratowski�s characterization of

planar graphs� a graph is planar if and only if it �contains� neither the complete

bipartite graph K��� nor the complete graph K�� The obstruction set for planarity

thus consists of these two graphs� which are displayed below in Figure ���� These

graphs are �almost� planar �or the �smallest� non	planar��

K���

�

K�

�

Figure ���� Kuratowski�s planar obstructions�

This example indicates the form of all obstruction set characterizations of graph

families for some �xed graph family� denoted by F � a graph G is a member of F if

and only if G does not contain �as a substructure� any member of some set of graphs

O�F� � fO�� O�� � � �g� The precise meaning of �substructure� may vary� For these

types of characterizations� graphs are related by some partial order as illustrated

in Figure ��� by a Hasse diagram where each node �representing some graph� is

structurally contained in the ones connected above it� Here� any non	family graph



CHAPTER �� INTRODUCTION �

�obstructions�
�� F

�� F

� F

�smallest graph� or K��

�graph family�

Figure ���� Illustrating a partial order of graphs and a family�s obstructions O�F��

above the lower dashed line �i�e�� any graph represented by a black or gray node�

contains at least one obstruction �black node�� Notice that� by de�nition� these

types of orderings of graphs are transitive in the upward direction even though all

relationships are not shown in the �gure� Each edge in Figure ��� can be viewed as

one primitive graph reduction between a bigger graph and a smaller graph� Di
erent

combinations of these reductions on a given graph may yield the same graph �e�g��

note that edges can cross over the obstruction set boundary��

Classifying graphs by forbidden substructures has been an important part of

research in graph theory ever since its inception� and there are many characterization

theorems of this kind� Perhaps a familiar example is the set of acyclic graphs �i�e��

those graphs without a self	connecting path of edges�� Here� the forbidden subgraphs

are the individual cycles of various lengths fCi j i � �g� If we add more structure

to this subgraph partial order then there is just one forbidden substructure� namely



CHAPTER �� INTRODUCTION �

the smallest cycle C�� This is accomplished by adding subdivided edge relationships

on graphs �i�e�� a graph with a vertex inserted on some edge is structurally above the

original graph�� We now present two famous examples based on two di
erent partial

orders� �These orders are formally de�ned later in Chapter ���

The �rst graph embedding analog to Kuratowski�s characterization of planar

graphs was presented in �GHW��b� for the real projective plane �M�obius band !

lid�� This simplest surface after the plane �sphere� can be viewed as a plane with

a circular boundary where diagonally opposite boundary points are identi�ed �e�g��

see �FG��� Sti����� Below in Figure ��� we easily show graph embeddings �without

edge crossings� of both the planar obstructions K��� and K� this indicates that the

family of projective	planar graphs is larger than the family of planar graphs� For this

non	orientable surface� an obstruction set of ��� irreducible graphs of �GHW��a� in

the topological �homeomorphic� partial order was proven complete in �Arc���� �From

these ��� obstructions there are � minor	order forbidden graphs �Arc�� Mah�����

K��� K�

a

a b

b

a

ab

b

cc

Figure ���� Projective plane embeddings of Kuratowski�s planar obstructions�

Our next example is drawn from computational biology� We consider a graph

to be chordal if all induced cycles of length four or greater contain an internal cross

edge �chord�� An independent triple of vertices is called an asteroidal triple if between

every pair in the triple there exists a path that avoids the neighborhood of the third�

The four forbidden asteroidal triples �see Figure ���� and the simple cycle C� prevent

a graph from being represented as an intersection of interval line segments �Weg���

Fel���� This �nite classifying set of minimal graphs is obtained from the general



CHAPTER �� INTRODUCTION �

Figure ���� Induced forbidden chordal graphs �asteroidal triples��

in�nite family of asteroidal triples this earlier result �based on the vertex	induced

subgraph partial order� showed that interval graphs are characterized as graphs that

are chordal and free of asteroidal triples �LB��� Mir����

Several other examples of classifying graphs by forbidden substructures can be

found in �APC��� CKK��� Fis�� LPS�� MS��� Pro��� RS��c�� Most of the known

obstruction set characterizations were di�cult to prove� and proven solely by classical

paper	and	pencil methods �e�g�� see �KL��� GH����� This situation is now changing as

computers are being incorporated into the research process� For example� the elusive

target of �nding the obstruction set for the family of torus embeddable �doughnut�s

surface embeddable� graphs now appears to be closer by the new theories of automated

mathematical theorem	proving�

This dissertation is motivated by the recent results of Robertson and Seymour

�RS��a� on the well	partial	ordering of graphs under the minor �and other� orders�

They have non	constructively established that many natural graph properties have

�Kuratowski	type� characterizations� That is� these graph families can be character	

ized by �nite obstruction sets in an appropriate partial order� �The �rst few papers of

their comprehensive graph minors series may be found in �RS�����RSf��� Our work has

focused on �nding obstruction sets for these types of characterizable graph families�

The following sections survey our computational approach for �nding obstruction

sets� We begin with a review of the minor partial order for graphs� Then in Section ���

we introduce two kinds of k	parameterized graph families that form the basis of many

of our graph family characterizations� Next in Sections ��� and ��� we explain how to

e�ciently search for obstruction sets within a bounded combinatorial width domain�

At the end of this introduction we outline the remaining chapters of this dissertation�



CHAPTER �� INTRODUCTION 

��� The Graph Theory Setting

The reader is assumed to have a familiarity with graph theory� as may be obtained

from any one of these introductory graph theory texts �BM��� CL��� HR��� Tru���

Wil���� We now introduce a few of our basic graph	theoretical conventions�

We are primarily interested in �nite simple undirected graphs �i�e�� those �nite

graphs without loops and multi	edges�� A graph G � �V�E�� in our context� consists

of a �nite set of vertices V and a set of edges E� where each edge is an unordered

pair of vertices� We use the variables n �sometimes jGj� and m to denote the order

�number of vertices� and size �number of edges� of a graph� A graph is connected

if there exists a path between every two vertices� A tree is a connected graph with

m � n � �� that is� it contains no cycles but has a unique path between every two

vertices� Other formal graph	theoretic de�nitions are presented later as needed�

This dissertation focuses on a partial order based on graph minors� Speci�cally�

a graph H is a minor of a graph G� denoted H �m G� if H can be obtained by

contracting some �possibly zero� edges in a subgraph of G� Figure �� illustrates the

edge contraction operation� Recall that any partial order � of graphs� including the

minor order �m� satis�es three key properties� It is re"exive �G� � G��� transitive �if

G� � G� and G� � G� then G� � G��� and anti	symmetric �if G� � G� and G� � G�

then G� � G���

The most important application of the celebrated Graph Minor Theorem �GMT�

by Robertson and Seymour� formerly known as Wagner�s Conjecture� is that many

graph families are easily shown to have polynomial time membership algorithms�

Here� the GMT guarantees that many graph families have only a �nite number of

obstructions� These membership algorithms are based on an O�n�� algorithm that

can check if a �xed graph is a minor of another graph �RS�b�� Hence� in theory� to

check for membership in an applicable graph family F � one just runs this polynomial

time minor checking algorithm once for each obstruction in O�F�� An input graph G

is a member of F if and only if G has none of these obstructions as a minor� Thus�

once the �promised� �nite set of obstructions O�F� is found for F � a constructive

membership algorithm exists� However� it is still open whether these new algorithms

can be made practical� This is because there are astronomically large hidden constants



CHAPTER �� INTRODUCTION �

�m �m

���
� �

���

��� First collapse edge while preserving adjacencies�
��� Then remove any incident multi�edges that occur�

K��� � � K�

Figure ��� Demonstrating the �edge contraction� operation for the minor order�

in this cubic time minor	containment complexity result �FRS���� Also the number of

obstructions may be prohibitively large�

To indicate what types of graphs interest us� we investigate a contrived �but non	

trivial� graph family� Recall that the independence of a graph is the maximum number

of mutually non	adjacent vertices �i�e�� the cardinality of the largest independent

set�� It is easy to show that any minor of a graph with independence ! size � k

also satis�es this inequality� For example� after deleting an edge from a graph the

independence can increase by at most one� implying that the sum will not increase�

For any �xed k� let us call this graph family k�EdgeBounded IndSet� If one does

not observe that this family has a �nite number of members� recognizing graphs in

k�EdgeBounded IndSet may seem to require a running time of O�nk�m�� That

is� where the size m has been previously computed� an algorithm could check to see if

any of the vertex subsets of cardinality k �m is an independent set� An application



CHAPTER �� INTRODUCTION �

k � � k � 	 k � 
 k � �

k � �k � 

Figure ���� All connected minor	order obstructions for k�EdgeBounded IndSet�

for k � �� �� � � � � ��

of the GMT improves this brute force algorithm to O�n�� time� based on checking a

�nite set of forbidden minors�

For each small �xed k� an obstruction set for k�EdgeBounded IndSet is easily

found by the following logic� We know that k ! � isolated vertices is an obstruction�

so k!� also bounds the order of the largest obstruction� We display all the connected

obstructions for ��EdgeBounded IndSet through ��EdgeBounded IndSet in

Figure ���� One of our general results of Chapter � shows how disconnected obstruc	

tions are obtained� For example� the union P� � K� of a path of length � and an

isolated vertex is an obstruction for ��EdgeBounded IndSet�

We can sometimes exploit other properties of graph families to reduce the above

mentioned polynomial time complexity� We use the popular notions of treewidth and

pathwidth� also introduced by Robertson and Seymour �RS��� RS��c�� to combinato	

rially bound certain subsets of a graph family� Informally� graphs of width at most k

are subgraphs of tree	like or path	like graphs where the vertices form cliques of size

at most k ! �� �These combinatorial widths are discussed in detail in Chapter ���

When restricted to graphs of treewidth �or pathwidth� at most k� there exists a linear



CHAPTER �� INTRODUCTION �

Figure ���� Some non	trivial knots�

time algorithm to check if a �xed graph is a minor of the input �ALS���� That is�

these algorithms run in time O�f�k� � n� where f is some computable function� A

well	noted example� recently improved by Bodlaender� is that all �nitely characteri	

zable �minor order� graph families that exclude at least one planar graph have linear

time membership algorithms �Bod��a�� That is� for a �xed planar graph P � either a

graph has P as a minor or has treewidth at most some function of jP j �RS��a��

For a concrete example of a guaranteed linear time membership algorithm� con	

sider our k�EdgeBounded IndSet families� We see that all of these families have

a planar obstruction �e�g�� the planar graph consisting of k ! � isolated vertices��

Thus� by Bodlaender�s result there exist linear time recognition algorithms for these

graph families� Also known is a linear time independent set algorithm for graphs of

bounded treewidth �e�g�� see �Bod��c���

As mentioned earlier� a constant time membership algorithm is known for each

k�EdgeBounded IndSet graph family since each has a �nite �function of k� num	

ber of graph members� In particular� if more than k edges are read for an input

graph G then we know that G is not a member of k�EdgeBounded IndSet� So

the yes	instance input must be of constant size�

A remarkable consequence of the GMT is that for some graph families that were

not even known to be decidable� the GMT can be applied to prove the existence of

a polynomial time recognition algorithm �see �Fel��� for a nice survey�� For example�

consider the set of graphs that can be embedded in �	dimensional space such that ev	

ery cycle is not knotted �in the everyday sense as depicted by the knots in Figure �����

It is not hard to see that this family of knotless graphs� which contains the planar

graph family� is closed under minors �i�e�� taking a subgraph or contracting an edge



CHAPTER �� INTRODUCTION �

Figure ���� The minor	order obstructions for the linkless graph family�

can not create a knot with respect to a knotless embedding�� The complete graph

K	 is an example of a graph that contains a least one nontrivial knot no matter how

it is embedded in �	space �CG���� However� it is not known if the �	partite graph

K������� has a knotless embedding �Tho��� The promised �nite obstruction set for

this family is still unknown� However� a related �knot theory� family of graphs� those

graphs with a linkless ��space embedding� has recently been characterized by the seven

forbidden minors shown in Figure ��� �MRS��� RST�a� RST�b� RST�c��

��� Some Finitely Characterizable Graph Families

As a consequence of the Graph Minor Theorem� any family of graphs F that is closed

under minors �i�e�� if H �m G and G 	 F then H 	 F� has an obstruction set O�F�

of �nite cardinality� More generally� a family of graphs F that is closed relative to a

partial order is called a lower ideal�

Like the k�EdgeBounded IndSet families� many minor	order lower ideals are

parameterized by an integer k� The previously mentioned planar and toroidal graph

families are surface	embeddable families for �xed genus �i�e�� the number of sphere

handles� k � � and k � �� respectively �CL��� Tru���� In fact� our principle graph

families �e�g�� k�VertexCover and k�FeedbackVertexSet�� for which our

computational technique is illustrated� fall into this framework� A k	parameterized



CHAPTER �� INTRODUCTION ��

� �

�

�

	
	� �


 
 �

VC � f�� 	� �g

FVS � f�� 	g� f�� �g or f	� �g

VC � f�� �� 
g or f�� 	� �g

FVS � f�� �g� f�� 
g� f�� 	g�

f�� �g� f	� �g or f�� 
g

Figure ���� Two graphs that are members of both the ��VertexCover and

��FeedbackVertexSet graph families�

lower ideal F is de�ned by some type of graph invariant function � that maps graphs

to integers such that whenever H �m G we also have ��H� � ��G�� In this general

framework� a graph family F equals fG j ��G� � kg for some integer constant k�

Figure ��� illustrates two members of both the graph families ��VertexCover

and ��FeedbackVertexSet by displaying each minimum vertex cover �VC� and

feedback vertex set �FVS�� The family ��VertexCover is the set of graphs that

have a VC of cardinality at most � �i�e�� every edge is incident to at least one of the

three �cover� vertices VC�� Likewise� a graph G is in ��FeedbackVertexSet if

there exists an FVS with two vertices u and v such that Gnfu� vg is acyclic �i�e�� this

subgraph contains no cycles��

Given a minor	order lower ideal F� often �but not always� another class fk�

F j k � �g of parameterized and �nitely	characterizable graph families is obtained

by de�ning lower ideals that are within k vertices �or edges� of F � That is� for a �xed

family F � the following parameterized families are lower ideals �e�g�� see �FL��b� for

proof��

k�Fv � fG � �V�E� j G n V � 	 F where V � 
 V and jV �j � kg �

And the following families may also be lower ideals�

k�F e � fG � �V�E� j G n E� 	 F where E� 
 E and jE�j � kg �



CHAPTER �� INTRODUCTION ��

Table ���� Number of connected and disconnected minor	order obstructions for

k�EdgeBounded IndSet� for k � �� �� � � � � ���

k � � � � � �  � � � � �� �� ��

connected � � � � � � � �  �� �� �� ��

disconnected � � � � � � � � �� �� �� � ��

total obstructions � � � � � � � �� � �� � ��� ���

For example� in Chapter � we study the lower ideal ��OuterPlanar that is based

on those graphs that are �within one vertex� of the family of outer	planar graphs�

�Unfortunately� the corresponding family of graphs that are at most one edge away

from being outer	planar is not a minor	order lower ideal�� In Chapter �� we look at

the lower ideals k�FeedbackEdgeSet that are those graphs that are �within k

edges� of acyclic �i�e�� each graph in this family has a set of at most k edges when

removed produces a forest��

There is a tendency for the number of obstructions for natural parameterized

families to grow explosively as a function of the parameter k� For example� the num	

ber of minor	order obstructions for k�Pathwidth �i�e�� graphs with pathwidth at

most k� is � for k � �� ��� for k � �� and provably more than �� million for k � �

�KL���� Even looking at our small k�EdgeBounded IndSet graph families� the

counts given in Table ��� indicate exponential growth in the number of obstructions�

One goal of our research goal is to explore the following working hypothesis�

Natural forbidden substructure theorems of feasible size are feasibly computable�

We suspect that the toroidal obstruction set� which has a projected size of about ����

graphs� is feasibly computable by the methods of this dissertation�

Of course� if a lower ideal is not parameterized� the feasibility of computing

its obstruction set will have to be based on other criteria� The family of knotless

graphs is one such interesting example where we need an alternate method to predict

the size of the obstruction set� Again� in any of these non	parameterized cases�

if the obstruction set is small �and in conjunction with a few other family	speci�c



CHAPTER �� INTRODUCTION ��

ingredients�� we conjecture that it should be feasibly computable�

��� A Historical Perspective on Computing

Obstructions

Most of the previous techniques for computing obstructions have been speci�c to a

particular lower ideal� In particular� several Ph�D� dissertations focus on characteriz	

ing just one graph family and use strictly mathematical case analysis �see for example

�Arc��� Kin��� Sar����� For some of these characterizations computers are used� for

the most part� to mainly aid in the veri�cation process� usually by weeding through

a manageable known set of potentially minimal forbidden graphs�

The basic results for our general	purpose computational approach originated from

the foundational paper by Fellows and Langston �FL��a�� which used the Graph

Minor Theorem to prove termination of a �nite	state search procedure� This approach

for computing obstruction sets requires additional problem	speci�c results� These

results are nontrivial� but seem to be generally available �in one form or another� for

virtually every natural lower ideal F� The Fellows�Langston approach for computing

obstructions requires the following three ingredients�

�i� a decision algorithm for F�

�ii� a �nite	index congruence that re�nes the canonical congruence for F � and

�iii� a bound on the maximum treewidth of the obstructions for F�

The above mentioned �regular language� canonical congruence is introduced in the

next section�

In general� we know that having only the �rst ingredient is not su�cient to

compute the obstruction set for an arbitrary lower ideal F �e�g�� see �vL��� FL��b���

That is� from only a decision algorithm for F� there is no algorithm to computeO�F��

We conjecture that having the �rst two ingredients may be su�cient �CDDF��� This

dissertation uses these three basic ingredients but in a more feasible way than the

�can be computed� results of �FL��a��

We now mention two other successful e
orts concerning the theory of computing

obstructions� Lagergren and Arnborg in �LA��� constructively show �i�e�� without



CHAPTER �� INTRODUCTION ��

the GMT� that every bounded	treewidth minor	order lower ideal with a �nite	index

family congruence has a �nite number of obstructions� Also for bounded treewidth�

Courcelle has indirectly proved that the obstructions for any lower ideal de�ned by a

second	order monadic logic formula can be computed he showed a method of produc	

ing the above mentioned �nite	index congruence from this formula �Cou��a�	�Cou��b��

We do not believe that either of these theoretical methods has been explored in the

implementation sense�

One of the goals for this dissertation is to bridge the gap between the theory of

obstruction set computations and their practical implementations�

��� An Overview of Our Computational Technique

This dissertation describes a basic theory for computing obstruction sets� which is

partially automatable for any minor	order lower ideal� We have successfully used our

technique to �nd obstruction sets for several types of graph families and these are

presented in Part II of this dissertation�

We now sketch our method for computing obstruction sets� To �nd minor	order

obstructions it is su�cient to �nd the obstructions for a slightly relaxed partial order

called the boundary minor order �for graphs with a constant number of labeled ver	

tices denoting the �boundary��� It is easy to extract ordinary obstructions from the

boundaried obstructions�

We have an enumeration scheme that generates all of the boundaried graphs for

a speci�ed maximum pathwidth �or treewidth�� Our tree	like enumeration scheme

has an important property that allows us to prune at dead	ends during the search

process� We have a �pre�x property� on boundaried graphs with respect to our

enumeration order that ensures that it is safe to prune the search space this way�

Thus only fruitful branches to boundaried obstructions are taken� thereby reducing

the overall computation time� Our enumeration tree is obtained from a partial order

of boundaried graphs� This order is di
erent than the �substructure� partial order

�in this case� the boundary minor order� that was illustrated earlier in Figure ����

Figure ���� shows the beginning of an enumeration tree �and partial order� for



CHAPTER �� INTRODUCTION ��

�




�




�




�




�




�




�




�




�




�




�




�




�




�




Continues upward

redundant paths

a canonic search tree redundant
boundaried
graphs

Figure ����� Example of our enumeration order for graphs of pathwidth ��

graphs of pathwidth �� Within this order we grow the search tree by following the

�canonic� paths upward� Also� a graph may be assigned a �redundant� label if every

obstruction above that graph is obtainable by expanding out from another graph�

This initial �underlying� search tree is independent of any speci�c lower ideal that we

are trying to characterize�

For our main pre�x pruning process� we require one or more family	speci�c algo	

rithms� These easily obtainable requirements are used to determine �graph minimal	

ity�� Here� with respect to a �nite	index congruence for a lower ideal F � a boundaried

graph G is minimal if no boundaried minor H of G is in the same equivalence class

as G� Our enumeration tree of boundaried graphs has the pre�x property that every

parent of a minimal graph is also minimal�

In order to de�ne graph minimality� we use an equivalence class on boundaried

graphs �of the same boundary size� with respect to a lower ideal F as follows� First

we �glue together� two boundaried graphs with the binary operator �� by coalescing

boundary vertices with the same label� Then two graphs G and H are in the same

equivalence class of this canonical congruence if and only if for every boundaried



CHAPTER �� INTRODUCTION �

graph Z �called an extension��

G� Z 	 F � H � Z 	 F �

For the set of graphs of bounded treewidth �or pathwidth�� this canonical congruence

is �nite	index for any minor	order lower ideal �e�g�� see �AF�����

During our search� any graph above a nonminimal graph in the enumeration

order �recall Figure ����� is not generated� Thus� many graphs both in and out of

the targeted lower ideal are avoided altogether� Because of our pre�x property and

the GMT� we know that only a �nite number of graphs will be enumerated for each

bounded	width search� Thus� if the largest width of any obstruction is known �for a

targeted lower ideal� then we can �nd the complete obstruction set� For example� we

know that the obstructions for the k�VertexCover graph family have pathwidth

at most k ! ��

For a "avor of what our search trees looks like� we now give a concrete example�

The exact details of what follows may not be totally clear at this juncture� Our

enumeration tree for the �EdgeBounded IndSet family is shown in Figure �����

The �#node� labels are indices into a search database and are sequenced in enu	

meration order� The white nodes� both the circles �in family� and squares �out of

family�� represent minimal graphs �as de�ned above�� That is� the �ve white squares

denote the boundaried minor	order obstructions to �EdgeBounded IndSet� The

two minor	order obstructions that where shown earlier in Figure ��� are #�� � K���

and #� � C�� These can be extracted by following the ��#node� operator�� labels

up the tree� The other three boundaried obstructions represent the same discon	

nected obstruction P� � � �K� but with di
erent boundaries� The root #� represents

the smallest boundaried graph consisting of three isolated boundary vertices� The

missing �#node� numbers in this tree are either irrelevant �e�g�� disconnected� or

non	canonic�redundant graphs� The only nonminimal family graph� #� � P�� is

congruent to one of its edge deleted minors �K� � P��� Lastly� we point out that

graph #��� the cycle C�� is an example of a minimal graph that does not lead to

some boundaried obstruction in the search tree�

Next we survey our four methods for determining graph minimality with respect

to the canonical congruence for a lower ideal F� A main contribution of this dis	



CHAPTER �� INTRODUCTION ��

#0,[0,1,2]

#4,01

#7,0 #11,02

#16,01 #17,02 #19,0 #24,12

#25,0#31,0 #32,1 #35,02 #36,12 #44,1 #46,01 #48,12

#52,01 #54,12 #56,1#61,0 #62,1 #65,02 #66,12

Figure ����� Actual search tree for the �EdgeBounded IndSet graph family�s

obstructions� pathwidth � ��

sertation is to combine these methods to make obstruction set computations more

feasible�

Direct nonminimality checking� After testing for some structural or graph invari	

ant property� we sometimes know when a graph has a congruent minor with respect

to the canonical congruence� Often these properties are quickly computed� For ex	

ample in the family k�EdgeBounded IndSet� we can show that a graph G with

an isolated K� is nonminimal since the minor obtained by deleting one of its edges is

congruent to G�

A �nite�state dynamic program� Given an algebraic representation for a bound	

aried graph �of bounded width�� we use a �nite	state dynamic program to determine

whether a graph G and a minor G� are congruent� These algorithms are designed

so that whenever two input graphs fall in the same computation state� they are con	



CHAPTER �� INTRODUCTION ��

gruent� By the nature of the dynamic program� both G � Z and G� � Z will fall

in the same state for any boundaried graph Z� Unfortunately� in most cases� if two

graphs fall into di
erent states� we can not infer that they are not congruent� For

our k�EdgeBounded IndSet example� a congruence that can be implemented as

a dynamic program is now presented� For a boundaried graph G and each vertex

subset S of the boundary � de�ne the following partial function�

IndSetG�S� � max�jIj � k ! � � I � � � S and I is an independent set�

Two boundaried graphs G and H are in the same equivalence class �in this re�nement

of the canonical congruence for k�EdgeBounded IndSet� if

min�jE�G�j� k ! �� � min�jE�H�j� k ! �� and

IndSetG�S� � IndSetH�S� for all S 
 � �

We later present �and prove correct� a linear time dynamic program for the indepen	

dent set component of this congruence �see Chapter ���

A random extension search� A random boundaried graph Z may be a witness to

G not being congruent to a minor G�� That is� we search for an extension Z such

that G � Z is not in F while G� � Z is in F � Very little computer resources are

needed for these types of checks� We repeat these random extension searches several

times until each minor G� of G is shown to be in a di
erent equivalence class than

G�s equivalence class �or until a �give	up� threshold is reached�� Since F is a lower

ideal� it is bene�cial to �nd a random boundaried graph Z such that G � Z is not

in F but for any minor Z � of Z� G � Z � is in F � �This is done before checking if an

extended minor G� � Z is in F ��

Boundaried graph tests� We use a �nite subset of boundaried graphs� called

a testset� that is su�cient to determine if two graphs are in the same canonical

equivalence class� That is� if two graphs G and H pass the same set of tests via �

then they are congruent �for all extensions�� otherwise they are not� A graph G passes

a test Z whenever G�Z is in F � �The reader may recall the Myhill�Nerode Theorem

regarding regular languages�� Usually a testset for a lower ideal F is quite large�

Thus� determining minimality or nonminimality for a particular graph may require

many family membership checks� We can often reduce the cardinality of a testset



CHAPTER �� INTRODUCTION ��

by observing a few properties of F � For the family k�EdgeBounded IndSet� we

know that any �useful� test requires at most k edges� Furthermore� for this lower

ideal� any component C of a test Z without any boundary vertices can be replaced

with Independence�C� ! jE�C�j isolated vertices� �This means that all edges of each

test for this family should belong on some path to a boundary vertex��

We use various selections of the above mentioned minimality�nonminimality

methods �in Part II of this dissertation� to characterize several interesting graph

families� As alluded to earlier� �nding obstruction set characterizations is �in princi	

ple� one route for establishing constructive versions of many of the known applications

of the Robertson�Seymour results�

��� A Survey of The Dissertation

The primary and secondary research contributions in this dissertation are�

�� Finding obstruction set characterizations for various families of graphs using

newly developed computational techniques�

� Prove usable combinatorial width bounds for lower ideals�

� Introduce practical graph enumeration schemes

�using algebraic representations of graphs��

� Use compact �nite	index family congruences�

� Provide canonical congruences in the form of testsets�

� Utilize a randomized obstruction	set search strategy�

�� Developing e�cient algorithms for graphs of bounded combinatorial width�

� Give dynamic programs for several graph families�

� Prove a simple linear time algorithm for �nding path decompositions of

small width�

� Show how family	membership automata for graphs can be constructed

from bounded	width �nite	index congruences�



CHAPTER �� INTRODUCTION ��

For the �rst research area �i�e�� our more glamorous and developed area�� we

implemented an automated technique for �nding obstruction sets� In the next four

chapters we describe some of our practical experience in realizing this goal �e�g��

what new theory was needed�� In the four chapters that follow this general theory�

we illustrate our approach by characterizing several graph families� We also present

several required family	speci�c results that were needed for the completion of these

obstruction set computations�

The second research area is more applied in nature� It has been known in several

research circles that e�cient graph algorithms often exist when the input is restricted

to graphs of bounded combinatorial width� This is contrasted with the general case

where the same computational problems appear to be intractable� Many automated

techniques based on formal problem descriptions exist� in theoretical form only� for

producing these types of bounded	width algorithms �e�g�� see �Bor��� Cou����� Un	

til these approaches are developed� we rely on the successful dynamic	programming

methods �e�g�� see �ALS��� Bod��a� CSTV����� This dissertation contributes new

practical algorithms to this list� That is� for each of our obstruction set compu	

tations� we also give a corresponding linear time membership algorithm for parsed

graphs of bounded pathwidth�

A survey of the remaining chapters of this three part dissertation is given below�

At this time� we point out that some of the material of this dissertation has ap	

peared elsewhere� notably Chapters �� � and �� in the papers �CD���� �CDF�a� and

�CDF�b�� respectively� After a concluding Chapter ��� an annotated bibliography is

given for the sake of completeness� An index is also included at the end�

The �rst part of this dissertation contains our basic theory for computing obstruc	

tion sets based on a bounded combinatorial width search space� Chapter � shows how

graphs can be algebraically represented in this bounded width domain� Chapter �

provides the set	theoretic background needed for �nding minor	order obstructions�

Chapter � contains our main theory for �nding obstructions� with implementation

aspects in mind� Chapter  concludes Part I with a brief description of our software

and a selection of future research topics�



CHAPTER �� INTRODUCTION ��

The second part of this dissertation illustrates our computational technique for

�nding obstruction sets� This coverage spans several graph families� We begin in

Chapter � by characterizing the well	known families k�VertexCover� for k �

�� �� � � � � � Next in Chapter �� we illustrate the use of Myhill�Nerode testsets �con	

sisting of boundaried graph tests� to compute obstruction sets for two types of �almost

tree� families of graphs �i�e�� k�FeedbackVertexSet and k�FeedbackEdgeSet��

In the third chapter in this series� namely Chapter �� we generalize the lower ideals of

the previous two chapters by studying those graphs with small path covers and cycle

covers� To round out our presentation we give in Chapter � some initial results on

computing obstructions for surface embedable graph families� with the main focus on

the family ��OuterPlanar�

The third part of this dissertation presents several applications	oriented topics

concerning �nite state automata and bounded combinatorial width� Each of these

chapters is independent from the remaining parts of this dissertation and can be di	

gested without a full understanding of our obstruction set computation theory� Chap	

ter �� contains a link between computational biology and VLSI layout problems in

terms of bounded pathwidth� Chapter �� develops some complexity results regarding

minimizing testsets for automata and shows how automata can be used to compute

obstruction sets� Lastly� Chapter �� presents a very simple linear time algorithm for

�nding small path decompositions of a graph �or determines that a graph has large

pathwidth��



��

Part I

The Basic Theory



��

Chapter �

Bounded Combinatorial Width

We are interested in certain subsets of the set of all �nite graphs� In particular� two

popular graph families that we utilize have �bounded combinatorial width�� Here

the width of a graph is de�ned in many possible ways� often in"uenced by the graph

problems that are being investigated� For example� for VLSI layout problems we may

de�ne the width of a planar graph �which represents a circuit� as the least surface

area needed over all layouts� where vertices and edge connections are laid out on a

grid� Two sets of graphs that we utilize in this dissertation are graphs of bounded

pathwidth and treewidth� These width metrics and the corresponding graph families

that are bounded by some �xed width are important for a variety of reasons�

�� These families are minor	order lower ideals�

�� They play a fundamental role in the proof of the Graph Minor Theorem�

�� Many popular classes of graphs are subsets of these families�

�� These widths are used to cope with intractability�

� There are many natural applications�

The �rst statement is particularly important for our obstruction set computations�

Here if H is a minor of a graph G then the pathwidth �treewidth� of H is at most

the pathwidth �treewidth� of G�



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

Regarding the development of graph algorithms� we want to emphasize that there

is a common trend in that practical algorithms often exist for restricted families of

graphs �such as trees or planar graphs�� while the general problems remain hard to

solve for arbitrary input� This tendency for e�cient algorithms includes instances

where the problem�s input is restricted to graphs of bounded pathwidth or bounded

treewidth�

��� Introduction

The use of bounded combinatorial width is important in such diverse areas as com	

putational biology� linguistics� and VLSI layout design �KS��� KT��� M�oh���� For

problems in these areas� the graph input often has a special tree	like �or path	like�

structure� A measure of width of these structures is formalized as the treewidth �or

pathwidth�� It is easy to �nd examples of families of graphs with bounded treewidth

such as the sets of series	parallel graphs� Halin graphs� outer	planar graphs� and

graphs with bandwidth at most k �see Section ����� and �Bod��a��� One also �nds

other natural classes of graphs with bounded treewidth in the study of the reliability

of communication networks and in the evaluation of queries on relational databases

�MM��� Bie��� Arn��� The treewidth parameter also arises in places such as the ef	

�ciency of doing Choleski factorization and Gaussian elimination �BGHK��� DR����

The pathwidth and treewidth of graphs have proven to be of fundamental impor	

tance for at least two distinct reasons� ��� their role in the deep results of Robertson

and Seymour �RS��� RS��a� RS��a� RSc�� and ��� they are �common denominators�

leading to e�cient algorithms for bounded parameter values for many natural input

restrictions of NP	complete problems� To further explain this second phenomenon�

consider the classic NP	complete problem of determining if a graph G has a vertex

cover of size k� where both G and k are part of the input� It is known that if k is

�xed �i�e�� not part of the input� then all yes instances to the problem have path	

width at most k� This restricted problem can be solved in linear time for any �xed

k �see Chapter ��� For more examples� besides the bounded	width families studied

in this dissertation� see �Bod��a� FL��� M�oh���� In general� many problems� such



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

as determining the independence of a graph� can be solved in linear time when the

input also includes a bounded	width path decomposition �or tree decomposition� of

the graph �see �Arn�� AP��� Bod��a� CM��� WHL�� and �Bod��a� for many further

references�� Examples of this latter type are di
erent from the vertex cover example

because a width bound for the yes instances is not required �e�g�� for every �xed k

there exists a graph of independence k with arbitrarily large treewidth��

Another well	known fact about the set of graphs of pathwidth or treewidth at

most k is that each set is characterizable by a set of forbidden minors� We denote

these parameterized lower ideals by k�Pathwidth and k�Treewidth� For ex	

ample some recently discovered obstruction sets for ��Pathwidth� ��Treewidth�

��Treewidth are shown in Figures ��� and ��� �on page � at the end of this

chapter �APC���� Besides the single obstruction K� for ��Treewidth� a set of ���

obstructions for ��Pathwidth �see �Kin���� is the only other known characterization

for bounded pathwidth or treewidth�

����� Treewidth and k�trees

Informally� a graph G has treewidth at most k if its vertices can be placed �with

repetitions allowed� into sets of order at most k ! � and these sets arranged in a tree

structure� where ��� for each edge �u� v� of G both vertices u and v are members of

some common set and ��� the sets containing any speci�c vertex induces a subtree

structure� Figure ��� illustrates several graphs with bounded treewidth �pathwidth��

Below is a formal de�nition of treewidth�

De�nition �� A tree decomposition of a graph G � �V�E� is a tree T together

with a collection of subsets Tx of V indexed by the vertices x of T that satis�es�

��
�
x�T

Tx � V �

�� For every edge �u� v� of G there is some x such that u 	 Tx and v 	 Tx�

�� If y is a vertex on the unique path in T from x to z then Tx � Tz 
 Ty�



CHAPTER �� BOUNDED COMBINATORIAL WIDTH �

Figure ���� Demonstrating graphs with bounded treewidth �and pathwidth��



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

The width of a tree decomposition is the maximum value of jTxj � � over all vertices

x of the tree T � A graph G has treewidth at most k if there is a tree decomposition of

G of width at most k� Path decompositions and pathwidth are de�ned by restricting

the tree T to be simply a path �see Section ����� below��

De�nition �� A graph G is a k�tree if G is a k	clique �complete graph� Kk or G

is obtained recursively from a k	tree G� by attaching a new vertex w to an induced

k	clique C of G�� such that the open neighborhood N�w� � V �C�� A partial k�tree is

any subgraph of a k	tree�

Alternatively� a graph G is a k	tree if

�� G is connected�

�� G has a k	clique but no �k ! ��	clique� and

�� every minimal separating set is a k	clique�

The above result was taken from one of the many characterizations given in �Ros����

The next useful result appears in many places �ACP��� RS��a� Nar����

Theorem �� The set of partial k	trees is equivalent to the set of graphs with

treewidth at most k

����� Pathwidth and k�paths

For our representations of graphs of bounded width we use graphs that have a dis	

tinguished set of labeled vertices� These are formally de�ned next�

De�nition �� For a positive integer k� a k�simplex S of a graph G � �V�E� is an

injective map �S � f�� �� � � � � kg � V � A k�boundaried graph B � �G�S� is a graph G

together with a k	simplex S for G� Vertices in the image of �S are called boundary

vertices �often denoted by ��� The graph G is called the underlying graph of B�



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

We now de�ne a family of graphs where each member has a linear structure� As

in Theorem �� a graph has pathwidth at most k � � if and only if it is a subgraph

of an underlying graph in the following set of k	boundaried graphs� Our de�nition

of a k	path is consistent �except for the base clique� with other de�nitions that use

a set of boundary vertices with one fewer vertex �see for example �BP����� Later in

Lemmas � and �� we justify these two statements�

De�nition �� A graph G is a �k � ���path if there exists a k	boundaried graph

B � �G�S� in the following family F of recursively generated k	boundaried graphs�

�� �Kk� S� 	 F where S is any k	simplex of the complete graph Kk�

�� If B � ��V�E�� S� 	 F then B� � ��V �� E��� S �� 	 F

where V � � V � fvg for v �	 V � and for some j 	 f�� �� � � � kg�

�a� E� � E � f��S�i�� v� j � � i � k and i �� jg� and

�b� S� is de�ned by �S��i� �

��
� v if i � j

�S�i� otherwise
�

A partial k�path is subgraph of a k	path�

Item � in the above de�nition states that a new boundary vertex v can be added

as long as it is attached to any current �k���	simplex within the active k	simplex S�

The set of boundary vertices of B � is the closed neighborhood N �v� of the new vertex

v�

The de�nition of a tree decomposition is easily specialized for this path	structured

case�

De�nition �� A path decomposition of a graph G � �V�E� is a sequenceX��X�� � � � �Xr

of subsets of V that satisfy the following conditions�

��
�

��i�r

Xi � V �

�� For every edge �u� v� 	 E� there exists an Xi� � � i � r� such that u 	 Xi and

v 	 Xi�



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

�� For � � i � j � k � r� Xi �Xk 
 Xj�

The pathwidth of a path decomposition X��X�� � � � �Xr is max��i�r jXij � �� The path�

width of a graph G� denoted pw�G�� is the minimum pathwidth over all path decom	

positions of G�

The next de�nition makes the development of bounded pathwidth algorithms

easier to understand and prove correct�

De�nition � A path decomposition X��X�� � � � �Xr of pathwidth k is smooth� if

for all � � i � r� jXij � k ! �� and for all � � i � r� jXi �Xi��j � k�

It is evident that any path decomposition of minimum width can be transformed

into a smooth path decomposition of the same pathwidth� There is a corresponding

notion of a smooth tree decomposition� See �Bod��a� for a simple procedure that

converts any tree decomposition into a smooth tree decomposition� From a smooth

decomposition of width k we can easily embed a graph in a k	path or k	tree �e�g�� see

proof of Lemma ����

To initiate the reader �and for completeness�� we now give two basic results

regarding the notion of pathwidth �RS��a�� We use part of the second result when

we prove that our algebraic graph representation �given in Section ���� is correct�

Lemma 	� If a graph G has components C�� C�� � � � � Cr then

pw�G� � max
��i�r

fpw�Ci�g �

Proof� For � � i � r� let X i
��X

i
�� � � � �X

i
si

be a path decomposition for component Ci

with minimum width wi � pw�Ci�� The sequence of sets

X�
� �X

�
� � � � � �X

�
s�
�X�

� �X
�
� � � � � �X

�
s�
� � � � �Xr

� �X
r
� � � � � �X

r
sr

is a path decomposition of G since ���
Sr
i�� V �Ci� � V �G�� ���

Sr
i��E�Ci� � E�G��

and ��� Xa
i �X

b
j � � for � � i � sa� � � j � sb� and � � a � b � r� The width of

this decomposition is maxri��fwig� so pw�G� � maxri��fpw�Ci�g�



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

Let X��X�� � � � �Xs be a path decomposition of G of minimum width� For any

componentCi of G� letDj � Xj�V �Ci� for j � �� �� � � � s� We claim that D��D�� � � � �Ds

is a path decomposition of Ci� Since for all v 	 V �G� there is an Xk such that v 	 Xk�S
��j�sDj � V �Ci�� Likewise� since for every edge �u� v� 	 E�G� there is an Xk such

that u 	 Xk and v 	 Xk� So if �u� v� 	 E�Ci�� then both u 	 Dk and v 	 Dk�

Finally� for � � i � j � k � s� Xi �Xk 
 Xj implies Di �Dk 
 Dj � Therefore� since

jDkj � jXkj for � � k � s� pw�Ci� � pw�G� for any component Ci of G� �

The following well	known lemma shows that the pathwidth of a partial k	path is

at most k� Thus we can justi�ably think of partial k	paths as either subgraphs or as

minors of k	paths�

Lemma 
� If G is a k	path then pw�G� � k� Further� if H is a minor of G� H �m G�

then pw�H� � k�

Proof� We �rst prove that any k	path G obtained from a de�ning �k!��	boundaried

graph �G�S� has a path decompositionX��X�� � � � �Xr of width k where Xr � image�S�

�i�e�� Xr is the set of boundary vertices�� For the base case of G a �k ! ��	clique� the

hypothesis holds since X� � f�� �� � � � � k!�g � V �G� is a path decomposition of width

k� For the inductive step� assume X��X�� � � � �Xr is a path decomposition for G� Let

G� be the k	path built from some �G�S� by applying case � of De�nition � If we set

Xr�� � image�S�� then X��X�� � � � �Xr�Xr�� is the required path decomposition of

G�� � ��� The new vertex v is in Xr��� ��� all new edges �u� v� in E�G�� n E�G� have

u 	 Xr�� and v 	 Xr��� and ��� Xi � Xr�� 
 Xi � Xr implies Xi �Xr�� 
 Xj for

� � i � j � r� �

To see that any k	path G has a lower bound of k for its pathwidth� �rst notice that

G contains a clique C of size k ! �� For any path decomposition X � X��X�� � � � �Xr

of G� let Yi � Xi �V �C� for � � i � r� If any jYij � k then the width of X is at least

k� Suppose jYij � k for all Yi� There must then be a Yi and a Yj� � � i � j � r� such

that u 	 Yi n Yj and v 	 Yj n Yi for di
erent vertices u and v� Since �u� v� 	 E�C��

there must be some Yk� � � k � r� such that u 	 Yk and v 	 Yk� Now fu� vg �
 Yi�Yj

so either k � i or k � j� But v �	 Yk for k � i� and u �	 Yk for k � j� This contradicts

X being a path decomposition �i�e�� it fails the edge covering requirement�� Therefore�

the pathwidth of any k	path is k�



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

For the second part of the theorem� we start with a path decomposition X �

X��X�� � � � �Xr of width k for a k	path G� It is su�cient to show that any one	step

minor H of G has a path decomposition of width at most k� For edge deletions�

H � G n f�u� v�g� the original path decomposition X is a path decomposition of

the minor H� For isolated vertex deletions� H � G n fvg� the path decomposition

X� n fvg�X� n fvg� � � � �Xr n fvg is a path decomposition of the minor H� For edge

contractions� H � G 	 �u� v�� let

Yi �

��
� Xi if Xi � fu� vg � �

Xi � fwg n fu� vg otherwise

for � � i � r� where w is the new vertex created by the contraction� The sequence

Y � Y�� Y�� � � � � Yr is a path decomposition of the edge contracted minor H� The

widths of these path decompositions for the three types of one	step minors is at most

k�

We justify the edge contraction case and leave the other two simpler cases to the

reader� By de�nition�
S
��i�s Yi � V �H�� Let �a� b� 	 E�H�� If fa� bg�fu� vg � � then

some Yi � Xi contains both a and b� Otherwise� consider any edge �a� b� � �x�w�� An

edge incident to vertex w implies that either �x� u� 	 E�G� or �x� v� 	 E�G�� Thus

some Xi contains x and either one or both of u and v� And so� Yi � Xi �fwg n fu� vg

contains both x and w� Finally� let i be the minimum index such that w 	 Yi and k

be the maximum index such that w 	 Yk� Without loss of generality� assume u 	 Xi�

If u 	 Xk then Y � X n fvg and Y is a path decomposition of H� Otherwise�

v 	 Xk� Since �u� v� 	 E�G�� there exists a j� i � j � k� such that both u 	 Xj and

v 	 Xj � Since X is a path decomposition� u 	 Xm for i � m � j� and v 	 Xm for

j � m � k� So w 	 Ym for i � m � k� and w �	 Ym for m � i or m � k� Therefore�

for � � i � j � k � s� we have Yi � Yk 
 Yj � �

Corollary ��� Any graph of order n and pathwidth k has at most
�
k��
�

�
!�n�k�

�� � k edges�

Proof� We easily prove that equality holds for k	paths by induction on the number

of vertices� Since the smallest k	path is the complete graph G � Kk��� our base case

holds since jE�Kk���j �
�
k��
�

�
� If a k	path G has n � k ! � vertices� then there



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

exists a vertex v that was added to a smaller k	path G� � Gnfvg �using the recursive

de�nition of k	paths�� When vertex v was added to G�� there were exactly k new edges

added too� So G must have
�
k��
�

�
! ��n� ��� k� �� � k ! k �

�
k��
�

�
! �n� k� �� � k

edges� �

From the above corollary we see that graphs of bounded pathwidth have at most

a linear number of edges �with respect to n�� It is not di�cult to show that graphs

of treewidth k also have this same bound� So� since the input size is linear in the

number of vertices �for our bounded width algorithms�� there is no confusion when

we talk about having a linear time algorithm�

We now complete this subsection by proving the converse of Lemma ��

Lemma ��� Any graph G of pathwidth at most k is a subgraph of a k	path�

Proof� If G has at most k ! � vertices we can embed G in the base clique Kk���

the smallest k	path� Otherwise� let X��X�� � � � �Xr be a smooth path decomposition

of G of width k� We can map the vertices of X� into the base clique Kk��� By

induction� assume that we have embedded the vertices of �ij��Xj in a k	path where

Xi is the set of boundary vertices of the �k ! ��	boundaried graphs Bi � �Gi� Si��

generated by the rules of De�nition � We can construct the next �k! ��	boundaried

graph Bi�� � �Gi��� Si��� by adding the unique vertex v 	 Xi�� n Xi in step � of

De�nition  and dropping the unique vertex v� 	 Xi nXi�� from the simplex Si of the

previous k	path Gi� Since each Xi� � � i � r is mapped to a k ! �	clique� every edge

of G is mapped to an edge of the k	path Gr � G� �

����� Other graph�theoretical widths

There are actually many types of combinatorial width metrics for graphs� Often

a set of graphs bounded by one type of combinatorial width is a subset of a class

of graphs with another bounded parameter� A relationship between treewidth and

several graph widths is given by Bodlaender in �Bod��b�� In addition� Wimer�s disser	

tation �Wim��b� explores the relationships between �	terminal recursive families �e�g��

series	parallel graphs� outer	planar graphs� and cacti�� This work is now highlighted

in Figure ����



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

treewidth � k

k�outerplanar series�parallel

Halin graphs outerplanar

almost k trees

cutwidth � k

bandwidth � k pathwidth � k

forests

trees

interval graph� max clique � k

cyclic bandwidth � k

caterpillars

cacti

chordal graph� max clique � k

proper interval graph� max clique � k

Note that each constants k denotes a di
erent constant� For example�

the set of all graphs of bandwidth k is contained in the set of graphs of

cutwidth k� � �k� ! k�	��

Figure ���� A partial order of several bounded	width families of graphs�



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

We brie"y describe two of the bounded width families� given in Figure ���� that

originated from VLSI linear layout problems� A linear layout of a graph G � �V�E�

is a bijection f � V � f�� �� � � � � jV jg� that is� an assignment of integers � to jV j

to the vertices� The bandwidth of a layout is the maximum value of jf�i� � f�j�j

over all edges �i� j� 	 E� that is� the maximum distance any edge has to span in

the layout� The cutwidth of a layout is the maximum number of edges �i� j� such

that f�i� � k � f�j� over all � � k � jV j� that is� the maximum number of lines

that can be cut between any layout position k and k ! �� The bandwidth �cutwidth�

of the graph is the minimum bandwidth �cutwidth� over all linear layouts� Both of

these �min of max� de�nitions are similar to the pathwidth and treewidth de�nitions

that we saw earlier� In fact� the pathwidth of a graph is equivalent to the vertex

separation of a graph which is also de�ned as a linear layout problem �see Chapter ����

The de�nition of interval graphs may be found in most introductory graph theory

books they are also mentioned in Chapter ��� We conclude this section with a

description for two of the other less known bounded	width families� A Halin graph

is a planar graph G � T � C� where T is a tree of order at least � with no degree

two vertices and C is a simple cycle connecting all and only the leaves of T � A cactus

�member of the cacti family� is a connected outer	planar graph that has single edges

and simple cycles as its blocks�

��� Algebraic Graph Representations

Recall that we are mainly interested in �nite simple graphs� However� some of our

graphs have a vertex boundary of size k� meaning that they have a distinguished set

of vertices labeled �� �� � � � � k� We sometimes use � �instead of k� as a boundary label�

One important operation on k	boundaried graphs is given next�

De�nition ��� Two k	boundaried graphs �each with a boundary of size k� can be

�glued together� with the � operator� called circle plus� that simply identi�es vertices

with the same boundary label�



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

Example ��� The binary operator � on two �	boundaried graphs A and B is il	

lustrated below� Note that common boundary edges �in this case� the edges between

boundary vertices � and �� are replaced with a single edge in G � A�B�

G � A�BBA

�

�

	

�

�

	

����� Operator sets and t�parses

In this section we show that �t ! ��	boundaried graphs of pathwidth at most t are

generated exactly by strings of unary operators from the following operator set $t �

Vt � Et�

Vt � f �n� � � � � tng and

Et � f i j j � � i � j � tg�

To generate the graphs of treewidth at most t� the additional binary operator � is

added to $t� The semantics of these operators on �t ! ��	boundaried graphs G and

H are as follows�

G in Add an isolated vertex to the graph G� and label it as

the new boundary vertex i�

G i j Add an edge between boundary vertices i and j of G �and

ignore if the edge already exists��

G �H Take the disjoint union of G and H except that bound	

ary vertices of G and H that are labeled the same are

identi�ed �i�e�� the circle plus operator��

De�nition ��� A parse is a sequence �or tree� if� is used� of operators �g�� g�� � � � � gn�

in $�
t that has vertex operators inand jnoccurring in �g�� g�� � � � � gn� before the

�rst edge operator i j � � � i � j � t�



CHAPTER �� BOUNDED COMBINATORIAL WIDTH �

De�nition ��� A t�parse is a parse �g�� g�� � � � � gn� in $�
t where all the vertex oper	

ators �n� �n� � � � � tnappear at least once in �g�� g�� � � � � gn�� That is� a t	parse is a

parse with t! � boundary vertices�

For clarity� we say that a treewidth t�parse is any t	parse containing at least one

� operator and a pathwidth t�parse is any t	parse without � operators�

Intuitively� t	parses represent �t! ��	boundaried graphs that have pathwidth �or

treewidth� at most t� We justify this statement later in this section� These graphs are

constructed by using the rules de�ned for the unary vertex and edge operators and

the binary circle plus operator� The simplex S of a t	parse �i�e�� the corresponding

boundaried graph� is informally de�ned to be �S�i� � in� � � i � t� where each

inis the last occurrence in the parse� The symbol � is used to denote the set of

boundary vertices of a boundaried graph�

As we proceed with our obstruction set computation theory� we use the phrase

�a t	parse G� in one of three ways�

� as a �t ! ��	boundaried graph �also called G��

� as an implied path �or tree� decomposition of a graph� or

� as a data structure �e�g�� for dynamic programs��

Thus� a t	parse G is used with standard object	oriented terminology �i�e�� a t	parse

G �is a� boundaried graph and G �has a� decomposition�� where any operations on

graphs may also be applied to a t	parse G�

De�nition ��� Let G � �g�� g�� � � � � gn� be a t	parse and Z � �z�� z�� � � � � zm� be any

sequence of operators over $t� The concatenation ��� of G and Z is de�ned as

G � Z � �g�� g�� � � � � gn� z�� z�� � � � � zm��

The t	parse G �Z is called an extended t�parse� and Z 	 $�
t is called an extension� For

the treewidth case� G and Z are viewed as two connected subtree factors of a parse

tree G � Z instead of two parts of a sequence of operators�



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

A vertex operator gj � in� for any � � i � t� in a t	parse Gn � �g�� g�� � � � � gn� is

called a boundary vertex if gk �� infor j � k � n�

De�nition �� A graph G is generated by $t if there is a �t! ��	boundaried graph

�B�S� � Gn � �g�� g�� � � � � gn� such that B � G for some t	parse Gn� That is� G is

isomorphic to an underlying graph of a t	parse�

For ease of discussion throughout the remaining part of this chapter� we limit

ourselves to graphs of bounded pathwidth while leading up to our obstruction set

search theory� In certain situations� where required� we provide additional information

pertaining to graphs of bounded treewidth�

De�nition �	� Let Gn � �g�� g�� � � � � gn� be a boundaried graph represented as some

parse over $t� A pre�x graph �of length m� of Gn is Gm � �g�� g�� � � � � gm�� � � m � n�

Lemma �
� Every t	parse Gn � �g�� g�� � � � � gn� represents a graph with a path de	

composition of width t�

Proof� Without loss of generality� let Gn � �g�� g�� � � � � gn� be a �t ! ��	boundaried

graph� Let vi denote the index of the i	th vertex operator in the t	parse Gn� Let I

be the set of these vi and for i 	 I�

Xi � fj j gvj is a boundary vertex of Gvig

We claim that X � X��X�� � � � �XjIj is a path decomposition of width t for Gn�

For any vertex operator gk� de�ne label�gk� to be i if gk is the i	th vertex operator

in Gn� By de�nition of the Xi�s�
S
Xi � f�� �� � � � � jIjg � V �Gn�� For any edge

operator gk � i j of Gn� let b��gk� and b��gk� denote the indices of the preceding

vertex operators inand jn� respectively� For each edge operator gk � i j of Gn�

let u � label�b��gk�� and v � label�b��gk��� Since edge operators add edges to the

current boundary of a pre�x graph� either Xu or Xv must contain both u and v�

Assuming i � j� Xi �Xj represents the boundary vertices of Gvj that did not change

from Gvi � So for any k� i � k � j� we have Xi � Xj 
 Xi � Xk� This implies that

Xi �Xj 
 Xk�



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

Finally� since only �and exactly� the vertex operators �n� �n� � � � � tnappear

in Gn we have max��i�jIj fjXijg � t! �� So X is a path decomposition of width t for

Gn� �

And next we prove the result in the other direction�

Lemma ��� Every partial t	path of order at least t ! � is represented by some

t	parse�

Proof� We �rst show that every t	path can be represented by some t	parse� We prove

inductively from the recursive de�nition of t	paths� The initial �t ! ��	clique can be

represented by the following sequence of operators over $t�

� �n� �n� � � � �n� � � � � � � �n� � � � � � � � � � � � � � tn� � t � � t � � � � � t�� t �

For the inductive step� assume that any t	path G with an active t ! � simplex

S is represented by an operator string Gm � �g�� g�� � � � � gm� such that �S is de�ned

properly� The recursive operation of �replacing a simplicial vertex with a new vertex

v �forming a new clique�� can be modeled by appending the operator sequence of the

form

� in� � i � � � � � i�� i � i i!� � � � � � i t �

to Gm depending on which simplicial vertex �boundary vertex i� should be replaced�

Thus� any t	path can be represented by a t	parse over $t�

To represent partial t	paths� note that each edge is represented by one or more

edge operators� By simply deleting all of these edge operators� any edge in the t	parse

is removed� Thus� by repeatedly deleting edges� we get a t	parse for any partial t	path�

�

Note that many t	parse representations may exist for a partial t	path since many

path decompositions are generally possible� Finally� combining the previous two

lemmas we have the following theorem�

Theorem ��� The family of graphs �t	parses� generated by $t equals the family of

partial t	paths of order at least t! ��



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

Corollary ��� A graph G has pathwidth t if and only if it is generated by $t but

not $t��

Proof� If a graph G is generated by $t� then it has pathwidth t � �� If G has

pathwidth t then it is a partial t	path and by the above theorem it has a t	parse

representation over $t� �

For a treewidth analog to Theorem ��� we have the following result�

Theorem ��� The set of treewidth t	parses represents the set of graphs of order at

least t ! � and treewidth at most t�

Proof� We �rst show that any t	parse G has a tree decomposition �T� fTxg� of width

t where the current boundary of G is in some Tx� x 	 T � We prove this by induction

on the number of operators in G and whether or not G has any � operators� For

the base cases of no � operators� we have by Lemma ��� a path decomposition

X � X�� � � � �Xr of width t� Thus G has a tree decomposition �Pr� fXi j i 	 V �Pr�g��

where Pr denotes a path of length r� Note that by our constructive proof the set Xr

contains the current boundary of G�

Now assume G contains at least one � operator� We have three cases� If G �

G� � G� then let �T �� fT �
xg� and �T ��� fT ��

xg� be tree decompositions for G� and G��

respectively� Since both G� and G� have fewer operators than G� there exists sets T �
x

and T ��
x that contain the boundary of G� and G� �or of G itself�� A tree decomposition

of G of the desired form is constructed by identifying T �
x and T ��

x in the two subtree

decompositions� If G � G� � � i j � then let �T �� fT �
xg� be a tree decomposition of

the desired form for G�� Since both boundary vertices i and j are in some vertex set

T �
x for some x 	 T �� �T �� fT �

xg� is the required tree decomposition for G� Similarly� if

G � G� � � in�� let �T �� fT �
xg� be a tree decomposition of the desired form for G�� Let

T be the tree constructed by attaching a vertex i to T � at vertex x� where T �
x contains

all the boundary vertices of G�� Set Ti � T �
x n fi

�g � fig where i� represents the old

boundary vertex� This proves that every t	parse has treewidth at most t�

Now we show that any t	tree G with at least t ! � vertices contains a t	parse

representation� As in the proof of Lemma ��� any partial t	tree is representable



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

by removing the appropriate edge operators� Our proof is based on a smooth tree

decomposition �T� fTxg� of G� In particular� jTxj � t!� for all x 	 T and jTu�Tvj � t

whenever u and v are adjacent in T � We recursively build a t	parse for G by arbitrarily

picking a root vertex r of T and having Tr as the �nal t	parse boundary�

We �rst require a function �i�j that takes a t	parse H and returns a t	parse

H � where the boundary labels i and j have been interchanged� �The reader should

observe that the function �i�j is easy to construct�� For the proof below we assume

that the underlying graph G is labeled �� �� � � � � jGj� and that any partial t	parse will

have boundary vertex i less than boundary j� whenever the underlying label for i is

less than the underlying label for j� This boundary order is needed to keep things

aligned when we use the � operator�

If G has t!� vertices �i�e�� a cliqueKt��� then the construction given in Lemma ��

for the t	path case is su�cient� We now recursively build a t	parse for G based on

the degree d � � of a root vertex r� Let v�� � � � � vd be the neighbors of vertex r in

T � For each � � i � d consider the subtree decomposition �T i� fT i
xg� induced by the

subtree of T rooted at vi� By induction we have t	parses G�� � � � � Gd for these pieces

of G with boundary sets Tv�� � � � � Tvd� respectively�

If d � �� we have the following t	parse� where i denotes the boundary vertex

representing the single vertex in Tv� n Tr� for the original t	parse G �using the proof

method of Lemma ����

G� � � in� � i � � � � � i�� i � i i!� � � � � � i t �

If the new boundary vertex i is out of boundary order with respect to Tr then we can

apply the �i�j function �possibly several times with di
erent vertices i and j��

If d � � then we apply one vertex operator for each subtree parse and a total of

d � � circle plus operators to combine the pieces� The vertex operator is chosen the

same way as in the d � � case and we may have to permute with the �i�j function�

Let G�
i denote a particular t	parse� for � � i � d� The t	parse for G is then created

by the following parse�



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

�

G�
� G�

�

G�
d��

G�
d

�

�

G�
�

�

Note that multi	edges created by the repeated � operators are ignored� �

����� Some t�parse examples

The next three examples illustrate our algebraic representation of t	boundaried graphs

of bounded width� The �rst two t	parse examples are graphs of pathwidth � which

are then combined with the circle plus operator to form a graph of treewidth ��

Example ��� A t	parse with t � �� and the graph it represents� �The shaded

vertices denote the �nal boundary��

� �n� �n� �n� � � � � � � �n� � � � � � � �n� � � � � � � �n� � � � � � �

Example ��� Another �	parse and the graph it represents�



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��


 �n� �n� �n� � � � � � � �n� � � � � � � �n� � � � � � � �n� � � � � � � �n� � � � � � �

Example ��� We demonstrate the circle plus operator � with the �	boundaried

graphs ��	parses� given in the previous two examples� The second graph is re"ected

and glued onto the �rst graph�s boundary� In general� the pathwidth of a t	parse

usually increases when the binary operator � is used �although not in this example��

�

�

�

����� Other operator sets

Our t	parse representation for graphs of pathwidth �or treewidth� at most t is not

unique� We now present two di
erent operator sets for representing graphs of bounded

combinatorial width� Many other algebraic representations are available� sometimes

in disguised form� by other sources �e�g�� see �Bor��� BC��� CM��� Wim��b��� The

following two examples illustrate two extremes regarding the number of operators

required to represent graphs of pathwidth �or treewidth� of at most k� The �rst set

shows that only a constant number ��� of operators is needed� independent of the

width k �Fel�� The second set uses a polynomial number of operators per boundary



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

size� but generates k	boundaried graphs for pathwidth k �instead of graphs with

boundary size k! ��� We point out that another �middle ground� operator set based

on a combination of these two sets is given in �Lu����

A constant sized operator set %k� for graphs with pathwidth at most k� consists

of two boundary permutation operators p� and p� and the two t	parse graph building

operators �nand � � � The domain for these operators is again �k ! ��	boundaried

graphs� The permutation operators are used to relabel the boundary� These per	

mutations� given in the standard cyclic form� are p� � ��� �� and p� � ��� �� � � � � k��

These two permutations generate the symmetric permutation group Sk�� and hence�

by applying in succession� arbitrary relabelings of the boundary are possible� It is

easy to see that %k� with its � operators� generates exactly the same set of boundaried

graphs as our pathwidth t	parse operator set $k� We also observe the following�

Observation �� A graph G has treewidth at most k if and only if it is obtainable

by using the  operators %k � f�g�

A big pathwidth operator set� called &k� for k	boundaried graphs of pathwidth at

most k� contains the t	parse operator set $k�� and has the following two additional

operator types� In the de�nitions below G denotes any k	boundaried graph�

G i Add a pendent vertex to the current boundary vertex i

of G� and label it as the new boundary vertex i�

G fb�� b�� � � � � bpg Add a new interior vertex and attach it to all of the

boundary vertices b�� b�� � � � � bp of G� � � p � k�

Example �	� Below we illustrate the operator set &� in generating a �	boundaried

graph of pathwidth ��
�

�

��

�

�

� �n� �n� �n� � � � � � � � � � � � � � � �n� f�� �� �g � � � � � � � � � f�� �g �



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

We now prove that this operator set that uses a smaller boundary size can be

used to represent graphs of bounded pathwidth�

Theorem �
� The operator set &k generates precisely the set of graphs of path	

width at most k�

Proof� Clearly if a graph has n � k vertices �which means it has pathwidth at

most k � �� then it is representable by a sequence that starts with n distinct vertex

operators and an edge operator for each edge�

We next show� without loss of generality� that every �well	de�ned� sequence

S � � �n� �n� � � � � k���
��

� s�� s�� � � � � sr�

of &k operators represents a graph of pathwidth at most k� We do this by showing

how to build a t	parse G� t � k� for representing the underlying graph� For each pre�x

Si � �� � � � s�� s�� � � � � si�� we have a corresponding pre�x t	parse G��i� of G� where �

is some increasing integer function� The construction uses a �spare� �but variably

labeled� boundary vertex of $k for simulating the fb�� b�� � � � � bpg and i operators�

For the following discussion we use 
�j� to denote a injective map from the boundary

of Si to the boundary of G��i� and the integer v to denote the unique boundary label

not in the image of 
� We start by setting G��
� � � �n� �n� � � � � k���
��

�� 
 to be the

identity map� and v � k� Now we have four cases for the inductive steps�

�� If sr � inthen for i� � 
�i�� G��r� � G��r��� � � i�n��

�� If sr � i j then G��r� � G��r��� � � 
�i� 
�j� ��

�� If sr � i then G��r� � G��r��� � � vn� 
�i� v �� Swap the values of ��i� and v�

�� If sr � fb�� b�� � � � � bpg then

G��r� � G��r��� � � vn� 
�b�� v � 
�b�� v � � � � � 
�bp� v ��

Thus� since any pathwidth t	parse� t � k� has pathwidth at most k so does any

k	boundaried graph generated by &k�



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

We now show that any k	path G is representable by a string of &k opera	

tors� Again this is su�cient since we can remove edge operators i j or replace

fb�� b�� � � � � bpg operators to obtain any partial k	path� Let X � X��X�� � � �Xr be a

smooth path decomposition of G� We constructively build a partial parse Pi using &k

operators for each vertex induced k	path de�ned by
S
��j�iXj � The current boundary

of Pi will be ��Pi� � Xi � Xi��� for � � i � r� For each vertex u 	 G that is on

the current boundary of Pi� de�ne �i�u� to be the corresponding boundary label in

�� �� � � � � k � �� The initial Kk�� clique is parsed by

P� � � �n� �n� � � � �n� � � � � � � �n� � � � � � � � � � � � � �

k���
��

� � k�� � � k�� � � � � � k�� k�� � f�� �� � � � � k��g �

where ���u� is assigned arbitrarily for the vertices X� nX�� Let oldi denote the unique

vertex in Xi nXi�� and newi denote the unique vertex in Xi�� n Xi� for � � i � r�

We have two cases to consider when constructing Pi�� from Pi� for � � i � r � ��

If newi � oldi�� then

Pi�� � Pi � � f�� �� � � � � k��g �

else �i�e�� newi �� oldi��� for j � �i�oldi�

Pi�� � Pi � � j � � j � � � � � j�� j � j j!� � � � � � j k�� �

then �i���newi� � j� The �nal parse for G is simply Pr � Pr�� � � f�� �� � � � � k��g �

to end with a Kk�� clique �assuming r � ��� �

One of the reasons why we picked our t	parse operator set $t over other possible

sets is that we want each unary operator to add something signi�cant �but not too

complex� to its �t ! ��	boundaried graph argument� That is� we want a smooth and

rapid path� via these graph building operators� to the obstructions �but do not want

to overshoot the graph family too far by adding complex graph pieces�� That is� we

believe that the search tree is smaller using our choice of operators� An analogy from

the computer architecture world is that we would prefer a RISC chip over one with a

full and powerful instruction set �or� in the other extreme� one with only tedious nano	

code primitives�� Another reason for our choice is that we want a pre�x property of the

parse strings� This property� for obstruction set searching� is elaborated in Chapter ��



CHAPTER �� BOUNDED COMBINATORIAL WIDTH �

��� Simple Enumeration Schemes

To help tackle the apparently intractable task of �nding obstruction sets� we need

to limit the domain of the search� If we know that a particular obstruction set O is

�nite� any graph invariant over members of O will have an upper bound� To take

advantage of a particular bounded invariant� a method is needed to generate all these

restricted graphs� This set of graphs must be substantially smaller than the set of

graphs of order at most maxfjOij � Oi 	 Og� As indicated by the topic of this

chapter� the two main invariants that we exploit are the pathwidth and the treewidth

metrics�

As seen by the examples in Section ���� it is easy to represent �with a computer�

graphs of pathwidth or treewidth of at most t by strings of unary operators or by trees

with the additional binary � operator� This suggests a natural way of enumerating

all these bounded width graphs� Just enumerate all possible valid combinations of

t	parse strings �or t	parse trees�� Unfortunately� many di
erent t	parses correspond

to the same underlying graph� To reduce our search process we need to know when

two t	parses represent the same graph� We formalize this concept next�

De�nition ��� Two k	boundaried graphs B� � �G�� S�� and B� � �G�� S�� are

free�boundary isomorphic� denoted B� ��f B�� if there exists a graph isomorphism �

between G� and G� such that

f���S��i�� j � � i � kg � f�S��i� j � � i � kg �

That is� boundary vertices of G� are mapped under � to boundary vertices of G��

And B� and B� are �xed�boundary isomorphic if there exists an isomorphism � such

that

���S��i�� � �S��i� for � � i � k �

That is� each boundary vertex i of G� is mapped under � to boundary vertex i of G��

Our goal is to �nd an enumeration scheme that generates each free	boundary

isomorphic t	parse at most once�



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

����� Canonic pathwidth t�parses

One simple way of generating each free	boundary isomorphic t	parse is to de�ne

equivalence classes of t	parses and generate one representative for each class of free	

boundary isomorphic graphs� A t	parse is said to be canonic� with respect to some

linear ordering of t	parses� if it is a minimum t	parse within its equivalence class� For

an enumeration scheme� these minimum representatives should be de�ned so that

extending the set of canonic representatives of order n generates a set �or superset� of

the canonic representatives of order n! �� Here� if we generate a non	canonic t	parse

of order n ! � we discard it before generating the canonic representatives of order

n ! �� We call an enumeration order �scheme� simple if this property holds�

The simplest linear ordering of t	parses is a lexicographical order of the parse

strings� We de�ne the lex�canonic order between two t	parses by comparing operators

at equal indices �from the beginning of each string� until a di
erence is found� The

individual operators in $t are related as follows�

�� Vertex operator inis less than any edge operator j k �

�� Vertex operator inis less than any vertex operator jnwhenever i � j�

�� Edge operator i j � where i � j� is less than edge operator k l � where k � l�

whenever i � k� or i � k and j � l�

A canonic t	parse in the lex	canonic order �l �called a lex�canonic t�parse� is

any t	parse G such that G �l H for any free	boundary isomorphic t	parse H ��f G

where H �� G� Since any pre�x of a lex	canonic t	parse is also lex	canonic� a simple

enumeration scheme is possible using this form of canonicity� �This pre�x property is

easily seen by assuming that a pre�x P of a lex	canonic t	parse G � P � S is not lex	

canonic then a contradiction arises regarding G being lex	canonic� That is� consider

a lexicographically less t	parse P � � S� �l G that is free	boundary isomorphic to G�

where P � �l P and P � ��f P ��

Example ��� Several t	parses are listed below in increasing lex	canonic order� The

fourth t	parse is not lex	canonic since it is free	boundary isomorphic to the second



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

t	parse� Likewise� the �fth t	parse is free	boundary isomorphic to the �rst �which is

also lex	canonic��

� �n� �n� �n� � � � �n� � � �

� �n� �n� �n� � � � � � � �n� � � � � � �

� �n� �n� �n� � � � � � � �n� � � � � � � �n� � � �

� �n� �n� �n� � � � � � � �n� � � � � � �

� �n� �n� �n� � � � � � � �n�

We now present an alternate canonic representation for pathwidth t	parses� The

main bene�t of this scheme� based on a non	lexicographical order� is that most non	

canonic t	parses are easily determined �by checking for required canonicity properties

of the parse string�� For any t	parse P � let vseq�P � be the vertex subsequence of

the parse� that is� just the vertex operators infor some i� and let vpos�P � be the

positions of the vertex operators in the original t	parse�

Example ��� For the t	parse

G � � �n� �n� �n� � � � � � � �n� � � � � � � �n� � � � �n�

we have

vseq�G� � � �n� �n� �n� �n� �n� �n�

and

vpos�G� � ��� �� �� �� �� ��� �

De�nition ��� For two t	parses P� and P� of the same free	boundary graph� we de	

�ne a linear order �c as follows where the symbol � denotes the lexicographical order

on integer sequences and �l denotes the lex	canonic order on $t operator sequences�

�� If vpos�P�� � vpos�P�� then P� �c P��

�� Else if vseq�P�� �l vseq�P�� then P� �c P��

�Here vpos�P�� � vpos�P����

�� Else if P� �l P� then P� �c P��

�Here vpos�P�� � vpos�P�� and vseq�P�� � vseq�P����



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

The order �c is a linear order because �l is a linear order �i�e�� if case � is ever

reached then either P� �c P� or P� �c P� holds��

For the remainder of this section� a t	parse P of a free	boundary graph G is

termed canonic if there is no other parse P � such that P � ��f P and P � �c P � The

idea behind this t	parse order is that we want vertex operators to come earlier in the

parse� For the linear order �c we note that any vertex operator inand any edge

operator j k do not need to be compared lexicographically�

We now state some useful facts about canonic t	parses �using the �c order��

Lemma ��� Let Gn � �g�� g�� � � � � gn� be a canonic t	parse� If gk� � inand gk� �

jnare consecutive vertex operators� then for any edge operator gk � a b � k� � k �

k�� either a � j or b � j�

Proof� Assume that� for some k� � k � k�� gk � a b where a �� j and b �� j� Clearly

the following parse� G�
n� represents the same free	boundary graph�

G�
n � �g�� g�� � � � � gk� � in� � � � � gk��� gk��� � � � � gk� � jn� gk � a b � gk���� � � � � gn�

But vpos�G�
n� is lexicographically less than vpos�Gn�� This can not happen since Gn

is canonic� So� we must have either a � j or b � j in order to prevent the possible

edge shift� �

The previous lemma states that any edge operators that immediately precedes a

vertex operator inmust be adjacent to the previous in� The next result regarding

the position of the boundary edges follows easily from the previous lemma�

Lemma ��� Let Gn be a canonic t	parse� If gm � i j is a boundary edge of Gn�

� � m � n� then there are no vertex operators in positions m ! ��m ! �� � � � � n�

Proof� If not� the next vertex operator would have to be inor jn� �

The following lemma states that any pre�x of a canonic t	parse is also canonic�

This means that using �c to de�ne t	parse canonicity is suitable for a simple t	parse

enumeration scheme�



CHAPTER �� BOUNDED COMBINATORIAL WIDTH ��

Lemma ��� If Gn is a canonic t	parse then the pre�x Gn�� is a canonic t	parse�

Proof� If this is not true� then there exists Hn�� ��f Gn��� with Hn�� �c Gn��� Let

� � V �Gn��� � V �Hn��� be a free	boundary isomorphism mapping between Gn��

and Hn��� De�ne

hn �

��
� �in if gn � in

�i �j if gn � i j
�

Now consider Hn � Hn�� � hn� The parse Hn is isomorphic to Gn with Hn �c Gn� So

we must have Hn�� ��c Gn��� �

We now turn to the problem of determining when an extension of a canonic

t	parse is also canonic�

Lemma �� Let Gn be a canonic t	parse� If Z � � i j � is a single edge operator

extension� then Gn�� � Gn � Z can be tested for canonicity with a constant number

of isomorphism calls�

Proof� Suppose Gn�� is not canonic� Then there exists a free	boundary isomorphic

t	parse Hn�� ��f Gn�� with Hn�� �c Gn��� Since both Gn�� and Hn�� contain

boundary edges we know from Lemma � that the last vertex operator has index

k � n �that is� k � n! �� �number of boundary edges��� An isomorphism mapping

� � V �Gn��� � V �Hn��� shows that the t	parses Hk and Gk are free	boundary

isomorphic� This is seen by noting that for any edge �a� b� of Gn��� Gn�� nf�a� b�g ��f

Hn�� n f��a� �b�g� Since Gn is canonic the pre�x Gk is also canonic �likewise Hk�� so

Hk ��f Gk implies Hk � Gk�

Thus� if Gn�� is not canonic then its canonic t	parse representation is identical to

Gn�� except for the boundary edges at the end of the parse� If there are i boundary

edges then we have at most
�
�t��� �
i

�
possible t	parses to consider� �

Example �	� Below is an instance of where a constant number of isomorphism calls

would tell us that the extended t	parse H is not canonic� This example is created

by adding an edge between a pendent vertex and an isolated boundary vertex of the



CHAPTER �� BOUNDED COMBINATORIAL WIDTH �

canonic t	parse G� The t	parse K is free	boundary isomorphic to H and canonic�

G � � �n� �n� �n� �n� � � � �n� � � �

H � � �n� �n� �n� �n� � � � �n� � � � � � �

K � � �n� �n� �n� �n� � � � �n� � � � � � �

We can easily eliminate an isomorphism check for several of the possible t	parses

mentioned in the previous lemma� For a prospective t	parse Hn�� to be free	boundary

isomorphic to Gn��� the degree sequences of the boundaries must be identical� These

degree sequences can be re�ned to include both the number of boundary and non	

boundary incident edges� That is� these two �ordered pair� degree sequences �one for

Gn�� and one for Hn��� must coincide�

Observation �
� Let Gn be a canonic t	parse� If Z � � in�� a single vertex operator

extension� then Gn �Z is non	canonic if Lemma �� is violated� which is likely and easy

to check�

The next lemma helps us detect other non	canonic situations for any t	parse of

length n that ends with a vertex operator�

Lemma ��� With m � n being the smallest index of any edge operator of a canonic

t	parse Gn� there are no consecutive vertex operators gi and gi�� in Gn� for m � i � n�

Proof� First consider two identical vertex operators inconsecutive in Gn� One of

these can be replaced by a �nand moved to the �rst of the string since the semantics

of �� � � � in� in� causes an internal isolated vertex� Now a su�x of Gn with two di
erent

consecutive vertex operators can be rewritten as �assuming Gn�� is canonic�

Gn�� � � jn� � �� � � � i k � i j � in� jn� �c �� � � � i j � jn� i k � in�

that is less in the �c order� If there are more than two consecutive vertex operators�

�� � � � a b � in� jn� kn� � � �� then we can also shift one of these earlier� Here� the vertex

that can be shifted before the edge operator a b is determined by fi� j� kgnfa� bg� �



CHAPTER �� BOUNDED COMBINATORIAL WIDTH �

One thing that is not quite resolved is how to e�ciently handle the not so easy

vertex operator cases� If both Lemmas �� and �� are not violated we still do not

know if a t	parse Gn � � in� is canonic� We believe that a non	canonic t	parse can pass

both these lemmas for only a very few special cases �maybe not even enough times

to worry about�� Even without a fast canonic algorithm for this case� we still have a

fast method for generating all bounded pathwidth graphs� Since the set of graphs of

pathwidth at most t is obtained from the set of canonic t	parses �and we generate a

superset�� the above statements provide us with an e�cient means of generating each

such partial t	path with a constant sized boundary exactly once� If one wishes� a

free	boundary isomorphism algorithm can be used to check for redundancies �SD����

����� Canonic treewidth t�parses

It is known that both free and rooted tree generation can be done e�ciently �in

constant amortized time� with one of the algorithms given in �Wil��� WROM���

BH���� To algebraically represent a graph of bounded treewidth �i�e�� a generalized

�bounded	width� tree� we model its underlying tree decomposition structure as an

equivalent tree �of maximum degree three� using our treewidth operator set $t �see

Theorem ���� Again� since many tree decompositions of minimum width exist for a

given graph we strive for a canonic representation� In the discussion given below� we

incorporate the additional binary operator � within the pathwidth lexicographical

canonic scheme �i�e�� we expand the domain for the �l order��

We view a treewidth t	parse T as a rooted parse tree where the current set of

active boundary vertices are inferred from the operator semantics�

The �rst simpli�cation for our enumeration scheme is to restrict the t	parse ar	

guments for the � operator� We simply require that no boundary edges occur in

both t	parses G� and G� before G� �G� is enumerated� Any edge that needs to be

adjacent to two boundary vertices is added with edge operators after �or above� the

circle plus�

To compare two t	parses that have di
erent underlying tree decomposition trees�

we use a ranking method similar to the one commonly used for ranking rooted trees

�BH���� The idea for our new linear order �details to come shortly� is to de�ne another



CHAPTER �� BOUNDED COMBINATORIAL WIDTH �

set of t	parse equivalence classes �with respect to each tree decomposition structure�

and then linearly order these classes�

De�nition ��� Let v�G� denote the number of vertex operators in a t	parse G� A

signature s�G� for a t	parse G is an integer sequence de�ned recursively with respect

to the root�s operator type�

�� If G � G� � � i j � then s�G� � s�G���

�� If G � G� � � in� then s�G� � �v�G�� s�G����

�� If G � G� � G�� where without loss of generality s�G�� � s�G��� then s�G� �

�s�G��� s�G����

A signature s� is less than a signature s� if js�j � js�j� or js�j � js�j and s� � s� in

lexicographic order�

For any two t	parses G� and G� that have the same signature� let �B�
�� B

�
�� � � �� and

�B�
�� B

�
�� � � �� be the pathwidth t	parse branches of G� and G�� respectively� obtained

from a post	order traversal of the structural tree� These vertex and edge operators

are sequenced from leaves to root� Two t	parses G� and G� �not necessarily free	

boundary isomorphic� can be compared lexicographically by comparing B�
i with B�

i �

starting at i � �� and increasing i until a di
erence is found�

Example ��� A treewidth �	parse is shown below for S�K����� a subdivided K����

�This pathwidth one obstruction is also shown in Figure ��� �a���

� � �

���

A � � �n� �n� � � � �n� � � � �n� A�A �A�A� � � � � � �n� � � �

With the far right edge operator � � being the root� the signature of this �	boundaried

graph is ��� �� �� �� �� �� �� �� ���



CHAPTER �� BOUNDED COMBINATORIAL WIDTH �

De�nition ��� A treewidth t	parse G is structurally canonic if it has the smallest

signature over all t	parse representations of graphs free	boundary ��xed	boundary�

isomorphic to G� In addition� the t	parse G is treewidth canonic if it is the lexi	

cographic minimum t	parse over all structurally canonic representations within the

free	boundary ��xed	boundary� isomorphic equivalence class� We call these orderings

of treewidth t	parses the free	boundary �or �xed	boundary� lex�rank order�

It is understood from the context whether we are talking about the free or �xed

boundary cases� with the latter case being more common�

Lemma ��� If a graph G of treewidth t also has pathwidth t then the structurally

canonic �and treewidth canonic� t	parse for G has no � operators�

Proof� This follows from the fact that a t	parse with more � operators also has more

vertex operators �the circle plus operator absorbs t!� vertices�� Since the length of a

signature for a t	parse equals the number of vertex operators� any signature without

� operators �i�e�� a pathwidth t	parse� is less in the treewidth t	parse comparison

order than any non	trivial treewidth t	parse� �

The above lemma allows us to do computations �enumerations� for pathwidth

t	parses and then reuse �if using the lex	canonic pathwidth scheme� any partial results

for these t	parses when computing within the treewidth t	parse domain� For example�

for our obstruction set searches we would keep any proofs of graph minimality or

nonminimality from a search that was restricted to pathwidth t	parses�

Our treewidth analog to Lemma ���s �pre�x of canonic is canonic� is given below�

Lemma ��� For the �xed	boundary case� any rooted induced subtree S of a treewidth

canonic t	parse T is also treewidth canonic�

Proof� By induction on the number of operators� it su�ces to look at pre�xes with

one less operator� Let gn denote the last operator of T � The validity of this statement

for the pathwidth operators �gn � inor gn � j k � follows from the left associative

semantic interpretation of these unary operators� That is� if there exists a pre�x S

with a more canonic parse� then applying the unary operator gn to S contradicts



CHAPTER �� BOUNDED COMBINATORIAL WIDTH �

T being treewidth canonic� For the treewidth operator case� gn � �� assume T �

G��G� is a treewidth canonic t	parse� By de�nition of treewidth canonic� we can also

assume G� � G� �in lex	rank order�� If there exists a t	parse H� that is �xed	boundary

isomorphic to G� that has a smaller rank� then the �xed	boundary isomorphic t	parse

T � � H� � G� contradicts the fact that T is treewidth canonic� This contradiction

can take place either in or outside T �s structurally canonic equivalence class� That

is� if s�H�� � s�G�� then we can �nd a better structural equivalence class for T � The

same argument holds for the child parse G� replaced with G�� �

As a consequence of the above lemma there is a simple enumeration scheme

�as was given in Section ����� for the pathwidth t	parses� for generating all �xed	

boundaried t	parses of treewidth at most t� Note that like our free	boundary path	

width case� extending a canonic �xed	boundaried t	parse G may yield a non	canonic

t	parse G �Z� but any pre�x �subtree� of a �xed	boundary canonic H is canonic� An

example of the former problem is given below�

��

�

�

� �

�

�

G � Z � � H

� �n� �n� �n� � � � � � � �n� � � �n� �� � �n� �n� �n� � � � �n� � � � �n�

The subtree property of Lemma � does not hold for the free	boundary treewidth

case since the semantics of the binary operator � require �xed	boundary vertices� For

example� consider the free	boundary canonic �	parse A � B� where A is taken from

Example �� and B � � �n� �n� � � � �n� � � � �n�� Here both subtrees A and B are

free	boundary isomorphic but B is not treewidth canonic for the free	boundary case�

We end this section with an interesting open computational problem regarding

how �linear� a tree decomposition can be for a given graph� The structurally canonic

t	parses� in some sense� have the simplest underlying treewidth structure for �t! ��	

boundaried graphs �see proof of Lemma ����



CHAPTER �� BOUNDED COMBINATORIAL WIDTH 

Problem ��� Closeness to Pathwidth t

Input� A graph G of treewidth t�

Question� How close is G to pathwidth t based on how many � operators are needed

for a t	parse representation' �That is� how many degree three vertices of T are needed

over all smooth tree decompositions �T� fXi j i 	 Tg� of width t for G'�

�a� �b�

Figure ���� The obstructions to �a� pathwidth � and �b� treewidth ��

Figure ���� The minor	order obstructions to treewidth ��



�

Chapter �

Graph Minors and

Well�Quasi�Orders

In this chapter� we formally introduce the notion of minor	order forbidden graphs�

which we have been calling obstructions� We also explain why for many classes

of graphs �i�e�� the minor	order lower ideals� there exists a �nite number of these

family	characterizing graphs� Lastly� we de�ne a closely related partial order for k	

boundaried graphs� This order is the mathematical foundation for our obstruction

set search theory that is presented in Chapter ��

��� Preliminaries

We begin with a review of a few de�nitions from set theory that are signi�cant for

characterizations of graph families by obstruction sets�

De�nition �� A quasi�order �preorder� is a re"exive and transitive binary relation�

A partial order is an anti	symmetric quasi	order� A partially ordered set is called a

poset�

A simple example of a quasi order �q of graphs that is not a partial order is the

order de�ned by comparing the number of vertices of the graphs �i�e�� G �q H if and

only if jGj � jHj��



CHAPTER �� GRAPH MINORS AND WELL�QUASI�ORDERS �

De�nition �	� A set S with a quasi	order � is a well�quasi�order if for any count	

able sequence �s�� s�� � � �� of members of S� there are indices � � i � j such that

si � sj �

Recall that a subgraph H of a graph G is a subset of the vertices and edges of

G such that whenever a vertex v 	 V �G� n V �H� then any edge of E�G� incident to

v is not in E�H�� We �combinatorially� contract an edge e � �u� v� in G to form a

edge contracted graph H � G	e by �rst deleting e and then replacing vertices u and

v with a new vertex w such that any edge incident to u or v is now incident to w�

Also recall the following graph order that is of special interest to this dissertation�

De�nition �
� For two graphs G and H� the graph H is a minor of the graph G�

written H �m G� if a graph isomorphic to H can be obtained from G by taking a

subgraph and then contracting �possibly zero� edges� A minor operation is any edge

deletion� edge contraction� or isolated vertex deletion�

Observation ��� The minor	order relation �m de�nes a partial order on the family

of �nite simple graphs�

Figure ��� shows a Hasse diagram �part of a minor	order poset� for all edge

contractions of a graph with  vertices�

De�nition ��� A lower ideal �I��� of a quasi	order �S��� is a subset I 
 S such

that for any x 	 I� if y � x then y 	 I�

For a special case� we also say that a family F of graphs �within the set of all

simple graphs� is closed under the minor order if whenever G is in F and H is a

minor of G� H �m G� together imply that H is also in F � This equivalent to saying

that �F ��m� is a lower ideal� For minor	order lower ideals� the forbidden graphs are

de�ned as follows�

De�nition ��� The obstruction set O�F� for a minor	closed family F of graphs is

the set of minimal graphs �in the minor order� in the complement F� Speci�cally� G

is an obstruction for F �i�e�� G 	 O�F�� if and only if G is in F �i�e�� G �	 F� and for

any proper minor H of G� H is in F �i�e�� H �	 F��



CHAPTER �� GRAPH MINORS AND WELL�QUASI�ORDERS �

a

b

c d

e

�c� d�

�d� e�

�a� b�

Figure ���� Illustrating an edge contraction poset�



CHAPTER �� GRAPH MINORS AND WELL�QUASI�ORDERS �

For example� the obstructions for the family of planar graphs are K� and K���

since any graph that is not planar must contain one of these two as a minor �i�e�� these

two obstructions are the minimal non	planar graphs within the minor	order poset of

all graphs�� In general� any graph in the complement of a lower ideal F must contain

at least one obstruction as a minor�

��� The Graph Minor Theorem

How are obstruction sets used to characterize families of graphs that are closed under

the minor order' It is not obvious that the set of obstructions for a minor	order lower

ideal must be �nite� The recently celebrated Graph Minor Theorem �stated below�

by Robertson and Seymour guarantees a �nite characterization for all minor	order

lower ideals �RS�b�� This statement was known as Wagner�s Conjecture for a long

time �Wag��� RSc��

Theorem ��� �Robertson�Seymour� The minor order is a well	partial	order�

Corollary ��� There are only a �nite number of minor	order minimal graphs in

any set of graphs� In particular� any minor	order lower ideal of graphs has a �nite

number of obstructions�

Proof� Let S � �G�� G�� � � �� be any countable sequence of distinct minor	order min	

imal graphs� Since the minor	order is a well	partial	order� there must be an index

i � j such that Gi �m Gj � However� this contradicts the fact that Gj is minimal� So

there must be a �nite number of minor	order minimal graphs� �

The bad news regarding this graph theoretical breakthrough is that Robertson

and Seymour�s proof is nonconstructive� �For more information see �FRS����� This

means that for any set of graphs we only know that the set of minor	order minimal

graphs is �nite but currently have no general method for obtaining it� To tackle this

predicament� for our obstruction set computations� we use the following variation of

the minor order� The elements of this partial order are k	boundaried graphs�



CHAPTER �� GRAPH MINORS AND WELL�QUASI�ORDERS ��

De�nition ��� Let G be a k	boundaried graph� A k	boundaried graph H is a ��

minor �boundaried minor� of G� denoted H ��m G� if H is a minor of G such that

no boundary vertices of G are deleted by the minor operations� and the boundary

vertices of H are the same as the boundary vertices of G�

De�nition ��� Let G be a k	boundaried graph� A k	boundaried graph H is a one�

step ��minor of G if H is obtained from G by a single minor operation� one isolated

vertex deletion� one edge deletion� or one edge contraction �and H ��m G��

Lemma �� The ��minor order ��m on k	boundaried graphs is a partial order�

Proof� Assume K ��m H and H ��m G for the k	boundaried graphs K� H and G�

If we do the one	step �	minor operations used to show K ��m H after the one	step

�	minor operations used to show that H ��m G� we see that transitivity holds �i�e��

K ��m G�� Also� since each one	step �	minor of a graph reduces either the number

of edges or the number of vertices� the �	minor order is anti	symmetric� �

Lemma �	� If a family F of graphs is a lower ideal under the minor order �m then

the family F � � f�G�S� j G 	 F and S is a k	simplex of Gg of k	boundaried graphs

is a lower ideal in the �	minor order ��m�

Proof� This follows from the fact that the number of graph	reducing minor opera	

tions for the �	minor order is a subset of the minor	order operations� �

For our obstruction set searches concerning this �	minor order� the width of each

k	boundaried graph is bounded by a �xed pathwidth or treewidth� Speci�cally� we

restrict the search to the set of t	parses �t � k � ���

Lemma �
� If a family F of graphs is a lower ideal under the minor order then the

family F �� consisting of F restricted to t	parses� is a lower ideal under the �	minor

order ��m�

Proof� Follows from Lemma � and the next result �Lemma ���� which shows that

the set of t	parses is closed under the �	minor order� �



CHAPTER �� GRAPH MINORS AND WELL�QUASI�ORDERS ��

The next two results show that every �	minor of a t	parse has a representation as

a t	parse� We know that the family of bounded pathwidth graphs is closed under the

minor order� However� this fact does not guarantee that the boundary vertices are

preserved by the minor operations� We actually implemented a di
erent but similar

�	minor algorithm from the one used in the proof below�

Lemma ��� Let G be a pathwidth t	parse� and suppose H is a �	minor of G� Then

H has a representation as a pathwidth t	parse�

Proof� Assume G � �g�� g�� � � � � gn� is the pathwidth t	parse� We show how to con	

struct a t	parse for any one	step �	minor of G� The pathwidth t	parse for any minor

H of G can then be constructed by repeating these one	step �	minor procedures�

�� Delete an isolated non�boundary vertex�

If operator gi � un� � � i � n is both a non	boundary vertex �i�e�� gj � unfor

some i � j � n� and an isolated vertex �i�e�� gk �� u v for u �� v and i � k � j��

then �g�� g�� � � � � gi��� gi��� � � � � gn� represents a �deleted isolated vertex� minor

G n fug� �Note that we could have just as easily deleted gj��

�� Delete an edge�

If gi � u v � � � i � n is any edge operator� then �g�� g�� � � � � gi��� gi��� � � � � gn�

represents a �deleted edge� minor G n f�u� v�g�

�� Contract a non�boundary edge�

If gi � u v � � � i � n is any edge operator such that� for i � c � n�

gc � unor gc � vnthen do the following steps to create a �contracted edge�

minor G	�u� v�� First� without loss of generality� G is represented in one of the

following two forms

�g�� � � � � ga � un� � � � � gb � vn� � � � � gi � u v � � � � � gc � vn� � � � � gn�

or

�(�

�g�� � � � � ga � un� � � � � gb � vn� � � � � gi � u v � � � � � gc � un� � � � � gn��

where gj �� unfor a � j � c and gj �� vnfor b � j � c� Note that the vertex

operator vnmay occur between ga and gb�



CHAPTER �� GRAPH MINORS AND WELL�QUASI�ORDERS ��

For the �rst form� use the t	parse

�g�� � � � � ga� � � � � gb��� g
�
b��� � � � � g

�
i��� g

�
i��� � � � � g

�
c��� gc� � � � � gn��

where for b � k � c�

g�k �

��
� u x if gk � v x and x �� v

gk otherwise
�

to represent the minor G	gi�

For the second form� �rst create from G a t	parse �g��� g
�
�� � � � � g

�
c��� gc� � � � � gn��

where for � � k � c�

g�k �

�����������
����������

u x if gk � v x and x �	 fu� vg

v x if gk � u x and x �	 fu� vg

un if gk � vn

vn if gk � un

gk otherwise

�

to guarantee that the boundary will be preserved� The new t	parse satis�es �(�

so we can now use the previous construction� The preprocessing step is justi�ed

since the operator gc � unin the pre�x graph Gc � �g�� g�� � � � � gc� tells us

which boundary vertex to preserve that is� the contracted edge between vertices

represented by ga and gb becomes the active boundary vertex v in Gc	�u� v��

�Recall that the semantics of the edge operator i j prevent multi	edges from

appearing��

One can check that all three of these one	step �	minor procedures will preserve G�s

boundary� �

Observation ��� Any �	minor of a treewidth t	parse is a treewidth t	parse�

Proof� Deletion of an isolated non	boundary vertex and deletion of an edge is similar

to that in the proof of Lemma ��� An isolated vertex may originate from an in

appearing above or below a circle plus � in the t	parse tree� In this case we remove the

vertex operator closest to the root of the parse tree just above the isolated vertex there



CHAPTER �� GRAPH MINORS AND WELL�QUASI�ORDERS ��

must be one since we are trying to remove a non	boundary vertex� This operation

is correct because the � operator merges together two previous isolated boundary

vertices �with the same label� from di
erent subtree parses� For the edge deletion

case with respect to �� we also have to be careful about two i j operators being

used to represent the same edge� However� removing all instances is easy�

Contracting a non	boundary edge is also possible by using a modi�ed version

of the pathwidth t	parse contraction algorithm� Let e � �u� v� be an edge that we

want to contract� For these two vertices u and v� we remove the corresponding vertex

operator closer to the root instead of the lower indexed one� Again� we may have to

permute the boundary to get the t	parse branches to satisfy �(� this happens when

two vertex operators nearest the edge operator are both vn�see proof of Lemma ����

�

De�nition ��� A t	parse �boundaried graph� G is a ��obstruction �boundaried ob�

struction� of a lower ideal F if every proper �	minor of G is in F while G is not in

F �

For any minor	order lower ideal F and an obstruction O 	 O�F�� there exists a �	

obstruction G in $�
t such that O �m G trivially whenever t � pw�O�� In this case� the

boundary of G �with t! � vertices� can be any set of vertices X� from a smooth path

decomposition X��X�� � � � �Xr of width t for O� Let Bt � f�Gt
i� S

t
i� j i � �� �� � � � � rtg

denote the set of �	obstructions of width t for F � If t is the pathwidth of the largest

obstruction for a lower ideal F then

O�F� 

�


�j�t

�
	 �

��i�rj

Gj
i



A �

The previous discussion also holds for obstructions of bounded treewidth� That is�

for any smooth tree decomposition �T� fTxg� of a graph G of width t� there exists a

treewidth t	parse with the boundary of G�s representation being the vertices of any set

Tx of T � So� the set of underlying boundaried obstructions �for bounded treewidth�

is a superset of the non	boundary obstructions�

Lemma ��� If F is a lower ideal in the minor order then there are a �nite number

of �	obstructions �in the �	minor order� for F�



CHAPTER �� GRAPH MINORS AND WELL�QUASI�ORDERS ��

Proof� It su�ces to show that any minor	order obstruction O 	 O�F� is below at

most a �nite number of �	obstructions in the minor order� Let O �m B for some

�	obstruction B� There is a sequence of length at most t of edge contractions between

two boundary vertices and�or isolated boundary vertex deletions to produce O from

B� If any other one	step minor operations were possible then B would not be a

�	obstruction� For example� deleting any edge can be done �rst� which is a valid �	

minor operation showing that B has a �	minor not in F � Therefore� any �	obstruction

above O can have at most jOj! t vertices� �

Even though Lemma �� guarantees that there are only a �nite number of bound	

aried obstructions for any minor	order lower ideal� we have the following analog to

the Graph Minor Theorem for t	boundaried graphs� which was �rst cited �without

proof� and used in �FL��a�� The following simple proof uses Robertson and Seymour�s

more recent but less	known result that the set of �nitely edge	colored graphs is also

well	quasi	ordered under the minor order� denoted by �cm� �The proof should appear

in �RSf���

Theorem ��� �Fellows�Langston� The �	minor order is a well	partial	order �on t	

boundaried graphs and t	parses��

Proof� Given any countable sequence G�� G�� � � � of t	boundaried graphs we need to

show that there exist indices � � i � j such that Gi ��m Gj � To do this we �rst de�ne

a bijection �� as illustrated in Figure ���� from t	boundaried graphs to edge	colored

graphs using �t! �� colors� For each boundary vertex labeled k� the function � adds

a single �k�	colored pendent edge while removing the boundary label� The original

noncolored edges in the domain graph of � retain the �blank� color in the image graph�

Thus� this map produces a total t! � colors in the image�

Since the range of � is a well	partial	order� we consider the following sequence of

t!� edge	colored graphs� ��G��� ��G��� � � �� Here� there must exist a ��Gi� �cm ��Gj�

for � � i � j� To prove our theorem� we show that

H � � ��H� �cm ��K� � K �  H ��m K �

Let M � m��m�� � � � �mr be the sequence of one	step minor operations that shows

H � �cm K �� Since both H � and K � have exactly one edge of color � through t� none



CHAPTER �� GRAPH MINORS AND WELL�QUASI�ORDERS �

of these colored edges were contracted or deleted within M � Also since none of the

colored edges �� �� � � � � t in H � are adjacent� there are no edge contractions between

any edge �u� v� 	 E�K �� where u and v are both incident to colored edges of K ��

Thus� M constitutes a valid sequence of boundary minor operations on the underlying

boundaried graph ����K �� � K� showing that H ��m K� �

�

�

�

�

�

�

� ���

Figure ���� A map � from boundaried graphs to edge	colored graphs�

��� Other Graph Partial Orders

This chapter�s �nal section summerizes some other partial orders for graphs that

appear in the �eld of graph theory� We remind the reader that the obstruction set

characterizations presented in later chapters of this dissertation are all based on the

minor order�

Perhaps the most natural partial order for graphs is the subgraph partial order�

Here a graph H is below another graph G� often denoted H 
 G� if it is a subgraph�

A slight variation of this order is call the �vertex� induced subgraph partial order� Here

a graph H is an induced subgraph of a graph G� often denoted H � G� if there exists

a subset V � of V �G� such that H � G n V �� We presented in Chapter � the induced

subgraph obstructions �known as asteroidal triples� that prevent chordal graphs from

being interval graphs�

It is easy to see that the subgraph and induced subgraph partial orders are not

well	partial	orders since� for example� the set of cycles fCi j i � �g is an in�nite

anti	chain �i�e�� a countable set of incomparable graphs��

There are two well	known intermediate partial orders of graphs that fall between

the structured minor order and the simple subgraph order� The �rst order is the



CHAPTER �� GRAPH MINORS AND WELL�QUASI�ORDERS ��

topological order� We de�ne the topological �partial� order as a restricted minor order

where only subgraphs and edges incident to a degree two vertex may be contracted�

Other papers alternately de�ne the topological order on graphs based on the fol	

lowing relation �e�g�� see �Wil����� Here a graph G topologically contains H� often

denoted H �t G� if some subgraph of G is isomorphic to a subdivision of H� where to

�subdivide� a graph is to replace its edges by paths that are vertex disjoint except at

endpoints� The second intermediate order is the induced minor order� Here a graph

H is an induced minor of a graph G� often denoted H �im G� if H can be obtained

by contracting edges from a induced subgraph of G�

For the topological order� Kruskal proved the following well	known result �Kru����

Theorem ��� �Kruskal�s Tree Theorem� The topological order is a well	quasi	order

for the set of �nite trees�

A stronger result stating that all �nite rooted trees are well	quasi	ordered for the

topological order �with a simple proof� is due to Nash	Williams �NW���� Since the

minor order is a stronger relation� Kruskal�s Tree Theorem immediately implies that

the minor order is a well	partial	order for trees�

The immersion order �i on graphs is de�ned by three types of graph reductions�

deleting vertices� deleting edges� or lifting edges� Two adjacent edges �a� b� and �b� c�

are lifted from a graph if they are replaced with a single edge �a� c�� See Figure ��� �a��

In addition to the Graph Minor Theorem� Robertson and Seymour have recently

proven that the immersion order on graphs is a well	partial	order� �The proof of this

fact will appear in �RSf� of the graph minor series��

�

�a� �b�

�

Figure ���� Illustrating the �a� lift and �b� fracture graph operations�



CHAPTER �� GRAPH MINORS AND WELL�QUASI�ORDERS ��

A related partial order termed the weak immersion order �wi is de�ned by allow	

ing graphs to be related by repeated uses of these four graph operations� delete an

isolated vertex� delete an edge� remove a subdivision� or fracture a vertex� A vertex

v is fractured by replacing it with two new vertices v� and v� and partitioning the

edges incident on v into two classes� making these incident� respectively� on v� and v�

�Fel���� See Figure ��� �b��

Makedon and Sudborough showed that the family of graphs with cutwidth at

most � is characterized by a set of �ve forbidden weak immersion order �multi	� graphs

�MS��� these graphs are displayed in Figure ��� below� The family k�Cutwidth�

graphs with cutwidth at most k� is also a lower ideal for the immersion order �e�g��

see �Ram�����

Figure ���� The weak immersion order obstruction set for ��Cutwidth�



��

Chapter �

Finding Forbidden Minors

We search for obstructions within the set of graphs of bounded pathwidth �or bounded

treewidth�� We now describe how to do this e�ciently with our algebraic t	parse

representation� For ease of exposition throughout this chapter� we limit ourselves to

bounded pathwidth graphs in the obstruction set search theory� and only point out

further information regarding a bounded treewidth search� as needed�

��� Key t�parse Properties

Recall that our concatenation partial order over t	parses is based on strings �or trees�

of t	parse operators� This ordering of graphs is used during our enumeration of

the graphs of bounded combinatorial width� As explained below� this enumeration

process can be restricted to a �nite search space consisting of the minimal graphs

in the boundary minor order intersected with any �nite	index family �lower ideal�

congruence�

As we saw in Chapter �� both the k�Pathwidth and k�Treewidth families

of graphs are lower ideals in the minor order� so a �	minor H of a t	parse G is

representable as a t	parse� One should keep in mind that these minor	order algorithms

can actually operate on t	parses directly� bypassing any unnecessary conversion to and

from the standard graph representations�



CHAPTER �� FINDING FORBIDDEN MINORS ��

The following sequence of de�nitions and results form our theoretical basis for

computing minor	order obstruction sets� We �rst recall a de�nition for the more

familiar and general setting of k	boundaried graphs �e�g�� see �FL��a���

De�nition ��� Let F be a �xed graph family and let G and H be k	boundaried

graphs� We say that G and H are congruent with respect to the canonical congruence

�F if for each k	boundaried graph Z�

G� Z 	 F � H � Z 	 F �

A k	boundaried graph Z is a distinguisher for G ��F H if G�Z 	 F and H �Z �	 F

�or vice versa��

For our setting of graphs of bounded combinatorial width �t	parses� we have the

following analogous de�nition�

De�nition �� Let F be a �xed graph family and let G and H be t	parses� We say

that G and H are F�congruent �also written G �F H� if for each extension Z 	 $�
t �

G � Z 	 F � H � Z 	 F �

If G is not congruent to H� then we say G is distinguished from H �by Z�� and Z is

a distinguisher for G and H� Otherwise� G and H agree on Z�

We call the above family congruence the bounded�width canonical congruence

since it resembles the general canonical congruence for F on �t!��	boundaried graphs�

However� we also use the phrase �canonical congruence� loosely to mean either case

depending on the context� The only di
erence here is that we restrict each Z� in the

latter case� to be a parse string representing a graph of bounded combinatorial width�

Recall that the operator ��� is called the t	parse concatenation operator�

The next de�nition provides a means for distinguishing graphs in di
erent equiv	

alence classes of the canonical congruence �F �

De�nition �	� A set T 
 $�
t �or a set T of boundaried graphs� is a testset if

G ��F H implies there exists a Z 	 T that distinguishes G and H with respect to F�



CHAPTER �� FINDING FORBIDDEN MINORS ��

As shown later� a testset is only useful for �nding obstruction sets if it has �	

nite cardinality� We are interested in canonical congruences for our obstruction set

computations because of the following consequence of the GMT �see �AF��� and

�Cou��a���Cou��b���

Observation �
� The canonical congruence for any minor	order lower ideal F is

of �nite index for the set of t	parses�

Proof� This result follows by using the following two facts� ��� the GMT implies that

the family F has a �nite number of obstructions� and ��� there exists a �nite state

algorithm for each minor	containment problem for input graphs of bounded treewidth

�by Courcelle and others�� The second fact means that� for the family of graphs that

excludes a single obstruction� there is a �nite state automaton that accepts t	parses

in that family� Since regular languages are closed under intersections� the bounded	

width canonical congruence �F is of �nite index� �See Section ���� and Chapter ��

for further information�� �

The above observation can be improved to show that the canonical congruence�F

is of �nite index for the set of k	boundaried graphs� This is because all obstructions

of the lower ideal F have bounded treewidth� A �nite testset for F is constructed by

taking a �nite union of �nite testsets of boundary size k� for each width t up to the

treewidth bound�

De�nition �� A t	parse G is nonminimal if G has a proper �	minor H such that

G �F H� Otherwise� we say G is minimal� A t	parse G is a ��obstruction if G is

minimal and is not a member of F �

In general� if a graph family F is a minor	order lower ideal and a t	parse G is

minimal� then for each �	minor H of G� there exists an extension Z such that

�� G � Z �	 F and

�� H � Z 	 F �

That is� there exists a distinguisher �in this direction� for each possible �	minor H of

the t	parse G�



CHAPTER �� FINDING FORBIDDEN MINORS ��

The obstruction set OF for a familyF is obtainable from the boundaried obstruc	

tion set O�
F �set of �	obstructions� by contracting boundary edges or deleting isolated

boundary vertices� whenever the search space of width �� � is large enough� We will

use the symbol OF � or O�F�� to also denote O�
F since the type of the obstructions

will be clear from the context�

In our search for O�
F � we must prove that each t	parse generated is minimal

or nonminimal� The following two results drastically reduce the computation time

required to determine these proofs�

Lemma �� A t	parse G is minimal if and only if G is distinguished from

each one�step �	minor of G� Or equivalently� G is nonminimal if and only if

G is F 	congruent to a one�step �	minor�

Proof� We prove the second statement� Let G be nonminimal and suppose there

exists two minors K and H of G such that K ��m H and K �F G� It is su�cient to

show H �F G�

For any extension Z 	 $�
t � if G �Z 	 F then H �Z 	 F since H �Z ��m G �Z and

F is a �	minor lower ideal� Now let Z be any extension such that G � Z �	 F � Since

K �F G� we have K � Z �	 F � And since K � Z ��m H � Z� we also have H � Z �	 F�

Therefore� G is F 	congruent to H� �

Lemma � �Pre�x Lemma� If Gn � �g�� g�� � � � � gn� is a minimal t	parse

then any pre�x t	parse Gm� m � n� is also minimal�

Proof� Assume Gn is nonminimal� It su�ces to show that any extension of Gn is

nonminimal� Without loss of generality� let H be a one	step �	minor of Gn such that

for any Z 	 $�
t �

Gn � Z 	 F � H � Z 	 F �

Let gn�� 	 $t and Gn�� � Gn � �gn���� Because of the semantics of the operator set

$t� H � � H � �gn��� is a one	step �	minor of Gn�� such that for any Z 	 $�
t �

Gn�� � Z � Gn � ��gn��� � Z� 	 F � H � ��gn��� � Z� � H � � Z 	 F �

Thus� any extension of Gn is nonminimal� �



CHAPTER �� FINDING FORBIDDEN MINORS ��

The above two lemmas also hold when the circle plus operator � is included in

$t �i�e�� treewidth t	parses�� For illustration consider the Pre�x Lemma� If G is a

nonminimal t	parse with an F 	congruent minorG�� and Z is any t	parse� then �G�Z��

is an F	congruent minor of a nonminimal G� Z� where we use the prime symbol to

denote the corresponding minor operation done to the G part of G�Z� The awkward

notation is needed since G��Z may equal G�Z when common boundary edges exist

in both G and Z�

��� A Simple Procedure for Finding Obstructions

The Pre�x Lemma implies that every minimal t	parse is obtainable by extending

some minimal t	parse this provides a �nite tree structure for the search space� �This

guarantee of termination is proven at the end of this section�� Also since a �t ! ��	

boundaried graph may have many t	parse representations� we can further reduce the

size of the search tree by enforcing a canonical structure on the t	parses enumerated�

To do this we ensure that every pre�x of every canonic t	parse is also canonic �recall

Chapter ��� Combining these two ideas� we can search for minor	order obstructions

by using the following simple procedure�

�� Start with the empty t	parse � � � �n� �n� � � � � tn� as the initial minimal

t	parse� Since there are no one	step boundary minors this t	parse is vacuously

minimal� Add the t	parse � to a grow set Grow�

�� If there exists a t	parse G in the grow set Grow then enumerate all one	operator

extended t	parses E�� E�� � � � � Er�j�tj of G that are canonic �and relevant��

Otherwise� stop�

�� For each t	parse Ei� � � i � r� either prove it minimal or nonminimal�

�� Remove G from Grow and add each minimal t	parse Ei� � � i � r� to Grow�

Return to step ��

See the sample search tree given in Figure ���� We used the term relevant above

to mean that we might only be interested in obstructions for a restricted subset



CHAPTER �� FINDING FORBIDDEN MINORS ��

of t	parses� For example� three popular classes of relevant t	parses �in addition to

just the free	boundary isomorphic graphs� are� connected graphs� bounded	degree

graphs� and planar graphs� �Each class is intersected with the graphs of bounded

combinatorial width t��

This search procedure bypasses many graphs in a lower ideal F �usually of in�nite

cardinality� when branching out towards the �nite number of obstructions �minimal

leaves of the search tree�� Recall that the set of minimal t	parses contains the set of

boundaried obstructions of width t �i�e�� the non	family minimal t	parses are precisely

the boundaried obstructions��

Step � in the above procedure is the hardest to compute and we will dedicate

most of the remainder part of this chapter to the issue of proving t	parses minimal or

nonminimal� Also notice what happens when r � � at step �� For this situation� we

do not expand the search tree at a minimal t	parse this is why there is a white circle

leaf in our sample search tree of Figure ���� For example� for our canonic t	parse

enumeration scheme� it is easy to see that the clique Kt�� is a canonic dead	end� for

t � ��

Now that we have presented our basic method for �nding obstruction sets� we use

the Pre�x Lemma �as promised above� to prove that the procedure will terminate�

Theorem �� For a lower ideal F with an available decision algorithm for com	

puting �F �i�e�� for proving t	parse minimality�� there exists a terminating algorithm

�e�g�� the one given above� to compute O�F� for each pathwidth t�

Proof� It su�ces to prove that we will generate only a �nite number m of minimal

t	parses� The Pre�x Lemma allows us to prune at each of at most O�m� nonmin	

imal t	parses� Our search tree has bounded out	degree consisting of the number of

operators in $t �i�e�� a function of the width t�� Recall that �F has �nite index� If

there is not a �nite number m of minimal t	parses� then there must be an in�nite set

S of distinct t	parses in some �F equivalence class� But since the boundary minor

order is a well	partial	order� there must exist two t	parses G� and G� in S such that

G� ��m G�� This implies that the t	parse G� has G� as a congruent minor� This

contradicts the fact that G� was minimal� Therefore� our search will stop shortly after

all of the �nite number of minimal �and canonic� t	parses have been enumerated� �



CHAPTER �� FINDING FORBIDDEN MINORS ��

Nonminimal� in F �leaf�

Nonminimal� not in F �leaf�Minimal t	parse� not in F

��	obstruction� leaf�

Minimal t	parse� in F

�

Figure ���� A typical t	parse search tree �each edge denotes one operator��



CHAPTER �� FINDING FORBIDDEN MINORS �

We point out that for treewidth t	parse searches we also have a easy proof of

termination� However� in this case� the out	degree of the search tree changes for each

minimal t	parse G� This is because concatenation ��� also includes the use of the �

operator� Here G �G� is enumerated for every other treewidth canonic operand G��

such that G� is less than G in the lex	rank order �see De�nition �� and Section �������

��� Proving t�parses Minimal or Nonminimal

We currently use the following four techniques to prove that a t	parse in the search

tree is minimal or nonminimal�

�� Direct nonminimality checks�

�� Dynamic programming congruences�

�� Random extension searches�

�� Canonical congruence testsets�

These steps are listed in the order that they are attempted �if available� if one

succeeds� the remainder do not need to be performed� The �rst three of these may

not succeed� though the fourth method always will�

Note that a boundaried obstruction G is the only type of minimal t	parse that

has an empty extension Z � � � that distinguishes each minor G� ��m G from G� In

these trivial cases we do not need to use any of the above four proof methods�

By default� the third method of doing random extension searches is always avail	

able whenever we have a decision algorithm for a lower ideal F � All of the above

techniques are optional in the sense that we may only need �or want� to use just one

method� We now list three common situations as examples� If we have the canonical

congruence �F for F � implemented as a dynamic program� then the second method

is su�cient �e�g�� see our k�VertexCover characterizations�� If we have an algo	

rithm that detects all nonminimal graphs then the �rst method is su�cient �e�g�� see



CHAPTER �� FINDING FORBIDDEN MINORS ��

our k�FeedbackEdgeSet characterizations�� Lastly� if we are only interested in

computing a partial set of obstructions �with a good chance of �nding the complete

set�� we can use only the third method�

A typical obstruction set search will use all four proof techniques� which are

explained in more detail in the following subsections�

	���� Direct proofs of nonminimality

There exist easily observable properties of t	parses� called pretests� that imply non	

minimality� For any �t ! ��	boundaried graph �t	parse� we have to assume that the

boundary � is completely connected �or has the potential to be�� This is because we

do not want to eliminate out any pre�x that may be extended to an obstruction�

For an example of a pretest consider the k�FeedbackVertexSet family of

Chapter �� The existence of a degree one vertex �in the interior� is a trivial example

of such a nonminimal property� In fact many pretests that we use are easy to prove�

To illustrate this point further we have the following pretest�

Lemma �� Any graph with respect to the k�FeedbackVertexSet family that

contains a �	cycle with two degree two vertices is nonminimal�

Proof� We know that if a graph G has adjacent degree two vertices then it is nonmin	

imal except for the C� cases �in fact� this is another simple pretest�� This is because

the minor �G	e�� created by contracting the edge e between these degree two vertices�

still requires a minimum feedback vertex set of the same size� Alternatively stated�

FV S�G� � FV S�G	e�� So we just need to consider a graph G with a �	cycle that

looks like�

oru v

a

b

u v

a

b

For either case we claim that the edge contracted minor G� � G	�a� u� is congruent

to G �i�e�� a witness to nonminimality�� This is easily seen since any feedback vertex



CHAPTER �� FINDING FORBIDDEN MINORS ��

set V � of G �or any extension of G� that contains vertex u or v can be replaced with

V �� � �V � n fug�� fbg or V �� � �V � n fvg�� fbg� This set V �� is also a feedback vertex

set for G�� Likewise� if W � is a feedback vertex set for G� then W � is also a feedback

vertex set for G� �

If there exists an e�cient algorithm for a pretest then we may opt to test it on

each enumerated t	parse before invoking our canonicity algorithm� The reason is that

if we get an easy nonminimal proof for a t	parse then we do not care whether it is

canonic or not �i�e�� it does not matter whether we have found a nonminimal dead	

end in our search tree or a redundant representation�� Our current system does the

canonicity testing in two parts�

�� Check for the easy non	canonic properties� using the results of Chapter � �i�e�

one can think of this step as a �non	canonic pretest���

�� Use a slower algorithm �e�g�� a brute force back	tracking method� that tests for

t	parse canonicity�

For each newly enumerated t	parse� we then try all the �fast� nonminimality pretests

between these two canonic stages�

For our t	parse enumeration scheme� a related �pretest� type pruning is presented

below in Section ������ Here� for certain lower ideals� it is possible to prune the search

tree at the disconnected t	parses� regardless of their minimal�nonminimal status�

	���� Proofs based on a dynamic programming algorithm

We can sometimes use a dynamic programming algorithm A as a �nite re�nement

� of the canonical congruence �F �for a �xed width�� We can view each of these

algorithms as a �nite state �linear�tree� automaton for F � by simulation� This means

that there is a mapping from the dynamic programming states of A �equivalence

classes of �� onto the equivalence classes of �F � The input to a bounded width t

�nite�state algorithm At is any t	parse over the alphabet $t� These algorithms always

run in linear time� where the size of the input is the number of t	parse operators� but



CHAPTER �� FINDING FORBIDDEN MINORS ��

may contain large hidden constants that are a function of both t �width� and k�

where k is a possible parameterized integer �i�e�� k is some index in a series of families

fF
�F�� � � � �Fk� � � �g��

For such a �nite	state algorithm At for F � if both a t	parse G and a one	step �	

minor G� of G end up in the same computation state� then G �F G�� �This is because

G � G�  G �F G��� Then by de�nition� the t	parse G is nonminimal� However� if

G and G� have distinct �nal states� no conclusion can be reached� If every one	step

�	minor G� is not in the same �nal state as G then we usually proceed with the next

step �given in Section ������� the exception being when the states of At correspond

in a one	to	one fashion with the equivalence classes of the canonical congruence �F �

In this latter case� we call At a minimal �nite�state algorithm for F �for width t��

If we are fortunate to have a minimal �nite	state algorithm then we can also prove

minimality� That is� we can use the �nite	state algorithm to provide both minimal

and nonminimal proofs� This is because distinct �nal states imply the existence of an

extension that distinguishes the two states �and their t	parse representatives�� More

formally� a �nite	state algorithm At is minimal �with respect to a lower ideal F� if

for any two t	parses G and H we have � � �F � or speci�cally

�for all Z 	 $�
t � G � Z 	 F � H � Z 	 F�  G � H

where G � H means that G and H end up in the same state ofAt� An example of such

a minimal �nite	state algorithm is presented in Chapter � for the k�VertexCover

graph families�

Now consider the rare case that a �nite	index congruence �implemented as some

type of dynamic program� requires substantial computational e
ort to update a

t	parse�s state� �Here we are considering the time to append a single operator to

the t	parse�� We have some possible remedies when using this type of dynamic pro	

gram as a congruence for our obstruction set computations�

�� We can keep a state lookup table for each canonic t	parse� Thus during the

enumeration of t	parses� we do one dynamic programming step with a single

operator applied to a previous state �of a pre�x t	parse�� This previous state

is obtained from the lookup table� instead of recomputing several states for the



CHAPTER �� FINDING FORBIDDEN MINORS ��

length of a t	parse� One unfortunate consequence of this is that we may have

to determine states for some nonminimal t	parses� These graphs occur from the

set of one	step �	minors of a given t	parse� For these cases we update the states

�for several operators� starting from a minimal t	parse that is a pre�x�

�� From the dynamic	programming congruence At for a lower ideal F � we can

initially build a deterministic �nite state automatonM that accepts t	parses in

F � This automaton provides fast �single	step� state transitions� Alternatively�

we can use a canonical congruence �F implemented as a testset to automatically

create M� �See below for more information and Sections ��������� for how to

build these automata�� The only "aw with either of these constructions is that

the generated automaton may be too large to store in memory �even after being

minimized��

We end this subsection with a short case study� We show how to construct

dynamic	programming congruences for the k�EdgeBounded IndSet lower ideals�

Recall that members of these families have independence ! size � k� The reader

is invited to skip to the next t	parse minimality�nonminimality proof method �Sec	

tion ������ if these details are not of interest�

We �rst consider a dynamic program that determines the independence of a path	

width t	parse� This algorithm I	d�p� is presented in Figure ��� and proven correct

below in Lemma �� For the related k�EdgeBounded IndSet family� a boundaried

graph congruence can be speci�ed as follows� For a t	parse G and each subset S of

the boundary � de�ne the following substates �whenever possible��

IndSetG�S� � max�jIj � k ! � � I � � � S and I is an independent set� �

Two t	parses G and H are in the same equivalence class if

min�jE�G�j� k ! �� � min�jE�H�j� k ! �� and

IndSetG�S� � IndSetH�S� for all S 
 � �

For our dynamic	programming implementation� we use a special symbol void to

denote that there is no independent set containing some S 
 �� That is� the following



CHAPTER �� FINDING FORBIDDEN MINORS ��

Initial Conditions�

For the pre�x Gt�� � � �n� � � � � tn� of a t	parse Gn � �g�� g�� � � � � gn� set

IndSet�S� � jSj� for each S 
 � �

Loop�

For each operator gk� k � t! �� � � � � n� do the following �over all S 	 ����

Case �� For new �replacement� boundary vertex gk � inand i 	 S�

IndSet�S�� � max�IndSet�S�� IndSet�S n fig�� ! � �

Case �� For new boundary vertex gk � inand i �	 S�

IndSet�S�� � max�IndSet�S�� IndSet�S � fig�� �

Case �� For new boundary edge gk � i j with i 	 S and j 	 S�

IndSet�S�� � void �

Case �� For new boundary edge gk � i j with i �	 S or j �	 S�

IndSet�S�� � IndSet�S� �

On Exit�

Return maximum value of any IndSet�S� over all S 
 ��

Figure ���� A general independence algorithm I	d�p� for pathwidth t	parses�



CHAPTER �� FINDING FORBIDDEN MINORS ��

simple alteration to the above substates is used�

IndSetG�S� �

��
� void if S is not an independent set of G� else

max�jIj � k ! � � I � � � S and I is an independent set�
�

Next we present a proof that the �in�nite	state� dynamic program I	d�p� correctly

updates these IndSet�S� substates in the t	parse setting�

Lemma �� Consider the independence algorithm I	d�p� given in Figure ���� For

any pathwidth t	parse G and extension operator g 	 $t� the IndSet�S� substates of

I	d�p� are correctly updated for G � �g��

Proof� By de�nition of IndSet�S� for S 
 �� the state IndSet�S� � jSj for the

empty t	parse G � � �n� �n� � � � � tn�� The four dynamic	programming cases handle�

��� whether g is a vertex or edge operator� and ��� the speci�c index S 
 �� In the

case analysis below recall that a witness I for IndSet�S� is an independent set of the

t	parse such that I � � � S� The notation IndSet�S�� denotes the substate of G � �g��

while IndSet�S� denotes the previous state of G�

Case �� g � inwhere i 	 S

Let I and Ii be maximum independent sets for IndSet�S� and IndSet�Snfig� such

that I �� � S and Ii�� � S nfig� For a new isolated boundary vertex i� we see that

IndSet�S�� � max�IndSet�S�� IndSet�S n fig�� ! �� because either one of the sets I or

Ii� plus one additional vertex� is a witness� To show that equality holds we consider

the following two cases when IndSet�S�� is at least two greater than both IndSet�S�

and IndSet�Snfig�� If I � is a witness for IndSet�S�� then consider I �� � I �nfi�g� where

i� denotes the new boundary vertex of G � � in�� First� if I �� contains the boundary

vertex i of G then I �� is a witness for IndSet�S� of larger cardinality� Second� if I ��

does not contain the boundary vertex i of G then I �� is a witness for IndSet�Snfig� of

larger cardinality� Both these contradictions show that this dynamic step is correct�

Case �� g � inwhere i �	 S

Now let I and Ii be independent set witnesses for both IndSet�S� and IndSet�S�

fig�� respectively� Since i �	 S� both I and I � are also maximal independent sets with

respect to IndSet�S��� Thus IndSet�S�� � max�IndSet�S�� IndSet�S � fig��� Again



CHAPTER �� FINDING FORBIDDEN MINORS ��

�as in case ��� equality must hold otherwise we can contradict one of the previous

maximum values IndSet�S� or IndSet�S � fig��

Case �� g � i j with i 	 S and j 	 S

There is no possible independent set when both vertices i and j are adjacent� so

the assignment IndSet�S�� � void is correct� In future steps� we de�ne max�n� void� �

n for any integer n� that is� void is less than any integer n in this linear order�

Case �� g � i j with i �	 S or j �	 S

Since a witness independent set I for IndSet�S� is also a witness for IndSet�S��

and the independence of a graph does not increase when edges are added� no change

is needed for this situation�

�

From the above lemma� it follows that we can determine in linear time the max	

imum independent set of a t	parse G by running the I	d�p� algorithm� The in	

dependence of the graph is then the largest IndSet�S� value� To actually �nd an

independent set of maximum cardinality� a history of witness vertex sets �i�e�� one

independent set I for each IndSet�S�� is kept and updated during the dynamic steps�

For each �xed parameter k� it is easy to convert I	d�p� into a �nite	state al	

gorithm At
k that can determine if a t	parse has an independent set of size greater

than k� This is done by simply assigning k ! � to any IndSet�S� that ever exceeds

k ! �� We do not know whether this �nite	state algorithm At
k is the smallest in

terms of the number of computation states required� This implied graph family �in	

dependence greater than k� is not a lower ideal in the minor order� However� we

can adapt each �nite	state algorithm At
k into a dynamic	programming congruence

for each k�EdgeBounded IndSet lower ideal�

Lemma �� Let F � k�EdgeBounded IndSet� For each boundary size t� an

upper bound on the number of equivalence classes for �F is �k ! ���
t���

Proof� Consider the k�EdgeBounded IndSet congruence given earlier� For each

subset of the boundary S� IndSet�S� is assigned either one of the integers f�� � � � � k!�g

or the special symbol void� Since there are �t possible choices for S and each graph



CHAPTER �� FINDING FORBIDDEN MINORS ��

in the lower ideal can have at most k edges �again an integer f�� � � � � k ! �g�� the

bound follows� �

We close this section by mentioning that the above bound is probably not very

strong for k�EdgeBounded IndSet� If we know that a boundaried graph has k�

edges then we should be able to restrict to the substates of the �nite	state indepen	

dence algorithm for At
k�k� �

	���� Proofs obtained by a randomized search

We can prove that a t	parse G is minimal by �nding� for each one	step �	minor G�

of G� a distinguisher Z� that is� a parse extension Z such that G� � Z is a graph in F

while G � Z is not a graph in F� �Recall Lemma ����

In the experimental results described in Part II of this dissertation� a large fraction

of the minimality proofs in the search trees were obtained by a randomized algorithm�

This randomized algorithm consists of the following high	level steps for a t	parse G�

� Initialize L � fG� j G� is a one	step �	minor of Gg�

� Until L � � or until a time limit is exceeded do�

��� Choose G� 	 L�

��� Randomly generate a distinguisher Z for G and G��

��� Pick a minor Z � ��m Z such that Z � is a distinguisher for G and G��

but for every proper minor Z �� ��m Z �� Z �� does not distinguish G and G��

��� Remove G� and then any other G�� 	 L such that G�� � Z � 	 F �

The goal of this algorithm is to �nd a distinguisher for each one	step �	minor� In

particular� we can use a di�erent distinguisher for each one	step �	minor in a proof of

minimality� Step ��� chooses a one	step �	minor as a target� Step ����� which is the

most computationally intensive step� may not succeed in the given time limit� If it is

successful then steps ��� and ��� extract as much useful information as possible from

this distinguisher� In practice we found that many one	step �	minors of G could be

distinguished from G by the same extension Z� The minimization of Z in creating



CHAPTER �� FINDING FORBIDDEN MINORS ��

Z � in step ��� increases the chances that the extension distinguishes G from other

one	step �	minors�

Example � Consider the family F � ��VertexCover� The �gure below de	

picts a t	parse G� �for t � �� along with two randomly generated extended graphs

G � Z� and G � Z� that provides a proof of minimality for G�

The t	parse G � � �n� �n� �n� �n� � � � � � � � � � �n� � K��� �K��

The two proof extensions are Z� � � � � � � � � and Z� � � � � � � � � � � ��

G G � Z� G � Z�

�

�

�

	

�

�

�

	

�

�

�

	

The compact visual representation of the one	step minors consist of� a bold edge is

an edge contracted minor� a dashed edge is an edge deleted minor� and a bold	dashed

edge indicates two di
erent minors� each one obtained by an edge deletion or an edge

contraction� The extension �gure in the middle shows �ve one	step minors of G� and

an extension Z� that gives the desired minimality proof for all those �ve minors� The

extension �gure on the right �nishes the t	parse minimality proof �using Z�� for the

remaining single edge deleted minor�

We end this subsection with two remarks concerning possible uses of random

distinguishers�

�� In our experimental work� we found that a careful examination of those cases

where a randomized search for a proof of minimality failed �and hence� for which

this failure provides circumstantial evidence of nonminimality�� often provided

structural insights that could be translated into new nonminimality pretests�



CHAPTER �� FINDING FORBIDDEN MINORS �

�� Often good candidates for distinguishers can be obtained from partial sets of

computed obstructions� Here a �piece� �boundaried subgraph� of an obstruction

has minimality properties for the current lower ideal� Trivially the single edges

�via a single edge operator extension� are pieces of obstructions� Thus� for any

interesting lower ideal� we could start with these edge pieces even before we �nd

our �rst obstruction�

	���	 Proofs based on a testset congruence

We can use a complete testset �see De�nition ��� to determine if a t	parse G is

distinguished from each of its one	step �	minors �recall Lemma ���� If so� the t	parse

G is minimal by a testset proof� Alternatively� a t	parse G is nonminimal if and only

if it has a one	step �	minor G� such that G and G� agree on every test� Thus after a

testset run we have a proof that a graph is either minimal or nonminimal�

It helps to have a testset of minimum size and a fast membership algorithm for

F � Unfortunately� it is NP	hard to �nd the minimum sized testset for the minimal

automaton or canonical congruence for F � �See Chapter �� for a proof�� However�

there exist heuristics that to help �nd redundant tests in a testset� For example�

we can remove one test and see if the remaining tests de�ne the same congruence�

That is� we can compare the minimal automata generated by these two testsets� �See

Section ���� for instructions��

All of our testsets� that are presented in Part II� were proven complete for the set

of all boundaried graphs� It is easy to see that if two graphs are congruent for the set

of all �t! ��	boundaried graphs then they are also congruent for the set of t	parses�

We point out that testsets exist for other �regular language� graph families be	

sides the bounded	width minor	order lower ideals� The set FHC of t	boundaried

graphs with a Hamiltonian cycle is a classic example� In Figure ��� we illustrate a

testset for FHC for graphs of boundary size �� Recall that a graph G is Hamiltonian

if there exist a cycle of length jGj�

The proof that these tests are su�cient is done by a case analysis regarding how

a Hamiltonian cycle may pass across the boundary� We provide a simple proof below



CHAPTER �� FINDING FORBIDDEN MINORS ��

Figure ���� The set T �
HC of �	boundaried graph tests for Hamiltonicity�

in order to illustrate how one generally constructs testsets for an arbitrary family F�

In establishing most of our testsets for lower ideals we use this basic proof technique�

Lemma 	� The set T �
HC is a Hamiltonian cycle testset for the set of �	boundaried

graphs�

Proof� Let �HC denote the canonical Hamiltonian	cycle family congruence on graphs

of boundary size �� Recall that G �HC H if and only if for every �	boundaried graph

extension Z�

G� Z 	 FHC � H � Z 	 FHC �

If G ��HC H then� without loss of generality� we have some Z such that G�Z 	 FHC

and H � Z �	 FHC� We just need to show that this distinguishing Z can be replaced

with one of the �� tests in T �
HC �de�ned in Figure ����� Let C be any Hamiltonian

cycle of G � Z� Clearly the �	boundaried graph Z � � Z � C also distinguishes G

and H� This is because non	Hamiltonicity is closed under edge deletions note that

V �Z �� � V �Z�� Now Z � must consist of a set of connecting paths �or unique cycle�

between the boundary vertices� Again� since non	Hamiltonicity is closed under edge



CHAPTER �� FINDING FORBIDDEN MINORS ��

contractions between adjacent degree two vertices� Z � can be replaced with one of the

reduced tests in T �
HC� �

��� Making the Theory Practical

This section contains a selection of results that help speed up the process of computing

obstruction sets�

One computational improvement deals with determining whether a t	parse G

is minimal or nonminimal when G is not in a lower ideal F � By de�nition of the

canonical congruence �F for F� we see that G is minimal if and only if for every

�	minor H of G� the minor H is in F � Otherwise� if H is not in F then H �F G�

Thus� minimality is easily determined by checking that each one	step �	minor of an

out	of	family t	parse is in the lower ideal F�

	�	�� Pruning at disconnected t�parses

Often for a lower ideal F we are only interested in computing the connected obstruc	

tions since �as explained in this section� the disconnected ones are easy to derive�

Below we indicate a general setting where we can prune the search tree whenever a

disconnected boundaried graph is enumerated� Here �disconnected� means that there

is a connected component containing only non	boundary �interior� vertices�

Let � be a function that maps graphs to non	negative integers such that�

�� For graphs G� and G�� ��G� �G�� � ��G�� ! ��G���

�� For any minor H of G� ��H� � ��G�� and

�� For any graph G there exists a minor H such that ��H� � ��G�� ��

The family of graphs F �k� � fG j ��G� � kg� k � � has an obstruction set

since it is a lower ideal �from property � above� in the minor order� Also O�F �k��

has �nite cardinality because of the Graph Minor Theorem� A concrete example

is ��G� � genus�G�� where genus�G� denotes the smallest genus of all orientable



CHAPTER �� FINDING FORBIDDEN MINORS ��

surfaces on which G can be embedded �property � follows from �BHKY����� In fact�

there are many examples of lower ideals that satisfy all three properties such as all

of the �within k vertices� families characterized in this dissertation�

Observation 
� If F is a lower ideal such that

G� 	 F and G� 	 F � �G� � G�� 	 F

then the function

��G� � min�jV �j � G n V � 	 F where V � 
 V �

can be used to de�ne the above parameterized lower ideals F �k�� k � ��

Proof� Clearly� ��G� � G�� � ��G�� ! ��G�� since if G� n V� 	 F and G� n V� 	 F

then �G� � G�� n �V� � V�� 	 F � Likewise� ��G�� ! ��G�� � ��G� � G�� since if

�G� � G�� n V��� 	 F then G� n �V �G�� � V���� 	 F and G� n �V �G�� � V���� 	 F � So

property � holds for �� Property � follows from the fact that F �k� is de�ned as �a

within k vertices� family of a lower ideal �see �FL��b��� Property � follows from the

fact that if H is any minor obtained from G by deleting a single vertex then ��H�

can be at most one less than ��G�� �

For example� our k�VertexCover and k�FeedbackVertexSet parameter	

ized lower ideals are de�ned from the base lower ideals FV C � fgraphs with no edgesg

and FFV S � fgraphs with no cyclesg� respectively� Here the families FV C and FFV S

are closed under graph unions� so Observation �� is valid�

Theorem 	�� If G � C
 � C� is an obstruction for F �k�� k � �� then each Ci is an

obstruction for F ���Ci�� ��� i � �� ��

Proof� First note that ��Ci� �� � for otherwise removing that component from G is

a contradiction to the fact that G is an obstruction� Thus� we claim that each Ci is

an obstruction to a smaller family �i�e�� some F �k�� where k� � k��



CHAPTER �� FINDING FORBIDDEN MINORS ��

Assume that Ci is not an obstruction for F ���Ci� � ��� the smallest family not

containing Ci� Not being an obstruction implies that there is a minor C � of Ci such

that ��C �� � ��Ci�� But this implies that for the minor G� � C � � C��i of G�

��G�� � ��C � � C��i� � ��C �� ! ��C��i�

� ��C�� ! ��C�� � ��C� � C��

� ��G� � k ! � �

The existence of this minor contradicts the assumption that G is an obstruction for

F �k�� So the connected graph Ci must also be an obstruction� �

Corollary 	�� If G �
Sr
i�
Ci is an obstruction for F �k�� k � �� then each Ci is an

obstruction for F ���Ci�� ��� i � �� �� � � � � r�

Proof� This follows by recursively applying the above theorem� �

Many obstruction set characterizations are based on k	parameterized lower ideals�

It would be surprising if the growth rate in the number of obstructions per each k

is slow� To conclude this subsection we present two observations to substantiate this

claim�

Observation 	�� If the number of connected obstructions f ck of F �k� is at least

one� for all k � �� then the total number of obstructions fk of F �k� is greater than or

equal to the number of integer partitions of k ! ��

Proof� Because of property ��� of F �k�� we know that any obstruction O 	 O�F �k��

has ��O� � k ! �� By Corollary �� there exist disconnected obstructions O� � O� �

� � � � Om� where each Oi is connected and
Pm

i�� ��Oi� � k ! �� There is a one	to	one

correspondence with these �non	isomorphic� obstructions and the number of integer

partitions of k ! �� �

Example 	�� We can easily generate the number of integer partitions for various

n� Hence� the following table gives lower bounds on the total number of obstructions

for F�k��



CHAPTER �� FINDING FORBIDDEN MINORS ��

n � � � � � � � � � � �� �� �� ��
� � �

�� ��

counts � � � � � � �� �� �� �� �� �� �� ��� ��� ����

n � �� �� �� �� �� �� ���

counts � ����� ������ ������ ������� �������� �������� ���������

To lead up to our next observation� let Fk � fG j ��G� � kg be any k	

parameterized lower ideal that is de�ned by some integer function ��G� � p�jGj��

that is bounded by some polynomial function p� Also let p��G� k� denote the corre	

sponding graph problem that determines if ��G� � k where both G and k are part of

the input�

Observation 	�� If p��G� k� is NP	complete then fk � jO�Fk�j must be super	

polynomial else the polynomial time hierarchy �PH� collapses to $P
� �

Proof� Yap �see �Yap���� has shown that the following are equivalent for i � ��

�a� )P
i 
 $P

i �poly or $P
i 
 )P

i �poly

�b� $P
i �poly � )P

i �poly

�c� PH�poly � $P
i �poly or PH�poly � )P

i �poly

Now if fk is bounded by a polynomial then co	p��G� k� 	 NP�poly by having

polynomial advice consisting of the obstruction sets for all � � k � p�jGj�� That is�

we can nondeterministically verify in polynomial time �for input G and k� that some

obstruction O 	 O�Fk� is a minor of G� Since p��G� k� is NP	complete� we get

co	NP � )P
� 
 NP�poly � $P

� �poly �

An application of Yap�s result� given above� shows that

$P
� �poly � )P

� �poly � PH�poly �

And this implies $P
� � )P

� by another theorem of Yap that states that for i � ��

$P
i �poly � )P

i �poly $P
i�� � )P

i�� �

So using the well	known fact that if $P
i � )P

i for any i � � then the polynomial

time hierarchy collapses to level i� we get PH � $P
� � )P

� unless there are a super	

polynomial number of obstructions for Fk� �



CHAPTER �� FINDING FORBIDDEN MINORS ��

This observation can be applied to most k	parameterized lower ideals� For ex	

ample� our k�VertexCover and k�FeedbackVertexSet graph families satisfy

the preconditions of the above result� Also since determining the genus of a graph is

NP	complete� the lower ideal k�Genus � fG j genus�G� � kg also belongs in the

above class�

	�	�� Searching via universal distinguishers

One approach for speeding up an obstruction set search is to try �nd a smaller search

tree� In fact� we can do this by de�ning a variation of our previously discussed

�minimal t	parse� search tree�

De�nition 	�� An extension Z is a universal distinguisher for a t	parse �boundaried

graph� G if for every one	step �	minor G� of G� we have

G � Z �	 F and G� � Z 	 F �

A t	parse G is universal minimal if there exists a universal distinguisher for it�

We have found several initial lists of obstructions using this universal distinguisher

approach �e�g�� see Chapter ��� The search tree restricted to universal minimal graphs

is smaller because of the following observation�

Observation 	�� With respect to a canonical congruence �F � the set of universal

minimal t	parses is a subset of the set of minimal t	parses�

The next lemma guarantees that this search approach is a viable one�

Lemma 	� The Pre�x Lemma �Lemma ��� holds for universal distinguisher search	

ing� That is� any pre�x of a universal minimal t	parse is universal minimal�

Proof� First observe that every boundaried obstruction has a canonic t	parse rep	

resentation� If G � Z is a boundaried obstruction then G is universal distinguisher

minimal via Z� �



CHAPTER �� FINDING FORBIDDEN MINORS ��

The above pre�x property means that our underlying obstruction set search soft	

ware can be used here with only a few alterations�

It seems to be harder �in the computational sense� to determine when a t	parse

G is universal minimal �or universal nonminimal�� The good news is that we can use

a slightly altered version of our random distinguisher search to show that a t	parse is

universal minimal� Here for a t	parse G� we simply try to �nd one extension Z such

that G � Z is not in F while for each minor G� ��m G� G� � Z is in F� As done for

the randomized algorithm given in Section ������ we should minimize Z with respect

to G and F before checking if it is an universal distinguisher�

The proof of Lemma �� tells us that if we run enough random distinguisher

searches �see Section ������ then we will eventually �nd all the boundaried obstruc	

tions for F� By using only this type of proof technique� there is a simple approxima	

tion search scheme that has the potential of �nding all the obstructions�

Next we give a concrete example of a universal minimal t	parse�

Example 		� Let us reconsider the ��VertexCover family of graphs that is

restricted to t	parses� for t � �� The short t	parse

G � � �n� �n� �n� � � � � � � �n� � � �

is universal minimal by the distinguisher Z � � �n� � � � � � �� If H is any one of

G�s four non	isomorphic one	step �	minors� we can �nd a vertex cover of size two for

H � Z �see the squared vertices below�� As can be seen� the �	boundaried graph G is

a pre�x of the obstruction C��

G � Z extended ��minors

We further explore the idea of universal distinguisher searching in the next chap	

ter under the more general framework of using second	order congruences�



CHAPTER �� FINDING FORBIDDEN MINORS ��

	�	�� Using other 
nite�index congruences

One may wonder if we really need to use the canonical �family� congruence �F or can

we use another �easy to program� congruence for a lower ideal F � The main result

of this section answers this question in the a�rmative� First let us formally de�ne

what is meant by a �nite	state algorithm for any lower ideal F �

De�nition 	
� A �nite�state algorithm AF �congruence �� for any lower ideal of

graphs F 
 $�
t �i�e�� a subset of the t	parses� satis�es these four properties�

�� The algorithm AF is a mapping of t	parses to a �nite set of states� which

correspond to the integers f�� �� �� � � � � rg� for some r � ��

�� If G and H are two t	parses that are not F 	congruent� G ��F H� then AF �G� ��

AF�H��

�� If G and H are two t	parses that are not members of F then AF�G� � AF�H��

that is� there exists an unique out	of	family state�

�� If G and H are two t	parses such that AF �G� � AF�H� then for any z 	 $t�

AF�G � �z�� � AF �H � �z���

The states of any �nite	state algorithmAF represent a re�nement of the canonical

�family� congruence �F � Often these algorithms are written as dynamic programs

�recall Section ������� Also in the above de�nition� the symbol � denotes the implicit

congruence �re�nement of �F � obtained from the states of AF �

We can de�ne t	parse minimality in terms of �� For instance� a t	parse G is

minimal if for every proper minor H ��m G� H �� G �or AF�G� and AF�H� are

di
erent states��

Lemma 
�� If a t	parse obstruction set search with � �substituted for �F� termi	

nates then the obstruction set for F �of width t� has been found�

Proof� Because of property � above� any obstruction O of O�F� is minimal� Also

since � has only one out	of	family state �property ��� all minimal out	of	family



CHAPTER �� FINDING FORBIDDEN MINORS ��

t	parses are boundaried obstructions� The Pre�x Lemma also holds for this de�	

nition of t	parse minimality since �a� extensions are supergraphs and �b� the family

F is assumed to be a lower ideal� Therefore� every pre�x of O is minimal and will

not be pruned� �

Notice that for the above lemma� termination of the search process does not rely

on the fact that the algorithm AF has a �nite number of states� That is� it does not

use property �� So it turns out that an in�nite state algorithm �or at least one not

proven to be �nite state� satis�es the premise �and result� of the lemma�

For these non	canonical congruences� one handy result is missing� This is the

ability to prove minimality via one	step minors �see Lemma ���� It is possible� in

fact� to do a tree	like search for any generic congruence and rede�ne minimality�

That is� in this context� a t	parse G is said to be minimal if and only if each one	

step �	minor is distinguished from G� However� doing so may make it easier for the

algorithm not to terminate� or at the very least� generate a larger than needed search

tree� An experimental compromise is to try alternative minimality de�nitions for

various minor steps� up to some k � ��

	�	�	 Finding uses of randomization

The methods of the previous two sections have something in common in that we may

want to end a search before everything is proven� Let us call an approximation run

for a lower ideal F any computation that yields a search tree for O�F� that still

has t	parses that are not proven minimal or nonminimal� That is� we may terminate

the program early where �unknown� t	parses remain� We reuse proofs obtained on a

previous approximation run when we restart an obstruction set search for the same

lower ideal and width� The topic of this section concerns how randomization can

be used to improve the chances that repeated runs progress towards �nishing �i�e��

we want to reach a point where all t	parses have been proven either minimal or

nonminimal�� Here we want subsequent approximation runs to do di
erent work �via

nondeterminism�� Doing this provides a better chance of �nding new proofs�

Depending on how hard it is to for the computer to obtain a proof� we store



CHAPTER �� FINDING FORBIDDEN MINORS �

the status of a t	parse �e�g�� minimal� nonminimal� noncanonic� or irrelevant� in a

centralized database to be accessed in future searches� For any t	parse that has an

�unknown� status �e�g�� after a time	out canonic attempt�� the search must assume

that the t	parse is on a path to an obstruction �e�g�� in this case� the t	parse is assumed

to be canonic��

We have already seen randomization used in the random extension searches of

Section ������ There are other subtle places that randomness may help� One example

is for the algorithm that determines whether a t	parse is canonic or not� It is evident

that we do not want to do duplicate work during repeated searches� For example�

repeated CPU time should be avoided if a t	parse canonic run is inconclusive during

the �rst time� There are many open problems regarding how we can use randomization

to help make our obstruction search theory more practical�



��

Chapter �

The Implementation and

The Future

In this chapter we describe our software for computing obstruction sets and discuss

some research that is currently being explored� Our automated approach is continu	

ally improving by this new theory�

��� Using Distributed Programming

We believe that� in some sense� the most practical aspect of our obstruction set search

theory is that it permits a distributive programming approach� In the following

paragraphs we explain our e
orts in exploiting this theme� Figure �� at the end of

this section gives a visual perspective of the many types of processes that are involved�

These key processes are discussed below�

Manager� This process is the main search	tree engine of the system� The manager

controls the database of status and proof information regarding t	parses� We

run the manager on a computer that contains a dedicated local disk for the

database �e�g�� we have access to a Sparc	� research machine at the University

of Victoria for this purpose�� It is also preferable to have a large swap space

because a skeleton of the search tree is kept in memory for the duration of



CHAPTER �� THE IMPLEMENTATION AND THE FUTURE ��

the search� This tree includes record pointers to the database for all t	parses

enumerated� The manager tells another process� called the dispatcher� what

work needs to be done and waits for results� The manager grows the search

tree in a greedy fashion as work becomes available� This strategy is dependent

on the sequence order of proofs returned by the dispatcher� These are proofs

of t	parse minimality or nonminimality� Also� the manager is the only process

that writes to the database� Another process called the locker issues read�write

access tokens to processes wanting access to the database�

Dispatcher� The dispatcher is the process that distributes t	parse work to the

worker clients� It maintains a queue of work to be done along with a queue of

idle worker processes� The work �consisting of enumerated t	parses with each

t	parse initially having unknown status� is sent to a worker using the standard

TCP�IP socket communication protocols� The worker processes can be any	

where on the internet� and not necessarily of the same computer architecture

�e�g�� we currently support Sparcs� Cray Y	MPs� and IBM	����s�� For commu	

nicating processes running on a machine with the same operating system as the

dispatcher �usually SunOS�� asynchronous I�O is used� otherwise synchronous

I�O is used�

Workers� The workers consume most of the CPU resources during an obstruction

set search� The main task for these processes is to determine whether a t	parse

is minimal or not using the methods of Section ���� Some workers may also

check whether a t	parse is canonic or not� Since we have workers compiled and

installed on multiple hardware platforms� we use a special binary I�O stream

object �a C		 class� to facilitate communication between the dispatcher and

a worker� The number of workers possible for an obstruction set search is

practically unlimited however� our largest searches use only about �� machines

�mostly Sparcs��

Extractors� These processes are the user�s interface to the distributive system�

The extractors �and browsers for interactive viewing� are tools that retrieve

information such as�



CHAPTER �� THE IMPLEMENTATION AND THE FUTURE ��

� The status of an individual t	parse �e�g�� a partial set of one	step minors

that have been distinguished��

� A view of the current search tree�

� A dump of the boundaried �or ordinary� minor	order obstructions found�

The output is produced in either text� PostScript� or binary form�

� The current statistics about how many minimal and nonminimal nodes per

depth of the search tree� This is used quite frequently in order to predict

how close a current obstruction set search is to completing�

� An archive or backup of the current search� which is later used in a restart�

For example� this is used before a scheduled power outage�

We have another type of extractor �or more accurately called a controller� that

allows us to peek at the status of all system worker processes� This �backdoor�

into the dispatcher allows us to monitor the search at the internet level� We

can manually kill o
 frozen connections through this backdoor�

��� Software Summary

During our quest for a general	purpose system for computing obstruction sets� we

have redeveloped several key software components� In fact� the current system was

restarted from scratch four years ago� The �rst version was dropped after one year

of e
ort when we discovered that the automaton constructed by the methods given

in Section ���� were too big to be practical�

Some of our initial goals for a software project is re"ected in our system�s acronym�

VLSI Automated Compilation System �VACS�� The VACS research group at the Uni	

versity of Victoria �with Kevin Cattell and Mike Fellows as the other two members�

envisioned a system that could generate approximating automaton for real	world en	

gineering problems� A method of using obstructions for doing this task is mentioned

later in Section �����



CHAPTER �� THE IMPLEMENTATION AND THE FUTURE ��

DATABASE COMMANDS

#1

#n

Figure ��� Schematic view of our distributed obstruction set software�



CHAPTER �� THE IMPLEMENTATION AND THE FUTURE ���

We now illustrate the user�s steps required to �nd minor	order obstructions using

our software� We assume that the user is interested in a particular lower ideal F�

Refer back to Section �� for more information on the various processes mentioned

below�

�� Create a problem �le directory for the lower ideal F and the desired t	parse

search width�

�� Add source code for the lower ideal F that consists of a family membership

algorithm and optionally any �or all� of the following� nonminimal pretests� a

�nite	index congruence� or a testset� There are general C		 mechanisms in

place for adding each of these components� If none of these proof techniques

is provided� the system will only use random distinguisher searches to prove

t	parses minimal �and may only compute a partial set of obstructions��

�� Make a control �le that contains key	word descriptions of the problem� This

should consists of at least the required run	time parameters that are listed in

Figure ���

�� Start a database locker daemon on the machine containing the problem direc	

tory� This needs to be started only once and resides for repeated runs�

� Invoke the �search� script� This csh script �rst starts the manager process

which in turn spawns a dispatcher process� The dispatcher will create an inter	

net socket and store the current port number �chosen by the operating system�

in an external �le�

�� Start as many worker processes as needed� If the machine does not have access

to the problem directory then the internet port number has to be manually

copied to a �clone� directory �without the database� on the remote machine�

�� Monitor the progress of the search with various extractors and browsers�

�� When the search completes� run extractors to retrieve the obstructions �for the

given search width� and statistics of the current search� The search is gracefully

terminated by the manager telling the dispatcher� which in turn noti�es all of

the workers to abort�



CHAPTER �� THE IMPLEMENTATION AND THE FUTURE ���

const ProbInfo��ParseTableEntry ProbInfo��parseTable� � �

�

� �problem name�� Required� String� 	 
�

� �problem number�� Required� Integer� 	 
�

� �directory�� Required� Subpath� 	 
�

� �keyword�� Required� String� 	 
�

� �pathwidth�� Required� Integer� 	 
�

� �membership flag�� Optional� Integer� �	� 
�

� �use congruence�� Optional� Boolean� �true� 
�

� �congruence flag�� Optional� Integer� �	� 
�

� �connected�� Optional� Boolean� �true� 
�

� �tree search�� Optional� Boolean� �false� 
�

� �conservative grow�� Optional� Boolean� �true� 
�

� �extn edge weight�� Optional� Integer� ��	� 
�

� �extn runs�� Optional� Integer� ��� 
�

� �extn tries�� Optional� Integer� ��	� 
�

� �extn max length�� Optional� Integer� �	� 
�

� �extn skip�� Optional� Integer� �	� 
�

� �save nonmin proofs�� Optional� Boolean� �true� 
�

� �congruence is tight�� Optional� Boolean� �false� 
�

� �use testset�� Optional� Boolean� �true� 
�

� �tilde minor search�� Optional� Boolean� �false� 
�

� �max equal iso level�� Optional� Integer� ���� 
�

� �workers run canonic�� Optional� Boolean� �false� 
�

� �load all nonminimal�� Optional� Boolean� �false� 
�

� �limit to prefix�� Optional� String� � � 
�

� �send PMP�� Optional� Boolean� �true� 
�

� �univ dist search�� Optional� Boolean� �false� 
�

� �pretest extensions�� Optional� Boolean� �false� 
�

� �canonic timeout�� Optional� Integer� �	� 



�

Figure ��� Some available run	time options for obstruction set computations�



CHAPTER �� THE IMPLEMENTATION AND THE FUTURE ���

We now brie"y explain the optional run	time parameters� given in Figure ��� for

our obstruction set searches� The �membership flag� option is used to specify a run	

time option to the membership algorithm� mainly used for testing purposes �or to pro	

vide additional information about the current lower ideal�� The �use congruence�

option tells the workers that we have implemented a re�nement of the canonical

congruence and to use it� The �congruence flag� option is available for di
erent

workers to run the dynamic	programming congruence in di
erent modes� Using this

option and the membership "ag� the user can quickly change aspects of the search

without having to recompile the program� The �connected� option noti�es the man	

ager to prune the search tree at the disconnected t	parses �see Section ������� The

�tree search� option allows one to restrict the domain of the search to trees �i�e��

treewidth one graphs of bounded pathwidth�� Using �conservative grow� as an op	

tion tells the manager to �nish the search tree at level h �all t	parse strings of length

h ! t ! �� before enumerating t	parses at level h ! �� The �ve options �extn edge

weight�� �extn runs�� �extn tries�� �extn max length� and �extn skip� allow

the user to control the random distinguisher searches� Here one speci�es the edge

density �as a percentage�� limits the attempts for proving that a t	parse G is mini	

mal� bounds how many times the search tries to distinguish a speci�c minor G� from

G� speci�es the maximum length �number of operators� for each extension� and states

how many operators are appended to Z before G � Z is tested for membership in F�

The �save nonmin proofs� option allows the user to save in the family database all

nonminimal t	parse proofs� These proofs are not needed when the search uses only a

random distinguisher searches as the only t	parse proof technique �see Section �������

The �congruence is tight� option noti�es the workers that the implemented con	

gruence is in fact the canonical congruence for F� The �use testset� option tells

the workers that a testset for �F is available �and can be either loaded from disk or

enumerated at run time�� The �tilde minor search� option turns o
 the one	step

minor mode for proving t	parses minimal� The �max equal iso level� option is

used only during a restart of the search� Here the proofs from a backup database

are loaded unconditionally for all t	parses shorter in length than this �iso level� �any

t	parse not in the database� up to this level� is assumed to be non	canonic�� The

�workers run canonic� option allows the manager to request �to the dispatcher�



CHAPTER �� THE IMPLEMENTATION AND THE FUTURE ���

that the workers should help prove whether a t	parse is canonic or not �recall the

two canonic stages mentioned in Section ������� The �load all nonminimal� op	

tion is used to cancel the default mode of retrying random distinguisher searches

for �assumed nonminimal� t	parses �this is used in a restart of an approximation

run�� The �limit to prefix� option allows the search to start at any subtree of

the search tree �we used this for our ��FeedbackVertexSet computations�� The

�send PMP� option tells the workers to send back all �Partial Minor Proofs� for each

t	parse G that they handle �e�g�� a proof is partial if all of the one	step minors of

G have not been distinguished from G�� The �univ dist search� option turns on

the universal distinguisher search method that was presented in Section ������ The

�pretest extensions� option is for the random distinguisher searches� Here each

extension Z must fail every direct nonminimal pretest that is installed for the current

lower ideal F � Finally� the �canonic timeout� option allows the impatient user to

specify the maximum amount of CPU time that can be spent on trying to prove that

a t	parse is non	canonic� If the timeout is reached then the system assumes that the

t	parse is canonic for the integrity of the search�

For our obstruction set searches� we ran our manager and dispatcher processes

on a Sparc	� workstation� This machine has a relatively small amount ����M� of

dedicated local disk space� This drive was mainly used to store the search database�

However� this machine has ��M RAM of internal memory which allows for less disk

swapping during our larger obstruction set searches� We concurrently ran workers at

both the University of Victoria �only Sparcs� and Los Alamos National Laboratory

�Sparcs� Cray Y	MPs� and IBM	����s��

The following Table �� lists our main software directories with the line counts

for the source code� Not included is a few thousand lines of miscellaneous code �e�g��

special source �les to interface the LEDA graph library�� The size of the executable

program is ����K after being stripped of debugger code this executable was produced

by a Sparc AT*T CC	���� compiler� We also have over one thousand lines of shell

script code� where the average length of each script is about thirty lines� These

scripts were written in Perl� csh� or ksh� In fact� an ASCII version of Table �� was

generated by a simple csh script that calls the UNIX sed and awk utilities�



CHAPTER �� THE IMPLEMENTATION AND THE FUTURE ���

Table ��� Source code breakdown by area for our VACS software �subdirectories��

Header Files

�c lines( �h lines Directory

��� inc

���� �� inc�array

��� inc�automata

���� inc�tparse

�� inc�tparse�i	o

��� inc�tparse�algorithm

� inc�browser

��� inc�family

��� inc�family�testset

�� ���� inc�general

��� inc�graph

��� inc�graph�algorithm

��� inc�graph�i	o

��� inc�isomorphism

��� inc�search

���� ���� inc�set

���� inc�vacs

( C		 template code is included here�

Source Files

�c lines Directory

� src�automata

��� src�browser

��� src�tparse

��� src�tparse�algorithm

�� src�tparse�i	o

���� src�family

��� src�family�testset

���� src��lesystem

���� src�general

��� src�graph

���� src�graph�algorithm

��� src�graph�generate

��� src�graph�i	o

���� src�graphplay

��� src�isomorphism

��� src�i	o

�� src�locker

�� src�process

���� src�search

��� src�searchmain

��� src�searchnode

��� src�special

�c lines � ����� �h lines � ����� and ��c ! �h� lines � ������



CHAPTER �� THE IMPLEMENTATION AND THE FUTURE ��

The main engine for the VACS project is built and in operation� The computa	

tional results of this dissertation are our initial achievements regarding our systematic

method for characterizing lower ideals� However� like in any major software project�

there are several rough spots that need to be smoothed out� The next section men	

tions a few areas of research that we are currently pursuing�

��� Future Research Goals

We now begin with some obvious research topics that we want to explore �rst� These

areas of research all deal with making obstruction set computations more practical

�i�e�� continuing the theme of Section �����

� Implement the bounded treewidth search� One of our �rst tasks is to com	

plete the proof for our ��FeedbackVertexSet obstruction set� The easiest

mechanical way of doing this is to patch the current system with a treewidth

t	parse search� although Chapter � gives strong arguments that there may be an

alternate proof� We note that searching through graphs of bounded treewidth is

not straightforward� For example� our enumeration scheme presented in Chap	

ter � is not as e�cient for the treewidth case as it was for the pathwidth case�

Thus� we may need results from the following research area to quickly purge

t	parse redundancies�

� Develop better canonic algorithms for graphs of bounded combinatorial width�

Currently� we have a practical canonicity algorithm for small t	parses� For

some of our larger lower ideals we noticed that some t	parses� with as few

as �� vertices� caused the algorithm to stall� This is why a canonic time	out

mechanism was installed� Since graph isomorphism is polynomial time when

restricted to graphs of bounded treewidth �pathwidth�� we also suspect there

is a guaranteed polynomial time algorithm to test if a t	parse is canonic� We

can not rule out the possibility that another operator set is more suitable for

uniquely representing the set of partial t	trees �t	paths��



CHAPTER �� THE IMPLEMENTATION AND THE FUTURE ���

� Use a �virtual� boundary size with respect to the boundary minor order� We

have noticed that our current search trees have several long branches that are

the result of the boundary minor order being weaker than the minor order�

For example� we �nd boundary minor obstructions with isolated boundary ver	

tices even though we are pruning the search at disconnected t	parses� �See

Section ������� To reduce the size of such a search tree� one obvious idea is to

rede�ne the boundary minor order� Suppose we consider graphs with a variable	

sized boundary �up to some maximum size�� Here the deletion of an isolated

boundary vertex could be taken as a minor� Also� edge contractions between

boundary vertices would be legal minors� Since there are more minors for a

given graph G in this new framework� the chances of �nding a minor congruent

to G �with respect to �F � improves� Thus� there will be fewer minimal t	parses

in the search tree� Using virtual boundaries is promising except for the fact

that our pre�x property �see Lemma ��� may no longer be valid�

� Reuse minimal t	parses for higher search widths� If one has an appropriate

canonic scheme� one can reuse minimal boundaried graphs at width t for a

width t ! � search �perhaps by simply inserting a new vertex operator at the

beginning of each minimal t	parse�� This idea follows from the observations�

��� minimality is satis�ed if and only if all minors are distinguished by some ex	

tension� and ��� the set of graphs with a larger width is a bigger pool �superset�

of potential distinguishers� It should be easy to implemented this computation

saving feature�

� Do recursive minor checks� For any �nite	index congruence � it is possible

to show that a t	parse G is nonminimal by �nding a congruent boundaried

minor that is more than a one	step minor of G� Here we construct a poset of

boundaried minors �similar to Figure ���� with G at the top and the smallest

t	parse � �n� �n� � � � � tn� at the bottom� We check the equivalence classes of all

proper minors against G�s equivalence class� beginning at the top and proceeding

down in a breadth	�rst fashion� �Using recursive minor checks for � � �F is

super"uous by Lemma ����



CHAPTER �� THE IMPLEMENTATION AND THE FUTURE ���

� Adapt our search technique to handle other well	partial	orders� So far we have

concentrated on the minor order� There are other interesting graph orders�

such as the immersion order �see Section ����� that our search process may

be adaptable� However� there are some details that need to be resolved� For

example� we have to handle edge lifts across the boundary in the �boundary

immersion� order with respect to a lower ideal�s canonical congruence�

Two more proposed and on	going research areas� which are based on additional

theoretical ideas� are presented in the following subsections�

����� Second�order congruence research

Another technique to reduce the search space for obstruction set computations is to

use a second	order congruence �in replace of the canonical family congruence �F��

Recall that the quanti�ers � and � are read �there exists� and �for all�� respectively�

De�nition 
�� The canonical second�order congruence for a lower ideal F � de	

noted by �F � is de�ned on �nite sets of t	boundaried graphs by� if S� and S� are

t	boundaried graphs then S� �F S� if and only if for every t	boundaried graph Z�

��X� 	 S�� X� � Z �	 F� � ��X� 	 S�� X� � Z �	 F� �

A �non	canonical� second	order congruence for F is an equivalence relation � de�ned

on �nite subsets of t	boundaried graphs for which S� � S� implies S� �F S��

We now point out that second	order congruences are related to our universal

distinguisher search method that was presented in Section ������ Let G� ��m G denote

a proper �	minor of a t	boundaried graph G �i�e�� G� ��m G and G� �� G�� For any

t	boundaried graph G consider these two sets S� � fGg and S� � fG� j G� ��m Gg�

We claim that G is nonminimal� with respect to a universal distinguisher search� if

and only if S� �F S�� That is� for every t	boundaried graph Z�

G � Z �	 F  ��G� ��m G� G� � Z �	 F� �



CHAPTER �� THE IMPLEMENTATION AND THE FUTURE ���

Or� in a more familiar form� there does not exist a t	boundaried graph Z such that�

G � Z �	 F and ��G� ��m G� G� � Z 	 F� �

And because F is a lower ideal� we easily note� in the other direction� for any t	

boundaried graph Z�

��G� ��m G� G� � Z �	 F�  G� Z �	 F �

The above logic leads us to the next observation�

Observation 
�� If we have a second	order congruence for a minor	order lower

ideal F then we can easily run a universal distinguisher search�

One of our motivations for using second	order congruences is the possibility of

detecting when to stop the search without a prior knowledge of the largest combina	

torial width of an obstruction� In fact� the following main result of �CDDF�� uses

stopping conditions along with a factoring result for bounded pathwidth similar to

the one given in Theorem ��� of Chapter ���

Theorem 
�� Suppose the following are known for a minor	order lower ideal F�

��� A decision algorithm for F�

��� A decision algorithm for a �terminating� second	order congruence for F �

Then the obstruction set O�F� can be computed by an algorithm that uses the above

two algorithms as subroutines�

We point out that if a second	order congruence is not known to satisfy our �ter	

minating� de�nition� we still may be able to detect when to stop the search� Further	

more� we would like to answer this question� How can we guarantee that a signal to

stop will be detected soon after the last obstruction has been computed' We would

like to stop the search after the minimal graphs of width t ! � have been searched

whenever the largest obstruction has width t�



CHAPTER �� THE IMPLEMENTATION AND THE FUTURE ���

����� Approximation algorithms based on partial obstruction

sets

This dissertation has primarily been interested in computing complete characteriza	

tions of lower ideals �by forbidden minors�� We realize� however� that there are some

potential uses for partial lists of obstructions� We think that there is a future in

building graph	theoretic approximation algorithms from a selected subset of the ob	

structions� We have already built a good software foundation for such an automated

algorithm compiler�

It is suspected that for any minor	order lower ideal F � most of the non	family

graphs are above a small number of the obstructions O�F�� It is well	known that the

family of planar graphs is almost the same as the set of graphs that excludes just the

one Kuratowski obstruction K���� For example� we can prove the following known

result�

Observation 
�� Any three	connected non	planar graph with at least six vertices

contains K��� as a minor�

Another promising example was recently exhibited in the VLSI design area by

the work of Langston and Ramachandramurthi �LR��� Ram���� Their simple method

of using just one �or a few� of the �	track gate matrix layout obstructions �or equiv	

alently� the ��Pathwidth obstructions� for a membership algorithm has out per	

formed the other best	known heuristics for the problem� Note that this research is

based on a small percentage of the complete set of the ��� obstructions� recently

proven complete by Kinnersley �KL����

These two observations suggest that good approximating automata may be con	

structed by using partial obstruction sets�

One may wonder what obstructions are good candidates for approximating any

speci�c lower ideal� �Actually� this technique may work for �almost� lower ideals

too�� We know of three classes of obstructions that may be useful�

�� The obstructions with the smallest number of vertices �or edges��



CHAPTER �� THE IMPLEMENTATION AND THE FUTURE ���

�� All of the obstructions that are bounded by a small combinatorial width�

�� The obstructions that occur frequently via our random distinguisher searches�

It would be interesting to do some experimental computing to see how close� in prac	

tice� a family of graphs de�ned by excluding one of these classes is to a targeted lower

ideal� The bene�t of using the second class of obstructions �i�e�� those of bounded

combinatorial width� is that we do not have to compute the complete set of obstruc	

tions� Also� related to the third class� it is natural to assume that if a distinguisher Z

for a t	parse G is easily found then the obstructions below G �Z are good candidates�

It is expected that the above three classes of obstructions overlap�

The easiest way to use a partial obstruction set for some familyF is to write quick

minor	order tests fMig for each obstruction Oi� i � �� �� � � � � r� The approximating

algorithm for an input graph G would return �no� if any obstruction Oi is found as a

minor �using Mi�� Otherwise� it would return �yes� that G is a member of F � Note

that this algorithm has only one	sided errors� This happens whenever it returns �yes�

when the real answer is �no��

Unfortunately the above approach is not very automated� This is because there

is no general e�cient algorithm that tests if any �xed graph Oi is a minor of another�

�Recall that the Robertson�Seymour O�n�� algorithm has large hidden constants��

However when the input is restricted to graphs of bounded combinatorial width there

is hope� In this case� we can build a minor testing automaton for a �xed graph Oi

using the methods of Section ����� A testset Ti for Oi consists of boundaried graphs

obtained from �pieces� of subdivided Oi� Here the constructed automaton Mi accepts

t	parses that contain Oi as a minor�

Another method for generating approximating automata is to use pieces of all the

obstructions as testsets� Using this approach we build one automaton for all of �ri��Oi

for a lower ideal F � instead of one automaton for each obstruction� Since obstructions

usually share the same substructures� this testset T � �ri��Ti should be of manageable

size� However� it may be easier to build a nondeterministic automaton M that accepts

graphs in the union of the minor	containment families � ��ri��Oi� � or the intersection

of the single obstruction lower ideals � ��ri��Oi� � from the deterministic automata

Mi� i � �� �� � � � � r� See Figure ��� One may even convert M to a deterministic



CHAPTER �� THE IMPLEMENTATION AND THE FUTURE ���

automaton� and then minimize�

For the bounded width domain we may elect to use the set of easily proven

minimal t	parses as an approximating testset since these� in most cases� are already

�pieces� of obstructions�

start state accept state

qfq


q�� q�f

DFA M� for O�

���

qr� qrf

DFA Mr for Or

�

�

� �

�

�

q�� q�f

DFA M� for O�

$

Figure ��� Building an NFA that accepts the union of minor	containment families�



���

Part II

Obstruction Set Characterizations



���

Chapter �

Vertex Cover

We make two contributions in this chapter� First� we present a linear time algorithm

that determines the size of the minimum vertex cover for graphs of bounded path	

width �partial t	paths�� This algorithm has the important property of being minimal

�de�ned in Chapter � and reviewed later in Section ����� It is this property which

allows us to compute the second contribution of this chapter� the obstruction sets for

the �rst �ve parameterized family instances of the vertex cover problem�

��� Introduction

The general problem of determining if a graph has a vertex cover of size k� with k

part of the input� is well known to be NP	complete �GJ���� However� several NP	

complete problems have polynomial time parameterized versions� In any of these

instances a problem	speci�c integer k is held constant� The vertex cover problem is

one such example where we are interested in determining if an input graph has a ver	

tex cover of size at least k� where k is not part of the input� The brute force approach

of checking all k subsets of the vertices gives a crude O�nk��� algorithm� Alterna	

tively� if a tree or path decomposition of bounded width is available� determining the

minimum vertex cover of a graph can be done linear time �ALS���� In addition to our

obstruction set characterizations� we present a practical� �nite	state algorithm for the

set of graphs with available path decompositions of bounded width� Furthermore� by



CHAPTER 	� VERTEX COVER 
VC� ���

the observations ��� path decompositions for �xed k can be found in linear time �see

�Bod��c� Klo��a�� and ��� a pathwidth bound exists for the family �see Theorem �����

we have a linear time algorithm� Interestingly� a direct parameterized algorithm is

presented in �DF�� with the same complexity�

The rest of this chapter is organized as follows� The remaining part of this section

formally de�nes the vertex cover problem� and introduces results and notation used in

this chapter� Section ��� presents our general vertex cover algorithm and its minimal�

�nite	state variation for bounded pathwidth graphs� Section ��� contains results that

reduce the amount of work needed to compute the obstructions sets� Section ���

presents the obtained obstructions sets and we conclude in Section �� with some

comments regarding the related k�IndependentSet and k�Clique families�

The general vertex	cover decision problem is de�ned as follows �see �GJ�����

Problem 
�� Vertex Cover �VC�

Input� A graph G � �V�E� and a positive integer k � jV j�

Question� Is there a subset V � 
 V with jV �j � k such that V � contains at least one

vertex from every edge in E'

A set V � in the above problem is called a vertex cover for the graph G� The

family of graphs that have a vertex cover of size at most k will be denoted by

k�VertexCover� For a given graph G� let V C�G� denote the least k such that G

has a vertex cover of cardinality k�

Example 
�� A graph in the ��VertexCover family is displayed below� Notice

that no edges remain when the set of black vertices of the example �or indeed� any

vertex cover� is removed from the graph�



CHAPTER 	� VERTEX COVER 
VC� ��

Finding the smallest vertex cover of a graph is important for many applications�

For a simple example� consider a communications system that is modeled as a graph

where vertices are computers and edges are the transmission lines� A minimum vertex

cover of the graph indicates the smallest number of computers that need special

monitoring software for all of the connections of the system�

The next result� stating that these parameterized vertex cover families can be

characterized by forbidden minors� is well	known�

Lemma 
� The graph family k�VertexCover is a lower ideal in the minor

order�

Proof� Assume a graph G�V�E� 	 k�VertexCover has a minimal vertex cover

V � 
 V � If H � Gnf�u� v�g for some �u� v� 	 E �edge deletion�� then V � is also a vertex

cover for H� Likewise� if u 	 V is an isolated vertex of G� V � also covers H � G n fug

�vertex deletion�� For any edge �u� v� 	 E� observe that jfu� vg � V �j � �� Let w be

the new vertex created from u and v in H � G	�u� v� �edge contraction�� Clearly�

V �� � �V � � fwg� n fu� vg is a vertex cover of H with cardinality at most k� Since any

minor of G can be created by repeating the above operations� k�VertexCover is

a lower ideal� �

��� A Finite State Algorithm

In this section we give a practical� �nite	state algorithm for the vertex cover prob	

lem on graphs of bounded pathwidth in t	parse form� This linear time algorithm

is a dynamic program that makes a single left to right scan of the input t	parse

Gn � �g�� g�� � � � � gn�� The computational process resembles a �nite state automaton

in that it accepts words over the operator alphabet $t� Let m be the current scan

position of the algorithm on input Gn� The state table at operator gm is indexed by

each subset S of the boundary �� These �t�� di
erent entries are de�ned as follows�

Vm�S� � minf jV �j � V � is a vertex cover of Gm and V � � Sg



CHAPTER 	� VERTEX COVER 
VC� ���

Two important observations about the state table are�

�� For each boundary subset S 
 �� Vm�S� is a non	decreasing sequence of non	

negative integers as m increases�

�� For any boundary subset S 
 � and any boundary vertex i �	 S� either Vm�S� �

Vm�S � fig� or Vm�S� � Vm�S � fig�� ��

The algorithm� given in Figure ���� starts by setting the sizes for the minimal

vertex covers on the edgeless graph Gt�� � � �n� �n� � � � � tn�� for all subsets S of the

initial boundary ��

The type of the operator gm�� �a vertex operator or an edge operator� determines

how the state table is updated during the scan� The update of an entry for a speci�c

subset of the boundary S is further broken up according to the relationship between

S and the operator� These transitions are described in cases ��� of Figure ����

When the algorithm reaches the end of the t	parse� it has computed the mini	

mum number of vertices needed for a vertex cover of Gn� This is because the entry

Vn��� contains the size of the smallest vertex cover that contains the subset � of the

boundary� As this is an empty condition� Vn��� is the size of the smallest vertex cover

in Gn�

Theorem 
	� For any t	parse Gn � �g�� g�� � � � � gn�� the algorithm in Figure ��� cor	

rectly computes V C�Gn��

Proof� If G is the empty graph then only steps I and III are executed and the correct

result of V C�G� � � is returned� Assume that the algorithm is correct for all �pre�x	�

graphs of length m and less� We show that cases ��� of step II correctly update the

state table� Vm���S� for S 
 ��

Case �� gm�� � inand i �	 S

Let V � be a witness vertex cover for Vm�S�� Since the new vertex created by gm��

does not add any edges� V � is a vertex cover for Gm��� Since V � � S for Gm and

i �	 S� V � � S for Gm��� Therefore� Vm���S� � Vm�S��



CHAPTER 	� VERTEX COVER 
VC� ���

I For m � t� �� set for every S � �

Vt���S� � jSj �

II For t � � � m � n� do the following cases�

Case �� vertex operator inand i �	 S

Vm���S� � Vm�S�

Case �� vertex operator inand i 	 S

Vm���S� � Vm�S n fig� ! �

Case �� edge operator i j � where i 	 S or j 	 S

Vm���S� � Vm�S�

Case �� edge operator i j � where i �	 S and j �	 S

Vm���S� � minfVm�S � fig�� Vm�S � fjg�g

III The size of the minimum vertex cover of G is

Vn��� �

Figure ���� A general vertex cover algorithm for t	parses�



CHAPTER 	� VERTEX COVER 
VC� ���

Let V � be a witness vertex cover for Vm���S�� Since V � is minimal� the isolated

vertex created by gm�� is not in V �� Thus V � is a vertex cover for Gm� Since the

property V � � S is preserved� Vm�S� � Vm���S��

Case �� gm�� � inand i 	 S

Let S� � S n fig and V � be a witness vertex cover for Vm�S��� Now W � V � � fig

is a vertex cover for Gm�� such that W � S� So� Vm���S� � Vm�S�� ! ��

For the other direction� let V � be a witness vertex cover for Vm���S�� Since the

new boundary vertex i does not help in any vertex cover of Gm� V �� � V � n fig is a

vertex cover for Gm such that V �� � S� Hence Vm���S� � Vm�S�� ! ��

Case �� gm�� � i j where i 	 S or j 	 S

Let V � be a witness vertex cover for Vm�S�� Since the boundary is not changed

by the edge operator gm�� and i 	 S or j 	 S� V � also covers the edges of Gm���

Thus� Vm���S� � Vm�S�� If V �� is a vertex cover of Gm�� with i 	 S or j 	 S� then

V �� also covers the edges of Gm� So Vm���S� � Vm�S��

Case �� gm�� � i j where i �	 S and j �	 S

Let S� � S � fig and V � be a witness vertex cover for Vm�S��� Since V � � S

is a vertex cover for Gm��� as vertex i is in V �� Vm���S� � Vm�S��� Likewise� if

S �� � S�fjg� then Vm���S� � Vm�S���� So Vm���S� � minfVm�S�fig�� Vm�S�fjg�g�

Let V � be a witness vertex cover for Vm���S�� Since �i� j� is an edge� either i 	 V �

or j 	 V �� Thus V � � S � fig or V � � S � fjg� If V � � S � fig� then V � is a

vertex cover for Gm� and so Vm�S � fig� � Vm���S�� Otherwise� V � � S � fjg� and

Vm�S � fjg� � Vm���S�� Therefore� minfVm�S � fig�� Vm�S � fjg�g � Vm���S�� �

The following lemma shows that we can limit the vertex	cover membership algo	

rithm to a �nite number of possible con�gurations when testing for membership in

k�VertexCover�

Lemma 

� For any �xed integer k as an upper bound� the algorithm given in

Figure ��� can be converted to a �nite state algorithm Ak�

Proof� We show that for �xed k� there are only a �nite number of possible states�

Consider the state table entry for a boundary subset S� If Vi�S� becomes k ! � for



CHAPTER 	� VERTEX COVER 
VC� ���

some i� then the monotonicity of Vm�S� guarantees that Vj�S� � k ! � for all j � i�

As we are only interested in knowing whether or not there exists a vertex cover of

size k containing S� we can restrict Vm�S� to be in f�� �� �� � � � � k� k! �g� As there are

�t�� entries in the state table� the number of states is bounded by �k ! ���
t��

�

To make the parameterized algorithm Ak for k�VertexCover� change any

update function Vm���S� � f�Vm� in the four cases with Vm���S� � min�f�Vm�� k!���

It is straightforward to verify that this modi�ed algorithm correctly computes the

same state table except that any entry greater than k ! � is replaced by k ! �� �

We de�ne the �nal state of a t�parse G� denoted by VG� to be the state table

�state vector� �Vm���� � � � � Vm�S�� when the �nite	state algorithm Ak terminates� For

each boundary subset S� let VG�S� denote the S entry of VG� If G and H are t	parses

and VG � VH � it follows immediately that for any operator string Z 	 $�
t � we have

VG�Z � VH�Z� This in turn implies that G � Z 	 F � H � Z 	 F for all Z� That

is� G and H agree on all extensions� When the converse of this property holds� the

�nite	state algorithm is minimal� Formally� minimality is satis�ed if

� for all Z 	 $�
t � G � Z 	 F � H � Z 	 F �  VG � VH �

To show that our �nite	state algorithm is minimal� we need to show that if G

and H are t	parses� and G and H agree on all extensions� then VG � VH � We will

show the contrapositive that is� if VG �� VH � then there exists an extension Z such

that G and H do not agree on Z �that is� there exists Z such that either G � Z 	 F

and H � Z �	 F � or G � Z �	 F and H � Z 	 F ��

Before proving that this k�VertexCover algorithm is minimal� we need the

following lemma that provides us with a boundary vertex for building such a t	parse

extension Z�

Lemma ���� If G and H are t	parses such that VG��� �� VH���� then there exists

an S � � �i�e�� a proper subset of the boundary� such that VG�S� �� VH�S��

Proof� Assume that VG��� �� VH��� is the only di
erence in the state table� The

following three facts



CHAPTER 	� VERTEX COVER 
VC� ���

�� VG�� n fig� � VH�� n fig� for all i 	 ��

�� VG�� n fig� � VG��� � VG�� n fig� ! � for all i 	 � and

�� VH�� n fig� � VH��� � VH�� n fig� ! � for all i 	 �

imply that

VG��� � VG�� n fig� ! � � VH�� n fig� ! � � VH��� ! � for all i 	 ��

and

VG��� � VG�� n fig� � VH�� n fig� � VH ���� � for all i 	 ��

After combining the above� VH��� � � � VG��� � VH��� ! �� So� without loss of

generality� assume VG��� � VH��� � � � d� From this identity and facts � and �

above �also see the partial state tables below�� we must have VG��� � VG�� nfig� � d

for all i 	 ��

graph G

VG��� d

d � �

VG�� n fig� or

d

����
� �

���
��

graph H

VH��� d ! �

d

VH�� n fig� or

d ! �

This can happen if and only if each of the boundary vertices of G are attached to

some non	boundary vertex� If not� then a vertex cover V � � � of G would have a

redundant vertex i 	 �� The vertex cover created by eliminating vertex i from V �

contradicts the value of VG�� nfig�� However� such a graph G does not exist since the

last vertex operator can only have boundary vertex neighbors� Thus� we can conclude

that VG��� � VH��� or there exists a S � � such that VG�S� �� VH�S�� �

Theorem ���� For the k�VertexCover family� the �nite	state algorithm Ak is

minimal�

Proof� Let G and H be t	parses� As discussed above� we show that if VG �� VH �

then there exists an extension Z such that G and H do not agree on Z� Note that

the theorem holds trivially if either one of G or H is not in F � k�VertexCover



CHAPTER 	� VERTEX COVER 
VC� ���

by the empty extension Z � � �� If both G �	 F and H �	 F then VG � VH �

�k ! �� k ! �� � � � � k ! �� since VG��� � k ! � implies VG�S� � k ! � for all S 
 ��

So suppose that VG �� VH � Then without loss of generality� there is a boundary

subset S with minimum cardinality such that VG�S� � VH�S� � k ! �� Lemma ���

guarantees that S �� ��

Let fv�� v�� � � � � vjSjg be the boundary vertices in S� Pick a boundary vertex i �	 S

and any other boundary vertex j �� i� Construct an extension Z as follows�

Z � � in� i v� � in� i v� � � � � in� i vjSj �

k�VH�S��� timesz �� �
in� jn� i j � � � � � in� jn� i j �

The extension Z essentially forces the boundary vertices S to be covered while

adding k � VH�S� ! � isolated edges� Now� VC�H � Z� is given by VH�S� ! �k �

VH�S� ! ��� which equals k ! �� and so H � Z �	 F � However� VC�G � Z� is VG�S� !

�k � VH�S� ! �� � VH�S� ! �k � VH�S� ! �� � k ! �� and so G � Z 	 F � Therefore�

the t	parses G and H do not agree on all extensions� �

Example ���� Table ��� shows the application of the algorithm Ak to the t	parse

given earlier in Example �� on page ��� As can been seen by examining the graph in

Example ��� a minimum vertex cover has cardinality �� which equals V������

��� The VC Obstruction Set Computation

For k�VertexCover two ingredients su�ce to compute their obstruction sets�

First� we need to know a bound on the pathwidth �or treewidth� of the obstruc	

tion set� In general such a bound always exists since the obstruction set is �nite�

Given such a bound� we can compute all of the obstructions by restricting our search

to a �xed pathwidth� Second� we want a minimal �nite	state algorithm that operates

on t	parses� An overview of how the algorithm Ak is used is given in Section ����

For vertex cover� we have both of these ingredients� A minimal �nite	state algo	

rithm was described in the previous section� and a pathwidth bound is shown later

in this section� �The �nite	state algorithm is also used as a membership algorithm��



CHAPTER 	� VERTEX COVER 
VC� ���

Table ���� Vertex cover state tables computed �columns� for Example ����

m � �  � � � � �� �� �� �� ��

S gm � � � � � �n � � � � �n � � � � �n � � � �

� � � � � � � � � � � � �

f�g � � � � � � � � � � � �

f�g � � � � � � � � � � � �

f�g � � � � � � � � � � � �

f�� �g � � � � � � � � � � � �

f�� �g � � � � � � � � � � � �

f�� �g � � � � � � � � � � � �

f�� �� �g � � � � � � � � � � � �

In short� the input�output combination used to compute the obstruction set for

a particular k�VertexCover lower ideal is as follows�

input� � pathwidth t

� minimal �nite	state algorithm for k�VertexCover

output� � obstructions of pathwidth t

The following sequence of results show the value of t that is needed to get the

complete set of obstructions O�k�VertexCover� for k�VertexCover and why

we can restrict our search to connected graphs�

We �rst need an upper bound on the pathwidth of the obstruction set� That is�

we need a result of the form� if G 	 O�k�VertexCover�� then G has pathwidth at

most k�� For vertex cover� such a bound is easily obtained� We �rst show that the

family k�VertexCover is contained in the family k�Pathwidth� This result is

well	known �vL���� It follows from this that O�k�VertexCover� is contained in

�k ! ���Pathwidth�

Theorem ���� The pathwidth of any member of k�VertexCover is at most k�



CHAPTER 	� VERTEX COVER 
VC� ���

Proof� For a given graph G of k�VertexCover� let V � be a subset of of the vertices

of size k that covers all edges� Denote the order of G by n� Let the vertices V of

G be indexed by �� �� � � � � n with the vertices V n V � coming �rst� We claim that

fXi j � � i � n� kg where Xi � V � � fig is a path decomposition of G�

Since every vertex is either in V � or is in V n V � we have
S
��i�n�k Xi � V � Let

�u� v� be an edge of G� Since V � is a vertex cover� without loss of generality assume

u 	 V �� If also v 	 V � then any subset Xi contains both u and v� Otherwise� v must

be indexed between � and n � k and the subset Xv contains both u and v� Finally�

note that for any � � i � j � n � k we have Xi � Xj � V � �i�e�� the interpolation

property is satis�ed�� Thus� we have a path decomposition of pathwidth k� �

The above theorem cannot be improved� as the complete graph Kk�� with path	

width k is a member of k�VertexCover�

Corollary ���� If G 	 O�k�VertexCover�� then the pathwidth of G is at most

k ! ��

Proof� For any edge e � �u� v� 	 E�G�� let G� � G n e� Since G is an obstruction

for k�VertexCover� G� 	 k�VertexCover and hence VC�G�� � k by Theorem

���� Let V � be a witness vertex cover for G�� Now V � V � � fug is a vertex cover for

G of order at most k! �� Therefore� by Theorem ��� again� the pathwidth of G is at

most k ! �� �

The number of obstructions we need to �nd can be reduced by some straightfor	

ward observations� The following observations are special cases of the more general

results found in Section ����� regarding disconnected pruning�

Observation ���� If C� and C� are any two graphs then VC�C� � C�� � VC�C��!

VC�C���

Observation ���� If O � C��C� is an obstruction for k�VertexCover� then C�

and C� are obstructions for k��VertexCover and k���VertexCover� respectively�

for some � � k�� k�� � k� with k� ! k�� � k � ��



CHAPTER 	� VERTEX COVER 
VC� ���

Hence we can restrict our attention to connected obstructions any disconnected

obstruction O of k�VertexCover has VC�O� � k ! � and is an union of graphs

from
Sk��
i�
 O�i�VertexCover��

Example ��� Since K� is an obstruction for ��VertexCover� and K� is an

obstruction for ��VertexCover� the disconnected graph K��K� is an obstruction

for ��VertexCover�

��� The VC Obstructions

In essence� our theory allows us to compute for any t all of the obstructions that

have pathwidth at most t� However� tractability problems arise as t increases� As

shown in the preceding section� we need to use t	parses� t � k ! �� to obtain all of

the obstructions for k�VertexCover�

A brief description of the k�VertexCover obstruction set computation is now

stated� The set of all t	parses can be viewed as a tree �recall Section ����� in which

the parent of a t	parse G of length n is the length pre�x of G of length n � �� The

root of the tree is the empty graph � �n� �n�� � � � tn�� The minimality of the �nite	

state algorithm allows us to directly compute a �pruning rule� for the tree� That is� a

t	parse G is minimal if and only if it is not congruent to any of its one	step minors�

Any �	obstruction �minimal leaf of this search tree� that has all of its minors ��m

order� in k�VertexCover is a member of the obstruction set� �That is� we just

check that boundary edge contracted minors fall into the family��

A summary of our obstruction set computations for various k�VertexCover

families is shown in Table ���� The total graphs column shows the size of the pruned

tree described above� In the minimal graphs column� the number of internal graphs

plus obstructions is shown that is� the leaves that are not obstructions have not been

counted� The growth rate of the tree can be seen to be extremely high as k �and

hence the pathwidth t� increases� The revalent search tree for the ��VertexCover

run is shown in Figure ��� for pathwidth ��

Besides the single obstruction K� for the trivial family ��VertexCover� the



CHAPTER 	� VERTEX COVER 
VC� ��

Table ���� Summary of obstruction set computation for vertex cover�

k
Elapsed
time

Minimal
graphs

Total
graphs

Connected
obstructions

Total
obstructions

�  seconds � �� � �

� � seconds �� ��� � �

� � minutes ��� ����� � �

� � hours ����� ������ � ��

 � days ������� ������� �� �

connected obstructions for k�VertexCover� � � k � � are shown in Figures ����

���� Some patterns become apparent in these sets of obstructions� One such easily

proven observation is as follows�

Observation ��	� For the family k�VertexCover� both the complete graph

Kk�� and the cycle C�k�� are obstructions�

��� Independent Set and Clique Families

Now consider the following related families of graphs where n denotes the order of a

graph and k is any non	negative integer�

k�Clique � f graphs with maximum clique � kg �

k�IndSet � f graphs with maximum independent set � kg �

��k�Clique� � f graphs with n � maximum clique � kg �

��k�IndSet� � f graphs with n � maximum independent set � kg �

In fact one of these families �i�e�� ��k�Clique�� is the same as our studied

parameterized vertex	cover families �GJ����

Lemma ��
� The two graph families ��k�IndSet� and k�VertexCover are

identical�



CHAPTER 	� VERTEX COVER 
VC� ���

#0,
[0,1

,2,3
]

#5,
01

#11
,0

#16
,02

#20
,23

#26
,02

#31
,0

#37
,03

#38
,12

#39
,13

#51
,0

#57
,03

#65
,01

#67
,03

#68
,12

#71
,0

#78
,12

#10
0,2

3

#10
7,0

3
#11

1,0
#12

0,2
3

#12
2,1

#12
6,0

2
#12

7,0
3

#12
8,1

2
#12

9,1
3

#13
0,2

3
#13

8,1
2

#14
2,1

#15
5,0

1
#15

8,1
2

#16
9,1

3

#18
6,0

2
#19

0,2
3

#19
5,0

1
#19

6,0
2

#19
9,1

3
#20

1,0
#20

8,1
2

#20
9,1

3
#21

0,2
3

#22
5,0

1
#22

6,0
2

#23
2,1

#23
9,1

3
#24

4,3
#25

0,2
3

#25
1,0

#25
6,0

2
#25

7,0
3

#25
8,1

2
#25

9,1
3

#26
0,2

3
#26

5,0
1

#26
6,0

2
#26

8,1
2

#27
0,2

3
#27

2,1
#27

4,3
#28

0,2
3

#28
5,0

1
#28

7,0
3

#28
8,1

2
#29

3,2
#29

5,0
1

#29
6,0

2
#30

0,2
3

Min
ima

l fa
mil

y m
emb

er
Non

min
ima

l fa
mil

y m
emb

er
Min

ima
l ou

t-of
-fam

ily
(Ob

stru
ctio

n)
Non

min
ima

l ou
t-of

-fam
ily

F
ig
u
re
��
��
A
ct
u
al
se
ar
ch
tr
ee
fo
r
��
V
e
r
t
e
x
C
o
v
e
r
w
it
h
gr
ap
h
s
of
p
at
h
w
id
th
��



CHAPTER 	� VERTEX COVER 
VC� ���

Proof� It is easy to see that if I is a maximal independent set of a graph G � �V�E�

then V n I is a vertex cover� Also� if V � is a minimal vertex cover then V n V � is an

independent set� �

Part of the next result has been proven earlier in Lemma ��� This one illustrates

another method for proving graph families are lower ideals�

Lemma ���� The family k�VertexCover���k�IndSet� is a lower ideal in the

minor order for any k � � while the families k�Clique� k�IndSet� and ��k�Clique�

are not lower ideals for all k � �� k � � and k � �� respectively�

Proof� Let G � �V�E� be a graph in ��k�IndSet� with maximum independent

set I� If v is an isolated vertex of G then it is also in the set I� Thus� deleting v

from G preserves the invariant n � maximum independent set� Deleting any edge e

can only increase the maximum independent set while n stays �xed� so �G n feg� 	

��k�IndSet�� Let G� be the result of contracting an edge e � �u� v� of G and let I �

be a maximum independent set of G�� Also let w denote the new vertex of G� created

by the edge contraction� If jI �j � jIj then we get a contradiction to the fact that I

was maximum� To see this� consider these two cases� If w 	 I � then �I �nfwg��fug is

a larger maximum independent set for G� If w �	 I � then I � itself is a larger maximum

independent set for G� Since I is an independent set� at most one vertex u or v can

be in I� So going from G to G�� I � � I n fu� vg is an independent set for G�� Thus�

jIj � � � jI �j � jIj� Finally since the value of n decreases by exactly one during an

edge contraction� G� 	 ��k�IndSet�� We have shown that all minor operations are

closed with respect to ��k�IndSet��

Now consider the family ��Clique and a member C�� the cycle of length four�

Contracting any edge of C� produces C� � K� which is not a member of ��Clique�

Similar examples� such as Kk�� with a subdivided edge� show that k�Clique is not

a lower ideal for all k � �� The only graphs in the family ��Clique are the isolated

graphs �unions of K��s� and the only minors �by isolated vertex deletions� have a

maximum clique bounded above by �� So ��Clique is a lower ideal�

As pointed out in the �rst paragraph� the maximum independent set can increase

with edge deletions� It follows that k�IndSet is not a lower ideal for all but the trivial

family ��IndSet �i�e�� the empty graph has no deletable edges��



CHAPTER 	� VERTEX COVER 
VC� ���

For the family ��k�Clique�� k � �� consider a graph member G � �k �K���Kk�

Note that G has n � �k vertices and a maximum independent set size of k� Deleting

an edge from G causes an increase in the invariant n � maximum clique� For k � �

consider the graph G � K� �K�� The graph created by deleting the edge from G has

n � � and maximum clique of �� so ����Clique� is not a lower ideal in the minor

order� Likewise� since K� is a member of ����Clique� but any minor created by a

single edge deletion is not� the family ����Clique� is not a lower ideal� �

In view of the previous results� we can characterize the ��k�IndSet� families

in terms of the �nite k�VertexCover obstruction sets� The other remaining few

minor	order lower ideals are trivial to characterize� The reader should be able to verify

that O���Clique� � fK�g� O���Clique� � fK�g� and O���IndSet� � fK�g�



���

K� � C� K� C�

Figure ���� Connected obstructions for �� and �� VertexCover�

K� C	

Figure ���� Connected obstructions for ��VertexCover�

C�

K�

Figure ��� Connected obstructions for ��VertexCover�



���

C�� K	

Figure ���� Connected obstructions for �VertexCover�



���

Chapter 	

Feedback Vertex
Edge Sets

In this chapter we characterize two types of simple graph families� The �rst family

consists of those graphs for which all cycles can be covered with a small set of vertices�

The second family consists of those graphs for which all cycles can be covered with

a small set of edges� In some limited sense� these families are like the vertex cover

families studied in the previous chapter �where a vertex cover can be thought of as a

set of vertices that cover all edges�� This chapter also illustrates the use of testsets

to prove �or disprove� minimality of t	boundaried graphs�

	�� Introduction

The characterization of graph families based on the following two well	known prob	

lems is the focus of this chapter �see �GJ�����

Problem ���� Feedback Vertex Set �FVS�

Input� A graph G � �V�E� and a positive integer k � jV j�

Question� Is there a subset V � 
 V with jV �j � k such that V � contains at least one

vertex from every cycle in G'

A set V � in the above problem is called a feedback vertex set for the graph G� The

family of graphs that have a feedback vertex set of size at most k is be denoted by

k�FeedbackVertexSet� It is easy to verify that for each �xed k the set of graphs



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ���

in k�FeedbackVertexSet is a lower ideal in the minor order� For a given graph

G� let FV S�G� denote the least k such that G has a feedback vertex set of cardinality

k� Our second problem of interest is now stated�

Problem ���� Feedback Edge Set �FES�

Input� A graph G � �V�E� and a positive integer k � jEj�

Question� Is there a subset E� 
 E with jE�j � k such that G n E� is acyclic'

The edge set E� is a feedback edge set� Also for a given graph G� let FES�G�

denote the least k such that G has a feedback edge set of cardinality k� and the family

k�FeedbackEdgeSet � fG j FES�G� � kg�

Example ���� Displayed below is a graph in the ��FeedbackVertexSet fam	

ily� Notice that when the black vertices are removed from the example� the graph

becomes acyclic �a forest��

The reader should note that the graph in the previous example requires � edges

in any feedback edge set and thus it is a member of ��FeedbackEdgeSet�

One classic application for minimum feedback sets in �directed� graphs has to do

with operating systems� Consider a graph that models processes and system resources

as vertices and processor requests or needs as edges� When deadlocks occur in the

system a feedback edge set can be picked to refuse selected processor requests or a

feedback vertex set can be picked to shut down processors or resources�

For both types of these parameterized families� a standard �slow� polynomial time

algorithm exists for membership testing� based on the brute force technique of check	

ing all
�
n

k

�
covering possibilities �where n equals the number of vertices for FVS and



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ���

number of edges for FES�� We used a somewhat practical O���k�kn�� algorithm for

k�FeedbackVertexSet while debugging our linear time dynamic program �i�e��

our �nite	index congruence for t	parses�� This algorithm by Fellows and Downey �see

�DF��� is based on ��� a quick algorithm by Itai and Rodeh in �IR��� for �nding short

cycles and ��� the fact that a graph G of minimum degree three with girth at least �k

is not in k�FeedbackVertexSet� For the feedback edge set problem� we show in

Section ����� how to easily check if a graph is a member of k�FeedbackEdgeSet�

	�� The FVS Obstruction Set Computation

We now focus on two problem	speci�c details for �nding the k�FeedbackVertexSet

obstruction sets� a �nite	index congruence and a complete testset �i�e�� steps � and

� of Section ����� We �rst present a practical� linear time algorithm for the feedback

vertex set problem on graphs of bounded pathwidth�treewidth in t	parse form� This

general	purpose algorithm is altered to act as a �nite	index congruence� that is a

re�nement of the canonical congruence� We then show how to produce testsets for

the graph families k�FeedbackVertexSet� k � �� with respect to any boundary

size t�

����� A 
nite state algorithm

Throughout the following discussion the boundary size �and width� of a t	parse is

�xed� Recall that the current set of boundary vertices of a t	parse Gn is denoted by

the � symbol� For any subset S of the boundary �� we de�ne the following for all

pre�xes Gm of Gn� m � n�

Fm�S� �

��
� least k such that there is an FVS V of Gm with V � � � S and jV j � k

otherwise � whenever �G � �� n S contains a cycle

For any witness set V of Gm consisting of Fm�S� vertices� there is an associated

witness forest consisting of the trees that contain at least one boundary vertex in Gmn

V � A witness forest tells us how tight the boundary vertices are held together� Some



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ���

of these forests are more concise than others for representing how vertex deletions

can break up the boundary�

For two witness forests A and B� with respect to Fm�S�� we say A �w B if the

following two conditions hold�

�� For any two boundary vertices i and j� i and j are connected in A if and only

if i and j are connected in B�

�� If for any t	parse extension Z where there exists some non	boundary vertex b

of B such that �B n fbg� � Z is acyclic then there exists a non	boundary vertex

a of A such that �A n fag� � Z is acyclic�

Also two witness forests A and B are equivalent �A �w B� if A �w B and B �w A�

A witness forest in reduced form �minimal number of vertices� is called a park� The

next lemma provides a way of cleaning up a forest to yield a park�

Lemma ���� A witness forest W of Gm may be reduced to a park as follows�

�a� all leafs �end	vertices� not on the boundary may be pruned� and

�b� any non	boundary vertex v of degree two may have an incident edge contracted

if the neighborhood N�v� �
 ��

Proof� We �rst show that any �separable� information is not lost after doing either

of the above operations�

Let v be a non	boundary end	vertex of W � Since v is not on the boundary of W �

there does not exist an extension Z such that W �Z has a cycle containing v� �Vertex

v always has degree one�� Thus� all end	vertices of W not on the boundary can not

be included with the other witness vertices associated with the witness forest W in

any minimal feedback vertex set of any extended Gm�

Now assume v is a non	boundary vertex of degree two of W and N�v� � fa� bg

where a �	 �� Let Z be an extension of W such that the removal of vertex v kills

some cycles of W � Z� Since the degree of v is two� all cycles through v must also

pass through a� Thus� vertex a is also a kill vertex for the cycles killed by v in W �Z�

This shows that we may replace vertex v with vertex a in any feedback vertex set

containing v� �Vertex v always has degree two��



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ��

Let Wc be the forest W with edge �a� v� contracted� The vertices v and a of

W are replaced with the vertex labeled a in Wc� We now show Wc �w W � For all

extensions Z� there is a bijection between cycles in Wc � Z and cycles in W � Z� �All

cycles that pass through v of W � Z now pass through a cycle with one less edge in

Wc � Z all other cycles are identical�� For any cycle killed by vertex v in W � Z� the

corresponding cycle in Wc � Z is still killed by vertex a� The other vertices of Wc or

W still kill the same cycle extensions� Thus Wc �w W and W �w Wc�

We now show that the reduced park P derived from W using steps �a� and �b�

is minimal�

Let vertex v be a non	boundary vertex of P � Since P is acyclic and contains no

end	vertices adjacent to the boundary� vertex v is on some unique path between two

boundary vertices i and j� Deleting v disconnects i and j� So �P n fvg� ��w P �

Now let P � be the forest P where edge �a� b� is contracted for two non	boundary

vertices a and b of degree three or more� Let a� and a� be two �distinct� boundary

vertices connected to vertex a such that vertex b is not on the connecting paths�

Likewise� Let b� and b� be two boundary vertices connected to vertex b such that

vertex a is not on the connecting paths� The vertices a� and a� are distinct from the

vertices b� and b�� for otherwise a cycle would contain edge �a� b� in P � Pick a graph

extension Z to be the set of boundary vertices +S with the edges �a�� a�� and �b�� b���

The graph �P � n fag� � Z is acyclic while the graph P �Z contains two disjoint cycles�

This tells us that �P n fxg� � Z is cyclic for all x in P n �� Thus� P ��w P ��

Finally assume P � is the forest P where edge �a� b� is contracted� a 	 �� b �	 ��

and degree�b� � �� Let b� and b� be two boundary vertices connected to vertex b

such that the path between b� and b� passes through vertex b and a �	 fb�� b�g� Pick

an extension Z to be the set of boundary vertices +S with the edges �a� b�� and �a� b���

The graph �P nfbg��Z is acyclic� The graph P � �Z contains two cycles which intersects

at a� Since the boundary vertex a is not allowed to be deleted� the graph �P �nfxg� �Z

is cyclic for all x in P � n �� Thus� P � ��w P � �

There may exist alternative witness forests that preserve minimum	sized feedback

vertex sets for all extensions of Gm� A witness forest W is considered to be a park if

the above lemma can not be applied to W �



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ���

Lemma ���� There are at most �t� � vertices in any park for boundary size t�

Proof� First we consider the degree two non	boundary vertices� For such a vertex v�

each of its neighbors must be a boundary vertex� After viewing v and its two incident

edges as a single edge between two boundary vertices� we see that at most t� � such

vertices can occur� Otherwise� a cycle would exist on the boundary�

Now we consider the remaining non	boundary vertices� Let p be the number of

such vertices and e be the edge size of the subpark� Using the fact that the size of

a forest must be strictly less than the order� we have e � t ! p� Since the sum of

the vertex degrees is twice the size� we also have t ! � � p � � � e� Combining these

inequalities while solving for p we get

t! � � p

�
� e � t! p � �� or p � t� ��

Summing up the boundary �t�� the degree two vertices �t � ��� and the degree

three or more vertices �t���� shows that the order of any park can be at most �t���

�

Corollary ���� There is a �nite number of parks with boundary size t�

Proof� Since we have a bound on the number of vertices for a park� we can apply

Cayley�s Tree Formula �i�e�� by counting the number of labeled trees�forests� to get

a bound on the total number of distinct parks� There are nn�� labeled trees of order

n� �

The result of the previous lemma may be strengthened to arrive at a tighter bound

on the number of possible parks� See� for example� the closely related Lemma ���

on page ���� However� this bound is su�cient for our purposes� that is� to see that

there is a manageable �constant� number of parks� This means that the following

algorithm can be used as an usable �nite	index congruence�

For each subset S �with complement +S � � n S� of the set of boundary vertices

our algorithm keeps track of the related parks in the following sets�

Pm�S� � fP j P is a park of Gm with leaves and branches over +Sg



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ���

Now we �nally present a linear time dynamic	programming algorithm for the FVS

problem which is used as our �nite F 	congruence for t	parses� This general	purpose

algorithm has the same structure as the vertex cover algorithm used in Chapter ��

indicating a standard approach for developing them� The one	pass algorithm simply

makes a transition from one state to another for each operator of a t	parse Gn �

� �n� � � � � tn� g�� � � � � gn�� Thus� after all the parks fPm�S� j S 
 �g are determined

�for Gm�� all the parks fPi�S� j S 
 �g for i � m � n are never referenced and may

be discarded�

Our algorithm� given in Figure ���� starts by setting the sizes for the minimal

feedback vertex sets on Gm � G�� the edgeless graph with t ! � boundary vertices�

This is done for all S 
 �� There is only one park associated with F��S� at this

stage� namely the isolated forest with t! �� jSj vertices� We break up the dynamic

step into cases depending on what type of operator is at position m ! � and the

condition �selected in S or not� of any a
ected boundary vertices of Gm or Gm���

These transitions are described in cases �	� of Figure ���� When the algorithm reaches

the end of the t	parse� it computes the minimum number of vertices needed in any

feedback vertex set for Gn by taking the least Fn�S��

For space reasons we leave out the self	evident rules required to update the sets of

parks Pi�S� throughout each iteration of step II of the FVS algorithm� This procedure

essentially entails extending the parks with the current operator and reducing them

by the rules given in Lemma ��� and combining park sets if the two Fm���s are equal

in cases �	��

Example ��� The following Table ��� of values for Fm�S� shows the application

of the FVS algorithm with the �	parse given in Example � on page ��� As can been

seen by examining the graph in Example �� a minimum feedback vertex set has

cardinality � which corresponds to the minimum value in the last column�

Theorem ��	� For any t	parse Gn � � �n� � � � � tn� g�� � � � � gn�� the algorithm in

Figure ��� correctly computes FV S�Gn��

Proof� For part I of the algorithm� we note that jSj vertices are selected from the

boundary of G� for each S 
 �� Thus the minimum feedback vertex set for such a

requirement is initially set� that is� F��S� � jSj�



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ���

I For m � � and every S 
 � set

F��S� � jSj �

II For � � m � n do the following cases�

Case �� vertex operator inand i �	 S

Fm���S� � minfFm�S�� Fm�S � fig�g

Case �� vertex operator inand i 	 S

Fm���S� � minfFm�S�� Fm�S n fig�g! �

Case �� edge operator i j where i 	 S or j 	 S

Fm���S� � Fm�S�

Case �� edge operator i j where i �	 S and j �	 S

a� If the edge operator creates a cycle on +S in Gm�� or Fm�S� �� then

Fm���S� �� �

b� If there exists a park in Pm�S� such that i and j are in di
erent trees then

Fm���S� � Fm�S�

else

Fm���S� � Fm�S� ! � �

III The minimum feedback vertex set order of G is

minfFn�S� j S 
 �g �

Figure ���� A general feedback vertex set algorithm for t	parses�



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ���

T
ab
le
��
��
F
ee
d
b
ac
k
ve
rt
ex
se
t
st
at
e
ta
b
le
s
co
m
p
u
te
d
fo
r
E
x
am
p
le
��
��

m

�

�



�

�

�

�

��

��

��

��

��

�

��

��

S

g m

�

�
�

�
�

�n

�
�

�
�

�n

�
�

�
�

�n

�
�

�
�

�n

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

f�
g

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

f�
g

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

f�
g

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

f�
��
g

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

f�
��
g

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

f�
��
g

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

f�
��
��
g

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ���

For a vertex operator inappended to Gm we relabel vertex i of Gm as i� and label

the new vertex in Gm�� as i� The correctness for the dynamic step of the algorithm

�part II� is now be proved�

Case �� Fm���S� � minfFm�S�� Fm�S � fig�g

First� for the �m!��	th operator being inwhere i �	 S� we show that Fm���S� �

minfFm�S�� Fm�S � fig�g� Let K be a witness feedback vertex set of Gm where

S � K � � or S � fig � K � �� The graph Gm�� resulting from adding an isolated

vertex to Gm with new boundary vertex i also has K as a feedback vertex set but

with � �K � S�

Now we show that minfFm�S�� Fm�S�fig�g � Fm���S�� Assume K is a minimal

feedback vertex set of Gm��� Vertex i is not in K since removing i from K would leave

a smaller feedback vertex set for Gm��� contradicting K being minimal� If i� 	 K

then K is a witness for Gm where � �K � S � fig� Likewise� if i� �	 K then K is a

witness for Gm where � �K � S� This then shows that either Fm�S� � Fm���S� or

Fm�S � fig� � Fm���S��

Case �� Fm���S� � minfFm�S�� Fm�S n fig�g! �

This case assumes that the next operator is a vertex operator inand i 	 S� We

�rst show Fm���S� � minfFm�S�� Fm�S � fig�g ! �� Let K be a witness feedback

vertex set of Gm where S � K � � or S � fig � K � �� Adding an isolated vertex to

Gm with new boundary vertex i has K � � K � fig as a feedback vertex set for Gm��

with � �K � � S� Thus� the inequality holds this way�

Now assume that K is a witness feedback vertex set for the graph Gm�� and

jKj � � � minfFm�S�� Fm�S n fig�g �

If i� 	 K then K � � K n fig is a witness for Gm where � �K � � S� Likewise� if i� �	 K

then K � � K n fig is a witness for Gm where � �K � � S n fig� Thus� we either have

Fm�S� � Fm���S�� � or Fm�S n fig� � Fm���S�� ��

Case �� Fm���S� � Fm�S�

The net result of adding an edge with operator i j to Gm where either vertex i

or vertex j is marked for deletion is the same as if this operator was not present� The

edge gets deleted from the graph when the designated selected boundary S is a subset



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ���

of the minimal feedback vertex set� with respect to Fm�S�� of Gm� If Fm���S� � Fm�S�

then the witness feedback vertex set for Gm�� would also be a witness feedback vertex

set for Gm �i�e�� a contradiction of Fm�S� being minimal��

Case �� Fm���S� � Fm�S� or Fm�S� ! � or �

If the edge operator i j creates a cycle on the non	selected boundary vertices

+S � � n S or Fm�S� � � then there is no feedback vertex set for Gm��� Thus�

Fm���S� is correctly set to ��

We now consider the cases where Fm���S� is �nite� Clearly� Fm�S� � Fm���S�

since Gm n S is a proper subgraph of Gm�� n S�

Assume there is a park for Fm�S� such that boundary vertices i and j are in

di
erent trees� This means that there exists a feedback vertex set K of cardinality

Fm�S� of Gm with � �K � S that disconnects the vertices i and j� Adding an edge

�i� j� with operator i j to Gm n K does not create any cycles� Thus� Gm�� n K �

�Gm � f�i� j�g� nK � �Gm nK� � f�i� j�g is acyclic� In this case Fm���S� � Fm�S��

If the above case is not true� then all parks have the boundary vertices i and

j connected� Since Fm�S� �� �� there must be at least one park �witness forest�

associated with a minimal feedback vertex set K of Gm� Since operator i j does

not create a cycle on the non	selected boundary� the unique cycle created in Gm nK

by adding the edge �i� j� has at least one non	boundary kill vertex v� Hence� the set

K � fvg is a feedback vertex set of Gm��� We have shown Fm���S� � Fm�S� ! ��

We now consider the possibility that Fm���S� � Fm�S� in this latter case� Let K

be a witness for Gm�� of cardinality Fm�S�� The set K is also a feedback vertex set

for Gm� Since K is a minimal feedback vertex set for Gm� the witness forest Gm nK

must have vertices i and j connected �by assumption that no park disconnects i and

j�� However� adding the edge �i� j� to Gm nK causes a cycle� This is a contradiction

since Gm�� nK � �Gm � f�i� j�g nK � �Gm nK� � f�i� j�g� �Recall that i and j are

not in S�� So Fm���S� � Fm�S� ! �� �

The dynamic program� given in Figure ���� for determining the feedback vertex

set of a pathwidth t	parse is easily modi�ed to handle treewidth t	parses� All that is

needed is to add a case  in part II which takes care of the circle plus operator Gi�Gj�



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ���

This new case is a little messy since the states for the two subtree parses Gi and Gj

need to be interweaved� Brie"y stated� this is done by checking all combinations

�unions� of boundary subsets Si and Sj of Gi and Gj �resulting in a subset S of

Gi � Gj� along with checking which best parks from Gi can be glued together with

the compatible parks from Gj to form a set of parks for Gi �Gj� If the glued parks

create any cycles then the value of F�tree index��S� needs to be increased to account

for additional kill vertices�

Using the same technique that we did for building our �nite	state algorithm

for k�VertexCover� we can convert the above feedback vertex set algorithm to

a �nite	index congruence for k�FeedbackVertexSet� This is accomplished by

restricting the values of Fm�S� to be in f�� �� � � � � k� k ! �g we are only interested in

knowing whether or not there exists a feedback vertex set of size at most k containing

S� �The value of k ! � acts as the value � in the congruence��

In our application for �nding the k�FeedbackVertexSet obstruction sets� we

actually used a congruence with slightly fewer states then the one just described� The

key idea to this improvement was noticing that if a park P is a minor of a park P � then

only the representative P is needed as a witness� We estimate that this allowed us

to prove approximately , more t	parses nonminimal via the dynamic	programming

congruence check� That is� for certain instances we avoided our testset proof method�

����� A complete FVS testset

A �nite testset for the feedback vertex set canonical congruence�F is easy to produce�

The individual tests closely resemble the parks described above� The testset that

we use consists of forests augmented with isolated triangles �and�or triangles solely

attached to a single boundary vertex�� Our k�FeedbackVertexSet testset T k
t

consists of all t	boundaried graphs that have the following properties�

�� Each graph is a member of k�FeedbackVertexSet�

�� Each graph is a forest with zero or more isolated triangles� K��s�

�� Every tree component has at least two boundary vertices�



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ���

�� Every isolated triangle has at most one boundary vertex�

� Every degree one vertex is a boundary vertex�

�� Every non	boundary degree two vertex is adjacent to two boundary vertices�

Example ��
� Some �	boundaried tests �of T k��
t�� � for ��FeedbackVertexSet

are shown below�

The above restrictions on members of T k
t gives an upper bound on the number

of vertices� as stated in the following lemma� Hence T k
t is a �nite testset�

Lemma ���� The number of vertices for any test T 	 T k
t is at most �k ! �t� ��

Proof� Since T 	 k�FeedbackVertexSet there can be at most k isolated tri	

angles� consisting of at most �k non	boundary vertices� We now show by induction

that there can be at most t � � interior forest vertices for boundary size t� With	

out loss of generality� we may assume the acyclic part of T is a tree �i�e�� we can

add edges to make another test with the same order�� For a tree with � boundary

vertices the largest test consists of one interior vertex of degree two� Thus the base

case holds� Now assume T is a valid test with t boundary vertices� We consider

three cases� If T has a degree one boundary vertex v that is adjacent to another

boundary vertex� then T n fvg is a valid test for boundary size t � � containing� by

induction� at most t � � interior vertices� Hence T also has at most t � � � t � �

interior vertices� Otherwise� if T has a degree two interior vertex v then T n fvg

partitions the boundary into two valid tests T� and T� each with positive boundary



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ���

sizes b� ! b� � t� By induction� jV �T��j � b� � b� � � and jV �T��j � b� � b� � �� so

jV �T �j � t � �b� � �� ! �b�� �� ! � � t� �� Lastly� if all of T �s interior vertices have

degree at least � then there must be at least twice the number of leaves �boundary

vertices�� Thus� any acyclic test T can have at most t� � interior vertices� �

The above bound is tight since the test T consisting of k isolated triangles and

t� � interior degree two vertices� each adjacent to boundary vertex i and i ! �� has

�k ! �t� � vertices �see� for example� the last test given in Example �����

Since these k�FeedbackVertexSet testsets are based solely on t	boundaried

graphs� they are useful for both pathwidth and treewidth t	parse obstruction set

computations�

Theorem ���� The set of t	boundaried graphs T k
t is a complete testset for the

graph family k�FeedbackVertexSet�

Proof� Assume G and H are two t	boundaried graphs that are not F 	congruent

for F � k�FeedbackVertexSet� Without loss of generality� let Z be any t	

boundaried graph that distinguishes G and H with G� Z 	 F and H � Z �	 F � We

show how to build a t	boundaried graph T 	 T k
t from Z that also distinguishes G

and H� Let W be a set of k witness vertices such that �G� Z� nW is acyclic� From

W � let WG � W �G� W� � W � � and WZ � W �Z� Take T � to be Z nW plus jWZj

isolated triangles� plus jW�j triangles with each containing a single boundary vertex

from W�� If T � contains any component C �� K� without boundary vertices� replace

it with FV S�C� isolated triangles� Clearly� G � T � 	 F since WG plus one vertex

from each of the non	boundary isolated triangles of T � is a witness set of k vertices� If

H�T � 	 F then this contradicts the fact that H�Z �	 F by using a cover containing

WZ� W� and the interior witness vertices of H �with respect to H � T ��� Finally� we

construct a distinguisher T 	 T k
t by minimizing T � to satisfy the � properties listed

above� �Note that the extension T is created by not eliminating any cycles in the

extension T ��� �

For the graph family ��FeedbackVertexSet on boundary size �� the above

testset consists of only �� tests� However� for ��FeedbackVertexSet on bound	

ary size � the above testset contains a whopping set of ����� tests� As can be seen by



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ��

the increase in the number of tests� a more compact feedback vertex set testset would

be needed �if possible� before we attempt to work with boundary sizes larger than �

The large number of tests �especially T �
� � for the FVS families indicates why using

the testset step to prove t	parses minimal or nonminimal is the most CPU	intensive

part of our obstruction set search �and is why it is attempted last��

	�� The FVS Obstructions

Our search for the ��FeedbackVertexSet and ��FeedbackVertexSet ob	

structions is now presented� As mentioned in Chapter �� we need some type of

lemma that bounds the search space� The following well	known treewidth bound can

be found in �vL��� along with other introductory information concerning the minor

order and obstruction sets� We provide a proof in order to suggest how generous the

bound probably is for the k�FeedbackVertexSet obstructions� which is a very

small subset of the �k ! ���FeedbackVertexSet family�

Lemma ���� A graph in k�FeedbackVertexSet has treewidth at most k ! ��

Proof� Let G � �V�E� be a member of k�FeedbackVertexSet and V � 
 V be a

set of k witness vertices such that G� � GnV � is acyclic� The remaining forest G� has

a tree decomposition T of width �� Notice that a tree decomposition T � consisting of

the vertex sets of T augmented as T �
i � Ti�V

� is a tree decomposition for G of width

k ! �� �

Corollary ���� An obstruction for k�FeedbackVertexSet has treewidth at

most k ! ��

Proof� Let G be an obstruction and v any vertex of G� By de�nition� G� � Gnfvg 	

k�FeedbackVertexSet� Since G� has a tree decomposition T of width at most

k!�� adding the vertex v to each vertex set of T yields a tree decomposition of width

at most k ! � for G� �

We now consider when the pathwidth of a k�FeedbackVertexSet obstruc	

tion G can be larger than the treewidth bound of k!�� If we attempt to build a path



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ���

decomposition like the tree decompositions in the proof of Lemma ���� we see that

the forest G� �obtained by deleting an arbitrary vertex v and k witness vertices from

G� has to have pathwidth at least �� From �EST��� we know that the forest contains

a subdivided K���� So� such an obstruction must have at least � ! k ! � vertices� For

pathwidth � �see Chapter �� or �EST����� the forest has to contain one of the tree

obstructions of order ��� and hence G has to have at least � ! k ! �� vertices for

pathwidth to be more than the treewidth plus one�

Lemma ���� If O is an obstruction to ��FeedbackVertexSet and has path	

width greater than �� then O either has at least �� vertices or is also an obstruction

to k�Pathwidth� for some k � ��

Proof� Assume that the pathwidth of O is  and is not a pathwidth obstruction�

�If the pathwidth is larger than  then we can get a larger vertex bound�� There

must then exist a minor G of O with the same pathwidth as O� Since O is a

��FeedbackVertexSet obstruction� the minor G must have a feedback vertex

set V of cardinality �� If the forest G� � G n V has pathwidth � or less� we can build

a path decomposition of G of width � by adding the two vertices of V to the sets of

a path decomposition of G� of width �� So that leaves us with the case that G� must

contain a tree of pathwidth at least �� Such a tree must have at least �� vertices so G

must have at least �� vertices� Since O has the same pathwidth as G� the obstruction

O of ��FeedbackVertexSet must also have �� vertices� �

Any connected obstruction to ��FeedbackVertexSet does not contain � dis	

joint cycles� or any degree one vertices� or any consecutive degree two vertices� so

having �� or more vertices seems unreasonable� Observe that the graph K� is an ob	

struction to both ��FeedbackVertexSet and ��Pathwidth �not pathwidth �-��

and that most of the k�Pathwidth obstructions have pendent vertices �and other

nonminimal properties�� so it is unlikely that the second case of the lemma is possible�

Unfortunately at this time� we have not proven the impossibility of either of these

two cases� We hope� with regards to ��FeedbackVertexSet� that we can �nd a

de�nitive proof� and avoid a treewidth � search�



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ���

Besides the single obstruction K� for the trivial family ��FeedbackVertexSet�

the connected obstructions for ��FeedbackVertexSet and the connected obstruc	

tions for ��FeedbackVertexSet �pathwidth � �� are shown in Figures �������

The two connected obstructions for ��FeedbackVertexSet were found in about

� hours of accumulated CPU time when combining � worker processes� a database

manager process� and a dispatcher process running concurrently� Our pathwidth �

search for ��FeedbackVertexSet consumed over �� thousand hours of CPU time

running for about three months in duration while averaging �� workers �from initially

a collection of �	�� SUN Sparcs� and more recently including a few IBM ����s and

two Cray Y	MPs��

Table ��� contains a brief summary of how many proofs our system had to �nd for

��FeedbackVertexSet �pathwidth ��� The �rst column states various starting

�or restarting� points in the search� Lack of memory and disk space is the main

reason for the separate runs� The second column gives the number of canonic non	

boundaried obstructions that have the given pre�x� The �minimal nodes� column gives

the number of minimal t	parses that we encountered these are the internal nodes of

our search tree plus any boundaried obstructions� The last column gives the total

number of graphs the system had to check� This total includes those t	parses that

were proved minimal or nonminimal �or irrelevant�� The missing entries in the table

represent places that were fast dead	end runs �i�e�� small subtrees of the search tree

leading only to nonminimal t	parses� and we did not bother keeping the proofs�

We believe that ��FeedbackVertexSet may be the only feasible family to

characterize since there are at least ��� obstructions to ��FeedbackVertexSet�

In fact this count is a very small percentage since we know of an obstruction with

order � and we have only searched through a subset of the graphs with maximum

order ���

In our display of the two obstruction sets for the �within one�two vertices of

acyclic� families� we present only the connected obstructions since any disconnected

obstruction O of the lower ideal k�FeedbackVertexSet is a union of graphs fromSk��
i�
 O�i�FeedbackVertexSet� such that FVS�O� � k ! �� �See Section �������



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ���

Table ���� Summary of our ��FeedbackVertexSet obstruction set computation�

pathwidth ��

��������������������������������������������������������������������

Pathwidth Four Prefixes Obsts Extract Minimal Total

for Feedback Vertex Set � File t�parses proofs

��������������������������������������������������������������������

�	���������	��	��	�	����� x

�	���������	��	��	�	����� x

�	���������	��	��	��	���� 	

�	���������	��	��	�������� x

�	���������	��	��	�������� x

�	���������	��	��	�������� x

�	���������	��	��	��	����� � �K� none � ���

�	���������	��	��	��	�	�� 	 none

�	���������	��	��	�	����� 	 A �	 ���

�	���������	��	��	�	��	�� 	 B ��� ����

�	���������	��	��	��	��	� �	 � �deg� ��� �����

�	���������	��	��	��	�	�� �� C ����� �	�����

�	���������	��	��	�	��	�� �� D ����� ����		�

�	���������	��	��	�	��	�� �� E �prefixed below�

Prefix�E� � �	��	��	� � E��a �	��� �����

Prefix�E� � �	��	����� �	 E��b ����� ������

Prefix�E� � �	��	����� 	 E��c ��� �����

Prefix�E� � �	��	����� 	 E��d 	� ����

Prefix�E� � �	����� �	 E��a ���� ����

Prefix�E� � �	����� 	 E��b ��	 ����

Prefix�E� � �	����� 	 E��c � ���

Prefix�E� � �	����� 	 E��d �� ���

Prefix�E� � ���� E��a � E�� �	�� �����

Prefix�E� � ���� E��b 	 none �� ��

��������������������������������������������������������������������



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ���

Example ���� Since K� is an obstruction for ��FeedbackVertexSet� and K�

is an obstruction for ��FeedbackVertexSet� the graph K��K� is an obstruction

for ��FeedbackVertexSet�

Some patterns become apparent in these two sets of obstructions such as the

following easily	proven observation�

Observation ���� For the family k�FeedbackVertexSet� the complete graph

Kk��� the augmented complete graph A�Kk��� which has vertices f�� �� � � � � k ! �g �

fvi�j j � � i � j � k ! �g and edges

f�i� j� j � � i � j � k ! �g �

f�i� vi�j� and �vi�j� j� j � � i � j � k ! �g �

and the augmented cycle A�C�k��� are obstructions�

	�� The FES Obstruction Set Computation

We now focus on two problem	speci�c areas for computing the k�FeedbackEdgeSet

obstruction sets� a direct minimality test and a complete testset �i�e�� steps � and �

of Section �����

��	�� A direct nonminimal FES test

We �rst describe a simple graph	theoretical characterization for the graphs that are

within a few edges of acyclic� This trivial result also shows that Problem ��� �i�e��

determining the minimum feedback edge set of a graph� has a linear time decision

algorithm�

Theorem ��� A graph G � �V�E� with c components has FES�G� � k if and

only if jEj � jV j � c ! k�



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ��

Proof� For k � � the result follows from the standard result for characterizing forests�

If FES�G� � k then deleting the k witness edges produces an acyclic graph and thus

jEj � jV j � c ! k� Now consider a graph G with jV j � c ! k edges for some k � ��

Since G has more edges than a forest can have� there exists an edge e on a cycle� Let

G� � �V�E n feg�� By induction FES�G�� � k � �� Adding the edge e to a witness

edge set E� for G� shows that FES�G� � k� �

Unlike the k�FeedbackVertexSet lower ideals� it is not obvious that the

family k�FeedbackEdgeSet is a lower ideal in the minor order� However� with

the above theorem one can easily prove this�

Corollary ��	� For each k � �� the family of graphs k�FeedbackEdgeSet is a

lower ideal in the minor order�

Proof� We show that the three basic minor operations do not increase the number

of edges required to remove all cycles of a graph� An isolated vertex deletion removes

both a vertex and a component at the same time� so k is preserved in the formula

jEj � jV j � c ! k� For an edge deletion the number of components can increase by

at most one� so with jEj decreasing by one� the value of k does not increase� For

an edge contraction� the number of vertices decreases by one� the number of edges

decrease by at least one� and the number of components stays the same� so k does

not increase� �

The above corollary allows us to characterize each k�FeedbackEdgeSet lower

ideal in terms of obstruction sets� We abstractly characterize these below�

Theorem ��
� A connected graph G is an obstruction for k�FeedbackEdgeSet

if and only if FES�G� � k ! � and every edge contraction of G removes at least two

edges �i�e�� the open neighborhoods of adjacent vertices overlap��

Proof� This follows from the fact that an edge contraction that does not remove at

least two edges is the only basic minor operation that does not decrease the number

of edges required to kill all cycles for a connected graph with every edge on some

cycle� �

The above theorem gives us a precise means of testing for nonminimal t	parses

�see step � of Section �����



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ��

��	�� A complete FES testset

Somewhat surprisingly� a usable testset for each feedback edge set family has already

been presented in Section ������ We now prove that those earlier feedback vertex set

tests can also be used here�

Lemma ���� The testset T k
t for the family k�FeedbackVertexSet is also a

testset for k�FeedbackEdgeSet�

Proof� First observe that

F � k�FeedbackEdgeSet 
 k�FeedbackVertexSet

so that the k�FeedbackVertexSet membership restriction for T k
t graphs does not

preclude any important tests �just includes some obsolete tests not in F�� Consider

a �xed family F and boundary size t� It su�ces to show that if G ��F H then there

exists a test T 	 T k
t that distinguishes G and H� Since G and H are not congruent

there exists a t	boundaried graph Z such that� without loss of generality� G � Z 	 F

and H � Z �	 F � We now show how to minimize Z into a T 	 T k
t � Let E be a witness

edge set for G �Z 	 F and let EZ � E�Z�nE� The �rst transformation on Z is to set

Z � � �Z n EZ� � �jEZj �K��� Clearly Z � is also a distinguisher for G and H since ���

G � Z � 	 F by using the edges E n EZ and one edge from each of the new K��s as a

witness set� and ��� H �Z � �	 F � for otherwise� H �Z would be in F � Notice that Z � is

a set of trees and isolated triangles� The �nal transformation on Z is to let Z �� be Z �

with all non	boundary leaves deleted and non	boundary subdivided edges contracted

to satisfy the conditions of a member of T k
t � �

It is interesting to notice from the above proof that� in addition to the out	

of	family tests� the isolated triangles in the tests for k�FeedbackEdgeSet do

not contain any boundary vertices� Thus� the number of graphs in a testset for

k�FeedbackEdgeSet is substantially smaller than the order of the testset for

k�FeedbackVertexSet�



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ��

	�� The FES Obstructions

Since the family k�FeedbackEdgeSet is contained in k�FeedbackVertexSet�

the maximum treewidth of any obstruction for k�FeedbackEdgeSet is at most

k ! �� Thus� the same arguments given in Section ��� regarding pathwidth apply to

k�FeedbackEdgeSet as well�

For the family ��FeedbackEdgeSet� it is trivial to show that K� is the only

obstruction� The connected obstructions for the graph families ��FeedbackEdgeSet

through ��FeedbackEdgeSet are shown in Figures ���� ��� and ���� There are

well over ��� connected obstructions for the ��FeedbackEdgeSet family� Any

disconnected obstruction for k�FeedbackEdgeSet is easily determined by com	

bining connected obstructions for j�FeedbackEdgeSet� j � k� since FES�G�� !

FES�G�� � FES�G� �G���

An open problem is to determine a constructive method for �nding all of the

obstructions for k�FeedbackEdgeSet directly from O�j�FeedbackEdgeSet��

j � k� Some easily observed partial results are given next�

Observation ���� If G is a connected obstruction for k�FeedbackEdgeSet

then the following are all connected obstructions for �k ! ���FeedbackEdgeSet�

�� G with an added subdivided edge attached to an edge of G�

�� G with an attached K� on one of the vertices of G�

�� G with an added edge �u� v� when there exists a path of length at least two between

u and v in G n E for each feedback edge set E of k ! � vertices�

It is easy to see that if an obstruction has a vertex of degree two then it is pre	

dictable by observations ���� The �rst ��FeedbackEdgeSet obstruction in Fig	

ure ��� �wheel W�� and the second ��FeedbackEdgeSet obstruction in Figure ���

�W�� are two examples of graphs where observation � predicts the graph� Those

��FeedbackEdgeSet and �FeedbackEdgeSet obstructions �pathwidth bound

of �� without degree two vertices and cut	vertices are shown in Figures ��� and ����

The third ��FeedbackEdgeSet obstruction in Figure ��� is not predicatable from



CHAPTER �� FEEDBACK VERTEXEDGE SETS 
FVS AND FES� ��

the ��FeedbackEdgeSet obstructions by using any of the above observations�

Here deleting any edge from this obstruction leaves a contractable edge that does

not remove any cycles� that is� all single edge deleted minors are �nonminimal� �see

Theorem �����



��

Figure ���� Connected obstructions for ��FeedbackEdgeSet�

K� A�K�� � A�C��

Figure ���� Connected obstructions for ��FeedbackVertexSet�

Figure ���� Connected obstructions for ��FeedbackEdgeSet�



�

K�

A�C�� A�K��

Figure ��� Connected obstructions for ��FeedbackVertexSet� pathwidth � ��



��

Figure ���� Known connected obstructions for ��FeedbackEdgeSet�



��

Figure ���� Biconnected ��FeedbackEdgeSet obstructions without degree � ver	

tices� pathwidth � ��

Figure ���� Biconnected �FeedbackEdgeSet obstructions without degree � ver	

tices� pathwidth � ��



��

Chapter �

Some Generalized VC and FVS

Graph Families

This chapter develops problem	speci�c results leading to the characterization �in

terms of obstruction sets� for several parameterized graph families� The previous

two k�VertexCover and k�FeedbackVertexSet graph families are general	

ized into other graph	covering families that are lower ideals in the minor order� We

also include e�cient dynamic programs and computer	generated automata examples

for various a path and cycle cover problems where the input has bounded combina	

torial width�


�� Path Covers

We now generalize the k�VertexCover graph families �see Chapter ��� These

path	cover families have applications in the design of minimal broadcast graphs via

graph compounding �see �BFP����

De�nition ���� For a graph G� let MaxPath�G� be the length �number of edges�

of the longest path� The base	level graph family is

��PathCover�p� � fG j MaxPath�G� � pg�



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ��

The graph family k�PathCover�p� consists of the graphs that are within k vertices

of ��PathCover�p�� that is� a graph G � �V�E� is in k�PathCover�p� if there

exists a V � 
 V � jV �j � k� such that MaxPath�G n V �� � p�

Note that the parameterized family of graphs k�PathCover��� is identical to

the set of graphs in the k�VertexCover family�

Lemma ���� The graph family k�PathCover�p� is a lower ideal in the minor

order�

Proof� Let G � �V�E� be a graph in k�PathCover�p� with V � 
 V a covering�

For any edge e � �u� v� 	 E� let G� � G n feg� If either u or v is in V � then

G� nV � � GnV has a maximum path of length at most p� If not� G� nV � � GnV and

its maximum path length is less than or equal to p� Now consider an edge	contracted

minor G� � G	e� If either u or v is in V � then G� n V � 
 G n V has a maximum path

of length at most p� If not� G� n V � is an edge	contracted minor of G n V and edge

contractions do not increase the lengths of any paths� So MaxPath�G� n V �� � p� �

The following result follows from the treewidth result given in �FL��b� but is

included and specialized here for completeness�

Theorem ���� The pathwidth of any graph is at most the height of its smallest

depth	�rst	search �DFS� spanning tree�

Proof� Consider a DFS spanning tree T with root r of a graph G� Let v�� v�� � � � � vm

be the leaves of the tree T in visit order� Let Vi be the set of vertices from G on the

path from r to vi in T � We claim that V�� V�� � � � � Vm is a path decomposition of G�

The width of this decomposition is the height of the tree T � Since a DFS spanning

tree does not have any cross	edges� any edge �u� v� 	 G has both vertices in some

Vi� Now consider � � i � k � j � m� Suppose there is a vertex v 	 G such that

v 	 �Vi � Vj�� Vertex v is not a leaf of T since each leaf is in exactly one Vi� Also�

for any non	leaf vertex v� v 	 Vi implies that v was visited before vi in the DFS tree�

Let vi�j be the nearest vertex to vi in Vi �Vj of T � Vertex v must be on the path from

the root r to vi�j to be in both Vi and Vj � Note that vi�k comes after vi�j in the DFS

visit order� This implies that the path �r� � � � � vi� � � � � vi�j� is a subpath of the path

�r� � � � � vi�k�� So v 	 Vk and Vi � Vj 
 Vk� �



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ���

Corollary ���� The maximum pathwidth of any graph G in k�PathCover�p� is

k ! p�

Proof� Let W be a set of witness vertices such that MaxPath�G nW � � p� Every

component Ci of GnW has a DFS spanning tree of height at most p� Thus� combining

the vertex set W with the path decompositions of width at most p for each component

Ci� shows that G has pathwidth at most k ! p� �

Notice that the complete graph Kk�p�� has pathwidth k ! p and is a member of

k�PathCover�p�� However� we do not believe the next result is tight�

Corollary ���� If G is an obstruction for k�PathCover�p�� then the pathwidth

of G is at most k ! p ! �

Proof� The minorG� � Gnfvg for any vertex v 	 G is a member of k�PathCover�p��

Thus G� has pathwidth at most k ! p and G has pathwidth at most k ! p ! �� �

���� A path�cover congruence

We now consider the family ��PathCover�p�� A dynamic	programming congruence

for t	parses is given below� Later we indicate how to handle the within k vertices cases�

Our �nite	index congruence for ��PathCover�p� is based on a general purpose

MaxPath�� algorithm� The states of this dynamic program consists of �lengths�

indexed by path sequences of the form�

� �I� b� �P jG� b� �P jG� b� � � � bs�� �P jG� bs �I� �

where b�� b�� � � � � bs are distinct boundary vertices� � � s � t! ��

We use square brackets to denote optional beginning and trailing I�s� The nota	

tion �P jG� means that either P or G is that letter of the sequence� The semantics of

the variables I� P � and G are�

�� The variable I denotes a path to�from an interior vertex and the boundary�



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ���

�� The variable P denotes a path between two boundary vertices �this can be a

boundary edge��

�� The variable G denotes a gap in the path �contributes � to the length��

Each length is set to 	� if no such path is possible� otherwise it is the maximum

sum over all disjoint partial paths between an interior vertex and b�� all bi and bi��� and

bs and another interior vertex� where applicable� Note that the degenerate sequence

�I I� denotes� if positive� the length of a maximum path in the interior�

We also ignore path sequences that have the substring �G bi G� since replacing

that substring with �G� represents the same type of �future� path �i�e�� two gaps of

length � add up to ���

Lemma ��� For boundary size t ! � there are a �nite number of path sequences�

Proof� A simple upper bound is obtained by counting the legal combinations of the

variables� There are � ways that the variable I can appear �e�g�� one or zero times at

the front or end of the sequence�� If there are j � � distinct boundary vertices� then

there are �j�� possible ways the variables P and G are inserted between consecutive

bi and bi�� �overcounting for consecutive G�s�� The remaining one boundary vertex

case has t ! � possibilities� After combining these choices we have at most

� �

�
	t ! � !

t��X
j��

�t! ��t�t� �� � � � �t ! �� j� � �j��


A � � � �t! ��- � �t

possible path sequences� �

We note that approximately one half of the path sequences counted in the

previous lemma need to be kept since a sequence �s� s� � � � sm� and its reverse

�sm sm�� � � � s�� represent the same type of path�

Example ��	� The path sequence indices of interest �i�e�� those path sequences



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ���

that determine a t	parse�s state� for boundary size � are listed below�

�I �� � �I � G �� �I � I�

�I �� � �I � G �� �I � I�

�I I� �I � P ��

�� P �� �I � P ��

�� G �� � ��� �I � G � I�

�I � P � I�

The above example illustrates that our bound given in Lemma ��� is not very

tight �i�e�� we need only �� path sequences verses the �� predicted by the lemma��

Theorem ��
� There exists a linear time dynamic program that determines the

maximum path length of a t	parse Gn�

Proof� It su�ces to show how to correctly update the above path sequence state

table �in constant time� for both vertex and edge operators� The maximum length

over all non	�G� path sequence indices is the maximum path of the t	parse� Initially�

for the empty pre�x t	parse G
 � � �n� �n� � � � � tn� all sequence lengths are set to

	� except that the following lengths have value ��

�b� G b�� and �b�� where b�� b� 	 � and b� �� b� �

Case �� edge operator i j

For this simple case� we just need to update only those indices for which adding

an edge between boundary vertex i and j can create a longer path� That is� if the

length m of a path sequence �� � � i G j � � �� is not 	� then the length of �� � � i P j � � ��

is at least m ! �� Here� we set the length for this sequence to the maximum of its

previous value and m!�� By de�nition� no other path sequence needs to be increased�

For example� the length for the trivial case �i P j�� where i and j are disconnected

boundary vertices� would be set to � because �i G j� always has length ��

Case �� vertex operator in

For this case� we need to incorporate maximum	length paths that go through

the boundary at vertex i into paths that go through the interior� We say that a



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ���

i

Snag case�

��I� i I�

�

�I I�

i

j

One end case�

��I� i P j � � ��

�

�I j � � ��

i

j

k

Middle of path case�

�

�� � � k P i P j � � ��

�� � � k P j � � ��

Rare middle case�

�� � � k G i P j�� �� � � k G j I�

Figure ���� The vertex operator subcases for the proof of Theorem ����

new boundary vertex i� replaces the old boundary vertex i� The possible cases to

consider �the symmetric representative cases� are displayed in Figure ���� A �picture

aid� of what path sequences to possibly alter is also given in the �gure� Since none

of the physical paths of the pre�x t	parse Gm are increased in Gm��� our dynamic

program simply recategorizes some of the path sequence lengths� Again� like the

edge operator case� the maximum of the previous sequence length and the length

of the new candidate path is used to determine a path sequence�s new length� The

old path sequence containing boundary vertex i �on the path� may be assigned the

value 	� since vertex i is now isolated� The path sequences with a gap G between i

and another boundary vertex j need not be considered in this update process� For

example during the move of boundary vertex i to the interior� the path sequence

�I i G j � � �� represent a path for �j � � ��� but �j � � �� already represents another of

path with greater or equal length�

For both the above two operator cases the update process from Gm to Gm�� is

done in time bounded by the constant number of path sequences� Since this happens

only n times for the t	parse Gn� the overall running time is linear� �

Corollary ���� For a maximumpath length p �i�e�� for the family ��PathCover�p���



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ���

our MaxPath�� algorithm can be used as a �nite	index congruence�

Proof� This is accomplished by bounding the lengths of each path sequence to p !

�� Since the maximum length over all of the path sequences never decreases� any

extended t	parse stays out of the ��PathCover�p� family� If x is the total number

of path sequences� the number of equivalence classes of this congruence is bounded

by �p ! ��x� �

We can convert the �nite	state algorithm given in the proof of Corollary ��� to

recognize graphs that are within k vertices of having p as the maximum path length

�i�e�� a k�PathCover�p� dynamic	programming congruence�� This is accomplished

by using the same technique that we used for our �nite	state k�VertexCover and

k�FeedbackVertexSet algorithms� That is� we break the two operator cases in

and i j down into subcases that depend on conditions for each possible kill set S 
 �

�and keep witnesses for each of the possible killed vertices in the interior��

From the previous dynamic program� we also get the following simple corollary�

Corollary ���� For graphs of bounded pathwidth� �i�e�� t	parses�� the Hamiltonian

path problem can be solved in linear time�

Proof� We just run the linear time MaxPath�� algorithm on a t	parse G and check

if the answer equals jGj� �


�� Cycle Covers

We now generalize the k�FeedbackVertexSet graph families �see Chapter ���

De�nition ���� For a graph G� let MaxCycle�G� be the length of the longest

cycle� The base	level graph family is

��CycleCover�l� � fG j MaxCycle�G� � lg�

The graph family k�CycleCover�l� consists of the graphs that are within k vertices

of ��CycleCover�l�� that is� a graph G � �V�E� is in k�CycleCover�p� if there

exists a V � 
 V � jV �j � k� such that MaxCycle�G n V �� � l�



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ��

The cycle cover family k�CycleCover��� is identical to the set of graphs in

k�FeedbackVertexSet� The two degenerate families k�CycleCover��� and

k�CycleCover��� are classi�ed as follows� the �rst family

k�CycleCover��� � fG j G has at most k verticesg

has the single obstruction �k ! �� �K� consisting of isolated vertices� and the second

family

k�CycleCover��� � k�VertexCover � k�PathCover���

has already been seen�

Lemma ���� The graph family k�CycleCover�l� is a lower ideal in the minor

order�

Proof� This proof is similar to the proof given for Lemma ��� except that we observe

that taking either subgraphs or edge contractions of a graph do not increase the length

of any cycle� �

The next result relating treewidth and the maximum cycle length was �rst proved

by Fellows and Langston �FL��b�� They show that if a graph has maximum cycle of

length k� no back edge in any DFS tree can go back more than k � � levels� One

then reads o
 a tree decomposition of width k � � from such a DFS tree� Our proof

below is recursive and is based on separator sets and illustrates the fact that each

biconnected component of a graph with a maximum cycle of length k can only have

another disjoint cycle of length at most k � ��

Theorem ���� For any graph G� treewidth�G� � MaxCycle�G�� The degener	

ate cases are MaxCycle�K�� � �� and for any forest F with at least one edge�

MaxCycle�F � � ��

Proof� We �rst note that the theorem holds for the degenerate cases since clearly

K� has treewidth � and any forest has treewidth at most �� We prove the other cases

by induction on the maximum cycle length� For a base case� consider a graph G



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ���

with MaxCycle�G� � �� Since G does not contain any cycles of length �� G does

not contain either K� or K��� as a minor� Thus� G must be outer	planar� From

Lemma ��� we know that G has treewidth at most � and so the base case holds�

Now consider a graph G with MaxCycle�G� � k� k � �� Without loss of gen	

erality� we can assume G is biconnected� �If G is not biconnected then a set of

minimum tree decompositions T�� T�� � � � � Tm of the maximal biconnected subgraphs

S�� S�� � � � � Sm of G can be pasted together to form a tree decomposition T of width

equal to the maximum width of any Ti�� Let C be a maximum cycle in G and

C�� C�� � � � � Cm� m � � be the connected components of G n C� If m � � then the

treewidth�pathwidth of G is at most jCj � �� Let C �
i be the vertex induced subgraph

of G with vertices in the closed neighborhood of Ci� N �V �Ci��� Also let pi � � be the

number of vertices in C adjacent to Ci� that is� pi � jV �C�� V �C �
i�j� We build a tree

decomposition of G with root vertex Tr � C combined with child tree decompositions

from the components C �
i and show that the resulting tree decomposition has width

at most k � ��

We �rst take care of any component Ci with just one vertex v� The graph C �
i�

which consists of vertex v and its neighbors on C� can have at most bk	�c!� vertices

or otherwise C would not be a maximum cycle in G� Thus� for any such component

Ci we can attach a vertex set consisting of V �C �
i� to Tr�

To make the rest of the proof more understandable� we �rst investigate the case

where pi � � and then later generalize for each pi � �� Let v� and v� denote the

two vertices in C � C �
i� Consider a maximum cycle D� jDj � �� in Ci� Since G is

biconnected� there are two vertex disjoint paths P� � v�� � � � � d� and P� � d�� � � � � v�

between C and D� d� �� d� on D as shown in Figure ���� We claim that jDj � k� �

k � �� Let Cp be the longest path between v� and v� in C� Dp be the longest path

between d� and d� in D� and E be the cycle �P��Dp� P�� Cp�� We have the following

inequality

k � jEj � jP�j! jP�j!

�
k

�

�
!

�
k�

�

�
� � !

�
k ! k�

�

�
�

�
k ! k� ! �

�

�
�

So the length k� of the maximumcycle D in Ci is at most k��� By applying induction�

we have a tree decomposition Ti of width at most k �  for Ci� If we add the pi � �

vertices v� and v� to each vertex set in Ti� we get a tree decomposition T �
i of width at



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ���

C � G

D � Ci

v�

v�

d�

d�
P�

P�

Figure ���� Illustrating the pi � � case for the proof of Theorem ����

most k� � for C �
i� This subtree decomposition T �

i can be attached by any connecting

edge to the separating vertex set Tr�

Finally we consider the generalized case� � � pi � bk	�c� with jCij � �� Let

v�� v�� � � � � vpi be the vertices in W � C �C �
i� Consider a maximum cycle D� jDj � ��

in Ci� We partition the vertices in W into equivalence classes de�ned by vi � vj if

and only if there does not exists disjoint paths Pi � vi� � � � � di and Pj � vj� � � � � dj

between C and D� di �� d� on D� Since G is biconnected� there are at least two

equivalence classes� We use the same construction as in the pi � � case given above

and show that jDj � k� � k � pi� Assume vi is a member of an equivalence class

with m � pi members� Since any two vertices vi and vj in W can not be adjacent

on C� the m vertices in vi�s equivalence class must preclude at least �m! � positions

on C for the locations of the remaining pi � m vertices in W � Likewise� the other

equivalence classes collectively prevent at least �pi � �m ! � positions on C� This

means that there exists two non	equivalent vertices vi and vj that have distance at

most b�k���pi�m������m����	�c on C� In other words� vi and vj are connected

by a path of length at least k � �k � �pi ! ��	� � �k ! �pi � ��	� on C� Let Cp be

this longest path between vj and vi in C� Dp be the longest path between di and dj

in D� and E be the cycle �Pi�Dp� Pj � Cp�� We now have the following inequality

k � jEj � jP�j! jP�j! �k ! �pi � ��	� ! k�	�



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ���

� � ! �k ! �pi � � ! k��	�

� �k ! k� ! �pi�	� �

So� as desired� the length k� of the maximum cycle D in Ci is at most k � �pi �which

is less than or equal to k� pi�� By applying induction� we have a tree decomposition

Ti of width at most k � �pi � � for Ci� If we add the pi vertices W to each vertex

set in Ti� we get a tree decomposition T �
i of width at most k � pi � � for C �

i� This

sub	tree	decomposition T �
i can be attached� as we did for the pi � � case� to the

separating vertex set Tr� �

Corollary ���� The maximum treewidth of any graph G in k�CycleCover�l�

is k ! l � ��

Proof� Let W be a set of witness vertices such that MaxCycle�G nW � � l� From

the above theorem� every component Ci of G nW has treewidth at most l� �� Thus

combining the vertex set W with the tree decompositions of each Ci and adding

arbitrary edges in a tree	like fashion between the sub	decompositions shows that G

has treewidth at most k ! l� �� �

Again� as we saw for the k�PathCover�p� families� the complete graph Kk�l

in k�CycleCover�l� has treewidth k ! l� �� We suspect that the next result can

be improved�

Corollary ���� If G is an obstruction for k�CycleCover�l�� then the treewidth

of G is at most k ! l

Proof� The minor G� � G n fvg for any vertex v 	 G is a member of the lower ideal

k�CycleCover�l�� Thus G� has treewidth at most k ! l � � and G has treewidth

at most k ! l� �

Regarding membership algorithms� there is an e�cient linear time algorithm for

checking if a graph has a cycle of length at least � and for checking k�CycleCover���

membership in time O�nk���� These algorithms are based on the following fact�



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ���

Lemma ��� A graph has a cycle of length at least � if and only if it has a bicon	

nected component of at least � vertices�

Proof� If a graph has a �	cycle then clearly an induced biconnected component con	

taining the �	cycle has at least � vertices� Let B be a biconnected component with at

least � vertices� Since B is not a tree� let vertices a� b� and c be a triangle� Without

loss of generality� let vertex d �	 fa� b� cg be adjacent to a� Now� since a is not a

cut	vertex� there exists a path from vertex d to either b or c avoiding vertex a� But

this means� that the four vertices fa� b� c� dg are in some common cycle of length at

least �� �

The above fact does not generalized for any cycle lengths greater than � �e�g��

k�CycleCover���� since the graph with  vertices in Figure ��� is not Hamiltonian�

Figure ���� The smallest biconnected non	Hamiltonian graph�

With the recent powerful result of Courcelle �see �CM��� Cou��� Cou��b�� con	

cerning �nd	order monadic logic of graphs� we know for any �xed k there exists a lin	

ear time algorithm for ��CycleCover�k�� that is� this problem is �xed	parameter

tractable �see �DF���� Our application of this powerful result is sketch next� First�

in the process of �nding a depth	�rst spanning tree T of a graph G� if a back	edge

�which is adjacent to a parent node� creates a cycle of length greater than k then we

know the answer is �no� and can stop� Otherwise� with this DFS tree T � we read o


a tree decomposition of width at most k � � for G �FL��b�� The �nd	order monadic

logic representation of this problem tells us that there is a linear time algorithm for

graphs of bounded treewidth� For example� consider this simple logic for k � � on a

graph G � �V�E��

��v� 	 V � � ��v� 	 V � � ��v� 	 V � � �v� �� v�� � �v� �� v��

���v�� v�� 	 E� � ��v�� v�� 	 E� � ��v�� v�� 	 E� �



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ���


�� Path�Cycle Cover Testsets

Recall that a testset for a canonical �family� congruence is a set T of boundaried

graphs such that there exists a distinguisher Z in T for every two non	congruent

graphs X and Y � That is� if X ��F Y then either X�Z 	 F while Y �Z �	 F or vice

versa� In this section we present testsets for various path and cycle cover families�

With these testsets one can build practical membership automata for t	parses�

���� Some maximum path�cycle testsets

We �rst present testsets for the

MaxCycle�l� � ��CycleCover�l� and

MaxPath�p� � ��PathCover�p�

graph families for t	boundaried graphs� The MaxCycle�l� tests resemble the Hamil	

tonian cycle tests presented in Section ����� �also see �Lu����� Let F denote either

MaxCycle�l� or MaxPath�p� where l � p� Assume X and Y are boundaried

graphs that are not congruent� Without loss of generality� let Z be a test such that

X � Z 	 F and Y � Z �	 F � Consider an out	of	family path�cycle P in Y � Z and

let Z � � � � �P � Z�� Since Z � 
 Z� we have X � Z � 	 F and Y � Z � �	 F� The test

Z � has components consisting of paths P�� P�� � � � � Pm where the boundary of Z � lies

on the end	points of certain Pi� In the case of MaxPath�p�� at most two end	points

of Z � are not boundary vertices� In the case of MaxCycle�l�� every end	point of Z �

is a boundary vertex� The above discussion leads to the following result for any �xed

boundary size�

Lemma ��	� A �nite testset for MaxCycle�l� consists of tests of classes T� and

Ta� and a testset for MaxPath�p� consists of additional tests of classes Tb and Tc

�see Figure �����

For illustration� this testset �modulo boundary permutations� for MaxPath�p�

is shown in Figure ��� for boundary size �� The testset for the MaxCycle�l� family



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ���

T�� Ta�

Tb� Tc�

�
�

�

�Pp��

i��

Pp

j�p�i �

i

j

i � � � � � p

i

j

i � � � � � p
i i

j j

��
Pp��

i��

Pp

j�p�i �

k

	 � i� j � k � p�
�
�

�

�Pp��

i��

Pp

j�p�i �

Figure ���� Four types of �	boundaried tests for the MaxPath�p� and MaxCycle�l�

graph families� l � p�

consists of only tests of type T� and Ta� The variables i� j and k denote lengths of

the paths and cycles of the tests� The summations �and inequalities� indicate how

many tests in each class�

���� A maximum path automaton example

Using the MaxPath�p� or MaxCycle�l� testsets given above� we can build fast

membership automata that recognize t	parses in those graph families� A straightfor	

ward way of building automata from testsets is discussed in Section ����� Further

information regarding building automata for bounded pathwidth and treewidth prob	

lems occur in the literature �e�g�� see �AF��� APS��� KK��b���

For a simple example� consider the family MaxPath��� over �	parses� In Ta	

ble ��� we give a transition diagram for the minimal �nite state automaton that

recognizes those graphs of pathwidth � �caterpillars� that have no paths of length 



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ���

Table ���� The transition diagram for the MaxPath��� automaton�

�	parse operators reference counts

State �n �n � � during O	set search

� � � � ��  ���

� � � � ���  �

� � � � � �� ��

� � �  � � ��

� � � � � �� �

 � �  �� � �

� � � � �� � ��

� � � � � � ��

� �� � � � � �

� � �� � � �� �

�� �� � �� � � ��

�� � �� ��  � ��

�� �� �� �� � �� �

�� � �� �� �� �� �

�� � �� ��  � ��

� � � �� � � �

�� �� �� �� � � �

or greater� State �� of this automaton is the out	of	family state� A pictorial view of

this automaton is given in Figure ���

Also� given in the right three columns of Table ���� for the MaxPath��� au	

tomaton� is a reference count for each combination of state and alphabet symbol

�transition� during the search for the single obstruction P� �path of length �� See

Section ���� for more details� The zero entries show that many branches where not

taken during this type of obstruction set search� This indicates that computing ob	

struction sets via automata is not very e�cient overall� In practice� we found that

building an automaton takes over �, of the computation time while searching for



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ���

� �

�

	

�




�



�

�

��

��

��

�	

��

�


��


























 


�

�

�

�

�

�




�

� ��

� �


� 
� 
�


�
�
�










�

�

�


�


�


�
�� 
���
�

start


� 
� 
�


�
�
�

Figure ��� The automaton for MaxPath��� corresponding to Table ����

obstructions using a minimum automaton is very fast �by the search technique of

Chapter ��� Our empirical results suggest that for obstruction set computations� if

one has an automaton �or minimal congruence� available use it� otherwise consider

another method�

���� Some generic cycle�cover testsets

We now describe how to create a testset for the graph family k�CycleCover�l��

using boundary size t� The tests are a combination of the k�FeedbackVertexSet

tests �see Section ������ and the maximum cycle tests given above� We illustrate the

testset construction with the k�CycleCover��� family�

Our k�CycleCover��� testset �k
t consists of all t	boundaried graphs that have

the following properties�

�� Each graph is a member of k�CycleCover����

�� All degree zero and one vertices are boundary vertices�

�� There are no cycles of length greater than ��



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ���

�� All � cycles� C�� are isolated or attached to at most � boundary vertex�

� Any degree two vertex is on a path of length at most � between some two

boundary vertices�

�� Any edge e on an interior cycle C� is allowed if there exists a path between

two boundary vertices a and b containing e that is larger than any other path

between a and b�

Lemma ��
� The set of t	boundaried graphs �k
t is a testset for k�CycleCover����

Proof� Let F � k�CycleCover��� for some �xed constant k� The proof that

�k
t is a testset follows the same line of reasoning as our proof of correctness for the

k�FeedbackVertexSet testset� For two graphs G and H such that G ��F H

we need to show that �k
t contains a distinguishing test� First� we can assume both

G and H are members of F since the empty t	boundaried graph is a distinguisher�

Without loss of generality� let T be any t	boundaried graph such that G � T 	 F

and H � T �	 F� It is safe to assume that the graph T does not have any degree zero

or one internal vertices because any such vertex does not contributed to any cycle

created by the � operator�

If T contains any internal cycles of length four or greater then any kill witness set

W �in either case� must contain one vertex on these cycles� So� another distinguishing

test T � created by adding j�T�W �n�j isolated C��s to a �pruned� �T�W �n�� where W

is a witness for G�T 	 F � �A graph is considered to be pruned if it satis�es property

� of �k
t �� Now consider any remaining cycle C of length at least � in T �� This cycle

must be covered by a boundary vertex of W � This �testing� boundary�internal cycle

can be replaced with a test that satis�es property � of �k
t � For the subset S � � �W

we construct a test T �� that is a �pruned� T � n S with jSj four cycles added� each

containing one of the removed boundary vertices in S� Thus� G � T �� 	 F while still

H � T �� �	 F� If H � T �� 	 F then we can �nd a kill set W � containing T �W � where

jW �j � k� that contradicts H � T �	 F �

Property  is trivially seen since contracting out any such degree two vertex �that

does not satis�es this property� produces a smaller distinguisher� For the validity of

the property � restriction� we �rst note that in order for an edge e � �u� v� to occur



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ��

in a T ��	type test �i�e�� a test without cycles of length � or greater� the �longer paths�

must all detour around a neighbor vertex z on a cycle C� � fx� y� zg� See test �a� in

Figure ���� In this case� removing the edge does not allow for any smaller kill set for

the out	of	family H � T ��� This is because a kill vertex z could have been replaced

with x or y in a witness set� �

Note that there may be other test reductions besides the ones listed above for �k
t �

such as contracting edge e� of Figure ���� However� we have stated enough restrictions

to guarantee a �nite testset�

Lemma ���� The cycle	cover testset �k
t has �nite cardinality�

Proof� To show �niteness� it su�ces to prove a bound f�t� on the number of internal

vertices excluding C��s that a connected test can have for boundary size t� Since a

test is a member of k�CycleCover���� at most k � � isolated four cycles can be

added for a general test� For our base cases� f��� � � for the empty test and f��� � �

via a path of length ��

We now consider some structural possibilities for a test� Notice that all vertices

of any internal C� have degree greater than two such as the triangle fx�� y�� z�g in

Figure ��� because of property �� If the test has a C� � fx�� y�� z�g then removing

the internal incident edges f�x�� y��� �x�� z��� �y�� z��g creates a � component test� not

necessarily in �k
t � If there were fewer than � components then we would contradict

the assumption that there exists no cycles of length greater than �� To satisfy the

properties of �k
t we can contract at most one edge incident to each of fx�� y�� z�g as

shown in Figure ���� Note that a contraction is not needed for a boundary vertex

within the original C�� Since each of these smaller components have at most t � �

boundary vertices� we get the following recurrence

f�t� � � � f�t� �� ! � � �t �

Now consider the case that a test has no C��s �in fact� no cycles�� Following the

argument of Lemma ��� modi�ed for these tests� we see that if there is a degree two

internal vertex then f�t� � f�t� �� ! �� Otherwise� we must have a tree of bounded

height with all internal vertices of degree at least three� Again� the previous bound

f�t� � �t holds� �



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ���

e

x

y

z

x�

y�

z�

x� piece

y� piece

z� piece

�a� Edge e is not needed� �b� Recursive pieces of previous test�

e�

Figure ���� A t	boundaried test example �in �k
t � for k�CycleCover����


�� Other VC�FVS Generalizations

The minimum c�clique	hyperedge cover �e�g�� vertex covers correspond to K��binary	

edge covers� is de�ned to be the minimum number of vertices needed to cover all

cliques of size c of a graph� A parameterized graph family based on this invariant is

k�CliqueCover�c� � fG j there exists a V � 
 V �G� with jV �j � k

such that G n V � has no cliques of order cg �

Unfortunately� the graph family k�CliqueCover�c� is not a lower order in the

minor order since graphs with a bounded maximum clique size is not a lower ideal 

and hence� no obstruction set characterizations are possible �see Lemma �����

The minimum c��xed cycle cover �feedback vertex sets correspond to covering all

cycles� is de�ned to be the minimum number of vertices needed to cover all cycles

of length exactly c� The graph family with covers of size at most k is denoted by

k�FixedCycleCover�c�� Like above� the graph family k�FixedCycleCover�c�

is not a lower ideal in the minor order for c � � since the graph consisting of k ! �

disjoint Cc�� cycles is in k�FixedCycleCover�c� but the minor consisting of one

edge contracted from each Cc�� is not�

Note that the families k�CliqueCover��� and k�FixedCycleCover��� are

identical for any k since both require coverings of all K� subgraphs� For illustration



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ���

purposes� we now present a �nite	state dynamic program for k�CliqueCover��� �

k�FixedCycleCover��� over t	parses� This algorithm� designed in the same spirit

as our k�VertexCover and k�FeedbackVertexSet algorithms� is based on a

general	purpose linear time algorithm that computes the size of any minimum	sized

K� cover�

For this K�	cover dynamic program� the state of a t	parse Gn � �g�� g�� � � � � gn� at

pre�x position m � n consists of these three components�

�� Induced boundary � subgraph of Gm�

�� For each S 
 ��

Mm�S� � fC j C is the minimum K� cover containing S 
 �g �

�� For each S 
 � and for each witness cover C � S of Gm with Mm�S� vertices�

Pm�C� �

��
��u� v�

������
u 	 � and v 	 � and there exists a w 	 Gm n �� � C�

such that �u�w� and �v�w� are edges in Gm n C

��


�each Pm�C� has � n C as an available boundary attribute� and

Wm�S� � fPm�C� j C � S is a K� cover for Gm of size Mm�S�g �

Note that it is not necessary to keep Pm�C� in Wm�S� if there exists another

witness cover C � for S such that C �� 
 C ��� and Pm�C �� � Pm�C�� This is because

the following implication holds for any t	parse extension Z�

�Gm � Z� n C 	 k�CliqueCover��� �Gm � Z� n C � 	 k�CliqueCover��� �

The following algorithm updates these state components as m increases up to

n� At the end of the algorithm� the minimum	sized K� cover of Gn is the value of

Mn���� To convert this algorithm to a �xed	k version for k�CliqueCover��� we

simply place an upper bound of k ! � on the values of the Mm�S� this technique

of �trimming� also yields a �nite	state k�CliqueCover��� algorithm since� in this

trimmed version� there are at most k!� values of Mm�S� and
Pj�j

i�


�
j�j
i

�
���i�� di
erent

Pm�C��



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ���

Algorithm ���� Finds minimum K� cover of a t	parse Gn � �g�� g�� � � � � gn�

Initial state for pre�x Gt�� � � �n� � � � � tn��

For all S 
 �

Mt���S� � jSj 

Wt���S� � fPt���S� � � g 

end

For m � t ! �� � � � � n do for all S 	 ���

Case �� gm�� � inand i 	 S

Mm���S� Mm�S n fig� ! � 

Wm���S� pullo
�Wm�S n fig�� i� 

end case

Case �� gm�� � inand i �	 S

Mm���S� Mm�S� 

Wm���S� pullo
�Wm�S�� i� 

end case

Case �� gm�� � i j and �i 	 S or j 	 S�

Mm���S� Mm�S� 

Wm���S� Wm�S� 

end case

Case �� gm�� � i j and i �	 S and j �	 S

# Comment� d�i� j� denotes the distance between vertex i and j

if � Pm�C� 	 Wm�C� such that �i� j� �	 Pm�C� and d�i� j� �� � for ��Gm n C�

Mm���S� Mm�S� 

Wm���S� addEdgeOk�Wm�S�� i� j� 

else

Mm���S� Mm�S� ! � 

Wm���S� dropBoundary�Wm�S�� i� j� � otherPlus��Wm�S�� i� j� 

end



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ���

end case

Function pullo��Wm�S�� i�

newW � 

for each Pm�C� 	 Wm�S�

for every pair of boundary edges �i� j� and �i� k� of � n C

Pm�C� Pm�C� � f�j� k�g 

end

newW newW � �Pm�C� n f�i� j� j i �� jg� 

end

return newW  

end function

Function addEdgeOk�Wm�S�� i� j�

newW � 

for each Pm�C� 	 Wm�S�

if �i� j� �	 Pm�C� and d�i� j� �� � for ��Gm n C�

newW newW � Pm�C� 

end

end

return newW  

end function

Function dropBoundary�Wm�S�� i� j�

newW � 

for each Pm�C� 	 Wm�S�

newW newW � Pm�C n fig� � Pm�C n fjg� 

end

return newW  



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ���

end function

Function otherPlus��Wm�S�� i� j�

newW � 

for each k 	 � n S

if Mm�S � fkg� � Mm�S� ! �

for each Pm�C� 	 Sm�S � fkg� with �i� j� �	 Pm�C�

newW newW � Pm�C� 

end

end

end

return newW  

end function

return Mn��� 

end algorithm

Theorem ���� Algorithm �� correctly computes the size of the minimum	sized

K� cover of a t	parse Gn in linear time�

Proof� The initial state of Gt�� is correct by de�nition� We now show that the state

of the pre�x Gm�� is correctly computed from the current operator gm�� and the

state of Gm�

Case �� vertex operator in� i 	 S
By de�nition of the Mm�S��s� Mm�S n fig� � Mm�S�� Let i� denote the new vertex in

V �Gm��� n V �Gm�� We �rst show Mm���S� �Mm�S n fig� ! �� Let C � S n fig be a

minimum witness cover for Gm� We immediately see that C � � C � fi�g is a witness

cover for Gm�� with Mm�Snfig�!� vertices� Now suppose Mm���S� � Mm�Snfig�!�

and let C � be a witness cover for Mm���S�� Since C � must contain i�� we see that

C � C � n fi�g is a witness cover for Mm�S n fig� with fewer than Mm�S n fig� vertices�

This contradiction shows that Mm���S� � min�Mm�S��Mm�S n fig�� ! ��



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ���

The pulloff function simply transforms a previous witness cover C represen	

tation for Gm to one for Gm�� by moving the old vertex i into the interior� Two

things are done during this transformation� ��� any paths of length two between

three boundary vertices with vertex i as the mid	point is now added to Pm�C� and

��� any ordered pair with vertex i in Pm�C� is removed�

Case �� vertex operator in� i �	 S
Since Mm�S� �Mm�S �fig� and Wm�S �fig� 
Wm�S� if the Mm�� equality holds� we

just need to consider the previous state restricted to S� Clearly Mm���S� � Mm�S�

since the operator indoes not add any edges and the new boundary vertex does not

have to be part of a witness cover C�

Case �� edge operator i j � i 	 S or j 	 S

Since the new edge created by i j is covered by any witness cover C � S for Mm�S��

we see that Mm���S� � Mm�S�� Also� since Gm is a subgraph of Gm�� we also have

Mm�S� �Mm���S��

Case �� edge operator i j � i �	 S and j �	 S

Clearly Mm���S� � Mm�S� and Mm���S� � Mm�S� ! � since ��� any witness cover

for Gm�� containing S is a witness cover for Gm and ��� at most one more vertex is

needed to remove any new K��s that the edge operator i j creates�

If Mm���S� � Mm�S� then there is a witness cover C � S of Gm such that Gm nC

does not have a path of length two between boundary vertices i and j� This can

be detected by looking for a Pm�C� such that �i� j� �	 Pm�C� and that the remaining

boundary � n C does not have a path of length two between i and j� �Note that if

either i or j is in C then such a Pm�C� satis�es these conditions��

If no such witness cover C exists for Gm that can be used for Gm��� then all

�signi�cant� witness covers with one more vertex can be found by two ways� ���

including either vertex i or vertex j in the various C covers for Mm�S� �see the

dropBoundary function�� or ��� looking for another boundary vertex besides i and

j that can be safely deleted �see the otherPlus� function�� Note that we are not

concerned with deleting a single internal vertex since they do not help in covering

future K��s created by the su�x �gm��� � � � � gn� that is not provided by one of the

above constructed covers� �



CHAPTER �� SOME GENERALIZED VC AND FVS GRAPH FAMILIES ���


�� The Path and Cycle Cover Obstructions

Figures �������� present the known connected obstructions for the four graph families

��PathCover���� ��PathCover���� ��PathCover��� and ��PathCover����

We know of at least �� connected obstructions for the ��PathCover��� family and

at least �� connected obstructions for the ��PathCover��� family� The observant

reader may notice that ��PathCover��� and ��PathCover��� share a common

obstruction�

Figure ���� presents the seven connected obstructions for the ��CycleCover���

graph family� There are at least �� connected obstructions for the ��CycleCover���

graph family� Oddly enough� the ��CycleCover��� and ��PathCover��� fami	

lies have two identical obstructions�



���

Figure ���� Connected obstructions for ��PathCover����

Figure ���� Connected obstructions for ��PathCover����



���

Figure ���� Known connected obstructions for ��PathCover����



��

Figure ����� Known connected obstructions for ��PathCover����



���

Figure ����� Connected obstructions for ��CycleCover���� pathwidth � ��



���

Chapter �

Outer�Planar Graphs

Since several surface embedding families of graphs are closed under the minor or	

der� the main purpose of this chapter is to develop our bounded combinatorial width

technique for characterizing these types of lower ideals� This chapter uses an approx	

imation search �via universal distinguishers� to �nd a set of forbidden minors for a

simple generalization of the outer	planar graph family�

��� Introduction

De�nition ���� A graph G is outer�planar if there exists a planar drawing of G

with one face �region� containing all the vertices of G� The family of graphs that are

within k vertices of outer	planar is de�ned as follows�

k�OuterPlanar �

fG j there exists a V � 
 V �G� such that G n V � is outer	planar and jV �j � kg

One reason that the class of outer	planar graphs is popular is that the art of

drawing them is in"uenced by many computable criteria� most of which are based on

geometric symmetries �Man���� �It would be interesting to know whether the same

methods apply to the k�OuterPlanar families��

It is known that there are two obstructions to the family of outer	planar graphs�

namely K� and K��� �see for example �Tru����� The computational complexity for



CHAPTER �� OUTER�PLANAR GRAPHS ���

outer	planar membership problem is easily seen to be linear time by using one of the

known linear time planarity algorithms along with the next result� Other linear time

outer	planar algorithms are presented in �Mit��� and �SI����

Observation ���� A graph G is outer	planar if and only if G ! K� is planar�

Proof� Recall that G ! K� denotes the graph created by adding a new vertex to G

of degree jGj� If G is outer	planar then there exists a planar embedding of G ! K�

by placing K� in the outer face of an outer	planar embedding of G� If G ! K� is

planar then let S � �v�� v�� � � � � vjGj� be neighbors of K� in clockwise order in a planar

embedding E of G ! K�� The face F � where S is a subsequence� that contains K� in

E nK� is an outer face of an outer	planar embedding of G� �

Another useful result states that every biconnected outer	planar graph with at

least � vertices has a unique Hamiltonian cycle �CB����

��� The ��OuterPlanar Computation

We now turn our attention to the family of graphs ��OuterPlanar �i�e�� those

graphs that are within one vertex of outer	planar�� Using the above lemma we have

a practical O�n�� membership algorithm� We now state some direct nonminimal �in

the minor order� pretests�

Lemma ���� If a connected graph satis�es any of the following properties then it

is not an obstruction to ��OuterPlanar�

�� Contains adjacent degree two vertices�

�� Contains a cut	edge �e�g�� contains a degree one vertex��

�� Contains a cut	vertex �i�e�� not biconnected��

Proof� Assume u and v are adjacent degree two vertices of an obstructions G� Let

G� be the �u� v� edge contracted minor of G with the new vertex labeled w� Since



CHAPTER �� OUTER�PLANAR GRAPHS ���

G� 	 ��OuterPlanar there exists a vertex x of G� such that G�� � G n fxg is

outer	planar� If x � w then Gnfug �or Gnfvg� would be outer	planar� Also x is not

adjacent to w since removing x from G would also show that G 	 ��OuterPlanar

�the pendent edge incident to vertex w can be subdivided�� Likewise� if x is not

adjacent to w �which means x is not adjacent to either u and v�� then the graph

G� n fxg can be embedded in the plane such that the degree two vertex w is on the

outer face� Expanding w to its original �u� v� edge gives a contradiction to the fact

that G �	 ��OuterPlanar�

Now consider �u� v� to be a cut	edge of an obstruction G� Let Cu and Cv be

the two components of G n f�u� v�g� Since G is an obstruction� exactly one of these

components must be in ��OuterPlanar �and not outer	planar� while the other is

outer	planar� Without loss of generality� assume Cu is outer	planar� If Cv n fvg is

outer	planar so would G n fvg� Thus an interior vertex w �w �� v� of Cv must be

Cv�s witness for being in ��OuterPlanar� However� the graph Cv n fwg has an

embedding with v on the outer face and an edge added between �u� v� shows that

G n fwg is outer	planar� Therefore� any obstruction to ��OuterPlanar can not

have cut	edges�

At last consider a vertex v to be at least a three	way cut	vertex of an obstruction

G� Let C�� C�� � � � � Cm� m � �� be the components of G n fvg� and C �
�� C

�
�� � � � � C

�
m

be the vertex induced components of G with vertices fvg � V �Ci�� � � i � m� �We

assume that every component Ci has at least one edge for otherwise we would have

a cut	edge�� Since G is not within one vertex of outer	planar� at least one of the

Ci� and hence one of the C �
i is not outer	planar� If any graph C �

i is outer	planar�

let G� be the ��OuterPlanar graph created by deleting an edge e of Ci from G�

Notice that if G� n fvg is outer	planar then so is G n fvg� Let w �w �� v� be a vertex

of G� such that G� n fwg is outer	planar� Since the induced subgraph C �
i is already

outer	planar� w must be in one of the Cj� j �� i� Since we can put back the edge

e in G�� and have an outer	planar embedding of G n fwg� this implies that each of

the C �
i is not outer	planar� Let G�� 	 ��OuterPlanar be the graph G with an

edge e� of C� deleted� Since v is the only shared vertex between the C �
i� v is the only

possible witness to G�� being in ��OuterPlanar� Thus� C �
�� C

�
�� � � � � C

�
m must all be

in ��OuterPlanar� If we repeat the above argument for e� 	 C�� then C �
� is also



CHAPTER �� OUTER�PLANAR GRAPHS ���

shown to be in ��OuterPlanar� In these subcases vertex v is the witness� and

thus v would be a witness for G 	 ��OuterPlanar� However� since G is assumed

to be an obstruction� we have a contradiction to the fact that C� exists� Therefore�

G can not have three	way cut	vertices�

We now assume an obstruction G has a two	way cut	vertex v� Again consider C�

and C�� the components of G n fvg� and C �
� and C �

� as described above� Let �u� v� be

an edge in C �
�� The graph G� � G n f�u� v�g is in ��OuterPlanar� There exists a

witness vertex w of G�� such that G�nfwg is outer	planar� Vertex w must be in C �
�� for

otherwise C �
� would be outer	planar� And w �� v� for otherwise G would be a member

of ��OuterPlanar� So w 	 C�� If we repeat this process with an edge �u�� v� in

C �
�� we get another witness vertex w� in C� for G n f�u�� v�g� Since C� 
 C �

� n f�u� v�g

and C� 
 C �
� n f�u

�� v�g� we see that G n fvg must be outer	planar� This contradicts

the fact that G is an obstruction� So G can not have any cut	vertices� �

The following result �given with an alternate proof� is well	known� for example

it is stated in Van Leeuwin�s handbook without a proof �vL����

Lemma ���� Any outer	planar graph has treewidth at most ��

Proof� Clearly the complete graphs K� and K� have treewidth at most �� Without

loss of generality� assume that we have an outer	planar graph G that is triangulated

�since removing edges from a graph only decreases its treewidth�� The graph G has

a degree two vertex v since it would otherwise contain the complete graph K� as a

minor �see �Ram���� we know that K� is an obstruction to outer	planar� Consider

the outer	planar subgraph G� � G n fvg� By induction� G� has a tree decomposition

of vertex sets fVig� i 	 I� of width �� Let e � �x� y� be the internal �non	boundary�

edge of vertex v�s triangle in G� Some Vi in the tree decomposition for G� contains

both vertices x and y� We can create a tree decomposition of G of width � by adding

a leaf vertex set Vv � fx� y� vg and attaching it to Vi� �

Corollary ��� Any obstruction of ��OuterPlanar has treewidth at most ��

Proof� Here any outer	planar graph has treewidth at most �� For such a tree decom	

position� we can include two additional vertices in each set to account for any �xed



CHAPTER �� OUTER�PLANAR GRAPHS ���

vertex in a deleted	vertex minor and one vertex for the witness �within one vertex��

�

With the use of the above two results we can give a weak pathwidth bound for

��OuterPlanar�s obstruction set�

Lemma ��	� If G is an obstruction to ��OuterPlanar and has pathwidth greater

than � then G has at least �� vertices�

Proof� Let G� � G n fvg be a minor of G for any vertex v 	 G� Observe G�

is connected by Lemma �� Since G� 	 ��OuterPlanar there exists a vertex

w 	 G� such that the graph G�� � G� n fwg is outer	planar� If G�� has pathwidth ��

then we can combine vertices v and w with all the vertex sets in a path decomposition

of width � for G�� to get a path decomposition of width  for G�

Now consider the following two possibilities for G�� to have pathwidth at least ��

If G�� contains a biconnected subgraph S of pathwidth �� then consider the dual

graph D of S without the outer face vertex �using any induced outer	planar embedding

of G���� Without loss of generality� we can assume that S is triangulated� It is easy

to see that the graph D must be a tree and have maximum degree three� The

corresponding pathwidths of the S�s for the �� possible trees D �see Figure ���� of

order � are all less than �� Thus� since jDj � jSj � �� we know that the smallest S

with pathwidth � has �� vertices �see Figure ����� So the obstruction G then has to

have at least �� vertices�

The other possibility is that G�� must have a cut	vertex u and that at least three

of the outer	planar components C�� C�� � � � � Cm of G�� n fug� must have pathwidth

� or greater� �We have taken care of the case that one of the Ci has pathwidth �

by the argument above�� The smallest outer	planar graph of pathwidth � is the �

vertex augmented graph A�K�� this is the second smallest pathwidth � obstruction

�the smallest� K�� is not outer	planar�� Thus� in this case� G must have at least

� � � ! � � �� vertices to have pathwidth greater than � �



CHAPTER �� OUTER�PLANAR GRAPHS ���

Figure ���� All � vertex outer	planar dual trees �duals minus outer face vertex��

Figure ���� The smallest outer	planar graph with pathwidth ��



CHAPTER �� OUTER�PLANAR GRAPHS ���

����� An outer�planar congruence

Observe that a disconnected graph is outer	planar if and only if each component is

independently outer	planar� Thus� without loss of generality� assume for each pre�x

Gm of a t	parse Gn at most one component has order greater than one�

We now de�ne an outer	planarity state function f from t	parses to states� Our

outer	planarity congruence on t	parses� G �o H� is based on equality of states� f�G� �

f�H��

An outer�planarity state consists of a set of outer	planar embeddings and each

outer�planarity embedding consists of these ingredients�

�� Clockwise circular sequence Seq of boundary vertices of the outer face with

duplicates allowed but minimize in length �as indicated below��

�� A boundary indicator vector Gap� �Are there hidden interior vertices located

between the gaps of the boundary sequence Seq'� Here jGapj � jSeqj� The

elements of a gap vector contain any of the following symbols�

�a� �E� � just an edge

�b� �P� � path of non	boundary vertices

�c� �C� � cycle�face between vertices

�� An optional add	edge list Add� �Which boundary edges can be added and still

preserve the outer	planarity embedding'� Note jAddj �
�
t��
�

�
�

To save on storage� one may want to keep only �canonical� Seq�s and do pancake

"ips of the circular sequence ���� of the embeddings kept�� This makes the congruence

a bit more complicated and so we do not discuss this optimization further� Let lt�G�

be the maximum length of Seq over all outer	planarity embeddings of a t	parse G�

The following lemma shows that the range of this function is �nite�

Lemma ��
� For any t	parse G� lt�G� �

��
� t! � if � � t � �

�t if t � �
�



CHAPTER �� OUTER�PLANAR GRAPHS ���

vv
� �

boundary vertex

internal vertex

v

E

E

P

u

v

si��
si��

sj��sj��

Figure ���� Illustrating the proof of Lemma ���

Proof� Let b � t ! � denote the number of boundary vertices� For b � � the

component must be K�� so it trivially follows that l
�G� � �� Likewise� for b � � the

t	parse is acyclic so l��G� � ��

For a �xed outer	planarity embedding� suppose that the same boundary vertex v

appears on the outer face twice without another boundary vertex between them� The

internal vertices between these consecutive locations in Seq form a loop with possible

cords �see upper part of Figure ����� This means that these internal vertices can be

embedded �merged� into any extended outer	planar embedding of the graph minus

the �loop�� Thus� consecutive identical boundary vertices in Seq are not needed� If

b � � then accounting for boundary repetitions �e�g�� vertex u in the lower part of

Figure ���� we have the following bound�

lt�G� � max
m��
flt�m�G� ! m ! �g

The worst case is when m � �� So after solving the recurrence relation for lt�G� �

lt���G� ! �� we can conclude that lt�G� � �t for t � �� �

Observe that equality holds in the above lemma when G is a star� Furthermore�

we conclude with the following corollary�



CHAPTER �� OUTER�PLANAR GRAPHS ��

Corollary ���� There are only a �nite number of outer	planarity embeddings for

the family of t	parses� And hence� only a �nite number of possible outer	planarity

states with respect to �o�

Proof� The number of combinations of the Seq and Gap vectors is bounded above

by
Pt��

i�� i
�i��i� The add	edge list Add is uniquely determined from Seq and Gap and

does not add to the number of states� �

����� A 
nite�state algorithm

We now present a �nite	state algorithm that recognizes those connected pathwidth

t	parses that are outer	planar� This dynamic	programming algorithm �nds the outer	

planarity state of a t	parse Gn by �nding� in order� the outer	planarity states of

the pre�x t	parses G�� G�� � � � � Gn��� where the subscript n denotes the number of

operators scanned� Recall the outer	planar state function f from Section ����� for

�o� A t	parse G is outer	planar if and only if f�G� is non	empty�

As mentioned in the previous section� we assume that only one component of

any pre�x t	parse has order greater than one� Any connected t	parse can be easily

converted to this format�

For the base case consisting of an empty t	parse G
 � � �n� � � � � tn�� the initial

state F
 � f�G
� is the set of singleton outer	planarity embeddings f�Seq � �i�� Gap �

�E�� j � � i � tg� The gap �E� acts as a loop which is dropped later�

For the inductive case� we now show how to �nd the outer	planarity state Fm�� �

f�Gm��� from the outer	planarity state Fm � f�Gm�� If gm�� is a vertex operator at

position m ! � of Gn we do Case � below�

Case �� gm�� � in

Fm�� � 

For all embeddings E 	 Fm do

For all vertices vj � in	 Seq�E�

Gap�E �� MergeGaps�Left�Gap�E�� j�� vj� Right�Gap�E�� j�� 

end

Seq�E�� Seq�E� n fig 



CHAPTER �� OUTER�PLANAR GRAPHS ���

Table ���� The MergeGaps function for outer	planar Case ��

Left Gap Right Gap Resulting Gap

E E P

E P P

E C C

P E P

P P P

P C C

C E C

C P C

C C C

Add�E�� f�j� k� j �j� k� 	 Add�E� and i �� j and i �� kg 

Fm�� Fm�� � E� 

end

end case

Note that if vertex j is located between two vertex i�s in Seq�E� then two j�s are

not adjacent in Seq�E��� Now consider an edge operator at position m ! ��

Case �� gm�� � i j

Fm�� � 

For all embeddings E 	 Fm do

if vertices i and j are in the same component

if �i� j� 	 Add�E�

Seq�E�� Seq�E� 

if gap consists of fEjPg�

Gap�E�� Path�Cycle�Gap�E�� i� j� 

else

Gap�E�� Gap�E� 

end

Add�E�� Add�E� n Crossings�Seq�E��� i� j� 



CHAPTER �� OUTER�PLANAR GRAPHS ���

Fm�� Fm�� � E� 

end

else if both i and j are isolated �i�e�� the �rst edge�

Seq�E�� �i� j� 

Gap�E �� �E�E� 

Add�E�� � 

Fm�� Fm�� � E � 

else �attaching isolated vertex� say j� to component�

For all vertices vk � in	 Seq�E�

Seq�E�� Left�Seq�E�� � � � � k� ! j ! Right�Seq�E�� k � � � jSeq�E�j� 

Gap�E �� InsertEdgeGaps�Gap�E�� k� 

Add�E�� Add�E� � f�j� v� j v is fEjPg� away from ig 

Fm�� Fm�� � E� 

end

end

end

end case

Note that we embed pendent vertices to the outside face� The gap vector is

used in the Crossings routine to determine if future edges may be added between

boundary vertices without hiding internal vertices that are currently on the outer

face�

We now illustrate� with the above outer	planarity algorithm as our example� a

standard proof technique for proving correctness of dynamic	programming algorithms

�on t	parses��

Theorem ���� Our �nite	state outer	planarity algorithm is correct�

Proof sketch� For any t	parse Gm with a set of outer	planar embeddings Em� let

f�Gm� � Em� If Gm is not outer	planar then the set Em is empty� For any �xed em	

bedding E 	 Em of Gm� let g�E� � R� where R is a reduced outer	planar embedding

described above �represented by our �nite	state algorithm�� For a set of embeddings

Em� we also use the notation g�Em� to denote the image Rm of the map Em onto



CHAPTER �� OUTER�PLANAR GRAPHS ���

fg�E� j E 	 Emg� For any t	parse operator gm�� in $t� we de�ne three meta	functions

A�� A� and A� that update t	parses� outer	planar embeddings� and reduced outer	

planar embeddings� respectively� with the obvious actions for the di
erent gm��� See

Figure ���� The function A� � $�
t ! $t � $�

t is our usual t	parse building function�

The function A� takes each embedding E of Em and an operator gm�� and returns all

possible extended embeddings� If gm�� is a vertex operator then A��E� gm��� returns

exactly one embedding� while if gm�� is a edge operator then A��E� gm��� may return

zero or more embeddings� The function A� is the �nite	state algorithm that we are

proving correct�

Gm Gm��

Em Em��

Rm Rm��

f f

g g

A�

A�

A�

� � �

� � �

� � �� � �

� � �

� � �

Figure ���� A commutative diagram for the proof of Theorem ����

Notice that if a t	parse Gn has an outer	planar embedding� the set En is non	

empty� and furthermore by the de�nition of the function g� the set Rn is non	empty�

Otherwise� if Gn is not outer	planar� then both En and Rn are empty� Thus� in order

to show that the outer	planar t	parse algorithm A� is correct� all that we need to do

is show that the diagram in Figure ��� commutes for each t	parse operator in $t� We

leave this messy case analysis to the reader� �



CHAPTER �� OUTER�PLANAR GRAPHS ���

��� The ��OuterPlanar Obstructions

Using a universal distinguisher search �pathwidth ��� our list of obstructions for

��OuterPlanar stabilized to the ones listed in Figures �� and ���� With con	

secutive randomized runs occurring without new obstructions appearing� we believe

that this set is close to being complete� Each run takes about three weeks to complete

using roughly �� distributed worker processes to prove minimality or guess nonmini	

mality of the t	parses�



���

Figure ��� Known connected obstructions for ��OuterPlanar�



���

Figure ���� Continued� ��OuterPlanar obstructions�



���

����� Some other surface obstructions

Besides the previously known sets of � planar� � outer	planar� and � projective

plane minor	order obstructions �and now our initial set of � ��OuterPlanar

obstructions�� we have started to �nd the obstructions for the �within � vertex of

planar� graph family� denoted ��Planar� All of the connected forbidden minors

with at most �� vertices is displayed in Figures ��� and ��� on the following pages�

Besides these �� obstructions� one disconnected obstruction� namely K� �K� has ��

vertices� The other two disconnected obstructions� K� � K��� and K��� � K���� have

�� and �� vertices� respectively� We expect that the complete set of obstructions will

contain about ��� graphs� Thus� based on our feasibility conjecture� this may be the

only �within k vertices of planar� family that can be computed during the foreseeable

future� It is interesting to see that  of the � linkless embedding obstructions �recall

Figure ���� are also obstructions for this almost planar graph family�

For the next grand	challenge surface to characterize� Neufeld has computed a

partial list of toroidal obstructions �i�e�� minor	order forbidden torus embeddable

graphs� based on a brute force search �Neu���� Within his set of just over two thousand

obstructions� the densest one known has pathwidth �� See Figure ��� for the drawing

of this symmetric obstruction� which surprisingly� is the complement of the famous

Petersen graph� There are exactly �� �� and � minor	order obstructions with ��

� and �� vertices� respectively �Neu���� The eight vertex obstructions are shown in

Figure ����� Since it appears to be impractical to search through all the graphs on

�� or more vertices� our computational method may be the only feasible approach to

classify this surface� However� there is a big gap between our pathwidth lower bound

and the currently best known combinatorial	width upper bound �e�g�� treewidth ���

given by Seymour �Sey�����

To tackle the torus� we have a �nite	index congruence for any �xed genus k� based

on Eulor�s surface formula �n � m ! f � � � � � k� where f is the number of faces

of a genus k embedding�� but unfortunately it is not practical for the anticipated

pathwidth bound� Also� we have been working on a t	boundaried graph testset but

it also seems to be impractical �i�e�� too large� at the moment�



���

Figure ���� All connected obstructions with at most �� vertices for ��Planar�



���

Figure ���� Continued� small obstructions for ��Planar�



��

0 1

2

3

4

5

6

7

8

9

�
0

1

2

3

4

5

6

7

8

9

Figure ���� A dense symmetric toroidal obstruction with pathwidth ��

K� nE�C�� K� n �� �E�K����� K� n �� �E�K���E�P���

Figure ����� The three smallest �� vertices� toroidal obstructions�



���

Part III

Applied Connections



���

Chapter �

Pathwidth and Biology

In this short chapter� we show that an important problem in computational biology is

equivalent to a colored version of a well	known graph layout problem� In order to map

the human genome� biologists use graph theory� particularly interval graphs� to model

the overlaps of DNA clones �cut up segments of a genome� �Mir���� For engineers�

VLSI circuits must be laid out in order to minimize physical and cost constraints�

The vertex separation �see below� of a graph layout is one such measurement of how

good a layout is �i�e�� the di
erence between the number of tracks required for the

layout and the graph�s pathwidth��

��� VLSI Layouts and DNA Physical Mappings

The NP	complete combinatorial problem of Intervalizing a Colored Graph �ICG�

�rst de�ned in �FHW��� �and independently given in �GKS��� as the Graph Interval

Sandwich problem� is intended to be a limited� �rst	step model for �nding DNA

physical mappings� For this model� it is assumed that the biologist knows some of

the overlaps.for instance� overlaps speci�ed by some probability threshold based on

the physical data� The question asked by the ICG problem is whether other edges

can be properly added to di
erently colored vertices to form a colored interval graph�

The Vertex Separation �VS� graph problem is related to many diverse problems

in computer science besides its importance to VLSI layouts� Lengauer showed that



CHAPTER ��� PATHWIDTH AND BIOLOGY ���

solving the progressive black�white pebble game �important to compiler theory� and

determining the vertex separation for a graph are polynomial time reducible to each

other �Len���� Node search number� a variant of search number �Par���� was shown

equivalent to the vertex separation plus one by Kirousis and Papadimitriou �KP����

From �EST���� the search number is informally de�ned in terms of pebbling to be

the minimum number of searchers needed to capture a fugitive who is allowed to

move with arbitrary speed about the edges of the graph� For node search number�

a searcher blocks all neighboring nodes without the need to move along an incident

edge� �The exact details of the above two pebbling games may be found in �Bie�����

Kinnersley in �Kin��� has shown that the pathwidth of a graph is identical to the

vertex separation of a graph� The concept of pathwidth has been popularized by the

theories of Robertson and Seymour �see for example� �RS�b��� Thus� since the gate

matrix layout cost� another well	studied VLSI layout problem �KL��� M�oh���� equals

the pathwidth plus one �FL��b�� it also equals the vertex separation plus one�

Our result shows that the Vertex Separation problem is important to another

area besides computer science� namely computational biology�

��� An Equivalence Proof

In this section� we formally de�ne two parameterized problems k	ICG and k	CVS and

then show that they are indeed equivalent�

De�nition ���� A layout L of a graph G � �V�E� is a one to one mapping L �

V � f�� �� � � � � jV jg�

If the order of a graph G � �V�E� is n� we conveniently write a layout L as a

permutation of the vertices �v�� v�� � � � � vn�� For any layout L � �v�� v�� � � � � vn� of G

let Vi � fvj j j � i and �vj� vk� 	 E for some k � ig for each � � i � n�

De�nition ���� The vertex separation of a graph G with respect to a layout L is

vs�L�G� � max��i�jGjfjVijg� The vertex separation of a graph G� denoted by vs�G��

is the minimum vs�L�G� over all layouts L of G�



CHAPTER ��� PATHWIDTH AND BIOLOGY ���

The k	coloring of a graph G � �V�E� is a mapping color � V � f�� �� � � � � kg� For

any subset V � 
 V � let Colors�V �� � fcolor�v� j v 	 V �g�

De�nition ���� A colored layout L of a k	colored graph G � �V�E� is layout L

such that for all � � i � n� color�vi��� �	 Colors�Vi��

Problem ���� Colored Vertex Separation �CVS�

Input� A k	colored graph G�

Parameter� k

Question� Is there a colored layout L of G where vs�L�G� � k'

Problem ���� Intervalizing a Colored Graph �ICG�

Input� A k	colored graph G � �V�E��

Parameter� k

Question� Is there a properly colored supergraph G� � �V �� E�� of G� E 
 E�� such

that V � V � and G� is an interval graph'

In Figure ���� we show a �	colored graph with an interval supergraph represented

on the left and a colored vertex separation layout given on the right� �The dashed

edge between the di
erent colored vertices is not an edge in the input graph��

Theorem ��� For any �xed positive integer parameter k� both k	CVS and k	ICG

are identical problems�

Proof� Let L � �v�� v�� � � � � vn� be a colored layout of a k	colored graph G � �V�E��

We show how to construct a properly colored supergraph G� that is also an interval

graph� For each vertex vi 	 V � de�ne the interval�

Ivi � �avi� bvi� � �i�maxfj j �vi� vj� 	 E or j � ig! ��� �

By de�nition� if edge �u� v� 	 E then Iu � Iv �� �� Now de�ne the supergraph

G� � �V�E�� where an edge �vi� vj� 	 E� whenever Ivi � Ivj �� �� It su�ces to show

that color�vi� �� color�vj� for each edge �vi� vj� in E� n E� Without loss of generality�

assume i � j so that bvi � avj � Again by the de�nition of Ivi� there exists a vertex



CHAPTER ��� PATHWIDTH AND BIOLOGY ���

�a� Interval supergraph �b� Linear CVS layout

White

Black

Gray

	 

� �

� � 


	 � � � 
  �

�

� 	 �

� 




Figure ����� Illustrating the k	CVS and k	ICG problems�

vk such that j � k and �vi� vk� 	 E� This implies that vi 	 Vj��� �This also holds

for i � j � ��� Now L is a colored layout so color�vj� �	 Colors�Vj���� Thus�

color�vi� �� color�vj�� Therefore� G� is a properly	colored supergraph of G that is

intervalizable�

For any k	colored graph G � �V�E� that satis�es ICG� let fIv j v 	 V g be

an interval graph representation of a supergraph G� � �V�E ��� Let av � bv be the

endpoints of the interval Iv � �av� bv� for vertex v� Without loss of generality� assume

that au � av implies u � v� Let L � �v�� v�� � � � � vn� be the unique layout such that

i � j if and only if avi � avj � We claim that L is a colored layout of G�� To prove

this claim� we show that color�vi��� �	 Colors�Vi�� � � i � n� If there exists a vertex

u 	 Vi such that color�u� � color�vi��� then by de�nition of Vi vertex u must be



CHAPTER ��� PATHWIDTH AND BIOLOGY ���

adjacent to a vertex vj for some j � i� Further� j � i ! � since the edge �u� vi���

would not be a properly colored edge� Since au � avj and �u� vj� 	 E�� we must have

bu � avj in order to form an overlap� However� bu � avi�� � avj � These inequalities

hold since the intervals u and vi�� with the same color do not overlap and i! � � j�

We have reached a contradiction� So u �	 Vi if color�u� � color�vi���� Thus L is a

colored layout�

Now suppose that for some r � s there exist two vertices vr and vs in Vi with

the same color� Since vr 	 Vi� there exists a vertex vj with j � i such that �vr� vj� 	

E�� This implies vr 	 Vs��� But this implication contradicts the fact color�vs� �	

Colors�Vs���� So color�vr� �� color�vs�� Hence any set Vi � fvi��g has at most one

vertex of each color� Since there are k colors� each Vi must have k�� or fewer vertices�

Thus� vs�L�G� � vs�L�G�� � k� �

��� Some Comments

Recently� the corresponding general problem of intervalizing a colored graph to a unit

�proper� interval graph has been shown to be NP	hard �and �xed	parameter hard for

W���� by Kaplan and Shamir �KS��� �also see �GGKS��� KST����� The good news

from Kaplan and Shamir�s paper is that for each parameter k �i�e�� k colors� this unit

interval problem has a polynomial time decision algorithm�

More recently� determining whether a polynomial time decision algorithm exists

for k	ICG� or equivalently k	CVS� has been solved by Bodlaender and de Fluiter

�BdF��� Their main results are a quadratic	time algorithm to test if a �	colored

graph is a subgraph of a properly colored interval graph� and an NP	completeness

proof for this problem for � colors�



���

Chapter ��

Automata and Testsets

The main result of this chapter shows that �nding a minimum sized testset for any

minimal �nite state automaton is NP	hard� Also given is a simple graph algorithmic

example which takes a boundaried graph testset and builds an automaton� At the

end of this chapter� we show how these bounded	width membership automata for

lower ideals can be e�ciently used to �nd obstruction sets�

���� Introduction

The reader may have seen the following well	known result from classical automata

theory �e�g�� see �HU�����

Theorem ��	� �Myhill�Nerode� The following two statements are equivalent�

�� A set L 
 $� is accepted by some �nite state automaton� �That is� the set L is

a regular language��

�� Let �L be an equivalence relation for x and y in $� de�ned by� x �L y if and

only if for all z in $�� xz is in L exactly when yz is in L� The relation �L is of

�nite index�

For any regular language L over the alphabet $� two strings x and y are distin�

guished by a string z in $� if �xz 	 L and yz �	 L� or �yz 	 L and xz �	 L�� Otherwise�



CHAPTER ��� AUTOMATA AND TESTSETS ���

x and y are said to be congruent with respect to the canonical congruence �L� A set

T 
 $� is a testset for the language L if every two strings x and y of $� that are in

di
erent equivalence classes of �L are distinguished by some test z in T �

The proof of the Myhill�Nerode Theorem shows that if M is a minimal �nite

state automaton for a regular language L then there is a one	to	one correspondence

between the states of M and the equivalence classes of �L�

Since only one test is needed to distinguish any two states of an automaton M �

clearly a testset T need not contain more than
�
jM j
�

�
tests� Likewise� since a single

test can only partition the states into two classes� a testset T needs to contain at

least dlog��jM j�e tests� An obvious problem arises on how to �nd the smallest such

testset for an arbitrary regular language L� Regrettably� we present some negative

results concerning this task in Section �����

To illustrate the relationship between testsets and regular language decision prob	

lems� we give in Section ���� a testset for the graph connectivity decision problem for

graphs of bounded pathwidth and treewidth� In fact� many graph decision problems

for bounded pathwidth or treewidth can be solved in linear time by the use of au	

tomata �e�g�� see �AF����� There are no large hidden constants in the running times

of these algorithms� A graph building alphabet �e�g�� the alphabet $t for t	parses� is

used to represent the graphs of bounded combinatorial width� Each graph contains a

special set of boundary vertices where tests can be appended� In this context� these

bounded	width graph families are regular languages� There are many applications for

these �nite state automata such as ��� testing for VLSI layout properties �e�g�� see

�KK��b�� and ��� �nding obstruction set characterizations �which is brie"y discussed

in Section ������

���� Finding a Minimum Testset is NP�hard

This section shows that for an arbitrary minimal �nite state automaton determining

the size of a minimum testset is at least as hard as any problem in the complexity

class NP� A formal de�nition of our testset problem now follows�



CHAPTER ��� AUTOMATA AND TESTSETS ���

Problem ��
� Automata Minimum Testset �AMT�

Input� A minimal deterministic �nite automaton� DFA� M � �Q�$�  � Q ! $ �

Q� q
 	 Q�F 
 Q�� and a positive integer k�

Question� Does there exist a testset T 
 $� for M with jT j � k' That is� for a

solution T � and all qi� qj 	 Q� there exists a test t 	 T such that ��qi�t 	 F and �qj�t �	

F � or ��qi�t �	 F and �qj�t 	 F � where �q� denotes any equivalence class representative

for the state q�

If we can solve this AMT problem in polynomial time for each input k then we

can determine in polynomial time the least k such that an automaton M has a testset

of cardinality k �i�e�� the optimization problem would also be in the complexity class

P�� A related and classic problem is the following�

Problem ��� Minimum Test Collection for sets �MTC�

Input� A �nite set S of �possible diagnoses�� a collection C of subsets of S� repre	

senting binary �tests�� and a positive integer j � jCj�

Question� Does there exist a subset C � of C� jC �j � j� such that for every pair x� y 	 S�

there is some test c in C � for which jfx� yg � cj � � �here� a test c eliminates one of

the two diagnoses x and y�'

Our main result of this chapter is now presented�

Theorem ��� The decision problem AMT is NP	hard�

Proof� Gary and Johnson have shown that MTC is NP	complete �GJ���� We show

that AMT can be restricted to MTC� This then shows that AMT is NP	hard�

Given an instance �S�C� of MTC with j � jCj� we build an automaton M �

�Q�$� � q
� F � as displayed in Figure ����� For convenience� we assume �relabel if

necessary� that the �nite set S equals f�� �� � � � � ng� The state qi 	 Q corresponds to

a particular i 	 S for � � i � n�

We �rst show that the automaton M is minimal� Let L be the language accepted

by M � Our automaton is nonminimal if and only if there exists two states q and q�

such that �q�z 	 L � �q��z 	 L for all z 	 $�� The empty test distinguishes F from



CHAPTER ��� AUTOMATA AND TESTSETS ��

Q � fqi j � � i � ng � fqfg � fqdg

$ � f�� �� � � � � ng � ftc j c 	 Cg � f#g

F � Q n fq
� qdg Ci �
S
c�C ftc j i 	 cg � f#g

 �

Figure ����� The AMT automaton M built from an MTC instance�

fq
� qdg� The test # distinguishes state qf from the states q�� q�� � � � � qn and between

states q
 and qd� Thus� the only way that the automaton M is nonminimal is if

there are two diagnoses in S that share identical tests in C� In this case� which is

easily checked in polynomial time� there does not exist any C � 
 C to solve the MTC

problem� Hence� hereafter M is assumed to be minimal�

To complete the reduction� we set k� the inputed positive integer for AMT� to be

j ! � where j was the queried positive integer for MTC� We claim the MTC problem

has a collection C � 
 C such that jC �j � j if and only if the AMT problem has a

testset T such that jT j � k�

Assume that the MTC instance has a subset C � of C such that jC �j � j� We

claim that the set T � ftc j c 	 C �g � f��#g is a testset for M � The tests � and #

are su�cient to distinguish states q
� qd� and qf from the rest of Q�

�� Test # distinguishes qd from Q n fqfg and test � distinguishes qd and qf �



CHAPTER ��� AUTOMATA AND TESTSETS ���

�� Test � distinguishes qf from Q n fq
g and test # distinguishes qf and q
�

�� Test � distinguishes q
 from Q n fqfg and test # distinguishes q
 and qf �

States qa and qb� � � a � b � n� are distinguished by some tc since jfa� bg� cj � � for

some c in C �� If fa� bg� c � fag then by the de�nition of Ci �
S
c�C ftc j i 	 cg�f#g

we have �qi�tc 	 L and �qj�tc �	 L� Since jT j � k� the corresponding AMT instance is

also true�

We now show that if the AMT instance is true then the MTC instance must also

be true� First note that any test pre�xed with a symbol tc does not help in distinguish	

ing the three states fq
� qf � qdg� Similarly� any test pre�xed with f#� �� �� � � � � jSjg does

not help in distinguishing fqi j i 	 Sg� Since all of the possible tests in $� have been

exhausted� we know that it requires independent tests T � T� � T� to distinguish all

of the states of Q� that is� a set T� for fq
� qf � qdg and a set T� for fqi j i 	 Sg�

At least two tests are needed to show that the three states q
� qf � and qd are

not equivalent since dlog����e � �� So� without loss of generality� we can assume

T� � f��#g distinguishes states q
� qd� and qf from the rest of Q� This implies that

j or fewer tests is su�cient for a complete T�� Any signi�cant test in T� must be

of length �� for otherwise� it does not distinguish anything in fqi j i 	 Sg� Those

j� � j tests in T� that distinguish between all the states of S correspond to j� subset

collections of C� Thus� the MTC instance must be true� �

The above construction builds a �nite automaton that has a minimum testset

with single character tests� It would be interesting to �nd a construction that bounds

the alphabet size j$j while allowing longer test lengths� since more natural problems

seem to be of this type�

It is still an open problem whether AMT is NP	complete� Two standard means

of attack for the general problem are ��� to show AMT is in NP� and ��� to �nd a

reduction from AMT to a known NP	complete problem� For method ��� we have

the following result�

Lemma ��� Given an automaton M � �Q�$� � q
� F � there exists a test of length

at most jQj � �jQj � �� to distinguish any two states of M �



CHAPTER ��� AUTOMATA AND TESTSETS ���

Proof� For any two non	equivalent states q and q� let t � a�a� � � � ai � � � aj � � � an be a

distinguisher� where each ai 	 $� For any pre�x ti � a�a� � � � ai of t� the state �q�ti

must be di
erent than the state �q��ti since the automaton M is deterministic and

this would force �q�t � �q��t� If the state pair ��q�ti� �q��ti� equals ��q�tj� �q��tj� for some

j� � � i � j � n� then t� � a�a� � � � aiaj�� � � � an would be a shorter test� Thus the

number of distinct ordered state pairs� jQj ��jQj���� is an upper bound on the needed

test length for two non	equivalent states� �

If we are interested in a restricted version of the AMT problem where the tests

have a bounded �polynomial� length then this problem is NP	complete� In light of

the above fact� we de�ne the following problem�

Problem ��� Bounded Automata Minimum Test Set �BAMT�

Input� A minimal deterministic �nite automaton� DFA� M � �Q�$� � q
� F �� and a

positive integer k�

Question� For the automaton M � does there exist a testset T � $� with jtj � jQj �

�jQj � �� for all t 	 T and jT j � k'

Corollary ��� The decision problem BAMT is NP	complete�

Proof� First observe that the length of any useful test t 	 T given in the proof

of Theorem ��� has a bounded length of �� So using the previous restriction to

MTC instances� we see that BAMT is NP	hard� All that remains is to show that in

polynomial time one can verify a solution to BAMT� For each test t 	 T one needs to

check at most
�
jM j
�

�
states of the automaton M to verify that each pair of states has

a distinguisher� It takes at most jM j � �jM j � �� steps to run each test through the

automaton since that is the maximum length of any test t 	 T � Thus� the veri�cation

takes polynomial time� �



CHAPTER ��� AUTOMATA AND TESTSETS ���

���� A Testset Example�

Building Membership Automata

We now present a testset application for input graphs of bounded combinatorial width�

Many di
erent sets of graph building operators can be used to construct graphs� as

we saw in Section ������ We illustrate the following application with our quadratic	

sized operator alphabet $t � Vt � Et for pathwidth t	parses �see Chapter ��� Later

in Section ������ we develop a setting for the bounded treewidth case�

Assume that we have a graph family F with a �nite	index canonical congruence

�F � This implies that the bounded	width canonical congruence over the pathwidth

operator set $t is �nite	index �i�e�� this family F 
 $�
t is a regular language�� Recall

from Section ��� that there is a slight distinction between these two canonical congru	

ences� In the bounded	width case� a language F is a subset of the graphs �t	parses� of

pathwidth at most t� One can view a test Z for �F as any �t! ��	boundaried graph�

preferably representable by a string of operators� Recall that a t	parse G and a test

Z are combined to form a new graph G � Z by taking the union of the underlying

boundaried graphs G and Z� except that the boundary vertices are coalesced� We say

that G passes the test Z if G� Z is in F� �Note that we could just as easily use the

de�nition �G passes the test Z 	 $�
t if G �Z is in F �� where we use the concatenation

operator for t	parses instead of the circle plus operator��

We now present a simple example� Consider the family F of connected graphs of

pathwidth at most t and order at least t!�� For each member G of F assign a vertex

boundary of size t ! � that corresponds to a boundary of a t	parse representation of

G� We see that the number of equivalence classes for �F equals the number of set

partitions of f�� �� � � � � tg plus one� The equivalence class for an arbitrary �t ! ��	

boundaried graph G is determined as follows�

�� If the graph G has a component without any boundary vertices then it is in a

�dead state� equivalence class�

�� Otherwise� the components of G partition the set of t!� boundary vertices �i�e��

boundary vertices u and v are contained in the same set of the partition if there



CHAPTER ��� AUTOMATA AND TESTSETS ���

Figure ����� A graph connectivity testset for �	boundaried graphs�

exists a path between u and v in G�� Take this partition as the equivalence

class index for G�

It is easy to see that if two boundaried graphs G and H fall into di
erent equivalence

classes then there exists a test Z� consisting of only edges� such that exactly one of the

two graphs G�Z and H�Z is connected� Since these small tests can be represented

as t	parses� the bounded	width canonical congruence is equivalent to �F � We use this

observation to build a �nite testset for the graph connectivity problem for any set of

k	boundaried graphs�

Example ��� The set of �ve �	boundaried graphs� displayed in Figure ����� is a

testset for graphs within $�
�� A �	parse is connected if and only if is in the same

equivalence class that is indexed by passing all of the tests �in particular� passing the

�rst test implies passing the other tests��

Generally speaking� if we know ��� a testset for the family F and ��� a member	

ship algorithm for F � then we can compute a minimal �nite state automaton that

recognizes any graph of pathwidth t within F � This process is mentioned shortly�

The next example presents the constructed automaton obtained from the graph con	

nectivity testset of Example ���

Example ��� Consider the alphabet $ � $�� the alphabet for �	parses� A pic	

torial display of the automaton generated from the connectivity testset �given in



CHAPTER ��� AUTOMATA AND TESTSETS ���

�

�

�

�



�
�


��
����


����


�

��


��


��

���


�


�

�� 
��
�


����

�

�





�
dead state

State n Symbol �n �n �n � � � � � �

� � initial state � � � � � �

� � dead state � � � � � �

� � another state � � � �  

� � another state � � �  � 

� � another state � � �   �

 � accept state � � �   

Figure ����� A graph connectivity membership automaton for �	parses�

Figure ����� is shown above in Figure ����� Note that the missing arcs go to the dead

state� Listed below the automaton is the transition diagram  � Q! $� Q�

We construct membership automata� such as the one just presented� by the fol	

lowing simple rules� The two ingredients in building an automaton M for accepting

t	parses with respect to a �nite	state graph family F are�

�� A testset T of �t ! ��	boundaried graphs for the canonical congruence �F �

�� Any membership algorithm A for recognizing graphs in F �

During the building process of M we keep an equivalence class representative Gi

�t	parse� for each state qi of M as encountered� Initially� for the start state q
 the

smallest t	parse G
 � � �n� � � � � tn� is our only representative� Next� for each operator

� 	 $t we check if G
 � ��� is congruent �via the testset� to any state representative

kept so far� Recall that we can easily check whether two t	parses G� and G� are



CHAPTER ��� AUTOMATA AND TESTSETS ���

congruent� G� �F G�� by using T and A�

�for every Ti 	 T� G� � Ti 	 F � G� � Ti 	 F� � G� �F G� �

If it happens that G
 � ��� is congruent to some state representative Gi then a transi	

tion entry from �q
� �� to qi is added to the transition function � Otherwise� G
 � ���

must be a representative for a new state qi� We repeat the process of appending each

single operator � 	 $t to each new state representative Gi� as they are discovered�

and do congruence checks for Gi � ��� against all previously encountered state repre	

sentatives� The automaton is built when all the possible operator transitions from the

representatives for each Gi lead to previous states �i�e�� when the transition function

 is not a partial function�� It is safe to terminate the construction at this point since

every state of �F is reached from the start state by some string of operators�

������ Using tree automata for bounded treewidth

We can easily extend the previous testset application for treewidth t	parses� Here we

build a tree automaton instead of a linear automaton from a testset for the canonical

congruence �F � General information about tree automata may be found in the survey

paper �Tha���� We are interested in �rooted� tree automata that evaluate their input

arguments �parse trees� in a leaf to root order� For treewidth t	parses we have the

following customized de�nition�

De�nition �� A tree automaton M � �Q�$ � $t � f�g� � �� q
� F � for the

treewidth t�parse alphabet is an extended linear �pathwidth� automaton �Q�$t� � q
� F �

where

�� Q is the set of states�

�� $ is the alphabet for the input trees�

��  is a function from Q! �Vt � Et� to Q �i�e��  is a transition function for the

unary operators $t��

�� � is a function from Q!Q to Q �i�e�� � is a transition function for the binary

operator ���



CHAPTER ��� AUTOMATA AND TESTSETS ���

� q
 	 Q is the start state�

�� F 
 Q is the accepting �membership� states�

Just as a linear automaton determines a state for every pre�x of an input string�

a tree automaton determines a state for every subtree of an input tree of symbols

�while processing the input�� A t	parse G is accepted by a tree automaton M if the

state assigned to the root symbol �operator� is in the set of accepting states F � The

rules for evaluating a treewidth t	parse G with respect to M are de�ned recursively

as follows� where evalM denotes the evaluation map�

�� If G � � �n� �n� � � � � tn� then evalM�G� � q
�

�� If G � G� �G� then evalM�G� � ��evalM�G��� evalM�G����

�� If G � G� � �gn�� gn 	 $t � Vt � Et� then evalM�G� � �evalM�G��� gn��

An iterative version �for implementation reasons� of this evaluation map evalM is

easy to construct� Here we �rst run the pathwidth automaton starting at each leaf

operator until a � operator is reached� Then the � function is used to merge together

two pathwidth branches �or treewidth subtrees�� The procedure then continues up the

input tree assigning states to operators using both the  and � transition functions�

For an example of a tree automata for t	parses� we extend our graph	connectivity

linear automaton of Example ����

Example �	� A tree automaton that accepts treewidth �	parses is obtained by

adding the following function � to the linear automaton presented in Figure �����

� � � � � � 

� � � � � � 

� � � � � � �

� � � �   

� � �  �  

� � �   � 

  �    



CHAPTER ��� AUTOMATA AND TESTSETS ���

Notice that since the binary operator � is commutative the � function should

be symmetric for �F �i�e�� for all x� y 	 Q� ��x� y� � ��y� x���

Before ending this section� we need to justify that our de�nition of tree automata

for treewidth t	parses is sound� The next previously known result shows that it is

su�cient to add a transition function � to a linear automaton for pathwidth t	parses�

Lemma �
� For any canonical congruence for a regular language family F � if

X� �F X� and Y� �F Y� then X� � Y� �F X� � Y��

Proof� Since X� �F X�� we have for each boundaried graph Z�

X� � Z 	 F � X� � Z 	 F

which implies

X� � �Y� � Z� 	 F � X� � �Y� � Z� 	 F �

By associativity of �� we see that X� � Y� �F X� � Y�� Likewise� since Y� �F Y� we

get

Y� � �X� � Z� 	 F � Y� � �X� � Z� 	 F �

Or� Y��X� �F Y��X�� Now since �F is both a symmetric and a transitive relation

we see that X� � Y� �F X� � Y�� �

From the above result we can always �rst build a membership automaton for

pathwidth t	parses and then add a transition table � �for the � operator case� to

get a membership tree automaton� Here� the testset method of the previous section

is �rst applied to produce the m � jQj equivalence classes of �F � Then for each

unordered pair of state representatives Gi and Gj� � � i � j � m� we use the testset

to �nd the equivalence class of Gi�Gj � Recall that there are at least three "avors of

the canonical congruence �F �

��t! ��	boundaried graph �F �  �treewidth t	parse �F �  �pathwidth t	parse �F � �

We extend a pathwidth t	parse automaton to get a treewidth t	parse automaton if a

testset for one of the �rst two canonical congruences is available�



CHAPTER ��� AUTOMATA AND TESTSETS ���

���� Quickly Finding Obstructions using Automata

Suppose we have a minimal �nite state automaton M that accepts t	parses in some

minor	order lower ideal F � It is straightforward� as seen below� to compute the minor	

order obstructions of width at most t for F using M � This method can use either

linear or tree automata�

The states of a minimal automaton M for F represent the equivalence classes

of the canonical congruence �F �by the Myhill�Nerode Theorem�� In a breadth	

�rst or depth	�rst order we start enumerating all t	parses� possibly only the free	

boundary isomorphic t	parses �as described in Section ����� The search process is

pruned whenever a t	parse G has a boundaried minor that falls in the same state as

G �i�e�� a nonminimal t	parse is found�� We can also restrict ourselves to one	step

�	minors as was justi�ed in Chapter �� The minor	order obstructions can then be

extracted from the minimal t	parses that fall in the non	accept �out	of	family� state

of the automaton� Since F is a lower ideal there are no transitions out of a non	accept

state of M � �It follows from the de�nition of the canonical congruence �F that there

is only one of these out	of	family states��

Notice that a depth	�rst enumeration order is preferred� We keep in memory

each t	parse G only as long as there is an active t	parse G� that has G as a pre�x

parse� A t	parse in a search tree is called active if it has is not been proven minimal

or nonminimal�

Example �	�� Using the �nite state automaton for MaxPath��� over $� �see

Table ��� on page ����� we can compute the single obstruction P�� a path of length �

for the family of graphs that have all paths of length � or less� A t	parse representation

for this obstruction is given below�

P� � � �n� �n� � � � �n� � � � �n� � � � �n� � � � �n� � � �

Prefix states� �� 	� �� �� �� �� �� �	� ��� ��� ��

To help follow the t	parse P� through the MaxPath��� automaton� we listed the

states for each pre�x t	parse immediately below the last operator�



CHAPTER ��� AUTOMATA AND TESTSETS ��

Besides these pre�x t	parses the smallest search tree contains just two additional

t	parses �both nonminimal�� namely

� �n� �n� � � � �n� � � � �n� and

� �n� �n� � � � �n� � � � �n� � � � �n� �

If we have an automaton for a lower ideal then we may not want to restrict ourselves

to the smallest possible search tree since minimality�nonminimality proofs are easy

to obtain� Thus� we can avoid the t	parse canonic checks that were mentioned in

Part I of this dissertation� Here we do more isomorphism checks at the end of the

obstruction set computation since there are more boundaried obstructions�

The reference counts in Table ��� indicate how many times each transition was

used during that particular obstruction search� Besides every t	parse in the search

tree� the membership automaton is invoked for every one	step minor� The counts

indicate that many transitions were not used� We believe that some unnecessary

work was used during the creation of the automaton� If the goal is only to compute

obstruction sets for a lower ideal� and an automaton is not available� we recommend

using the techniques of Chapter ��



���

Chapter ��

Computing Pathwidth by Pebbling

After several rounds of improvement �RS�b� Lag��� Ree��� the best known algorithm

for �nding tree decompositions is due to Bodlaender �Bod��c�� For each �xed k� this

algorithm running in time O��k
�

n� determines that either the treewidth is greater

than k� or produces a tree decomposition of width at most k� By �rst running this

algorithm and then applying the algorithm of �BK��� Klo��a�� a similar result holds

for pathwidth� Both of the algorithms involved are quite complicated�

We describe in this chapter a very simple algorithm based on �pebbling� the graph

using a pool of O��k� pebbles� that in linear time �for �xed k�� either determines that

the pathwidth of a graph is more than k� or �nds a path decomposition of width at

most the number of pebbles actually used� The main advantages of this algorithm

over previous results are� ��� the simplicity of the algorithm and ��� the improvement

of the hidden constant for a determination that the pathwidth is greater than k� The

main disadvantage is in the width of the resulting �approximate� decomposition when

the width is less than or equal to k�

���� Preliminaries

An �homeomorphic� embedding of a graph G� � �V�� E�� in a graph G� � �V�� E�� is

an injection from vertices V� to V� with the property that the edges E� are mapped

to disjoint paths of G�� �These disjoint paths in G� represent possible subdivisions



CHAPTER ��� COMPUTING PATHWIDTH BY PEBBLING ���

of the edges of G��� The set of homeomorphic embeddings between graphs is the

topological partial order that was mentioned in Chapter ��

Recall that the pathwidth of a graph G is the minimum pathwidth over all path

decompositions of G� As mentioned in Chapter ��� determining pathwidth is equiva	

lent to several VLSI layout problems such as gate matrix layout and vertex separation

�M�oh��� EST����

We have shown in Chapters � and � that the family of graphs of pathwidth at

most t� t�Pathwidth� is a lower ideal in the minor �and hence� topological� order

and those graphs with order n have at most nt� �t� ! t�	� edges�

Let Bh denote the complete binary tree of height h and order �h� �� Let h�t� be

the least value of h such that Bh�t� has pathwidth greater than t� and let f�t� be the

number of vertices of Bh�t�� To �nd a bound for f�t�� Bh�t� needs to contain �above in

the topological order� at least one obstruction of pathwidth t� In �EST��� it is shown

that all topological tree obstructions of pathwidth t can be recursively generated by

the following rules�

�� The single edge tree K� is the only obstruction of pathwidth ��

�� If T�� T� and T� are any � tree obstructions for pathwidth t then the tree T

consisting of a new degree three vertex attached to any vertex of T�� T� and T�

is a tree obstruction for pathwidth t! ��

From this characterization we see that the orders of the tree obstructions of

pathwidth t are precisely � � �t � ��	�� �e�g�� orders �� �� �� and � for pathwidth

t � �� �� � and ��� We can easily embed at least one of the tree obstructions for

pathwidth t� as shown in Figure ����� in the complete binary tree of height �t ! ��

Thus� the pathwidth of the complete binary tree of order f�t� � ��t�� � � � O��t� is

greater than t�

���� A Simple Linear�Time Pathwidth Algorithm

We say that a boundary size k factorization of a graph G is two k	boundaried graphs

A and B such that G � A�B� Using the f�t� bound given in the previous section�



CHAPTER ��� COMPUTING PATHWIDTH BY PEBBLING ���

�

�

��

���

�

��

���

Tree�t

Tree�tTree�t

Tree�� Tree��

Tree	�t! ��

Figure ����� Embedding pathwidth tree obstructions Tree	t in binary trees�



CHAPTER ��� COMPUTING PATHWIDTH BY PEBBLING ���

the main result of this chapter now follows�

Theorem �	�� Let H be an arbitrary undirected graph� and let t be a positive

integer� One of the following two statements must hold�

�a� The pathwidth of H is at most f�t�� ��

�b� The graph H can be factored� H � A�B� where A and B are boundaried graphs

with boundary size f�t�� the pathwidth of A is greater than t and less than f�t��

Proof� We describe a algorithm that terminates either with a path decomposition

of H of width at most f�t� � �� or with a path decomposition of a suitable factor A

with the last vertex set of the decomposition consisting of the boundary vertices�

If we �nd an homeomorphic embedding of the guest tree Bh�t� in the host graph

H then we know that the pathwidth of H is greater than t� During the search for

such an embedding� we work with a partial embedding� We refer to the vertices of

Bh�t� as tokens� and call tokens placed or unplaced according to whether or not they

are mapped to vertices of H in the current partial embedding� A vertex v of H is

tokened if a token maps to v� At most one token can be placed on a vertex of H at

any given time� We recursively label the tokens by the following standard rules�

�� The root token of BH�t� is labeled by the empty string ��

�� The left child token and right child token of a height h parent token P �

b�b� � � � bh are labeled P � � and P � �� respectively�

Let P �i� denote the set of vertices of H that are tokened at time step i� The

sequence P ���� P ���� � � � � P �s� describes a path decomposition either of the entirety of

H or of a factor A ful�lling the conditions of Theorem ���� In the case of outcome

�b� the boundary of the factor A is indicated by P �s��

The placement algorithm is described as follows� Initially consider that every

vertex of H is colored blue� In the course of the algorithm a vertex of H has its color

changed to red when a token is placed on it� and stays red if the token is removed�

Only blue vertices can be tokened� and so a vertex can only be tokened once�



CHAPTER ��� COMPUTING PATHWIDTH BY PEBBLING ���

Algorithm �	�� A linear time path decomposition algorithm

function GrowTokenTree

� if root token � is not placed on H then

arbitrarily place � on a blue vertex of H

endif

� while there is a vertex u 	 H with token T and blue neighbor v�

and token T has an unplaced child T � b do

��� place token T � b on v

endwhile

� return ftokened vertices of Hg

program PathDecompositionOrSmallFatFactor

� i �

� P �i� call GrowTokenTree

� until jP �i�j � f�t� or H has no blue vertices repeat

��� pick a token T with an unplaced child token

��� remove T from H

��� if T had one tokened child then

replace all tokens T � b � S with T � S

endif

��� i i ! �

�� P �i� call GrowTokenTree

enduntil

done

end algorithm

Before we prove the correctness of the algorithm� we note some properties� ���

the root token needs to be placed �step � of the GrowTokenTree� at most once for each

component of H ��� the GrowTokenTree function only returns when Bh�t� has been

embedded in H or all parent tokens with unplaced children have no blue neighbors

in the underlying host H ��� the algorithm terminates since during each iteration



CHAPTER ��� COMPUTING PATHWIDTH BY PEBBLING ���

of step ��� a tokened red vertex becomes untokened� and this can happen at most n

times� where n denotes the order of the host H�

Since tokens are placed only on blue vertices and are removed only from red

vertices� it follows that the interpolation property of a path decomposition is satis�ed�

Suppose the algorithm terminates at time s with all of the vertices colored red� To

see that the sequence of vertex sets P ���� � � � � P �s� represents a path decomposition of

H� it remains only to verify that for each edge �u� v� of H there is a time i with both

vertices u and v in P �i�� Suppose vertex u is tokened �rst and untokened before v is

tokened� But vertex u can be untokened only if all neighbors� including vertex v� are

colored red �see step ��� and comment ��� above��

Suppose the algorithm terminates with all tokens placed� The argument above

establishes that the subgraph A of H induced by the red vertices� with boundary set

P �s� has pathwidth at most f�t�� To complete the proof we argue that in this case

the sequence of token placements establishes that A contains a subdivision of Bh�t��

and hence must have pathwidth greater than t� Since the GrowTokenTree function

only attaches pendent tokens to parent tokens we need to only to observe that the

operation in step ��� subdivides the edge between T and its parent� �

Corollary �	�� Given a graph H of order n and an integer t� there exists an linear

time algorithm that gives evidence that the pathwidth of H is greater than t or �nds

a path decomposition of width at most f�t�� � � O��t��

Proof� We show that program PathDecompositionOrSmallFatFactor runs in linear

time� First� if H has more than t � n edges� then the pathwidth of H is greater than

t� By the proof of Theorem ���� the program terminates with either the embedded

binary tree as evidence� or a path decomposition of width at most f�t��

Note that the guest tree Bh�t� has constant order f�t�� and so token operations

that do not involve scanning H are constant time� In function GrowTokenTree� the

only non	constant time operation is the check for blue neighbors in step �� While

scanning the adjacent edges of vertex u any edge to a red vertex can be removed�

in constant time� Edge �u� v� is also removed when step ��� is executed� Therefore�

across all calls to GrowTokenTree� each edge of H needs to be considered at most once�

for a total of O�n� steps� In program PathDecompositionOrSmallFatFactor� all steps



CHAPTER ��� COMPUTING PATHWIDTH BY PEBBLING ���

except for GrowTokenTree are constant time� The total number of iterations through

the loop is bounded by n� by the termination argument following the program� �

The next result shows that we can improve the pathwidth algorithm by restrict	

ing the guest tree� This allows us to use the subdivided tree obstructions given in

Figure ���� as guests�

Corollary �	�� Any subtree of the binary tree Bh�t� that has pathwidth greater

than t may be used in the algorithm for Theorem ����

Proof� The following simple modi�cations allow the algorithm to operate with a

subtree� The subtree is speci�ed by a set of 
agged tokens in Bh�t�� At worst� the

algorithm can potentially embed all of Bh�t��

In step � of GrowTokenTree� the algorithm only looks for a "agged untokened

child T �b to place� since un"agged tokens need not be placed� The stopping condition

in step � of PathDecompositionOrSmallFatFactor is changed to �all "agged tokens

of Bh�t� are placed or � � � �� so that termination occurs as soon as the subtree has

been embedded� The relabeling in step ��� can place un"agged tokens of Bh�t� on

vertices of H since all the rooted subtrees of a �xed height are not isomorphic� If that

happens� we expand our guest tree �by adding "ags� with those new tokens� It is easy

to see that the new guest is still a tree� These newly "agged tokens may be relabeled

by future edge subdivisions that occur above the token in the host tree� Duplication

of token labels does not happen if un"agging is not allowed� Thus� the f�t� width

bound is preserved� �

Example �	�� Using Tree	� from Figure ���� �subdivided K���� as the guest tree

of pathwidth � the program trace given in Figure ���� terminates with all vertices

colored red �gray� yielding a path decomposition of width �

In the proof of Corollary ��� one may wish to not expand the guest tree by

"agging new tokens� This can be done and� in fact� is what we would do in practice�

Without loss of generality� suppose token T � � is on vertex u 	 H and has children

that can not be placed on H� and T �� has one un"agged sibling token T �� on v 	 H�



CHAPTER ��� COMPUTING PATHWIDTH BY PEBBLING ���

After ���

� �

�

��

ba

c

d

h ig

fe

P ��� 	 fa� b� d� e� f� hg

���

��

After ���
 T 	 �

� �

�

��

ba

c

d

h ig

fe

� �ba

c

d

h ig

fe

��

T 	 �
 after ���

P ��� 	 fa� b� g� h� ig

�

��

T 	 �
 after ���

� �

�

ba

c

d

h ig

fe

��

���

P ��� 	 fa� b� e�h� ig

T 	 ��
 after ���

� �

�

��

ba

c

d

h ig

fe

���

P ��� 	 fa� b� d� e� hg

� �

�

��

���

After step �


ba

c

d

h ig

fe

P ��� 	 fa� b� c� d� eg

Figure ����� Illustrating our linear time pathwidth algorithm�



CHAPTER ��� COMPUTING PATHWIDTH BY PEBBLING ���

If we ignore the "agging of new vertices in the current algorithm� the token T �� would

be removed and the parent T �which has only one legitimate child� would be placed

on vertex v� What happens to any blue vertices that are adjacent to only vertex u

�or its un"agged subtree�' The answer is that they are lost and the algorithm would

not terminate unless it could embed the guest tree in the remaining portion of H�

We can �x this problem by checking for un"agged siblings before step ��� and to shift

the token T � � from u to v� See step ���� below�

���� if T had one tokened child then

replace all tokens T � b � S with T � S

else if T � P � b had an un"agged sibling then

replace all tokens P � b � S with P � not�b� � S

endif

Observe that our pathwidth algorithm provides an easy proof of basically the

main result of �BRST��� �or its earlier variant �RS���� that for any forest F � there

is a constant c� such that any graph not containing F as a minor has pathwidth at

most c�

Corollary �	�� Every graph with no minor isomorphic to forest F � where F is a

minor of a complete binary tree B� has pathwidth at most c � jBj � ��

Proof� Without loss of generality� we can run our pathwidth algorithm using �as the

guest� any subtree T of B that contains F as a minor� Since at most jBj � � pebbles

are used when we do not �nd an embedding of T �in any host graph�� the resulting

path decomposition has width at most jBj � �� �

Our constant c is identical to the one given in �BRST��� when F � B� They

point out that their constant c � jF j�� is the best possible since the complete graph

Kc��� with pathwidth c� �� does not contain any forest with c vertices�

���� Further Directions

In the case that the pathwidth of an input graph G is at most k� our algorithm yields

a path decomposition that can have a width exponential in k� but that is equal in



CHAPTER ��� COMPUTING PATHWIDTH BY PEBBLING ��

any case to the maximum number of tokens placed on the graph at any given time�

minus �� It would be interesting to know if this exponential bad behavior is �normal�

or whether the algorithm tends to use a smaller number of tokens in practice� Since

the pebbling proceeds according to a greedy strategy with much "exibility� there may

be placement heuristics that can improve its performance on �typical� instances�



���

Chapter ��

Conclusion

This chapter summarizes the results of this dissertation and then concludes with

two important applications that concern forbidden substructure characterization of

graphs�

���� A Summary of the Main Results

Our main computational achievements� given in Part II of this dissertation� show

that computing obstructions for �simple� minor	order lower ideals is feasible for small

pathwidth� Here we developed a computational theory� given in Part I� that extends

the original Fellows�Langston approach for computing obstruction sets� For a wide

range of targeted graph families �in fact� all being parameterized lower ideals�� Ta	

ble ���� summarizes the largest pathwidth bounds that our software can currently

explore� Our experimental research has shown that these pathwidth bounds may in	

crease by one if universal distinguisher searching is available �see Sections ����� and

������ Furthermore� with new theory being developed� there is ample opportunity to

characterize additional lower ideals with our basic method� We expect that for any

lower ideal the corresponding treewidth bounds �regarding achievable obstruction set

computations� will be equivalent to the largest feasible pathwidth bounds� That is�

we have no evidence to suggest that our treewidth enumeration methods become

impractical at smaller widths�



CHAPTER ��� CONCLUSION ���

Table ����� Tractability bounds for various parameterized lower ideals�

Minor Order Lower Ideal Largest Pathwidth�

k�EdgeBounded IndSet �

�VertexCover �

��FeedbackEdgeSet 

��PathCover��� 

��PathCover��� �

��CycleCover��� �

��FeedbackVertexSet �

��OuterPlanar �

��Planar �

��Genus �torus� �

��Pathwidth �

We now list a few noteworthy theory results that were presented in Part I of this

dissertation�

� Introduced practical t	parse enumeration schemes based on canonic representa	

tions for graphs of bounded pathwidth and treewidth�

� Presented a small search	space technique �of bounded combinatorial width� for

computing minor	order obstructions� Our Pre�x Lemma establishes a search

tree of minimal t	parses �as growable nodes�� guaranteeing a search that termi	

nates�

� Developed su�cient rules for computing disconnected minor	order obstructions

for certain parameterized lower ideals� The expected growth rate on the number

of obstructions for parameterized lower ideals was also studied�

� Utilized a distributive programming approach� across many hardware platforms�

for obstruction set computations�



CHAPTER ��� CONCLUSION ���

Besides characterizing many "avors of graph families by obstruction sets� in Part

II of this dissertation we provided several other useful results such as the following

family	speci�c items for input graphs of bounded pathwidth �t	parses��

� An optimal �nite	state algorithm for k�VertexCover �including a linear time

vertex cover algorithm��

� A �nite	state dynamic program for k�FeedbackVertexSet �including a lin	

ear time feedback vertex set algorithm��

� A testset for both the k�FeedbackVertexSet and k�FeedbackEdgeSet

graph families �and a nonminimal pretest for k�FeedbackEdgeSet��

� A linear time dynamic program to determine the maximum path length and a

congruence for k�PathCover�p��

� A testset for k�CycleCover��� and some testsets for various families of

graphs that have bounded path or cycle lengths�

� A linear time dynamic program for ��OuterPlanar and the minimum K�	

cover�

Lastly� in Part III of this dissertation we contributed the following applied results�

� Equated a VLSI layout problem �k	CVS� with a computational biology problem

�k	ICG��

� Showed that �nding the minimum size testset for a minimal automaton �or

canonical congruence� is NP	hard�

� Developed a simple linear time algorithm that �for �xed k� determines if a graph

has pathwidth greater than k or �nds a path decomposition of width at most

O��k��



CHAPTER ��� CONCLUSION ���

���� Two Key Applications

We conclude this dissertation by mentioning two areas of research that are impor	

tant consequences of our work� These two applications are of interest to both the

theoretical and industrial computer science communities�

First� we have empirically shown that mathematical theorem proving� speci�cally

for the case of �nding substructure characterizations of minor	order lower ideals� can

be automated� We have presented a natural and easy way to �nd obstruction sets

for those characterizable families whose obstructions are bounded by some constant

combinatorial width� �The Graph Minor Theorem guarantees a �nite number of ob	

structions and hence a bound on both the pathwidth and treewidth�� Our method

requires two additional ingredients consisting of a membership algorithm and a re�ne	

ment of the canonical congruence for the lower ideal� This dissertation has shown that

these required congruences are easy to produce� We demonstrated with several ex	

amples two design techniques for obtaining these family	speci�c congruences� namely

by testsets of t	boundaried graphs and �nite	state dynamic programs for t	parses�

For an application with real	world potential� we have developed a tool that pro	

vides graph	algorithm designers with the following opportunity� As mentioned ear	

lier in Section ����� one can take a partial set of obstructions for any minor	order

lower ideal F and build an approximating automaton for recognizing those graphs of

bounded width within F � We can do this for any desired pathwidth or treewidth� A

randomized feature of our software allows one to generate partial sets of obstructions

without the need for a �nite	index family congruence for F � thereby allowing the

non	specialist to take advantage of our system� That is� we can now implement a

useful graph	algorithm compiler�



���

Annotated Bibliography


ACP��� S� Arnborg� D� G� Corneil� and A� Proskurowski� Complexity of �nding em
beddings in a ktree� SIAM Journal on Algebraic Discrete Methods� ����������
April �����
�Contains the �rst polynomial time algorithm for determining the treewidth of a
graph for �xed k� Also� the partial k�tree problem is shown to be NP�complete�
Provides a listing of the treewidth three obstructions��


ACPS��� S� Arnborg� D� G� Corneil� A� Proskurowski� and D� Seese� An algebraic theory
of graph reduction� In Proceedings of the Fourth Workshop on Graph Gram�
mars and Their Applications to Computer Science� volume ��� of Lecture Notes
on Computer Science� pages ������ SpringerVerlag� ����� To appear Journal
of the Association Computing Machinery�
�Shows how membership in classes of graphs de�nable in monadic second order
logic and of bounded treewidth can be decided by �nite sets of terminating reduc�
tion rules��


AF��� K� Abrahamson and M� Fellows� Finite automata� bounded treewidth and
wellquasiordering� In N� Robertson and P� D� Seymour� editors� Graph Stru�
ture Theory� volume ��� of Contemporary Mathematics� pages �������� �����
Formally known as �Cutset regularity beats wellquasiordering for bounded
treewidth��
�Contains a necessary and su�cient condition �cutset regularity	 for a family of
graphs to be recognizable from structural parse trees by �nite�state tree automata��


AH��� D� S� Archdeacon and P� Huneke� On cubic graphs which are irreducible for
nonorientable surfaces� Journal of Combinatorial Theory� Series B� �����������
�����


ALS��� S� Arnborg� J� Lagergren� and D� Seese� Easy problems for treedecomposable
graphs� Journal of Algorithms� ����������� ����� Also see �extended abstract�
in volume ��� of Lecture Notes on Computer Science ������ ������
�Monodic second order logic is presented to show that a large set of graph families
is �nite�state� This is an alternate proof of Courcelle
s result��


AP��� S� Arnborg and A� Proskurowski� Characterization and recognition of partial �
trees� SIAM Journal on Algebraic Discrete Methods� ������������� April �����
�A set of con�uent graph reductions is given such that a graph can be reduced to
the empty graph if and only if it is a subgraph of a ��tree��


AP��� S� Arnborg and A� Proskurowski� Linear algorithms for NPhard problems
restricted to partial ktrees� Discrete Applied Mathematics� pages ������ �����



���


AP��� S� Arnborg and A� Proskurowski� Canonical representations of partial � and
� trees� BIT� ����������� �����


APC��� S� Arnborg� A� Proskurowski� and D� Corneil� Minimal forbidden minor charac
terization of a class of graphs� Colloquia Mathematica Societatis J�anos Bolyai�
��������� �����
�A graph is a partial ��tree if and only if it does not have a minor isomorphic to
any of four obstructions��


APS��� S� Arnborg� A� Proskurowski� and D� Seese� Forbidden minors characterization
of partial �trees� Discrete Mathematics� �������� �����


APS��� S� Arnborg� A� Proskurowski� and D� Seese� Monadic second order logic� tree
automata and forbidden minors� In Proceedings of the �th Workshop on Com�
puter Science Logic� CSL���� volume ��� of Lecture Notes on Computer Sci�
ence� pages ����� SpringerVerlag� �����


Arc��� D� Archdeacon� A Kuratowski Theorem for the projective plane� Ph�D� dis
sertation� The Ohio State University� ����� Also see Journal of Graph Theory
��������� �������
�The author sketches a proof that the list of �� irreducible graphs for the projec�
tive plane is complete� Also it is pointed that there are at least ���� irreducible
graphs for the Klein bottle��


Arc��� D� Archdeacon� The complexity of the graph embedding problem� In R� Bo
dendiek and R� Henn� editors� Topics in Combinatorics and Graph Theory�
pages ������ PhysicaVerlag� �����


Arc��� D� Archdeacon� private communication� ����� Dept� of Mathematics and
Statistics� University of Vermont�


Arn��� S� Arnborg� Reduced state enumeration�another algorithm for reliability eval
uation� IEEE Transactions on Reliability� ����������� �����


Arn��� S� Arnborg� E�cient algorithms for combinatorial problems on graphs with
bounded decomposability � A survey� BIT� �������� ����� Invited paper�
�This is a good survey paper on table�based reduction methods for graphs with
bounded treewidth��


Arn��� S� Arnborg� Graph decompositions and tree automata in reasoning with un
certainty� Journal of Experimental and Theoretical AI� ����� to appear�


AST��� N� Alon� P� D� Seymour� and R� Thomas� A separator theorem for graphs with
an excluded minor and its applications� In Proceedings of the ACM Symposium
on the Theory of Computing� volume ��� pages �������� ����� �Baltimore�
Maryland��
�Supplies extensions of the many known applications of the Lipton�Tarjan separator
theorem for the class of planar graphs to any class of graphs with an excluded
minor��


BC��� M� Bauderon and B� Courcelle� Graph expressions and graph rewritings� Math�
ematical System Theory� ���������� �����



���

�The notion of a context�free graph grammar is introduced� The notion of an equa�
tional set of graphs follows from a de�ned algebraic structure� A notion of graph
rewriting is also given based on a categorical approach��


BD��� D� Bienstock and N� Dean� Some results on minimum face covers in planar
graphs� February ����� Bell Communications Research� Morristown� New Jer
sey�
�This paper discusses some obstructions to the existence of small face covers��


BdF��� H� L� Bodlaender and B� L� E� de Fluiter� Intervalizing kcolored graphs�
Technical report UUCS������� Department of Computer Science� Utrecht
University� Utrecht� the Netherlands� ����� Extended abstract to appear in
proceedings ICALP����
�Solves the complexity issues regarding k�ICG problem��


BFH��� H� L� Bodlaender� M� R� Fellows� and M� T� Hallett� Beyond NPcompleteness
for problems of bounded width� Hardness for the W hierarchy �extended ab
stract�� In Proceedings of the ACM Symposium on the Theory of Computing�
pages �������� �����


BFL��� D� J� Brown� M� R� Fellows� and M� A� Langston� Polynomialtime self
reducibility� Theoretical motivations and practical results� International Jour�
nal of Computer Mathematics� ������� �����
�The notion of self�reducibility is explained for tackling the �promised
 polynomial�
time decision algorithms which are only known via nonconstructive means��


BFP��� J�C� Bermond� P� Fraigniaud� and J� G� Peters� Antepenultimate broadcasting�
Netorks� ����������� �����
�This� paper uses path�covers in the design of minimum broadcast graphs��


BGHK��� H� L� Bodlaender� J� R� Gilbert� H� Hafsteinsson� and T� Kloks� Approximating
treewidth� pathwidth� and minimum elimination tree height� Technical Report
RUUCS���� Dept� of Computer Science� University of Utrecht� P�O� Box
������� ���� TA Utrecht� the Netherlands� January ����� To appear Journal
of Algorithms�
�Vertex separators are used to approximate width problems��


BH��� T� Beyer and S� M� Hedetniemi� Constant time generation of rooted trees�
SIAM Journal on Computing� ���������� �����


BHKY��� J� Battle� F� Harary� Y� Kadama� and J� Youngs� Additivity of the genus of a
graph� Bulletin of the American Mathematical Society� ����������� �����
�Shows that the genus of a graph equals the sum of the genus of the individual
blocks��


Bie��� D� Bienstock� Graph searching� pathwidth� treewidth and related problems �a
survey�� In Reliability of Computer and Communication Networks� volume � of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science�
pages ������ Association for Computing Machinery� �����


BJM��� T� Beyer� W� Jones� and S� L� Mitchell� Linear algorithms for isomorphism of
maximal outerplanar graphs� Journal of the Association Computing Machinery�
�������������� �����



���


BK��� H� L� Bodlaender and T� Kloks� Better algorithms for pathwidth and treewidth
of graphs� In Proceedings of the International Colloquium on Automata� Lan�
guages and Programming� volume ��� of Lecture Notes on Computer Science�
pages �������� SpringerVerlag� ����� ��th ICALP�
�For all constants k� an explicit O�n log� n� algorithm is given to decide whether the
treewidth �pathwidth	 of a graph is at most k� and if so� �nds the decompositions��


BK��� H� L� Bodlaender and T� Kloks� Approximating treewidth and pathwidth of
some classes of perfect graphs� In Proceedings of the 	rd International Sympo�
sium on Algorithms and Computation� ISAAC��
� volume ��� of Lecture Notes
on Computer Science� pages �������� SpringerVerlag� �����


BK��� H� L� Bodlaender and T� Kloks� E�cient and constructive algorithms for the
pathwidth and treewidth of graphs� ����� preprint�


BL� D� Bienstock and M� A� Langston� Algorithmic implications of the graph mi
nor theorem� to appear Handbook of Operations Research and Management
Science� Volume on Networks and Distribution�


BLW��� M� W� Bern� E� L� Lawler� and A� L� Wong� Why certain subgraph computa
tions require only line time� In IEEE Symposium on Foundations of Computer
Science Proceedings� pages �������� ����� ��th FOCS� Portland� OR�


BLW��� M� W� Bern� E� L� Lawler� and A� L� Wong� Lineartime computation of optimal
subgraphs of decomposable graphs� Journal of Algorithms� ���������� �����
Full version of FOCS��� paper�
�For the class of graphs with bounded combinatorial width� a dynamic programming
approach is used for general subgraph problems��


BM��� J� Bondy and U� Murty� Graph Theory with Applications� MacMillan� �����


BM��� D� Bienstock and C� L� Monma� On the complexity of covering vertices by
faces in a planar graph� SIAM Journal on Computing� ��������� �����
�An algorithm is give which either determines if a graph is not k�planar or generates
an appropriate embedding and associated minimum cover in O�ckn� time� where
c is a constant��


BM��� H� Bodlaender and R� M�ohring� The pathwidth and treewidth of cographs�
SIAM Journal on Discrete Mathematics� ���������� �����
�Shows that the pathwidth equals the treewidth for cographs and gives a linear�time
algorithm for �nding a tree�decomposition��


Bod��a� H� L� Bodlaender� Classes of graphs with bounded treewidth� Technical Report
RUUCS����� Dept� of Computer Science� University of Utrecht� P�O� Box
������� ���� TA Utrecht� the Netherlands� December ����� �Also in Bulletin
of the EATCS �� ������� ���������
�A number of classes of graphs are shown to be subclasses of the graphs with
tree�width� bounded by some constant k��


Bod��b� H� L� Bodlaender� Planar graphs with bounded treewidth� Technical report�
Dept� of Computer Science� University of Utrecht� P�O� Box ������� ���� TA
Utrecht� the Netherlands� �����
�Discusses k�outerplanar graphs� planar graphs with bounded radius� and Halin
graphs��



���


Bod��b� H� L� Bodlaender� Some classes of graphs with bounded treewidth� Bulletin of
the EATCS� ����������� �����


Bod��a� H� L� Bodlaender� Dynamic programming algorithms on graphs with bounded
treewidth� In Proceedings of the International Colloquium on Automata� Lan�
guages and Programming� volume ��� of Lecture Notes on Computer Science�
pages �������� SpringerVerlag� ����� ��th ICALP�
�Gives an O�n� time algorithm for the k disjoint cycles problem��


Bod��� H� L� Bodlaender� Improved selfreduction algorithms for graphs with bounded
treewidth� In Graph�Theoretic Concepts in Computer Science� volume ��� of
Lecture Notes on Computer Science� pages �������� SpringerVerlag� �����
Also in Discrete Applied Mathematics ���
�Self�reduction is used to construct solutions to many of the Robertson�Seymour
nonconstructive polynomial�time families��


Bod��� H� L� Bodlaender� Polynomial algorithms for graph isomorphism and chromatic
index on partial ktrees� Journal of Algorithms� ����������� �����
�Two di�erent approaches are used to show that the Chromatic Index and Graph
Isomorphism problems are solveable in polynomial time when restricted to the class
of graphs with treewidth � k��


Bod��� H� L� Bodlaender� On disjoint cycles� In Proceedings of the �th International
Workshop on Graph�Theoretic Concepts in Computer Science WG���� volume
��� of Lecture Notes on Computer Science� pages �������� SpringerVerlag�
����� Also University of Utrecht technical report RUUCS�����
�Gives an O�n� k�FVS algorithm��


Bod��c� H� L� Bodlaender� A tourist guide through treewidth� Acta Cybernetica� �����
��� �����
�A short overview of algorithmic graph theory that deal with the notions of
treewidth and pathwidth��


Bod��b� H� L� Bodlaender� On linear time minor tests and depth �rst search� Journal of
Algorithms� �������� ����� Also in volume ��� of Lecture Notes on Computer
Science ������ ��������
�Presents e�cient minor tests when the set of graphs has a �� k grid as a minor
and a circus graph as a minor� Also gives an O�k��kn� time algorithm to determine
whether a graph has a cycle �or path	 or length � k if it exists��


Bod��a� H� L� Bodlaender� A linear time algorithm for �nding treedecompositions of
small treewidth� In Proceedings of the ACM Symposium on the Theory of Com�
puting� volume ��� �����
�This is the end�of�the�story �except� perhaps� �nding a practical algorithm	 regard�
ing the k parameterized treewidth problem� As a consequence� every minor�closed
class of graphs that does not contain all planar graphs has a linear�time recognition
algorithm��


Bod��� H� L� Bodlaender� A partial karboretum of graphs with bounded treewidth�
Preliminary manuscript� Dept� of Computer Science� University of Utrecht�
P�O� Box ������� ���� TA Utrecht� the Netherlands� October �����



��


Bon��� J� A� Bondy� Pancyclic graphs� recent results� pages �������� North Holland�
Amsterdam� ����� Colloquia Mathematica Societatis J�anos Bolyai� volume ���
�Halin graphs are introduced��


Bor��� R� B� Borie� Recursively Constructed Graph Families� Membership and Linear
Algorithms� Ph�D� thesis� Georgia Institute of Technology� School of Informa
tion and Computer Science� �����
�This thesis uses t�terminal graphs �boundaried graphs	 with recursive rules for
graph families �e�g�� partial k�trees	 and an automated technique for generating
linear algorithms from a predicate calculus��


BP��� L� Beineke and R� Pippert� Properties and characterizations of ktrees� Math�
ematika� ����������� �����


BPT��� R� Borie� R� Parker� and C� Tovey� The regular forbidden minors of partial �
trees� Technical report� School of ISYE� Georgia Institute of Technology� �����
Tech� Report No� J�����


BPT��� R� B� Borie� R� G� Parker� and C� A� Tovey� Deterministic decomposition of
recursive graph classes� SIAM Journal on Discrete Mathematics� �������������
�����
�Examines how the series parallel graphs can be generalized �i�e�� with recursive
rules	��


BRST��� D� Bienstock� N� Robertson� P� D� Seymour� and R� Thomas� Quickly excluding
a forest� Journal of Combinatorial Theory� Series B� ����������� �����


CB��� C� Colbourn and K� Booth� Linear time automorphism algorithms for trees�
interval graphs and planar graphs� SIAM Journal on Computing� ����������
���� February �����


CD��� K� Cattell and M� J� Dinneen� A characterization of graphs with vertex cover
up to �ve� In V� Bouchitte and M� Morvan� editors� Orders� Algorithms and
Applications� ORDAL���� volume ��� of Lecture Notes on Computer Science�
pages ������ SpringerVerlag� July �����
�Contains a previous version of Chapter ���


CDDF��� K� Cattell� M� J� Dinneen� R� G� Downey� and M� R� Fellows� Computational
aspects of the graph minor theorem� Obstructions for unions and intertwines�
����� University of Victoria working manuscript �������


CDF��a� K� Cattell� M� J� Dinneen� and M� R� Fellows� Obstructions to within a few ver
tices or edges of acyclic� In Proceedings of the Fourth Workshop on Algorithms
and Data Structures� WADS���� volume ��� of Lecture Notes on Computer
Science� pages �������� SpringerVerlag� August �����
�This paper is an extended abstract version of Chapter ���


CDF��b� K� Cattell� M� J� Dinneen� and M� R� Fellows� A simple lineartime algorithm
for �nding pathdecompositions of small width� Information Processing Letters�
����� to appear�
�This paper is almost identical to Chapter ���


CG��� J� H� Conway and C� Gordon� Knots and links in spatial graphs� Journal of
Graph Theory� ���������� �����



���


CG��� J� Chen and J� L� Gross� Kuratowskitype theorems for average genus� Journal
of Combinatorial Theory� Series B� ����������� �����
�The authors de�ne average genus of a graph and provide obstructions for small
fractional averages up to c � �� They ask if there is a way to implement this
method systematically for fractions up to c � �� or ���


CKK��� V� Chvatal� D� A� Klarner� and D� E� Knuth� Selected combinatorial research
problems� Technical report� Dept� of Computer Science� Stanford University�
June �����
�The paper characterizes unit distance graphs by two forbidden subgraphs K� and
K�����


CL��� G� Chartrand and L� Lesniak� Graphs and Digraphs� Wadsworth Inc�� �����


CM��� B� Courcelle and M� Mosbah� Monadic secondorder evaluations on tree
decomposable graphs� Theoretical Computer Science� ���������� �����
�Presents graphs as logical structures �almost like our t�parse operator sets	��


Cou��a� B� Courcelle� The monadic second order logic of graphs I� Recognizable sets of
�nite graphs� Information and Computation� ��������� �����


Cou��� B� Courcelle� The monadic second order logic of graphs II� De�nable sets of
in�nite graphs� Mathematical Systems Theory� ����������� �����


Cou��� B� Courcelle� The monadic secondorder logic of graphs III� treewidth� forbid
den minors and complexity issues� Informatique Th�eorique� ����������� �����


Cou��b� B� Courcelle� The monadic second order logic of graphs IV� Every equational
graph is de�nable� Annals of Pure and Applied Logic� ����������� �����


Cou��� B� Courcelle� The monadic second order logic of graphs V� On closing the
gap between de�nability and recognizability� Theoretical Computer Science�
����������� �����


Cou��� B� Courcelle� The monadic second order logic of graphs VI� On several rep
resentations of graphs by related structures� Discrete Applied Mathematics�
����������� �����


Cou��b� B� Courcelle� The monadic second order logic of graphs VII� Graphs as rela
tional structures� Theoretical Computer Science� ��������� �����


COS��� D� G� Corneil� S� Olariu� and L� Stewart� Computing a dominating pair in an
asteroidal triplefree graph in linear time� In Proceedings of the Fourth Work�
shop on Algorithms and Data Structures� WADS���� volume ��� of Lecture
Notes on Computer Science� pages �������� SpringerVerlag� August �����


Cou��� B� Courcelle� A representation of graph by algebraic expressions and its use for
graph rewriting systems� In Proceedings of the 	rd International Workshop on
Graph Grammers� volume ��� of Lecture Notes on Computer Science� pages
�������� SpringerVerlag� �����


Cou��a� B� Courcelle� Graph grammars� monadic secondorder logic and the theory of
graph minors� Bulletin of the EATCS� ����������� ����� Also in Contemporary
Mathematics ��� ������ ��������



���

�This is a survey of the relationships between the descriptions of sets of graphs
by formulas of monadic second�order logic� by context�free hyperedge and vertex
replacement graph grammars and by forbidden minors��


CS��� F� R� K� Chung and P� D� Seymour� Graphs with small bandwidth and cut
width� Discrete Mathematics� ����������� �����


CSTV��� R� Cohen� S� Sairam� R� Tamassia� and J� S� Vitter� Dynamic algorithms
for bounded treewidth graphs� Technical report� Dept� of Computer Science�
Brown University� ����� Tech� Report CS�����


CV��� D� Coppersmith and U� Vishkin� Solving NPhard problems in  almost trees��
Vertex cover� Discrete Applied Mathematics� ��������� �����
�The authors present a linear�time algorithm for determining the vertex cover for
graphs that are parameterized by two parameters� a the number of edges more
than a tree and k the maximum a over all biconnected components of the graph��


Dec��� R� W� Decker� The Genus of Certain Graphs� Ph�D� dissertation� The Ohio
State University� �����
�The concept of irreducibile graphs for the torus is investigated �partial list is
given�	��


Deo��� N� Deo� Graph Theory with Applications to Engineering and Computer Science�
PrenticeHall� �����


DF��� R� Downey and M� R� Fellows� Parameterized computational feasibility� In
P� Clote and J� Remmel� editors� Feasible Mathematics II� pages ��������
Birkhauser� ����� Proceedings of the �nd Cornell Workshop on Feasible Math
ematics�


Dis��� Special issue� E�cient Algorithms and partial k�trees� volume �� of Discrete
Applied Mathematics� October ����� numbers ����


DR��� I� S� Du! and J� K� Reid� The multifrontal solution of inde�nite sparse symmet
ric linear equations� ACM Transactions on Mathematical Software� ����������
�����


DR��� H� Didjev and J� Reif� An e�cient algorithm for the genus problem with explicit
construction of forbidden subgraphs� In IEEE Symposium on Foundations of
Computer Science Proceedings� volume ��� pages �������� �����
�Gives some order bounds for genus k obstructions��


DS��� W� W�M� Dai and M� Sato� Minimal forbidden minor characterization of
planar partial �trees and applications to circuit layout� IEEE International
Symposium on Circuits and Systems� pages ���������� �����


Duf��� R� J� Du�n� Topology of seriesparallel networks� Journal of Mathematical
Analysis and Applications� ����������� �����
�Good motivation of these network graphs with regards to the resistance rules of
Ohm� De�nes con�uent graphs and shows they are precisely series�parallel graphs��


EMC��� E� ElMallah and C� Colbourn� Partial ktree algorithms� Congressus Numer�
antium� ����������� �����



���


EMC��� E� ElMallah and C� Colbourn� On two dual classes of planar graphs� Discrete
Mathematics� ��������� �����
�Gives a characterization of planar partial ��trees in terms of two obstructions��


Epp��� D� Eppstein� Parallel recognition of seriesparallel graphs� Information and
Computing� ������������ May �����


EST��� J� A� Ellis� I� H� Sudborough� and J� Turner� Graph separation and search
number� Report DCS��IR� Dept� of Computer Science� University of Victo
ria� P�O� Box ����� Victoria� B�C� Canada V�W �P�� August �����
�Contains the �rst polynomial�time algorithm for determining if a graph has path�
width k or less and a fast linear�time algorithm for determining the pathwidth of
trees��


EST��� J� Ellis� I� H� Sudborough� and J� Turner� The vertex separation and search
number of a graph� Information and Computation� ������������� �����


FBS��� D� Fern�andezBaca and G� Slutzki� Solving parametric problems on trees�
Journal of Algorithms� ����������� �����


FBS��� D� Fern�andezBaca and G� Slutzki� Parametric problems on graphs of bounded
treewidth� In Proceedings of the 	rd Scandinavian Workshop on Algorithm
Theory� volume ��� of Lecture Notes on Computer Science� pages ��������
SpringerVerlag� �����


FBS��� D� Fern�andezBaca and G� Slutzki� Optimal parametric problems on graphs
of bounded treewidth� In Proceedings of the �rd Scandinavian Workshop on
Algorithm Theory� volume ��� of Lecture Notes on Computer Science� pages
�������� SpringerVerlag� �����


Fel� M� R� Fellows� private communication� Dept� of Computer Science� University
of Victoria�


Fel��� M� R� Fellows� The RobertsonSeymour theorems� A survey of applications�
Contemporary Mathematics� �������� �����
�Applications of the Robertson�Seymour theorems to a variety of problems in con�
crete computational complexity are surveyed��


FG��� P� A� Firby and C� F� Gardiner� Surface Topology� volume �� of Mathematics
and its Applications� Ellis Horwood� second edition� �����


FHW��� M� R� Fellows� M� T� Hallett� and H� T� Wareham� DNA physical mapping�
Three ways di�cult� In T� Lengauer� editor� Proceedings of European Sym�
posium on Algorithms �ESA��	�� volume ��� of Lecture Notes in Computer
Science� pages �������� SpringerVerlag� Berlin� �����
�The combinatorial problem of Intervalizing Colored Graphs �or ICG	 is shown to
be intractable in three di�erent ways� �	 it is NP�complete� ��	 it is hard for
the parameterized complexity class W��� and ��	 it is not �nite�state for bounded
treewidth or pathwidth��


Fis��� P� C� Fishburn� Interval Orders and Interval Graphs� A Study of Partially
Ordered Sets� John Wiley� New York� �����



���


FKL��� M� R� Fellows� N� G� Kinnersley� and M� A� Langston� Finitebasis theorems
and a computationintegrated approach to obstruction set isolation� Extended
abstract� Dept� of Computer Science� Washington State University� Pullman�
WA ���������� November ����� Also in Proceedings of Computers and Math
ematics Conference �������


FKMP��� M� Fellows� J� Kratochv�"� M� Middendorf� and F� Pfei!er� Induced minors and
related problems� Algorithmica� ����������� �����
�Explores the similarities and di�erences of minors and induced minors� Combina�
torial problems with restricted input to planar graphs are also considered��


FL��� M� R� Fellows and M� A� Langston� Nonconstructive advances in polynomial
time complexity� Information Processing Letters� ����������� October �����
�The connection between the Robertson�Seymour posets and the Gate Matrix
Layout problem is given��


FL��a� M� R� Fellows and M� A� Langston� Layout permutation problems and well
partiallyordered sets� In Proceedings of the �th MIT Conference on Advanced
Research in VLSI �Cambridge Mass�� Mar� 
��	��� pages �������� MIT press�
�����
�Low�degree polynomial�time algorithms for a number of well�studied VLSI layout
problems �along with self�reducibility results	 are given��


FL��b� M� R� Fellows and M� A� Langston� Nonconstructive tools for proving
polynomialtime decidability� Journal of the Association Computing Machin�
ery� ����������� �����
�De�nes what Robertson�Seymour posets are and shows how to use these tools
for determining the complexity of di�cult combinatorial decision problems��


FL��a� M� R� Fellows and M� A� Langston� An analogue of the MyhillNerode Theorem
and its use in computing �nitebasis characterizations� In IEEE Symposium
on Foundations of Computer Science Proceedings� volume ��� pages ��������
�����
�Using a graph�theoretic analogue of the Myhill�Nerode characterization of regular
languages� this paper establishes that� for many applications� obstruction sets are
computable by known algorithms��


FL��b� M� R� Fellows and M� A� Langston� On search� descision and the e�ciency
of polynomialtime algorithms� In Proceedings of the ACM Symposium on the
Theory of Computing� volume ��� pages �������� ����� Also in Journal of
Computer and System Sciences �������
�Discusses the problem of equating tractability with polynomial�time decidability
in light of the recent advances in well�partial�order theory� especially the seminal
contributions of Robertson and Seymour��


FL��� M� R� Fellows and M� A� Langston� On wellpartialorder theory and its appli
cation to combinatorial problems of VLSI design� SIAM Journal on Discrete
Mathematics� ���������� February �����
�Low degree polynomial�time algorithms are nonconstructively shown for the �rst
time for many well�studied graph layout� placement� and routing problems��



��


FMR��� I� S� Filotti� G� L� Miller� and J� Reif� On determining the genus of a graph in
O�vO�g�� steps� In Proceedings of the ACM Symposium on the Theory of Com�
puting� volume ��� pages ������ ����� Atlanta� Georgia �Preliminary Report��
�First polynomial�time algorithms are presented for testing for �xed genus g��


FRS��� H� Friedman� N� Robertson� and P� D� Seymour� The metamathematics of the
graph minor theorem� In Applications of Logic to Combinatorics� volume �� of
Contemporary Mathematics� pages �������� American Mathematical Society�
�����


Gav��� F� Gavril� The intersection of graphs of subtrees in trees are exactly the chordal
graphs� Journal of Combinatorial Theory� ��������� �����


GGJK��� M� R� Garey� R� L� Graham� D� S� Johnson� and D� E� Knuth� Complexity
results for bandwidth minimization� SIAM Journal on Applied Mathematics�
�������������� May �����
�Bandwidth is NP�complete even when restricted to free trees with maximum
degree three��


GGKS��� P� W� Goldberg� M� C� Golumbic� H� Kaplan� and R� Shamir� Four strikes
against physical mapping of DNA� Technical report ���#��� The Moise and
Frida Eskenasy Institute of Computer Sciences� Tel Aviv University� December
�����
�Four simpli�ed models of the DNA fragment reconstruction problem lead to NP�
complete decision problems� In particular� a simpleNP�completeness proof is given
regarding the pathwidth of a bipartite graph��


GH��� H� H� Glover and J� P� Huneke� There are �nitely many Kuratowski graphs
for the projective plane� In Graph Theory and Related Topics� pages ��������
Academic Press� Inc�� �����
�The paper shows that a graph embeds in the projective plane if and only if it does
not contain a subgraph homeomorphic to one of a �nite list of graphs� This is done
independent of any detailed list of graphs��


GHW��a� H� H� Glover� J� P� Huneke� and C� S� Wang� ��� graphs which are irreducible
for the projective plane� Journal of Combinatorial Theory� Series B� �������
���� �����


GHW��b� H� H� Glover� J� P� Huneke� and C� S� Wang� On a Kuratowski theorem for
the projective plane� In Graph Theory and Related Topics� pages ��������
Academic Press� Inc�� �����
�The projective plane can be systematically characterized from thirty��ve particular
irreducible graphs� An appendix contains drawings of all such obstructions��


GJ��� M� R� Garey and D� S� Johnson� Computers and Intractability� A Guide to the
Theory of NP�completeness� W� H� Freeman and Company� �����
�The best introduction to the theory ofNP�completeness and a catalog of classical
NP�complete problems��


GKS��� M� C� Golumbic� H� Kaplan� and R� Shamir� Graph sandwich problems� Tech
nical report ���#��� The Moise and Frida Eskenasy Institute of Computer
Sciences� Tel Aviv University� December �����



��

�The graph sandwich problem for property X is de�ned� Many NP�completeness
proofs are given for comparability graphs� permutation graphs and several other
families��


GKS��� M� C� Golumbic� H� Kaplan� and R� Shamir� On the complexity of DNA
physical mapping� Technical report ���#��� The Moise and Frida Eskenasy
Institute of Computer Sciences� Tel Aviv University� January ����� to appear
Advances in Applied Mathematics�
�They independently de�ned the k�ICG problem under the name Colored Interval
Sandwich Problem and show it to be NP�complete by a reduction that does not
imply W�hardness��


GLR��a� R� Govindan� M� A� Langston� and S� Ramachandramurthi� Cutwidth approxi
mation in linear time� Technical report� Dept� of Computer Science� University
of Tennessee� Knoxville� TN ����������� �����
�An algorithm to determine whether K� is immersed in a graph is given��


GLR��b� R� Govindan� M� A� Langston� and S� Ramachandramurthi� A practical ap
proach to layout optimization� Technical report� Dept� of Computer Science�
University of Tennessee� Knoxville� TN ����������� �����
�Presents fast layout algorithms generated by using partial obstruction sets��


GN��� A� Gupta and N� Nishimura� Sequential and parallel algorithms for embedding
problems on classes of partial ktrees� In Proceedings of the �rd Scandinavian
Workshop on Algorithm Theory� volume ��� of Lecture Notes on Computer
Science� pages �������� July �����
�Includes subgraph isomorphism and topological embedding algorithms� known to
be NP�complete for general partial k�trees��


GSK��� D� Granot and D� SkorinKapov� On some optimization problems on ktrees
and partial ktrees� Discrete Applied Mathematics� ����������� �����


GS��� E� M� Gurari and I� H� Sudborough� Improved dynamic programming algo
rithms for bandwidth minimization and the MinCut linear arrangement prob
lem� Journal of Algorithms� ���������� �����
�Bandwidth and cutwidth for �xed k can be solved in O�nk���


GS��� D� Grinstead and P� Slater� A recurrence template for several parameters in
seriesparallel graphs� Discrete Applied Mathematics� ����������� �����


GSV��� Y� Gurevich� L� Stockmeyer� and U� Vishkin� Soving NPhard problems on
graphs that are almost trees and an application to facility location problems�
Journal of the Association Computing Machinery� ����������� �����


GT��� M� R� Garey and R� E� Tarjan� A lineartime algorithm for �nding all feedback
vertices� Information Processing Letters� ������������� October �����
�The authors present an O�m��time algorithm which uses depth��rst search to �nd
all feedback vertices in an arbitrary strongly connected graph� And generalized for
�xed k� the algorithm �nds feedback sets of size k in time O�nk��m���


Gup��� A� Gupta� Constructive Issues in Tree Minors� Ph�D� thesis� University of
Toronto� �����



��

�Gives a constructive proof that trees are well�quasi�ordered under the minor or�
dering and shows that �nite automata are su�cient for recognizing minor closed
tree families��


Har��� F� Harary� Graph Theory� AddisonWesley� Mass�� �����


He��� X� He� E�cient parallel algorithms for seriesparallel graphs� Journal of Algo�
rithms� �������������� �����
�Contains algorithms for ��coloring and depth �rst � breadth �rst � spanning trees��


HHL���� E� Hare� S� Hedetniemi� R� Laskar� K� Peters� and T� Wimer� Lineartime com
putability of combinatorial problems on generalizedseriesparallel graphs� In
D� S� Johnson� T� Nishizeki� A� Nozaki� and H� S� Wilf� editors� Perspectives in
Computing� volume ��� pages �������� Academic Press� Inc�� ����� Proceed
ings of the JapanU�S� Joint Seminar� June ���� ����� Kyoto� Japan�
�Illustrates an emerging theory�methodology for constructing linear�time graph al�
gorithms by providing such algorithms for �nding the maximum�cut and the maxi�
mum cardinality of a minimal dominating set for a generalized series�parallel graph��


HM��� J� P� Hutchinson and G� L� Miller� On deleting vertices to make a graph of
positive genus planar� Prospectives in Computing� ��������� �����


HR��� N� Harts�eld and G� Ringel� Pearls in Graph Theory� A Comprehensive Intro�
duction� Academic Press� Inc�� �����


HT��� J� E� Hopcroft and R� E� Tarjan� E�cient planarity testing� Journal of Algo�
rithms� ����������� �����
�The classic �rst�known linear�time algorithm for testing planarity is presented
here��


HT��� R� Hassin and A� Tamir� E�cient algorithms for optimization and selection
on seriesparallel graphs� SIAM Journal on Algebraic Discrete Methods� ������
���� �����


HU��� J� E� Hopcroft and J� D� Ullman� Introduction to Automata Theory� Addison
Wesley� Mass�� ����� Formerly titled Formal Languages and their Relation to
Automata �������


HY��� X� He and Y� Yesha� Binary tree algebraic computation and parallel algorithms
for simple graphs� Journal of Algorithms� ��������� �����
�Presents dynamic programming techniques for series parallel graph and other re�
lated families��


IR��� A� Itai and M� Rodeh� Finding a minimum circuit in a graph� In Proceedings
of the ACM Symposium on the Theory of Computing� pages ����� ����� �th
STOC�
�Gives an O�n�� algorithm which �nds either the shortest cycle in a graph� or
shortest plus one��


Joh��� D� S� Johnson� The NPcompleteness column� An ongoing guide� Journal of
Algorithms� ���������� ����� ��th edition$ reduced graph family instances�



��


Joh��� D� S� Johnson� The NPcompleteness column� An ongoing guide� Journal of
Algorithms� ���������� ����� ��th edition$ The many faces of polynomial time�
�Discusses Robertson�Seymour subgraph homeomorphism and minor containment
problems as well as nonconstructive proofs��


Kar��� A� Karabeg� Classi�cation and detection of obstructions to planarity� Linear
and Multilinear Algebra� ��������� �����


KGS��� D� Kaller� A� Gupta� and T� Shermer� Regularfactors in the complements
of partial ktrees� In Proceedings of the Fourth Workshop on Algorithms and
Data Structures� WADS���� volume ��� of Lecture Notes on Computer Science�
pages �������� SpringerVerlag� August �����


Kin��� N� G� Kinnersley� The vertex separation number of a graph equals its path
width� Information Processing Letters� ����������� �����
�Contains a simple proof showing the equivalence between the pathwidth and a
VLSI linear layout problem��


Kin��� N� G� Kinnersley� Obstruction set isolation for layout permutation problems�
Ph�D� Thesis� Dept� of Computer Science� Washington State University� Pull
man� WA ������ �����


Kin��� N� G� Kinnersley� Constructive obstruction set isolation for the Min Cut Linear
Arrangement� Technical Report TR���� Dept� of Computer Science� Univer
sity of Kansas� January �����


KIU��� Y� Kajitani� A� Ishizuka� and S� Ueno� Characterization of partial �trees in
terms of � structures� Graphs and Combinatorics� ���������� �����


KK��a� N� G� Kinnersley and W� M� Kinnersley� An e�cient polynomialtime algorithm
for threetrack gate matrix layout� The Computer Journal� �������������� �����


KK��b� N� G� Kinnersley and W� M� Kinnersley� Tree automata for cutwidth recog
nition� Technical Report TR���� Dept� of Computer Science� University of
Kansas� January �����


KL��� N� G� Kinnersley and M� A� Langston� Obstruction set isolation for the Gate
Matrix Layout problem� Discrete Applied Mathematics� ����������� �����


Klo��a� T� Kloks� Treewidth� Ph�D� dissertation� Dept� of Computer Science� Utrecht
University� P�O� Box ������� ���� TA Utrecht� the Netherlands� �����
�Among many results� this dissertation gives an algorithm to determine if a graph
is pathwidth �or treewidth	 � k when given a decomposition of any width greater
than k��


Klo��b� T� Kloks� In Treewidth� computations and approximations� volume ��� of
Lecture Notes on Computer Science� SpringerVerlag� �����
�This is a more available source than Kloks
 Ph�D� dissertation��


KM��� A� K�ezdy and P� McGuinnes� Sequential and parallel algorithms to �nd a K�

minor� Discrete Applied Mathematics� ��������� �����
�An O�n�� sequential algorithm is presented that� given a graph� either returns a
K� minor or reports that no such minor exists��



��


Koz��� D� Kozen� On the MyhillNerode Theorem for trees� Bulletin of the EATCS�
����������� �����


KP��� L� M� Kirousis and C� H� Papadimitriou� Searching and pebbling� Theoretical
Computer Science� ����������� �����


KPS��� M� Khalifat� T� Politof� and A� Satyanarayana� On minors of graphs with at
least �n� � edges� Journal of Graph Theory� �������������� �����


Kra��� D� Kratsch� Finding the minimum bandwidth of an interval graph� Informa�
tion and Computation� �������������� �����
�Gives an O�n�� algorithm for determining the bandwidth of interval graphs al�
though it is known to be NP�complete for catepillers with hairs of length at most
� and for binary trees��


Kru��� J� B� Kruskal� Wellquasiordering� the tree theorem� and Vaszsonyi�s conjec
ture� Transactions of American Mathematical Society� ����������� �����


Kru��� J� B� Kruskal� The theory of wellquasiordering� a frequently rediscovered
concept� Journal of Combinatorial Theory� Series A� ����������� �����


KS��� H� Kaplan and R� Shamir� Pathwidth� bandwidth and completion problems to
proper interval graphs� Technical report ���#��� The Moise and Frida Eskenasy
Institute of Computer Sciences� Tel Aviv University� November �����
�Two problems motivated by molecular biology are studied� Both are shown to be
polynomial for �xed k but� in general� one is NP�hard while the other is hard for
W����


KST��� H� Kaplan� R� Shamir� and R� E� Targan� Tractability of parameterized com
pletion problems on chordal and interval graphs� minimum �llin and physical
mapping� In Proceedings of the 	�th Annual IEEE Conference on the Founda�
tions of Computer Science� pages �������� �����


KT��� A� Kornai and Z� Tuza� Narrowness� pathwidth� and their application in natural
language processing� Discrete Applied Mathematics� ��������� �����
�Points out the importance of graphs with pathwidth � � in connection with natural
language processing��


Kur��� K� Kuratowski� Sur le probl%e des courbes gauches en topologie� Fundamental
Mathematics� ����������� �����


KyK��� T� Kikuno� N� yoshida� and Y� Kakuda� A linear algorithm for the domination
number of seriesparallel graphs� Discrete Applied Mathematics� �����������
�����


LA��� J� Lagergren and S� Arnborg� Finding minimal forbidden minors using a �nite
congruence� In Proceedings of the International Colloquium on Automata� Lan�
guages and Programming� volume ��� of Lecture Notes on Computer Science�
pages �������� SpringerVerlag� ����� ��th ICALP�
�Using an algebra of i�sourced graphs� an e�ective way to compute the minimal
forbidden minors of graphs of bounded treeidth is derived from �nite congruences
that recognizes minor�closed families� Also� an algorithm that recognizes graphs of
treewidth at most k that runs in linear time is presented��



�


Lag��� J� Lagergren� E�cient parallel algorithms for treedecomposition and related
problems� In IEEE Symposium on Foundations of Computer Science Proceed�
ings� pages �������� ����� ��th FOCS�


Lag��� J� Lagergren� Algorithms and Minimal Forbidden Minors for Tree�decomposible
Graphs� Ph�D� dissertation� Royal Institute of Technology� Stockholm� Sweden�
March ����� Dept� of Numerical Analysis and Computing Sciences�


Lag��� J� Lagergren� An upper bound on the size of an obstruction� In N� Robertson
and P� D� Seymour� editors� Graph Structure Theory� volume ��� of Contem�
porary Mathematics� pages �������� �����
�The author proves constructively that every minor closed family which is recog�
nized by a �nite congruence and has an obstruction set that is of bounded tree�

width has a �nite number of obstructions� A bound O��c
w��w�� on the maximum

number of edges of an obstruction is given in terms of the treewidth bound w and
the index c of a �nite congruence��


Lag��� J� Lagergren� The nonexistence of reduction rules giving an embedding into a
ktree� Discrete Applied Mathematics� ����������� �����


Lag��� J� Lagergren� Upper bounds on the size of obstructions and intertwines� �����
Dept� of Numerical Analysis and Computing Science Manuscript� The Royal
Institute of Technology� Stockholm� Sweden�
�The author proves constructively that if a minor closed family L has obstructions
of treewidth at most k and there is a pseudo minor order with �nite height for L�
then L has a �nite number of obstructions� For another pseudo minor order� an
upper bound on the size of an intertwine of two given planar graphs H and H � is
also obtained��


Lan��� M� A� Langston� Current progress on obstructionbased layout optimiza
tion� Technical report� Dept� of Computer Science� University of Tennessee�
Knoxville� TN ����������� �����


Lau��� C� Lautemann� Decomposition trees� Structured graph representation and ef
�cient algorithms� In Proceedings of the �	th Colloquium on Trees in Algebra
and Programming CTAP���� volume ��� of Lecture Notes on Computer Sci�
ence� pages ������ SpringerVerlag� �����


LB��� C� G� Lekkerkerker and J� C� Boland� Representation of a �nite graph by a set
of intervals on the real line� Fundamenta Mathematicae� ��������� �����


Len��� T� Lengauer� Blackwhite pebbles and graph separation� Acta Informatica�
����������� �����


Lei��� F� Leighton� New lower bound techniques for VLSI� In IEEE Symposium on
Foundations of Computer Science Proceedings� volume ��� pages ����� �����


LG��� P� Liu and R� Geldmacher� An O�max�m�n�� algorithm for �nding a subgraph
homeomorphic to K�� Congressus Numerantium� ����������� ����� �Also in
the Proceedings of the Eleventh Southeastern Conference on Combinatorics�
Graph Theory� and Computing� ����� ����������



��


Lin��� A� Lingas� Subgraph isomorphism for biconnected outerplanar graphs in cubic
time� Theoretical Computer Science� ����������� �����


LPS��� G� T� Linger� T� Politof� and A� Satyanarayana� A forbidden minor character
ization and reliability of a class of partial �trees� Networks� ����������� �����
�Gives seven minor�order obstructions to a family of graphs that is contained in
the set of partial ��trees��


LR��� M� A� Langston and S� Ramachandramurthi� Dense layouts for seriesparallel
circuits� Technical report� Dept� of Computer Science� University of Tennessee�
Knoxville� TN ����������� �����
�Uses K� as the only test for the Gate Matrix Layout problem with three tracks��


LT��� R� J� Lipton and R� E� Tarjan� A separator theorem for planar graphs� SIAM
Journal on Applied Mathematics� �������������� �����


Lu��� X� Lu� Finite state properties of bounded pathwidth graphs� Master�s project
report� Dept� of Computer Science� University of Victoria� P�O� Box �����
Victoria� B�C�� Canada V�W �P�� �����


Mah��� N� V� R� Mahadar� Master�s thesis� University of Waterloo� �����
�Found �checked�	 that there were �� minor�order minimal graphs within the
previously known topological projective plane obstructions��


Man��� J� B� Manning� Geometric Symmetry in Graphs� Ph�D� thesis� Purdue Univer
sity� December �����


MCH��� S� L� Mitchell� E� J� Cockayne� and S� T� Hedetniemi� Linear algorithms on
recursive representations of trees� Journal of Computer and System Sciences�
������������ �����
�The authors claim that their algorithm techniques generalize to k�trees and chordal
graphs��


Mil��� E� C� Milner� Basic WQO and BQO theory� In I� Rival� editor� Graphs and
Orders� volume ��� of Mathematical and Physical Sciences� pages �������� D�
Reidel Publishing Company� Amsterdam� �����
�A survey of the achievements in the theory of well�quasi��wqo	 and better�quasi�
ordering �bqo	 since the early ���
s��


Mir��� B� G� Mirkin� Graphs and Genes� SpringerVerlag� ����� �translated from
Russian by H�L� Beus��


Mit��� S� L� Mitchell� Linear algorithms to recognize outerplanar and maximal outer
planar graphs� Information Processing Letters� ������������� December �����


MK��� P� J� McGuinnes and A� E� K�ezdy� An algorithm to �nd a K� minor� �����
�An O�n�� algorithm is presented that� given a graph� either returns a K� minor
or reports that no such minor exists��


MM��� E� MataMontero� Resilience of partial ktree networks with edge and node
failures� Networks� ����������� �����



��


M�oh��� R� H� M�ohring� Graph problems releted to gate matrix layout and PLA folding�
In G� Tinhofer� E� Mayr� H� Noltemeier� and M� S� �in cooperation with R� Al
brecht�� editors� Computational Graph Theory� Computing Supplementum �
pages ������ SpringerVerlag� �����
�Graph problems� occurring in linear VLSI layout architectures such as gate matrix
layout �pathwidth	� folding of programmable logic arrays� and Weinberger arrays
are surveyed��


Moh��� B� Mohar� Projective planarity in linear time� Journal of Algorithms� �������
���� �����
�First such linear�time algorithm for testing projective planarity based on the em�
beddings of K� and K�����


Moo��� J� Moon� The number of labeled ktrees� Journal of Combinatorial Theory�
Series B� ���������� �����


MPS��� F� Makedon� C� H� Papadimitriou� and I� H� Sudborough� Topological band
width� SIAM Journal on Algebraic Discrete Methods� ������������� �����


MRS��� R� Motwani� A� Raghunathan� and H� Saran� Constructive results from graph
minors� Linkless embeddings� In IEEE Symposium on Foundations of Com�
puter Science Proceedings� pages �������� ����� ��th FOCS� White Plains�
N�Y�
�The authors prove that there are seven linkless embeddable minor�minimal ob�
structions��


MS��� F� Makedon and I� H� Sudborough� Minimizing width in linear layouts� In
Proceedings of the International Colloquium on Automata� Languages and Pro�
gramming� volume ��� of Lecture Notes on Computer Science� pages ��������
SpringerVerlag� ����� Also see Discrete Applied Mathematics �� ������� ����
����
�Contains forbidden subgraphs for cutwidth � and also characterizes cutwidth �
family� A dynamic programming algorithm is improved to show that� for any k � ��
the problem of deciding if a given graph has cutwidth at most k can be done in
O�nk�����


MS��� B� Monien and I� H� Sudborough� Min cut is NPcomplete for edge weighted
trees� Theoretical Computer Science� ����������� ����� Also in Lecture Notes
in Computer Science ��� ������� pp� ��������
�The Min Cut Linear Arrangement Problem �cutwidth	 is NP�complete for pla�
nar graphs with maximum vertex degree three� This is used to show that the
Search Number� Vertex Separation �pathwidth	� Progressive Black�White Pebble
Demand� and Topological Bandwidth is NP�complete for planar graphs with max�
imum vertex degree three��


MT��� J� Matou&sek and R� Thomas� Algorithms �nding treedecompositions of graphs�
Journal of Algorithms� �������� �����
�A probalistic algorithm �maybe practical�	 is given with execution time
O�n log� n	 n lognj log pj� that �nds either a tree�decomposition of width � �k
or answers that the tree�width is � k��


MT��� J� Matou&sek and R� Thomas� On the complexity of �nding iso and other
morphisms for partial ktrees� Discrete Mathematics� ������������ �����



��


Nar��� C� Narayanan� Fast parallel algorithms and enumeration techniques for partial
k�trees� Ph�D� dissertation� Dept� of Computer Science� Clemson University�
August �����
�Gives an overview of parallel algorithms for partial k�trees��


Nar��� C� Narayanan� Isomorphism testing of ktrees is in NC� for �xed k� Information
Processing Letters� ����������� �����


Ner��� A� Nerode� Linear automata transformations� Proceedings of the American
Mathematical Society� ���������� �����


Neu��� E� T� Neufeld� Practical toroidality testing� Master�s thesis� Dept� of
Computer Science� University of Victoria� P�O� Box ����� Victoria� B�C��
Canada V�W �P�� �����


NW��� C� S� J� A� NashWilliams� On wellquasiordering �nite trees� Proceedings of
the Cambridge Philosophical Society� ����������� �����
�Presents a simple proof that any sequence of �nite trees T�� T�� � � �� there exists
i � j such that Ti is homeomorphic to a subtree of Tj��


OvW��� R� Otten and J� van Wijk� Graph representations in interactive layout design�
In Proceedings of the IEEE Symposium on Circuits and Systems� pages ����
���� �����


Par��� T� D� Parsons� Pursuitevasion in a graph� In Y� Alavi and D� R� Lick� editors�
Theory and applications of graphs� pages �������� SpringerVerlag� �����


PLH��� J� Pfa!� R� Laskar� and S� T� Hedetniemi� Linear algorithms for independent
domination and total domination in seriesparallel graphs� Congressus Numer�
antium� ��������� �����


Pou��� M� Pouzet� Applications of well quasiordering and better quasiordering� In
I� Rival� editor� Graphs and Orders� volume ��� of Mathematical and Physical
Sciences� pages �������� D� Reidel Publishing Co�� �����


Pro��� A� Proskurowski� Minimum dominating cycles in �trees� International Journal
of Computation and Information Science� ���������� �����


Pro��� A� Proskurowski� Separating subgraphs in ktrees� Cables and caterpillars�
Discrete Mathematics� ����������� �����


Pro��� A� Proskurowski� Graph reductions� and techniques for �nding minimal for
bidden minors� In N� Robertson and P� D� Seymour� editors� Graph Structure
Theory� volume ��� of Contemporary Mathematics� pages �������� American
Mathematical Society� �����
�A brief historical account of some techniques used to �nd small sets of minimal
forbidden minors for a few classes of graphs with treewidth at most � is given��


PRS��� A� Proskurowski� F� Ruskey� and M� Smith� Listing kpaths� Technical Report
DCS���IR� Dept� of Computer Science� University of Victoria� P�O� Box �����
Victoria� B�C� Canada V�W �P�� June �����
�A simple and e�cient algorithm for enumerating k�paths represented as k�ary
strings is given��



��


PS��� A� Proskurowski and M� M� Syslo� Minimum dominating cycles in outerpla
nar graphs� International Journal of Computation and Information Science�
����������� �����


PS��� A� Proskurowski and M� M� Syslo� E�cient computations in treelike graphs�
In G� Tinhofer� E� Mayr� H� Noltemeier� and M� S� �in cooperation with R� Al
brecht�� editors� Computational Graph Theory� Computing Supplementum �
pages ����� SpringerVerlag� �����
�This is a good survey paper on e�cient algorithms for partial k�trees��


PS��� T� Politof and A� Satyanarayana� Minors of quasi �connected graphs� Discrete
Mathematics� ������������ �����


Ram��� S� Ramachandramurthi� Algorithms for VLSI Layout Based on Graph Width
Metrics� Ph�D� dissertation� Dept� of Computer Science� University of Ten
nessee� Knoxville� TN ����������� August �����


Ree��� B� A� Reed� Finding approximate separators and computing tree width quickly�
In Proceedings of the ACM Symposium on the Theory of Computing� volume ���
pages �������� �����
�Gives an approximate separator algorithm that yields an O�n logn� algorithm that
�nds a width k �for �xed k	 tree decomposition if it exists��


Ric��� M� B� Richey� Combinatorial optimization on series�parallel graphs� algorithms
and complexity� Ph�D� dissertation� School of Industrial and Systems Engineer
ing� Georgia Institute of Technology� �����


Ros��� D� J� Rose� On simple characterizations of ktrees� Discrete Mathematics�
���������� �����
�Contains four simple characterizations of k�trees involving cliques� paths� and
separators��


RS��� N� Robertson and P� D� Seymour� Graph Minors� I� Excluding a Forest� Journal
of Combinatorial Theory� Series B� ������������ �����


RS��a� N� Robertson and P� D� Seymour� Graph Minors� II� Algorithmic aspects of
treewidth� Journal of Algorithms� ���������� �����


RS��c� N� Robertson and P� D� Seymour� Graph Minors� III� Planar treewidth� Jour�
nal of Combinatorial Theory� Series B� ��������� �����


RS��a� N� Robertson and P� D� Seymour� Graph Minors� IV� Treewidth and well
quasiordering� Journal of Combinatorial Theory� Series B� ����������� �����


RS��d� N� Robertson and P� D� Seymour� Graph Minors� V� Excluding a planar graph�
Journal of Combinatorial Theory� Series B� ���������� �����


RS��b� N� Robertson and P� D� Seymour� Graph Minors� VI� Disjoint paths across a
disc� Journal of Combinatorial Theory� Series B� ����������� �����


RS��� N� Robertson and P� D� Seymour� Graph Minors� VII� Disjoint paths on a
surface� Journal of Combinatorial Theory� Series B� ����������� �����



���


RS��c� N� Robertson and P� D� Seymour� Graph Minors� VIII� A Kuratowski theorem
for general surfaces� Journal of Combinatorial Theory� Series B� �����������
�����


RS��b� N� Robertson and P� D� Seymour� Graph Minors� IX� Disjoint crossed paths�
Journal of Combinatorial Theory� Series B� ��������� �����


RS��a� N� Robertson and P� D� Seymour� Graph Minors� X� Obstructions to tree
decompositions� Journal of Combinatorial Theory� Series B� ����������� �����


RS��� N� Robertson and P� D� Seymour� Graph Minors� XI� Circuits on a surface�
Journal of Combinatorial Theory� Series B� ���������� �����


RS��a� N� Robertson and P� D� Seymour� Graph Minors� XII� Distance on a surface�
Journal of Combinatorial Theory� Series B� ����������� July �����


RS��b� N� Robertson and P� D� Seymour� Graph Minors� XIII� The disjoint paths
problem� Journal of Combinatorial Theory� Series B� ���������� �����


RS��b� N� Robertson and P� D� Seymour� Graph Minors� XIV� Extending an embed
ding� ����� submitted�


RSa� N� Robertson and P� D� Seymour� Graph Minors� XV� Giant steps� submitted�


RSb� N� Robertson and P� D� Seymour� Graph Minors� XVI� Excluding a nonplanar
graph� submitted�


RS��� N� Robertson and P� D� Seymour� Graph Minors� XVII� Taming a vortex� May
����� submitted�


RSh� N� Robertson and P� D� Seymour� Graph Minors� XVIII� Treedecompositions
and wellquasiordering� in progress�


RSg� N� Robertson and P� D� Seymour� Graph Minors� XIX� Wellquasiordering on
a surface� in progress�


RSc� N� Robertson and P� D� Seymour� Graph Minors� XX� Wagner�s conjecture� in
progress�


RSd� N� Robertson and P� D� Seymour� Graph Minors� XXI� Graphs with unique
linkages� submitted�


RSe� N� Robertson and P� D� Seymour� Graph Minors� XXII� Irrelevant vertices in
linkage problems� submitted�


RSf� N� Robertson and P� D� Seymour� Graph Minors� XXIII� NashWilliams� im
mersions conjecture� in progress�


RS��� J� Riordan and C� E� Shannon� The number of twoterminal seriesparallel
networks� Journal of Mathematical Physics� ��������� �����


RS��a� N� Robertson and P� D� Seymour� Graph width and wellquasiordering� a
survey� In J� Bondy and U� Murty� editors� Progress in Graph Theory� pages
�������� Academic Press� Inc�� Toronto� �����



���


RS��b� N� Robertson and P� D� Seymour� Generalizing Kuratowski�s theorem� Con�
gressus Numerantium� ����������� �����


RS��e� N� Robertson and P� D� Seymour� Some new results on the well quasi ordering
of graphs� In M� Pouzet and D� Richard� editors� Orders� Description and
Roles� volume �� of Annals of Discrete Mathematics� pages �������� Elsevier
Science� Amsterdam� ����� Proceedings of the Conference on Ordered Sets and
Their Applications� Ch'ateau de la Tourette� l�Arbresle� July ���� �����


RS��a� N� Robertson and P� D� Seymour� Disjoint paths � A survey� SIAM Journal
on Discrete Mathematics� ���������� �����


RS��b� N� Robertson and P� D� Seymour� Graph Minors � A survey� In Surveys in
Combinatorics� volume ���� pages �������� Cambridge University Press� �����
�Presents a survey of results concerning Wagner
s conjecture and the Disjoint Con�
necting Paths problem��


RS��d� N� Robertson and P� D� Seymour� An Outline of a Disjoint Paths Algorithm�
pages �������� ����� Algorithms and Combinatorics� Volume ��


RS��a� N� Robertson and P� D� Seymour� Excluding a graph with one crossing� In
N� Robertson and P� D� Seymour� editors� Graph Structure Theory� volume ���
of Contemporary Mathematics� pages �������� �����


RS��b� N� Robertson and P� D� Seymour� editors� Graph Structure Theory� volume ���
of Contemporary Mathematics� American Mathematical Society� ����� Pro
ceedings of a Joint Summer Research Conference on Graph Minors held June
�� to July �� ����� at the University of Washingtion� Seattle�


RST��c� N� Robertson� P� D� Seymour� and R� Thomas� A survey of linkless embeddings�
In N� Robertson and P� D� Seymour� editors� Graph Structure Theory� volume
��� of Contemporary Mathematics� pages �������� AMS� �����
�It is shown that a graph has a �at �linkless	 embedding if and only if it has no
minor isomorphic to one of seven Peterson family obstructions These graphs are
obtained from K� by means of Y(� and (Y �exchanges��


RST��b� N� Robertson� P� D� Seymour� and R� Thomas� Structural descriptions of lower
ideals of trees� In N� Robertson and P� D� Seymour� editors� Graph Structure
Theory� volume ��� of Contemporary Mathematics� pages �������� �����


RST��a� N� Robertson� P� D� Seymour� and R� Thomas� Linkless embeddings of graphs
in �space� Bulletin of the American Mathematical Society� ��������� �����


RST��� N� Robertson� P� D� Seymour� and R� Thomas� Quickly excluding a planar
graph� Journal of Combinatorial Theory� Series B� �������� �����


RST��a� N� Robertson� P� D� Seymour� and R� Thomas� Kuratowski chains� Journal of
Combinatorial Theory� Series B� �������������� �����


RST��b� N� Robertson� P� D� Seymour� and R� Thomas� Petersen family minors� Journal
of Combinatorial Theory� Series B� �������������� �����


RST��c� N� Robertson� P� D� Seymour� and R� Thomas� Linkless embedding conjecture�
Journal of Combinatorial Theory� Series B� ����������� �����



���


RTL��� D� J� Rose� R� E� Tarjan� and G� S� Leuker� Algorithmic aspects of vertex
elimination on graphs� SIAM Journal on Computing� ������������� �����
�Relates graph elimination to performing Gaussian elimination on sparse symmetric
positive de�nite matrices��


San��� D� P� Sanders� On linear recognition of treewidth at most four� ����� Georgia
Tech manuscript �submitted��


Sar��� H� Saran� Constructive Results from Graph Minors� Linkless Embeddings�
Ph�D� Thesis� University of California� Berkeley� �����


Sch��� P� Sche)er� An O�n log�n�� algorithm for the pathwidth of trees� In Funda�
mentals of Computation Theory �FCT����� ����� KarlWeierstraBInstitut F�ur
Mathematik� Akademie der Wissenshaften der DDR� Mohrenstr� ��� Berlin�
DDR�����


Sch��� P� Sche)er� A linear algorithm for the pathwidth of trees� In R� Bodendiek
and R� Henn� editors� Topics in combinatorics and graph theory� pages ��������
PhysicaVerlag� �����


SD��� D� C� Schmidt and L� E� Dru!el� A fast backtracking algorithm� Journal of
the Association Computing Machinery� ������*����� July �����
�Contains a nice graph isomorphism algorithm which is very practical� �We use
this�	�


Sey��a� P� D� Seymour� A forbidden minor characterization of matroid ports� Quarterly
Journal of Mathematics� Oxford� �������������� �����


Sey��b� P� D� Seymour� The forbidden minors of binary clutters� Journal of London
Mathematical Society� �������������� �����


Sey��� P� D� Seymour� Colouring seriesparallel graphs� Combinatorica� �����������
�����


Sey��� P� D� Seymour� A bound on the excluded minors for a surface� February �����
Bell Communications Research� Morristown� New Jersey�
�For every surface of complexity g �e�g� twice the genus	� every excluded minor

has at most ��
k
vertices� where k � ��g 	 ���� The treewidth is also bounded by

���g 	 �����


SI��� M� Syslo and M� Iri� E�cient outerplanarity testing� Fundamenta Informaticae�
���������� �����


ST��� A� Satyanarayana and L� Tung� A characterization of partial �trees� Networks�
����������� �����


ST��� P� D� Seymour and R� Thomas� Graph searching� and a minmax theorem for
treewidth� Journal of Combinatorial Theory� Series B� ��������� �����


Ste��� M� Steinby� On generalizations of the MyhillNerode Theorems� Bulletin of the
EATCS� ����������� �����


Sti��� J� Stillwell� Classical Topology and Combinatorial Group Theory� volume �� of
Graduate Texts in Mathematics� SpringerVerlag� second edition� �����



���


SW��� G� Smith and R� Walford� The identi�cation of a minimal feedback vertex of a
directed graph� IEEE Transactions on Circuits and Systems� CAS�����������
�����


Sys��� M� M� Syslo� The subgraph isomorphism problem for outerplanar graphs�
Theoretical Computer Science� ��������� �����


Sys��� M� M� Syslo� NPcomplete problems on some treestructured graphs� a review�
In Proceedings of the Workshop on Graph Theoretic Concepts in Computer
Science �WG��	�� pages �������� Trauner Verlag� Linz ������� June �����


TGS��� P� J� Tanenbaum� M� T� Goodrich� and E� R� Scheinerman� Characteriza
tion and recognition of pointhalfspace and related orders� In Graph Drawing�
DIMACS International Workshop GD��� Princeton� N�J�� October ���� Pro�
ceedings� volume ��� of Lecture Notes on Computer Science� pages ��������
SpringerVerlag� �����
�The authors characterize four classes of geometric membership and containment
orders structurally in terms of forbidden subposets��


Tha��� J� W� Thatcher� Tree automata� an informal survey� In A� V� Aho� editor�
Currents in the Theory of Computing� pages �������� PrenticeHall� �����
�This is a good introduction to tree automata��


Tho� C� Thomassen� Handbook of Combinatorics� chapter Embeddings and minors�
North Holland� �to appear��


Tho��� R� Thomas� A Mengerlike property of treewidth� the �nite case� Journal of
Combinatorial Theory� Series B� ��������� �����
�Shows the existence of linked �vertex disjoint paths between bags	 tree�
decompositions��


Tho��� R� Thomas� private communication� ����� Dept� of Mathematics� Georgia
Institute of Technology�


TM��� W� T� Trotter and J� I� Moore� Characterization problems for graphs� partially
ordered sets� lattices and families of sets� Discrete Mathematics� ����������
�����


TNS��� K� Takamizawa� T� Nishizeki� and N� Saito� Lineartime computability of com
binatorial problems on seriesparallel graphs� Journal of the Association Com�
puting Machinery� ����������� �����
�Shows that NP�complete problems characterizable in terms of a �nite number of
forbidden subgraphs admit linear�time algorithms if their instances are restricted
to series�parallel graphs��


Tro��� W� T� Trotter� Combinatorics and Partially Ordered Sets� Dimension The�
ory� Johns Hopkins Univ� Press� Baltimore� ����� Johns Hopkins Series in
Mathematical Sciences�


Tru��� R� J� Trudeau� Introduction to Graph Theory� Dover� ����� Revised edition of
Dots and Lines �������



���


TUK��� A� Takahashi� S� Ueno� and Y� Kajitani� Minimal acyclic forbidden minors
for the family of graphs with bounded pathwidth� In SIGAL ������	� IPSJ�
����� To appear in� Annals of Discrete Mathematics �Proceedings of �nd Japan
conference on graph theory and combinatorics� ������
�Shows that there are at least k�� tree obstructions for the family of graphs with
pathwidth at most k��


TW��� J� W� Thatcher and J� B� Wright� Generalized �nite automata� Notices of the
American Mathematical Society� ������� �����


TW��� J� W� Thatcher and J� B� Wright� Generalized �nite automata theory with an
application to a decision problem of secondorder logic� Mathematical System
Theory� �������� �����
�Many of the important concepts and results of conventional �nite automata theory
are developed for a generalization in which �nite algebras take the place of �nite
automata��


vL��� J� van Leeuwen� Handbook of Theoretical Computer Science� A� Algorithms
and Complexity Theory� MIT Press # North Holland Publishing Company�
Amsterdam� ����� See �Graph Algorithms� chapter in pages ��������
�This handbook contains several sections regarding combinatorial bounded width
and forbidden minors��


Vol��� W� Vollmerhaus� On computing all minimal graphs that are not embeddable
in the projective plane� parts I and II�� ����� �cited manuscript��
�The author independently veri�ed the �� projective plane irreducible graphs and
may have also veri�ed the �� minor�minimal graphs��


VTL��� J� Valdes� R� Tarjan� and E� Lawler� The recognition of series parallel digraphs�
SIAM Journal on Computing� ����������� ����� �Also see STOC���� pages ��
����
�Presents a ��vertex forbidden subgraph for vertex series parallel DAGs �in the
transitive closure	��


Wag��� K� Wagner� Uber einer eigenschaft der ebener complexe� Mathematics Annals�
����������� �����


WC��� J� A� Wald and C� J� Colbourn� Steiner trees� partial �trees and minimum IFI
networks� Networks� ����������� �����
�Studying isolated failure immune networks� the authors �nd a linear time Steiner
tree algorithm for ��trees��


Weg��� G� Wegner� Eigenshaften der nerven homologische eihfacter familien in Rn�
Ph�d� thesis� G�otingen� �����
�Gives three induced subgraph obstructions �asteroidal triples	 for chordal graphs
which are not proper interval graphs��


WHL��� T� V� Wimer� S� T� Hedetniemi� and R� Laskar� A methodology for constructing
linear time graph algorithms� Congressus Numerantium� ��������� �����


Wil��� R� J� Wilson� Introduction to Graph Theory� Academic Press� Inc�� �����



��


Wil��� H� S� Wilf� Finite list of obstructions �the editor�s corner�� American Mathe�
matics Monthly� pages �������� March �����
�An introduction to the notion of obstructions and introduces the work of Robert�
son and Seymour��


Wil��� H� S� Wilf� Combinatorial Algorithms� An Update� volume �� of CBMS�NSF
Regional Conference Series in Applied Mathematics� chapter Listing Free Trees�
pages ������ SIAM� �����


Wim��a� T� V� Wimer� Linear algorithms for the dominating cycle problems in series
parallel graphs� �trees and Halin graphs� Congressus Numerantium� ��� �����


Wim��b� T� V� Wimer� Linear algorithms on k�terminal graphs� Ph�D� dissertation�
Dept� of Computer Science� Clemson University� August ����� Report No�
URI����


Win��� P� Winter� Generalized Steiner problem in seriesparallel networks� Journal of
Algorithms� ���������� �����
�A linear time algorithm is given for a generalized Steiner problem��


WROM��� R� A� Wright� B� Richard� A� Odlyzko� and B� D� McKay� Constant time
generation of free trees� SIAM Journal on Computing� ����������� �����


WWY��� J� Wang� D� B� West� and B� Yao� Maximum bandwidth under edge addition�
Journal of Graph Theory� ������������ �����


Yap��� C� K� Yap� Some consequences of nonuniform conditions on uniform classes�
Theoretical Computer Science� ����������� �����
�The main result shows that if the �non�uniform polynomial�time hierarchy
 col�
lapses at level i � �� i�e�� +i�poly � ,i�poly� then the Meyer�Stockmeyer hierarchy
collapses at level i	 �� i�e��

P
i�� � ,i����


ZiNN��� X� Zhou� S� ichi Nakano� and T� Nishizeki� A parallel algorithm for edge
coloring partial ktrees� In Proceedings of the �rd Scandinavian Workshop on
Algorithm Theory� volume ��� of Lecture Notes on Computer Science� pages
�������� SpringerVerlag� �����



���

Index

asteroidal triples� �� ��
automata� ��� ���� ���� ���

approximating� ���
maximum path� ���� ���
minimum testset problem �AMT�� ���
tree� ���

bandwidth� ��
biology� ��� ���
boundaried graphs� ��� ��
boundaried obstruction� ��
boundary minor order� ��� ��� ���
broadcast graphs� ���

C		 � ��� ���� ���� ���
cactus� ��
canonical congruence� ��� ��� ��� ��� ���

��� ���� ���� ���
secondorder� ���

chordal graphs� ��
circle plus operator �� ��� ���� ���� ���
clique#hyperedge cover� ���
communication networks� ��
Cray YMP� ��� ���� ���
cutwidth� ��
cycle cover� ���

�xed� ���

disconnected pruning� ��� ���
distributive programming� ��� ���
dynamic programming� ��

Eulor�s surface formula� ���

feedback edge set �FES�� ���
feedback vertex set �FVS�� ���
�niteindex congruence� ��

k�EdgeBounded IndSet� ��� ��
path cover� ���

�nitestate algorithm� ��� ��� ���
k�EdgeBounded IndSet� ��
k�Feedback Vertex Set� ���

k�VertexCover� ���
K� cover� ���
minimal� ��� ���
outerplanar� ���

graph� �
connected� �� ���
edge contraction� �� ��� ��
edge lift� ��
edge subdivision� �� ��
minimal� ��� ��
order� �
pebbling� ���� ���
size� �
vertex fracture� ��

graph isomorphism� ���
Graph Minor Theorem �GMT�� �� ��� ��

Halin graphs� ��� ��
Hamiltonian cycle� ��� ���� ���
Hamiltonian path� ���

IBM����� ��� ���� ���
immersion order� ��� ���

induced� ��
independent set� �� ��� ��� ���
induced subgraph� ��
integer partitions� ��
interval graphs� �� ��� ��� ���

colored �ICG�� ���

k�CycleCover�l�� ���
k�Clique and ��k�Clique�� ���
k�CliqueCover�c�� ���
k�Cutwidth� ��
k�EdgeBounded IndSet� �� ��
k�FixedCycleCover�c�� ���
k�Feedback Edge Set� ��� ���
k�Feedback Vertex Set� �� ��� ��� ���

���� ���� ���
k�Genus� ��� ��
k�IndSet and ��k�IndSet�� ���



���

��OuterPlanar� ��� ���
k�PathCover�p�� ���� ���
��Planar� ���
k�Pathwidth� ��� ��� ��� ���� ���
k�Treewidth� ��� ��
k�VertexCover� �� ��� ��� ��� ���� ���
K� cover� ���
knottless graphs� �
Kuratowski�s Theorem� �� ��� ���

LEDA library� ���
lexcanonic order� ��� ��
lexrank order� ��� ��
linear algebra� ��
linguistics� ��
linkless graphs� �� ���
Los Alamos National Laboratory� ��� ���
lower ideal� �� ��� ���

parameterized� ��� ��� ��� ��

minimum test collection �MTC�� ���
minor order� ���� ��� ���

edge colored� ��
induced� ��

minorcontainment problem� �� ��� ���
Myhill�Nerode Theorem� ��� ���

nonminimal pretests� ��
k�Feedback Edge Set� ���

NPcomplete� ��� ��� ��� ���� ���� ���

obstruction set� �� ��� ��� ��� ��� ���
partial� ��� ���

operator sets� ��� ��
outerplanar graphs� ��� ��� ���� ���

partial tpaths� ��� ��� ���
partial ttrees� ��
partial order� �� �� ��� ��
path cover� ���
path decomposition� ��� ��� ���� ���

smooth� ��
pathwidth� �� ��� ��� ��� ��� ��� ��� ����

���� ���� ���
closeness to width t� ��

Petersen graph� ���
planar graphs� �� �� ��� ��� ��� ���� ���
polynomial time hierarchy� ��
poset� ��
Pre�x Lemma� ��� ��� ��� ��
projective plane� �� ���

quasiorder� ��

relational databases� ��

secondorder monadic logic� ��� ���
seriesparallel graphs� ��
Sparc� ��� ���� ���

TCP#IP� ��� ���
testset� ��� ��� ��� ���� ���

k�Feedback Edge Set� ���
k�Feedback Vertex Set� ���
connected graph� ���
cyclecover� ���
Hamiltonian� ��� ���
maximum path#cycle� ���

topological order� �� ��� ���
toroidal graphs� �� ��� ���
tparse� ��� ��� ��� ��� ���

canonic� ��� ��� ��� ��� ��� ���� ���
concatenation� ��� ��� ���
distinguisher� ��� ��� ��� ���� ���
enumeration� ��� ��� ��
extension� ��
minimal� ��� ��� ��
pre�x� ��
treewidth canonic� ��� ��

tparse isomorphism
free ��xed� boundary� ��� ��

tree� �� ��
tree decomposition� ��� ��� ���� ���

smooth� ��� ��
treewidth� �� ��� ��� ��� ��� ��� ��
treewidth search� ���

unit interval problem� ���
universal distinguisher� ��� ���
University of Victoria� ������ ���
UNIX shell scripts� ���

VACS� ��� ���� ���
vertex cover �VC�� ��� ���
vertex separation� ��� ���� ���

colored �CVS�� ���
virtual boundary� ���
VLSI� ��� ��� ���� ���� ���

weak immersion order� ��
wellpartialorder� ��� ��� ��� ���
wellquasiorder� ��� ��



Vita

Surname� Dinneen Given Names� Michael John

Michael was born in Idaho Falls� Idaho �U�S�A�� and lived there with his parents�

two brothers and a sister until he left for undergraduate school� After receiving two

bachelor degrees� he enrolled in graduate school in ����� Michael�s �rst �real job� was

a computer programming job at Idaho Falls School District #�� for just over four

years during the school breaks of his undergraduate career� Recently� Michael has

been working at Los Alamos National Laboratory �New Mexico� as a Graduate Re	

search Assistant �for the Computer Research and Applications Group� for an average

of six months a year since �����

Educational Institutions Attended�

University of Victoria� Victoria B�C� ��������

Washington State University� Pullman WA ���������

University of Idaho� Moscow ID ��������

Degrees Awarded�

M�S� Computer Science� University of Victoria� May ����

Thesis � �Algebraic Methods for E�cient Network Constructions�

B�S� Computer Science �Magna Cum Laude�� University of Idaho� May ����

B�S� Mathematics� Applied �Cum Laude�� University of Idaho� May ����

Awards and Scholarships�

University of Victoria Teaching Fellowship �����

University of Victoria Fellowship �����������

Washington State University Teaching Assistantship �����������

Chevron Oil�s Science and Engineering Scholarship �����������

Taylor� Eugene and Osa Scholarship �����������

J� Lawrence Botsford Scholarship �����������

General University of Idaho Scholarship ����������

University of Idaho Dean�s List� College of Engineering ����������

Faculty of Letters and Science �����������



Selected Papers�

�� Algebraic constructions of e�cient broadcast networks� In H� F� Mattson�

T� Mora� and T� R� N� Rao� editors� Applied Algebra� Algebraic Algorithms

and Error�Correcting Codes� volume �� of Lecture Notes in Computer Science�

pages ������ Springer	Verlag� October ����� Proceedings of the �th Interna	

tional Symposium� AAECC	�� with Vance Faber and Michael R� Fellows�

�� Small diameter symmetric networks from linear groups� IEEE Transactions

on Computers� ����������� ����� with Lowell Campbell� Gunnar E� Carlsson�

Vance Faber� Michael R� Fellows� Michael A� Langston� James W� Moore� An	

drew P� Mullhaupt� and Harlan B� Sexton�

�� Recent examples in the theory of partition graphs� Discrete Mathematics�

��������� ����� with Duane W� DeTemple� Kevin L� McAvaney� and Jack M�

Robertson�

�� A characterization of graphs with vertex cover up to �ve� In V� Bouchitte and

M� Morvan� editors� Orders� Algorithms and Applications� ORDAL��� volume

��� of Lecture Notes in Computer Science� pages ������ Springer	Verlag� July

����� with Kevin Cattell�

� New results for the degree�diameter problem� Networks� ���������� October

����� with Paul R� Hafner�

�� Obstructions to within a few vertices or edges of acyclic� In Proceedings of the

Fourth Workshop on Algorithms and Data Structures� WADS���� volume ��

of Lecture Notes in Computer Science� pages ������� Springer	Verlag� August

���� with Kevin Cattell and Michael R� Fellows�

�� A computational attack on the conjectures of Gra�ti� New counterexamples

and proofs� Discrete Mathematics� In press �accepted ������ with Tony L�

Brewster and Vance Faber�

�� A simple linear	time algorithm for �nding path	decompositions of small width�

Accepted Information Processing Letters� with Kevin Cattell and Michael R�

Fellows�


