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Abstract

Finite obstruction set characterizations for lower ideals in the minor order are guaranteed to
exist by the graph minor theorem. In this paper we characterize several families of graphs with
small feedback sets, namely k1-FEEDBACK VERTEX SET, k2-FEEDBACK EDGE SET and (k1; k2)-
FEEDBACK VERTEX=EDGE SET, for small integer parameters k1 and k2. Our constructive methods
can compute obstruction sets for any minor-closed family of graphs, provided the pathwidth (or
treewidth) of the largest obstruction is known. c© 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

One of the most famous results in graph theory is the characterization of planar
graphs due to Kuratowski: a graph is planar if and only if it does not contain either
of K3;3 or K5 as a minor. The obstruction set (set of forbidden minors) for planarity
thus consists of these two graphs.
The celebrated Graph Minor Theorem (GMT) of Robertson and Seymour [33] has

the consequence of establishing non-constructively that many natural graph properties
have Kuratowski-type characterizations; that is, they can be characterized by �nite
obstruction sets in an appropriate partial order. By ‘non-constructively’ we mean that
the GMT may allow one to conclude that a �nite obstruction set exists for a particular
graph property, without providing any information on how it might be computed.
Fellows and Langston [16] showed that, in principle, there is a systematic method

of computing the obstructions sets for most natural properties (although there are a
few examples in topological graph theory for which their methods are not known to
apply). The main elements of their approach include: (1) the use of bounded pathwidth
or treewidth search spaces, (2) the use of �nite-index congruences on boundaried graphs
based on test sets, and (3) a partial order that allows for the termination of the search to
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be established. In this paper we build upon and develop these earlier results. The central
question addressed by our paper is: how can this general approach be implemented in
a practical manner?
On the basis of an extensive implementation of a general obstruction set theorem-

prover (consisting of over several thousand lines of C++ code), based on the general
theory described in this paper, we report on the successful computation of the obstruc-
tion sets for some simple but non-trivial properties having obstruction sets of feasible
size. The particular obstruction sets that we identify are of less interest in themselves
than as a case study in the details of this kind of computation.
There are several general points of reference that form the context of our work:

(1) The practicality of bounded treewidth and pathwidth algorithmics is an impor-
tant unresolved question.

Although there have been numerous papers concerning linear-time algorithms for var-
ious graph properties (including those that we address in this paper) based on bounded
treewidth and pathwidth techniques, there has been a notable lack of practical imple-
mentation of these approaches (see, for example, [1,4,6,12]). The reason for this is that
the linear-time complexity results hide large constants from several di�erent sources in
the asymptotic analysis. In order to successfully compute obstruction sets, we must deal
with some of the same kinds of practical problems that arise in implementing general
bounded treewidth- and pathwidth-based algorithms. Indeed, signi�cant parts of our
implementation could be used in the implementation of ‘direct’ linear-time recognition
algorithms for the properties considered. Our results represent one of the few success-
ful implementations of any kind of bounded treewidth or pathwidth algorithmics, as
opposed to purely theoretical asymptotic linear-time ‘results’.

(2) Obstruction sets are frequently enormously large.

While the GMT insures that many interesting graph properties have �nite obstructions
sets, these seem to be disappointingly huge in many cases.

Example I: The number of obstructions for planarity (genus 0) is two (by Kuratowski’s
Theorem [25]) in the minor order. The number of obstructions for embedding in the
projective plane is 35 [19]. The number of obstructions for torus embedding is at least
900 [32], and is expertly estimated to be around 2500 [21]. A not unreasonable guess
for the number of obstructions for genus 2 embedding would be ninety billion.

Example II: The number of obstructions for pathwidth 1 is two [2]. The number of
obstructions for pathwidth 2 is 110 [24]. The number of obstructions for pathwidth 3
is at least 60 000 000 [23].

These numbers indicate that while we may one day succeed in identifying the ob-
struction set for the torus (on which a considerable amount of e�ort has already been
expended [14,32,34]), the genus 2 obstruction set may well remain beyond reach and
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beyond any possible interest (although see point (4) below). Our work in implementing
a general obstruction set theorem-prover has been guided by the following philosophical
conjecture concerning this approach.

The Obstruction Set Mechanization Conjecture: For natural graph properties that are
characterized by obstruction sets of feasible size, we should eventually be able to
compute these obstruction sets mechanically.

Note that if this conjecture is correct it would be quite interesting, as it would
lead to the automation (or at least partial automation) of an important area of
classical graph theory. The particular case of the obstructions to torus embedding
is an especially appealing target, where the results of this paper are intended to
contribute techniques and experience in handling some of the sources of large
constants.

(3) Obstruction sets are occasionally useful in the theory of graphs.

We do not know presently of any reason why the particular obstruction sets that
we report in this paper probably are of interest in themselves, although clearly the
property of having a bounded-size FEEDBACK VERTEX SET or FEEDBACK EDGE SET arises
in some contexts and applications (see [17,28,29]). However, a general case can be
made that natural obstruction sets are worth identifying whenever they have feasible
size (i.e., whenever they can be known) because they sometimes turn out to be useful
in proving various theorems. The following is one example of such a use of obstruction
set information.

Example III: Negami formulated the beautiful and unresolved conjecture that a graph
has a �nite planar cover if and only if it embeds in the projective plane [30,31].
Arguments by Archdeacon and Negami [3] established that if there is a counterexample,
then there must be a counterexample among the 35 obstructions to embedding in the
projective plane [19]. A case analysis of the obstruction set, including one case settled
only recently in [20], shows that the only possible counterexample to the (still open)
conjecture is K1;2;2;2.

The proof of the Four Color Theorem is another example of an argument based on
considering the elements of a di�erent kind of obstruction set.

(4) Obstruction sets may be useful in the design of heuristic algorithms.

For some properties that have large obstruction sets, and for some input
distributions, almost all of the useful information from an algorithmic point of
view may be concentrated in just a few of the obstructions. Thus, knowing ob-
struction sets can be useful in the design of heuristic and approximation algorithms of
certain kinds.
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Example IV: The PATHWIDTH problem has been considered in VLSI design under the
rubric of GATE MATRIX LAYOUT. Langston and Ramachandramurthi showed in [27] that
even though there are 110 obstructions for GATE MATRIX LAYOUT width 3 (which is
equivalent to PATHWIDTH 2), almost all of the useful information for the graphs arising
from actual electronic circuits was concentrated in the single obstruction K4. This
allows for a particularly fast and simple heuristic algorithm for the property based on
this ‘approximate’ obstruction set.

Revisiting (2), this kind of approach may mean that partial knowledge of huge
obstruction sets may still be useful in algorithm design for some graph properties. A
random sampling of the leaves of the search trees described in Section 3 may be one
means of computing such an e�ective sample.
This paper is organized as follows. The next section formally introduces our graph

families based on feedback sets. Section 3 presents our general computation theory
for computing obstruction sets within the minor order. The last three sections contain
our main family-speci�c results: Section 4 addresses the feedback vertex set families,
Section 5 covers the feedback edge set families, and Section 6 investigates the feedback
vertex=edge set families.

2. Preliminaries

We begin with some standard de�nitions and notations. For two graphs G and H , H
is a minor of G (denoted by H6m G) if and only if a graph isomorphic to H can be
obtained from G by a sequence of operations chosen from: (1) taking a subgraph, and
(2) contracting an edge. This operation de�nes the minor order on graphs. A family
of graphs F is a lower ideal with respect to 6m if for all graphs G and H , the
conditions (1) H6m G and (2) G ∈ F imply H ∈F. The obstruction set O(F) for
F with respect to 6m is the set of minimal elements of the complement of F. This
characterizes F in the sense that G ∈ F if and only if it is not the case that for
some H ∈ O(F), H6m G. The motivation for our research is the consequence of the
following Graph Minor Theorem (GMT), formerly known as Wagner’s Conjecture, by
Robertson and Seymour.

Theorem 1 (GMT). The minor order; 6m; is a well-partial order.

This theorem guarantees that O(F) is �nite for any minor-order lower ideal F.

2.1. Graphs with small feedback sets

In this paper we characterize by obstructions two main types (and a third hybrid
type) of simple graph families. The �rst family consists of those graphs for which all
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cycles can be covered with a small set of vertices. The second family consists of those
graphs for which all cycles can be covered with a small set of edges. We also study
a generalized variety of these two graph families. In this later case cycles are covered
by a small number of both vertices and edges.
Graphs with small feedback sets are desirable for many reasons. One speci�c appli-

cation deals with the task of minimizing costs in the construction of broadcast-display
networks. For this particular model we have two types of nodes and two types of con-
necting lines. Each node can display and broadcast messages. The less expensive nodes
have simple hardware that simply receives, displays and sends messages to neighbor-
ing nodes. The more expensive nodes can also detect whether an incoming message
is currently being displayed and when not to rebroadcast it. Likewise, the expensive
communication lines can sense and censor what is transmitted (by using some type of
message bu�er). In this model any node can originate a message. Once the message has
been 
ooded and displayed, further broadcasts of the message should cease. By desig-
nating a small subset (i.e., a feedback set) of the nodes or edges as smart (expensive)
hardware the broadcasting will terminate automatically. (We assume that all nodes do
not resend a message back along its incoming message line.) Thus minimizing the size
of these feedback sets within the network is important.
These graph families are based on the following two well-known problems

(see [18,9]).

Problem 2 (Feedback Vertex Set(FVS)).
Input: A graph G = (V; E) and a non-negative integer k6|V |.
Question: Is there a subset V ′ ⊆V with |V ′|6k such that V ′ contains at least one

vertex from every cycle in G?

A set V ′ in the above problem is called a feedback vertex set for the graph G.
The family of graphs that have a feedback vertex set of size at most k is denoted by
k-FEEDBACK VERTEX SET. It is easy to verify that for each �xed k the set of graphs in
k-FEEDBACK VERTEX SET is a lower ideal in the minor order. For a given graph G, let
FVS(G) denote the least k such that G has a feedback vertex set of cardinality k. Our
second problem of interest is now stated.

Problem 3 (Feedback Edge Set (FES)).
Input: A graph G = (V; E) and a non-negative integer k6|E|.
Question: Is there a subset E′ ⊆E with |E′|6k such that G\E′ is acyclic?

The edge set E′ is a feedback edge set. Also, for a given graph G, let FES(G)
denote the least k such that G has a feedback edge set of cardinality k, and the family
k-FEEDBACK EDGE SET={G |FES(G)6k}.
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Fig. 1. The (k1; k2)-FEEDBACK VERTEX=EDGE SET family containment diagram.

Example 4. Displayed below is a graph in the 2-FEEDBACK VERTEX SET family. Notice
that when the two black vertices are removed from the example, the graph becomes
acyclic (a forest).

The reader should note that the graph in the previous example requires 6 edges in any
feedback edge set and thus it is a member of 6-FEEDBACK EDGE SET.
We now de�ne a third problem based on the above two feedback set problems,

where we keep both vertex and edge integer parameters.

Problem 5 (Feedback Vertex=Edge Set (FVES)).
Input: A graph G = (V; E) and two non-negative integers k16|V | and k26|E|.
Question: Is there a subset V ′ ⊆V with |V ′|6k1 and a subset E′ ⊆E with |E′|6k2

such that (G\E′)\V ′ is acyclic?

For �xed integer parameters k1 and k2, the graphs that satisfy Problem 5 are members
of the feedback set family (k1; k2)-FEEDBACK VERTEX=EDGE SET. For instance, the graph
in Example 4 is a member of (1; 3)-FEEDBACK VERTEX=EDGE SET. Fig. 1 shows the
set-inclusion relationships between various (k1; k2)-FEEDBACK VERTEX=EDGE SET graph
families. This diagram illustrates, via the horizontal arrow, that it is easier to cover
a graph’s cycles with vertices as opposed to edges. Note that we have the following
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family equivalences:

k1-FEEDBACK VERTEX SET= (k1; 0)-FEEDBACK VERTEX=EDGE SET;

k2-FEEDBACK EDGE SET= (0; k2)-FEEDBACK VERTEX=EDGE SET:

2.2. Membership algorithms for the feedback set problems

We now discuss what is known about the computational complexity of solving the
various feedback set problems.
It is well-known that the general feedback vertex set problem (Problem 2, where

k is part of the input) is NP-complete [18]. However, for many families of graphs
the optimization problem of �nding the minimum size k for a feedback vertex set
can be done in polynomial time. For example, an O(n4) algorithm is given in [11]
for the feedback vertex set problem on co-comparability graphs, which is a superclass
of permutation graphs. Among many other known NP-complete problems, Problem 2
can be solved in linear-time for graphs of bounded treewidth (or pathwidth) [1,5]. Later
in Section 4.1 we present a linear-time algorithm for the case of graphs of bounded
pathwidth. We use a �nite-state version of this algorithm to compute the obstruction
set for k-FEEDBACK VERTEX SET.
It is also known that the general feedback edge set problem (Problem 3) is in the

polynomial-time solvable class P. In fact, by a simple formula, given in Section 5.1,
we can compute in linear time the minimum size k for a feedback edge set of any
graph.
If k is �xed then Problem 2 can be solved in polynomial time by a standard

brute-force algorithm. Membership testing is done by checking whether any subset
of vertices (or edges) of size k is a feedback set. That is, for �xed k, this brute-force
algorithm runs in ( nk ) · n=O(nk+1) time, where n equals the number of vertices of the in-
put graph. There exists a more practical membership algorithm that runs in O((2k)kn2)
time. This algorithm by Fellows and Downey (see [15]) is based on (1) a quick algo-
rithm by Itai and Rodeh in [22] for �nding short cycles and (2) the fact that a graph
G of minimum degree three with girth at least 2k is not in k-FEEDBACK VERTEX SET.
Also because these graphs have bounded treewidth there exists a theoretically known
(but possibly not practical) linear-time membership algorithm since the family is closed
under taking minors [5] (or, alternatively, since the family is expressible in monadic
second-order logic [12]).
There are two families of optimization problems related to the generalized feedback

set problem (Problem 5). If either k1 or k2 is �xed, the problem is to minimize the
other parameter for any input graph. The �rst class of problems is tractable (in the com-
plexity class P) and the second class is intractable (i.e., NP-complete). For checking
graph membership in (k1; k2)-FEEDBACK VERTEX=EDGE SET we have one polynomial-time
membership algorithm. This algorithm runs in O(nk1+k2+1) time by checking all subsets
of vertices and edges of size at most k1 and k2, respectively; note the input graph may
have fewer than k1 vertices or k2 edges. (Since this family is of bounded treewidth
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for �xed k1 and k2, there also exists a theoretically optimal linear-time membership
algorithm.)

2.3. Graphs with bounded width

Before presenting our theory for computing minor-order obstructions, we formally
de�ne the concept of graphs of bounded (combinatorial) width. Our search theory for
�nding obstructions is based upon two types of widths. The �rst classi�es those graphs
with a narrow path-like structure.

De�nition 6. A path decomposition of a graph G=(V; E) is a sequence P=X1; X2; : : : ; Xr
of subsets of V that satisfy the following conditions:

(1)
⋃
16i6r Xi = V .

(2) For every edge (u; v) ∈ E, there exists an Xi, 16i6r, such that u ∈ Xi and v ∈ Xi.
(3) For 16i¡ j¡k6r, Xi ∩ Xk ⊆Xj.
The width of a path decomposition X1; X2; : : : ; Xr is max16i6r |Xi| − 1. The pathwidth
of a graph G is the minimum pathwidth over all path decompositions of G. The family
of graphs that have pathwidth at most k is denoted by k-PATHWIDTH.

The second width metric, which is more popular in the literature, classi�es those
graphs with a narrow tree-like structure.

De�nition 7. A tree decomposition of a graph G = (V; E) is a tree T together with a
collection of subsets Tx of V indexed by the vertices x of T that satis�es:

(1)
⋃
x∈T Tx = V .

(2) For every edge (u; v) of G there is some x such that u ∈ Tx and v ∈ Tx.
(3) If y is a vertex on the unique path in T from x to z then Tx ∩ Tz ⊆Ty.
The width of a tree decomposition is the maximum value of |Tx| − 1 over all vertices
x of the tree T . A graph G has treewidth at most k if there is a tree decomposition of
G of width at most k. The family of graphs that have treewidth at most k is denoted
by k-TREEWIDTH.

3. E�ciently computing obstructions

In this section we present a general theory for computing minor-order obstructions
when we have the following two ingredients: (1) a pathwidth or treewidth bound on
the obstructions, and (2) a family congruence for the family.
Our current theory has evolved from the seminal work presented in [16], where the

underlying theory uses the GMT to prove termination of a �nite-state search procedure.
The results in [26] can be used to prove termination without the GMT. The application
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of these results for the computation of any particular obstruction set requires additional
problem-speci�c results. These results are non-trivial, but seem to be generally available
(in one form or another) for virtually every natural minor-closed family of graphs. We
contribute to the feasible aspects of computing obstruction sets.
The basic theory of �nite-state obstruction-set computations is applied to a particular

lower ideal F as follows. First, the search space is framed by some type of lemma
(speci�c to F and of variable di�culty to prove in a su�ciently tight form) that
establishes a bound on the maximum pathwidth or treewidth of the graphs in O(F).
Once the search space has been limited to graphs of a speci�c pathwidth or treewidth
bound, we organize the search space algebraically. This is accomplished by describing
a �nite set of graph-building operators � such that every graph in the search space is
represented by a string in �∗ Associated to F we de�ne a partial order 6 on �∗ such
that: (1) 6 is compatible with concatenation within �∗, (2) 6 has a �nite number
of minimal elements, and (3) from the minimal elements of �∗ with respect to 6
we can recover the obstruction set for F. In order to implement the search we em-
ploy problem-speci�c algorithms that determine 6 minimality, and decide membership
in F.
The text that follows is a brief but complete description of our search theory. The

interested reader should read [13] for further details regarding the actual computer
implementation, which includes many e�ciency improvements omitted from this paper.
We search for obstructions within the set of graphs of bounded pathwidth (or

bounded treewidth). We now describe an algebraic representation for these graphs
of bounded width.

De�nition 8. A t-boundaried graph G = (V; E; @; f) is an ordinary graph G = (V; E)
together with (1) a distinguished subset of the vertex set @⊆V of cardinality t, the
boundary of G, and (2) a bijection f : @ → {0; 1; 2; : : : ; t − 1}. A boundaried graph
G = (V; E; @; f) is an ordinary graph G = (V; E) together with a boundary @⊆V and
labeling injection f : @→ {0; 1; 2; : : :}.

The graphs of pathwidth at most t are generated exactly by strings of (unary) oper-
ators from the following operator set �t = Vt ∪ Et :

Vt = { 0©; : : : ; t©} and Et = { ij | 06i¡ j6t}:

To generate the graphs of treewidth at most t, an additional (binary) operator ⊕, called
circle plus, is added to �t . The semantics of these operators on boundaried graphs G
and H of boundary size at most t + 1 are as follows:

G i© Add an isolated vertex to the graph G, and label it as the new boundary
vertex i.

G ij Add an edge between boundary vertices i and j of G (ignore if operation causes
a multi-edge).
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G ⊕ H Take the disjoint union of G and H except that equal- labeled boundary
vertices of G and H are identi�ed.

It is syntactically incorrect to use the operator ij without being preceded by both i©
and j©, and the operator ⊕ must be applied to graphs with the same boundary @. A
graph described by a string (tree, if ⊕ is used) of these operators is called a t-parse,
and has an implicit labeled boundary @ of at most t + 1 vertices. By convention,
a t-parse always begins with the operator string [ 0©; 1©; : : : ; t©] which represents the
edgeless graph of order t + 1. Throughout this paper, we refer to a t-parse and the
graph it represents interchangeably.

Example 9. A 2-parse and the graph it represents; the shaded vertices denote the �nal
boundary @.

For ease of discussion throughout the remaining part of this paper, we limit ourselves
to bounded pathwidth in the obstruction set search theory and only point out places
where any di�culty may occur with a bounded treewidth search.

De�nition 10. Let G = (g1; g2; : : : ; gn) be a t-parse and Z = (z1; z2; : : : ; zm) be any
sequence of operators over �t . The concatenation (·) of G and Z is de�ned as

G · Z = (g1; g2; : : : ; gn; z1; z2; : : : ; zm):
The t-parse G ·Z is called an extended t-parse, and Z ∈�∗

t is called an extension. (For
the treewidth case, G and Z are viewed as two connected subtree factors of a parse
tree G · Z instead of two parts of a sequence of operators.)

The following sequence of de�nitions and results forms our theoretical basis for
computing minor-order obstruction sets.

De�nition 11. Let G be a t-parse. A t-parse H is a @-minor of G, denoted H6@m G,
if H is a combinatorial minor of G such that no boundary vertices of G are deleted
by the minor operations, and the boundary vertices of H are the same as the boundary
vertices of G.
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De�nition 12. Let G be a t-parse. A t-parse H is a one-step @-minor of G if H
is obtained from G by a single @-minor operation (one non-boundary isolated vertex
deletion, one edge deletion, or one non-boundary-boundary edge contraction).

Both the family of graphs of pathwidth at most k, k-PATHWIDTH and the family of
graphs of treewidth at most k, k-TREEWIDTH are lower ideals in the minor order. Thus
any @-minor H of a t-parse G can be represented as a t-parse. Our minor-order algo-
rithms actually operate on the t-parses directly, bypassing any unnecessary conversion
to and from the standard graph representations.

De�nition 13. Let F be a �xed graph family and let G and H be t-parses. We say
G and H are F-congruent (written G ∼F H) if for every extension Z ∈ �∗

t ,

G · Z ∈ F ⇔ H · Z ∈ F:

If G is not congruent to H , denoted by G �F H , then we say G is distinguished from
H (by Z), and Z is a distinguisher for G and H . Otherwise, G and H agree on Z .
The congruence ∼F is called the canonical congruence for F (of width t).

De�nition 14. A set T ⊆�∗
t is a testset if G �F H implies there exists Z ∈T that

distinguishes G and H .

In the more familiar and general setting of t-boundaried graphs (using an analogue
of the Myhill–Nerode Theorem [16]), a testset T may be considered to be a subset of
t-boundaried graphs where concatenation (·) is replaced solely by circle plus ⊕. It is
all right for the pathwidth of G⊕T to be greater than the pathwidth of the t-boundaried
graph G that is being tested. As we will see later, a testset is only useful for �nding
obstruction sets if it has �nite cardinality.

De�nition 15. A t-parse G is non-minimal if G has a proper @-minor H such that
G∼F H . Otherwise, we say G is minimal. A t-parse G is a boundary obstruction if
G is minimal and G 6∈ F. The set of all boundary obstructions for F is denoted
O@(F).

In general, if a family F is a minor-order lower ideal and G is minimal with respect
to F, then for each proper @-minor H of G, there exists an extension Z such that

G · Z 6∈ F and H · Z ∈ F:

That is, there exists a distinguisher for each proper @-minor H of G.
The obstruction set O(F) for a family F is obtainable from the boundary obstruc-

tion set O@(F), that is the set of boundaried graphs (t-parse s) that are boundary
obstructions. This is achieved by contracting (possibly zero) edges on the boundaries
of O@(F), whenever the search space of width @ − 1 is large enough. In our search
for O@(F), we must prove that each t-parse generated is minimal or non-minimal. The
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following two results substantially reduce the computation time required to determine
these proofs.

Lemma 16. A t-parse G is minimal if and only if G is distinguished from each
one-step @-minor of G. Or equivalently; G is non-minimal if and only if G is
F-congruent to a one-step @-minor.

Proof: We prove the second statement. Let G be non-minimal and suppose there exists
two distinct proper @-minors K and H of G such that K6@m H and K ∼F G. It is
su�cient to show H ∼F G.
For any extension Z ∈ �∗

t , if G · Z ∈ F then H · Z ∈ F since H · Z6@m G · Z and
F is a @-minor lower ideal. Now let Z be any extension such that G · Z 6∈ F. Since
K ∼F G, we have K · Z 6∈ F. And since K · Z6@m H · Z , we also have H · Z 6∈ F.
Therefore, G is F-congruent to H .

Lemma 17 (Pre�x lemma). If Gn=[g1; g2; : : : ; gn] is a minimal t-parse then any pre�x
t-parse Gm = [g1; g2; : : : ; gm]; m¡n; is also minimal.

Proof: Assume Gn is non-minimal. It su�ces to show that any extension of Gn is
non-minimal. Let H be a one-step @-minor of Gn such that for every Z ∈ �∗

t ,

Gn ·Z ∈ F ⇔ H ·Z ∈ F:

Let gn+1 ∈ �t and Gn+1 =Gn · gn+1. Now H ′ =H · gn+1 is a one-step @-minor of Gn+1
such that for all Z ∈ �∗

t ,

Gn+1 ·Z = Gn · (gn+1 ·Z) ∈ F ⇔ H ′ = H · (gn+1 ·Z) ∈ F:

Thus, any extension of Gn is non-minimal.

The above two lemmata also hold when the circle plus operator ⊕ is included
in �t . For illustration consider the Pre�x lemma: If G is a non-minimal t-parse with a
F-congruent proper minor G′, and Z is any t-parse, then (G ⊕ Z)′ is a F-congruent
minor of a non-minimal G ⊕ Z , where we use the prime symbol to denote the cor-
responding minor operation done to the G part of G ⊕ Z . (The awkward notation is
needed since G′ ⊕ Z may equal G⊕ Z when common boundary edges exist in both G
and Z .)
The Pre�x lemma implies that every minimal t-parse is obtainable by extending

some minimal t-parse, providing a �nite tree structure for the search space. In other
words, the search tree may be pruned whenever a non-minimal t-parse is found. See
Fig. 2 for an illustration of this search process. Since most (t + 1)-boundaried graphs
have many t-parse representations, we can further reduce the size of the search tree by
enforcing a canonical structure on the t-parses considered. That is, we want to generate
just one isomorphic copy of each underlying boundaried graph. To do this we have to
ensure that every pre�x of every canonic boundary obstruction (a minimal leaf of the
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Fig. 2. A typical t-parse search tree (each edge denotes one operator).

search tree) is also canonic (see [13]). This reduces the out-degree of every node in
the search tree to sometimes less than |�t | (and sometimes 0).
We currently use the four techniques given in Fig. 3 to prove that a t-parse in

the search tree is minimal or non-minimal. They are listed in the order that they
are attempted; if one succeeds, the remainder do not need to be performed. The �rst
three of these may not succeed, though the fourth method always will. However, if
we are fortunate to have a minimal �nite-state congruence (i.e., not a re�nement of
the minimum automaton for ∼F) in step 2 of Fig. 3 then we can stop at that step
since distinct �nal states (equivalence classes) imply the existence of an extension to
distinguish the two states (and their t-parse representatives). An example of such a
minimal �nite-state congruence was used in our k-VERTEX COVER characterizations [7].

4. Graphs with small feedback vertex sets

We now focus on two problem-speci�c details for �nding the k-FEEDBACK VERTEX
SET obstruction sets: a �nite-index congruence and a complete testset (i.e., steps 2
and 4 of Fig. 3). We �rst present a practical, linear time algorithm for the feedback
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Fig. 3. Determining if a t-parse is minimal or non-minimal.

vertex set problem on graphs of bounded pathwidth=treewidth in t-parse form. This
general-purpose algorithm is altered to act as a �nite-index congruence, that is a re-
�nement of the canonical congruence. We then show how to produce testsets for the
graph families k-FEEDBACK VERTEX SET, k¿0, with respect to any boundary size t.

4.1. A �nite state algorithm (for FVS)

Throughout the following discussion the boundary size (and width) of a t-parse is
�xed. Recall that the current set of boundary vertices of a t-parse is denoted by the @
symbol. For any subset S of the boundary @, we de�ne the following for all pre�xes
Gm of Gn, m6n.

Fm(S) =



The least k such that there is a feedback vertex set V ′ of
Gm with V ′ ∩ @= S and |V ′|= k; otherwise ∞ whenever
(Gm ∩ @)\S contains a cycle:

Any feedback vertex set V ′, consisting of Fm(S) vertices of Gm, is called a witness
set with respect to S if V ′∩@=S. Associated with V ′ is a witness forest consisting of
the trees (or topological equivalent trees as described below) containing at least one
boundary vertex in Gm\V ′. A witness forest tells us how tight the boundary vertices
are held together. Some of these forests are more concise than others for representing
how vertex deletions can break up the boundary.
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For two witness forests A and B, with respect to Fm(S), we say A6w B if the
following two conditions hold:

(1) For any two boundary vertices i and j, i and j are connected in A if and only if
i and j are connected in B.

(2) If for any t-parse extension Z where there exists some non-boundary vertex b of
B such that (B\{b}) · Z is acyclic then there exists a non-boundary vertex a of A
such that (A\{a}) · Z is acyclic.

Also two witness forests A and B are (topological) equivalent, A ≡w B, if A6w B
and B6w A. Any witness forest with a minimal (not necessarily minimum) number of
vertices (within its ≡w equivalence class) is called a park. The next lemma provides
a way of cleaning up a forest to yield a park.

Lemma 18. A witness forest W of Gm may be reduced to a park as follows:
(a) all leafs (end vertices) not on the boundary may be pruned; and
(b) any non-boundary vertex v of degree two may have an incident edge contracted

if the neighborhood N (v) 6⊆ @.

Proof: See [10].

There may exist alternative witness forests that preserve minimum-sized feedback
vertex sets for all extensions of Gm. A witness forest W is considered to be a park if
the above lemma cannot be applied to W .

Lemma 19. There are at most 3t–3 vertices in any park for boundary size t.

Proof: First we consider the degree two non-boundary vertices. For such a vertex v,
each of its neighbors must be a boundary vertex. After viewing v and its two incident
edges as a single edge between two boundary vertices, we see that at most t − 1 such
vertices can occur. Otherwise, a cycle would exist on the boundary.
Now we consider the remaining non-boundary vertices. Let p be the number of such

vertices and e be the edge size of the subpark. Using the fact that the size of a forest
must be strictly less than the order, we have e¡ t + p. Since the sum of the vertex
degrees is twice the size, we also have t + 3p62 · e. Combining these inequalities
while solving for p we get

t + 3p
2

6e6t + p− 1 or p6t − 2:

Summing up the boundary (t), the degree two vertices (t− 1), and the degree three
or more vertices (t − 2), shows that the order of any park can be at most 3t − 3.

Corollary 20. There is a �nite number of parks with boundary size t.
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Proof: Since we have a bound on the number of vertices for a park, we can ap-
ply Cayley’s Tree Formula (i.e., by counting the number of labeled trees=forests) to
get a bound on the total number of distinct parks. There are nn−2 labeled trees of
order n.

The results of the previous lemma and its corollary may be strengthened. See, for
example, the closely related Lemma 24. However, these bounds are su�cient for our
purposes — to show that there is a manageable (constant) number of parks (i.e., our
algorithm can be used as a �nite-index congruence).
For each subset S (with complement �S = @\S) of the set of boundary vertices our

algorithm keeps track of the related parks in the following sets.

Pm(S) = {P |P is a park of Gm with leaves and branches over �S}:
Now we �nally present a linear time dynamic-programming algorithm for the feed-
back vertex set problem which is used as our �nite congruence for t-parses. This
general-purpose algorithm has the same structure as our vertex cover algorithm given
in [7], indicating a standard approach for developing such algorithms. The one-pass
algorithm simply makes a transition from one state to another for each operator of a
t-parse Gn = [ 0©; : : : ; t©; gt+1; : : : ; gn]. Thus, after all the parks {Pm(S) | S ⊆ @} are de-
termined (for Gm), all the parks {Pi(S) | S ⊆ @} for i¡m6n are never referenced and
may be discarded.
Our algorithm, given in Fig. 4, starts by setting the sizes for the minimal feedback

vertex sets on Gm =Gt , the edgeless graph with t + 1 boundary vertices. This is done
for all S ⊆ @. There is only one park associated with Ft(S) at this stage, namely the
isolated forest with t + 1 − |S| vertices. We break up the dynamic step into cases
depending on what type of operator is at position m + 1 and the condition (selected
in S or not) of any a�ected boundary vertices of Gm or Gm+1. These transitions are
described in Cases 1–4 of Fig. 4. When the algorithm reaches the end of the t-parse,
it computes the minimum number of vertices needed in any feedback vertex set for
Gn by taking the least Fn(S).
For space reasons we leave out the rules required to update the sets of parks Pm(S)

throughout each iteration of step II of the feedback vertex set algorithm. This procedure
essentially entails extending the parks with the current operator and reducing them by
the rules given in Lemma 18. For example in Case 4 where question (b) is true, the
set of witness forests Pm+1(S) for Fm+1(S) becomes the set of witness forests Pm(S)
with the edge (i; j) added to each forest. If equality holds for the two Fm( )’s in
Cases 1 and 2 we combine park sets by simply taking the union of the two sets of
witness forests.

Example 21. Table 1 shows values of Fm(S) for the application of the feedback vertex
set algorithm to the 2-parse given in Example 9. As can been seen by examining
the graph in Example 9, a minimum feedback vertex set has cardinality 2, which
corresponds to the minimum value in the last column.
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Fig. 4. A general feedback vertex set algorithm for t-parses.

Theorem 22. For any t-parse Gn = [ 0©; : : : ; t©; gt+1; : : : ; gn]; the algorithm in Fig. 4
correctly computes FVS(Gn).

Proof: See [10].

The dynamic program, given in Fig. 4, for determining the feedback vertex set of a
pathwidth t-parse is easily modi�ed to handle treewidth t-parses. All that is needed is
to add a Case 5 in part II which takes care of the circle plus operator Gi ⊕ Gj. This
new case is a little messy since the states for the two subtree parses Gi and Gj need
to be interleaved. Brie
y stated, this is done by checking all combinations (unions) of
boundary subsets Si and Sj of Gi and Gj (resulting in a subset S of Gi⊕Gj) along with
checking which best parks from Gi can be glued together with the compatible parks
from Gj to form a set of parks for Gi ⊕Gj. If the glued parks create any cycles then
the value of F‘tree index’(S) needs to be increased to account for additional feedback
vertices.
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Table 1
Feedback vertex set state tables computed for Example 21

m 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
S gm – 01 12 1© 01 12 1© 01 12 0© 01 02 2© 02 12

∅ 0 0 0 0 0 1 1 1 2 1 1 ∞ 1 1 ∞
{0} 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
{1} 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2
{2} 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2
{0; 1} 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
{0; 2} 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3
{1; 2} 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3
{0; 1; 2} 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4

We can convert the above feedback vertex set algorithm to a �nite-index congru-
ence for k-FEEDBACK VERTEX SET. This is accomplished by restricting the values of
Fm(S) to be in {0; 1; : : : ; k; k + 1}; we are only interested in knowing whether or
not there exists a feedback vertex set of size at most k containing S. (The value
of k + 1 acts as the value ∞ in the congruence.) In our application for �nding the
k-FEEDBACK VERTEX SET obstruction sets, we actually use a congruence with slightly
fewer states than the one just described. The key idea to this improvement is notic-
ing that if a park P is a minor of a park P′ then only the representative P is
needed as a witness. We estimate that this allows us to prove approximately 5% more
t-parses non-minimal via the dynamic-programming congruence check. That is, for
certain instances we avoid our CPU-intensive testset proof method, which is described
next.

4.2. A complete testset (for FVS)

A �nite testset for the feedback vertex set canonical congruence ∼F is easy to
produce. The individual tests closely resemble the parks described above. The testset
that we use consists of forests augmented with isolated triangles (and=or triangles solely
attached to a single boundary vertex). Our k-FEEDBACK VERTEX SET testset Tkt consists
of all t-boundaried graphs that have the following properties:

(1) Each graph is a member of k-FEEDBACK VERTEX SET.
(2) Each graph is a forest with zero or more isolated triangles, K3’s.
(3) Every isolated triangle has at most one boundary vertex.
(4) Every degree one vertex is a boundary vertex (i.e., every tree component has at

least two boundary vertices).
(5) Every non-boundary degree two vertex is adjacent to two boundary vertices.
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Example 23. Some 3-boundaried tests (of T 13 ) for 1-FEEDBACK VERTEX SET are shown
below.

The above restrictions on members of Tkt gives an upper bound on the number of
vertices, as stated in the following lemma. Hence Tkt is a �nite testset.

Lemma 24. The number of vertices for any test T ∈ Tkt is at most 3k + 2t − 1.

Proof: See [10].

The above bound is tight since the test T consisting of k isolated triangles and t−1
interior degree two vertices, each adjacent to boundary vertex i and i+1, has 3k+2t−1
vertices (see, for example, the last test given in Example 23).
Since these k-FEEDBACK VERTEX SET testsets are based solely on t-boundaried

graphs, they are useful for both pathwidth and treewidth t-parse obstruction set
computations.

Theorem 25. The set of t-boundaried graphs Tkt is a complete testset for the graph
family k-FEEDBACK VERTEX SET.

Proof: Assume G and H are two t-boundaried graphs that are not F-congruent within
the family F = k-FEEDBACK VERTEX SET. Let Z be any t-boundaried graph that dis-
tinguishes G and H with G ⊕ Z ∈ F and H ⊕ Z 6∈F. We show how to build a
t-boundaried graph T ∈ Tkt from Z that also distinguishes G and H . Let W be a set of
k witness vertices such that (G⊕Z)\W is acyclic. From W , let WG=W ∩G, W@=W ∩@
and WZ =W ∩ Z . Take T ′ to be Z\W plus |WZ | isolated triangles, plus |W@| triangles
with each containing a single boundary vertex from W@. If T ′ contains any component
C 6' K3 without boundary vertices, replace it with FVS(C) isolated triangles. Clearly,
G ⊕ T ′ ∈ F since WG plus one vertex from each of the non-boundary isolated trian-
gles of T ′ is a witness set of k vertices. If H ⊕ T ′ ∈ F then this contradicts the fact
that H ⊕ Z 6∈ F by using a witness set containing WZ , W@ and the interior witness
vertices of H (with respect to H⊕T ′). Finally, we construct a distinguisher T ∈ Tkt by
minimizing T ′ (using the reducing operations of Lemma 18) to satisfy the 5 properties
listed above. (Note that the extension T is created by not eliminating any cycles in the
extension T ′.)
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For the graph family 1-FEEDBACK VERTEX SET on boundary size 4, the above testset
consists of only 546 tests. However, for 2-FEEDBACK VERTEX SET on boundary size 5,
the above testset contains 14 686 tests. As can be seen by the increase in the number
of tests, a more compact feedback vertex set testset would be needed (if possible)
before we attempt to work with boundary sizes larger than 5. The large number of
tests (especially T 25 ) for the feedback vertex set families indicates why using the testset
step to prove t-parses minimal or non-minimal is the most CPU-intensive part of our
obstruction set search (and is why this is attempted last).

4.3. The k-FEEDBACK VERTEX SET obstructions

Our search for the 1-FEEDBACK VERTEX SET and 2-FEEDBACK VERTEX SET obstructions
is now presented. As mentioned in Section 3, we need some type of lemma that bounds
the search space. The following well-known treewidth bound can be found in [35] along
with other introductory information concerning the minor order and obstruction sets.
We provide a proof in order to suggest how generous the bound is for the k-FEEDBACK
VERTEX SET obstructions, which is a very small subset of the (k+1)-FEEDBACK VERTEX
SET family.

Lemma 26. A graph in k-FEEDBACK VERTEX SET has treewidth at most k + 1.

Proof: Let G = (V; E) be a member of k-FEEDBACK VERTEX SET and V ′ ⊆V be a set
of k witness vertices such that G′ = G\V ′ is acyclic. The remaining forest G′ has a
tree decomposition T of width 1. The tree decomposition T ′ consisting of the vertex
sets of T = {Tx} augmented as T ′

x = Tx ∪ V ′ is a tree decomposition for G of width
k + 1.

Corollary 27. An obstruction for k-FEEDBACK VERTEX SET has treewidth at most k+2.

Proof: Let G be an obstruction and v any vertex of G. By de�nition of being a proper
minor of an obstruction, G′ = G\{v} is a member of k-FEEDBACK VERTEX SET. Since
G′ has a tree decomposition T of width at most k + 1, we can add the vertex v to
each vertex set of T , yielding a tree decomposition of width at most k + 2 for G.

For the graph family 2-FEEDBACK VERTEX SET we can derive a stronger statement.

Theorem 28. If G is an obstruction to 2-FEEDBACK VERTEX SET then the pathwidth of
G is at most 4.

Poof: For any obstruction G we use the following two properties:

(1) For any edge (u; v), G\{(u; v)} is in 2-FEEDBACK VERTEX SET with some feedback
set {x; y} such that {u; v} ∩ {x; y}= ∅.
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Fig. 5. Forbidden substructure within the 2-PATHWIDTH obstructions.

(2) The obstruction G does not contain any vertices of degree 1, and for any vertex
u of degree 2 there is an edge between the neighbors of u.

If any obstruction did not satisfy the �rst property then {x; y} would also be a feedback
vertex set for G, which we know has to have cardinality three. If any obstruction did
not satisfy the second property then we could �nd a single edge-contracted minor G′

such that FVS(G′) = FVS(G).
Property 1 implies that there exist two vertices x and y such that G′ = G\{x; y}

has exactly one cycle. If G′ has pathwidth at most 2 then G has pathwidth at most 4.
If G′ has pathwidth more than 2 then it must contain at least one of the pathwidth 2
obstructions as a minor. In particular, any such obstruction for 2-PATHWIDTH must also
be a member of 1-FEEDBACK EDGE SET. All of the 23 possible forbidden minors with
one cycle, given in [24], have at least three pendant paths of length 2, i.e., three legs
of the spider graph S(K1;3), attached to the single cycle (S(K1;3) is K1;3 with each
edge subdivided).
Property 2 is applied as follows. By considering incident edges from vertices x and

y to G′, we know that G must have: (a) three disjoint cycles or (b) one cycle and
a disjoint mini-clover (see Fig. 5) as proper minors. But this means for (a) that G
is properly above the 2-FEEDBACK VERTEX SET obstruction 3K3 and for (b) Property 1
cannot hold for the stem edge (u; v) of the mini-clover.
Thus for any obstruction G there exists two vertices x and y such that G′=G\{x; y}

has pathwidth at most 2. This fact implies that G has pathwidth at most 4.

Besides the single obstruction K3 for the trivial family 0-FEEDBACK VERTEX SET, the
connected obstructions for 1-FEEDBACK VERTEX SET and the connected obstructions for
2-FEEDBACK VERTEX SET are shown in Figs. 8 and 9. The two connected obstructions
for 1-FEEDBACK VERTEX SET were found in about 3 h of accumulated CPU time when
combining 4 worker processes, a database manager process, and a dispatcher process
running concurrently. Our pathwidth 4 search for 2-FEEDBACK VERTEX SET consumed
over 40 thousand hours of CPU time running for about three months in duration while
averaging 20 workers (initially with a collection of 15–30 SUN Sparcs, and later
including a few IBM 6000s and two Cray Y-MPs).
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Table 2
Summary of our 2-FEEDBACK VERTEX SET obstruction set computation

Pathwidth Four Pre�xes Boundaried Minimal Total
for Feedback Vertex Set 2 obstructions t-parses proofs

[0,1,2,3,4,01,02,0,03,12] 0
[0,1,2,3,4,01,02,0,01,13] 0
[0,1,2,3,4,01,02,03,0,12] 0
[0,1,2,3,4,01,02,03,12,14] 0
[0,1,2,3,4,01,02,03,14,24] 0
[0,1,2,3,4,01,02,03,12,13] 0
[0,1,2,3,4,01,02,03,04,12] 1 15 211
[0,1,2,3,4,01,02,03,0,04] 0
[0,1,2,3,4,01,02,0,01,12] 0 150 2251
[0,1,2,3,4,01,02,0,03,04] 0 233 3271
[0,1,2,3,4,01,02,03,04,0] 10 5177 74611
[0,1,2,3,4,01,02,03,0,01] 16 68634 1013641
[0,1,2,3,4,01,02,0,01,03] 13 153772 2286001
Pre�x= [0; 1; 2; 3; 4; 01; 02; 0; 01; 02]
Pre�x+ [03; 04; 0] 9 105482 1565416
Pre�x+ [03; 04; 12] 10 91976 1359376
Pre�x+ [03; 04; 13] 0 5241 78436
Pre�x+ [03; 04; 34] 0 509 7636
Pre�x+ [03; 12] 10 35976 532651
Pre�x+ [03; 13] 0 260 3886
Pre�x+ [03; 14] 0 45 676
Pre�x+ [03; 34] 0 41 616
Pre�x+ [12] 2 10517 157231
Pre�x+ [13] 0 13 151

Table 2 contains a brief summary of how many proofs our distributive computer
system had to �nd for 2-FEEDBACK VERTEX SET (pathwidth 4). The �rst column states
various starting (or restarting) points in the search tree. Lack of memory and disk
space is the main reason for the separate runs. (Recall our search process of Fig. 2;
we can independently search throughout the minimal t-parse space, beginning at vari-
ous internal nodes.) The second column gives the number of canonic non-boundaried
obstructions that have the given pre�x. The ‘minimal nodes’ column gives the number
of minimal t-parses that we encountered; these are the internal nodes of our search tree
plus any boundaried obstructions. The last column gives the total number of graphs the
system had to check. This total includes those t-parses that were proved minimal or
non-minimal. The missing entries in the table represent places that were fast dead-end
runs (i.e., small subtrees of the search tree leading only to non-minimal t-parses) and
we did not bother keeping the proofs.
We believe that 2-FEEDBACK VERTEX SET may be the only feasible feedback vertex set

family to characterize since there are at least 744 obstructions to 3-FEEDBACK VERTEX
SET. In fact this count is a very small percentage since we know of an obstruction with
order 15 and we have only searched through a subset of the graphs with maximum
order 10.
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For the two obstruction sets for the ‘within one=two vertices of acyclic’ families,
we present only the connected obstructions since any disconnected obstruction O of
the lower ideal k-FEEDBACK VERTEX SET is a union of graphs from

⋃k−1
i=0 O(i-FEEDBACK

VERTEX SET) such that FVS(O) = k + 1.

Example 29. Since K3 is an obstruction for 0-FEEDBACK VERTEX SET, and K4 is an ob-
struction for 1-FEEDBACK VERTEX SET, the graph K3∪K4 is an obstruction for 2-FEEDBACK
VERTEX SET.

Some patterns become apparent in these two sets of obstructions such as the follow-
ing easily-proven observation.

Observation 30: For the family k-FEEDBACK VERTEX SET, the complete graph Kk+3, the
augmented complete graph A(Kk+2) which has vertices {1; 2; : : : ; k+2} ∪ {vi; j | 16i¡
j6k + 2} and edges

{(i; j) | 16i¡ j6k + 2} ∪ {(i; vi; j) and (vi; j ; j) | 16i¡ j6k + 2};
and the augmented cycle A(C2k+1) are obstructions.

A useful property unique to k-FEEDBACK VERTEX SET obstructions that does not hold
for the other feedback set families studied in this paper is the following result, which
implies that t-parses with cut-vertices are non-minimal.

Lemma 31. If G is an obstruction to k-FEEDBACK VERTEX SET then G has no cut-vertices.

Proof: See [10].

5. Graphs with small feedback edge sets

This section �rst focuses on two problem-speci�c areas for computing the k-FEEDBACK
EDGE SET obstruction sets using our general method of computing forbidden minors: a
direct minimal test and a complete testset (i.e., Steps 1 and 4 of Fig. 3). With these
developed ingredients we computed the obstructions for k-FEEDBACK EDGE SET for k65
(pathwidth at most 4). This section then describes a family-speci�c algorithm that does
not require a pathwidth or treewidth bound for generating all of the forbidden minors
for k-FEEDBACK EDGE SET. With this algorithm we veri�ed that the obstructions for
5-FEEDBACK EDGE SET do indeed have pathwidth at most 4, and also computed the
connected obstructions for 6-FEEDBACK EDGE SET.

5.1. A minimal t-parse algorithm (for FES)

We �rst describe a simple graph-theoretical characterization for the graphs that are
within k edges of acyclic, where k is any non-negative integer. This trivial result also
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shows that Problem 3 (i.e., determining the minimum feedback edge set of a graph)
has a linear-time decision algorithm.

Theorem 32. A graph G = (V; E) with c components has FES(G) = k if and only if
|E|= |V | − c + k.

Proof: For k = 0 the result follows from the standard result for characterizing forests.
If FES(G) = k then deleting the k witness edges produces an acyclic graph and thus
|E| = |V | − c + k. Now consider a graph G with |V | − c + k edges for some k ¿ 0.
Since G has more edges than a forest can have, there exists an edge e on a cycle. Let
G′ = (V; E\{e}). By induction FES(G′) = k − 1. Adding the edge e to a witness edge
set E′ for G′ shows that FES(G) = k.

Unlike the k-FEEDBACK VERTEX SET lower ideals, it is not obvious that the family
k-FEEDBACK EDGE SET is a lower ideal in the minor order. However, with the above
theorem one can easily prove this.

Corollary 33. For each k¿0; the family of graphs k-FEEDBACK EDGE SET is a lower
ideal in the minor order.

Proof: We show that the three basic minor operations do not increase the number of
edges required to remove all cycles of a graph. An isolated vertex deletion removes
both a vertex and a component at the same time, so k is preserved in the formula
|E| = |V | − c + k. For an edge deletion the number of components can increase by
at most one, so with |E| decreasing by one, the value of k does not increase. For an
edge contraction, the number of vertices decreases by one, the number of edges de-
crease by at least one, and the number of components stays the same, so k does not
increase.

The above corollary allows us to characterize each k-FEEDBACK EDGE SET lower ideal
in terms of obstruction sets. We abstractly characterize these below.

Theorem 34. A connected graph G is an obstruction for k-FEEDBACK EDGE SET if and
only if FES(G) = k + 1 and every edge contraction of G removes at least two edges
(i.e.; the open neighborhoods of adjacent vertices overlap).

Proof: This follows from the fact that an edge contraction that does not remove at
least two edges is the only basic minor operation that does not decrease the number of
edges required to eliminate all cycles, for a connected graph with every edge on some
cycle.

The above theorem gives us a precise means of testing for minimal and non-minimal
t-parses (see Step 1 of Section 3). Furthermore, in Section 5.3 below, we present a con-
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structive method based on this theorem for generating all of the connected obstructions
for k-FEEDBACK EDGE SET.

5.2. A complete testset (for FES)

Somewhat surprisingly, a usable testset for each feedback edge set family has already
been presented in Section 4.2. We now prove that the previously given feedback vertex
set tests can also be used here.

Lemma 35. The testset Tkt for the family k-FEEDBACK VERTEX SET is also a testset
for k-FEEDBACK EDGE SET.

Proof: See [10].

It is interesting to note from the above proof that, in addition to the out-of-family
tests, the isolated triangles in the tests for k-FEEDBACK EDGE SET do not contain any
boundary vertices. Thus, the number of graphs in a testset for k-FEEDBACK EDGE SET
is substantially smaller than the order of the testset for k-FEEDBACK VERTEX SET.

5.3. Directly generating the k-FEEDBACK EDGE SET obstructions

A consequence of our direct characterization of graphs in k-FEEDBACK EDGE SET
(recall Theorem 34) is the following constructive characterization of the minimal
forbidden minors.

Lemma 36. A graph G is a minor-order obstruction for some feedback edge family
k-FEEDBACK EDGE SET if and only if the edges of G are de�ned by a set of non-identical
K3 cliques

{(a1; b1; c1); (a2; b2; c2); : : : ; (am; bm; cm)}:

Proof: Let G = 〈(a1; b1; c1); (a2; b2; c2); : : : ; (am; bm; cm)〉 denote the well-de�ned graph
V (G)=

⋃m
i=1{ai; bi; ci} and E(G)={(u; v) | {u; v}⊆{ai; bi; ci} for some 16i6m}. Con-

sider k ′ =FES(G). We show that G is an obstruction for k-FEEDBACK EDGE SET where
k = k ′ − 1. To do this we show that every one-step minor of G is a member of
k-FEEDBACK EDGE SET. Since �(G)¿2 there are no isolated vertices to delete. Let
e=(u; v) be an edge of G and G′=G\{e} (edge deletion case). Since G does not con-
tain any cut-edges, G′ has the same number of components as G. So using Theorem 32
FES(G′)= k. If G′=G=e (edge contraction case) then |E(G′)|6|E(G)| − 2, |V (G′)|=
|V (G)| − 1, and thus FES(G′)6k. Therefore, G is an obstruction to k-FEEDBACK EDGE
SET.
We now show that every obstruction G of k-FEEDBACK EDGE SET can be represented

by a set of at most k + 1 non-identical K3 cliques. By Theorem 34 we know that
every edge must lie on some K3 clique. So it is clear that m¡ |E(G)|. Let Gm =
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〈(a1; b1; c1); (a2; b2; c2); : : : ; (am; bm; cm)〉 be a representation for G such that for each
clique (ai; bi; ci), 26i6m, at least one of the three edges (ai; bi), (bi; ci) and (ai; ci)
is not present in the graph represented by

Gi−1 = 〈(a1; b1; c1); (a2; b2; c2); : : : ; (ai−1; bi−1; ci−1)〉:
To complete the proof we show that FES(Gi)¿FES(Gi−1) for all i. Using our char-
acterization theorem of graphs in k-FEEDBACK EDGE SET, we can compute the change
in FES(Gi) from FES(Gi−1) by considering the following cases contributed by adding
(ai; bi; ci) to Gi−1:

# New vertices # New edges # New components New FES

3 3 +1 +1
2 3 0 +1
1 3 {−1; 0} {+1;+2}
1 2 0 +1
0 3 {−2;−1; 0} {+1;+2;+3}
0 2 {−1; 0} {+1;+2}
0 1 0 +1

For example, if the clique (ai; bi; ci) adds 1 vertex and 2 edges (which is incident to
the new vertex) to the previous Gi−1, the number of components stays the same. Thus
in this case by applying Theorem 32 we see that the minimum size of a feedback edge
set must go up by 1. For all possible cases, the change in the size of the minimum
feedback edges set is positive. Thus, since FES(Gm) = k + 1 we have m6k + 1.

An explicit simple algorithm for computing all of the connected k-FEEDBACK EDGE
SET obstructions is given in Fig. 6. For this procedure, we do not need to know the
pathwidth or treewidth of the largest obstruction.

Corollary 37. The algorithm given in Fig. 6 computes all the connected obstructions
for the family k-FEEDBACK EDGE SET.

Proof: We show that for any connected obstruction O we can construct it without
adding an isolated triangles to a previous connected obstruction for k ′-FEEDBACK EDGE
SET, k ′¡k. Let {T1; T2; : : : ; Tm} be a minimum set of covering triangles for O. Consider
the graph G with vertices {T1; T2; : : : ; Tm} and edges {(Ti; Tj) |Ti ∩Tj 6= ∅}. Since O is
connected G is connected. Thus we can construct O without adding isolated triangles
by using any breadth-�rst or depth-�rst spanning tree sequence of G. The proof of
Lemma 36 gives us the upper bound of k+1 times through the outer most i loop.

5.4. The k-FEEDBACK EDGE SET obstructions

Since the family k-FEEDBACK EDGE SET is contained in the family k-FEEDBACK VERTEX
SET, the maximum treewidth of any obstruction for k-FEEDBACK EDGE SET is at most
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Fig. 6. An algorithm to generate the k-FEEDBACK EDGE SET obstructions.

Fig. 7. The characterized (k1; k2)-FEEDBACK VERTEX=EDGE SET families.

Fig. 8. Connected obstructions for 1-FEEDBACK VERTEX SET.



242 M.J. Dinneen et al. / Discrete Mathematics 230 (2001) 215–252

Fig. 9. Connected obstructions for 2-FEEDBACK VERTEX SET.

k + 2. Also, the same arguments given in Section 4.3 regarding pathwidth apply to
k-FEEDBACK EDGE SET as well.
For the family 0-FEEDBACK EDGE SET, it is trivial to show that K3 is the only obstruc-

tion. The connected obstructions for the graph families 1-FEEDBACK EDGE SET through
3-FEEDBACK EDGE SET are shown in Figs. 10–12. There are well over 100 connected
obstructions for the 4-FEEDBACK EDGE SET family. Any disconnected obstruction for
k-FEEDBACK EDGE SET is easily determined by combining connected obstructions for
j-FEEDBACK EDGE SET, j¡k, since FES(G1) + FES(G2) = FES(G1 ∪ G2).
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Table 3
The number of k-FEEDBACK EDGE SET obstructions for k66

k-FES # connected with and also
obstructions �(G)¿ 2 biconnected

1 2 0 0
2 7 1 1
3 27 1 1
4 120 3 3
5 642 8 7
6 3767 24 21

Fig. 10. Connected obstructions for 1-FEEDBACK EDGE SET.

Our constructive method shows that we can obtain all of the obstructions for
k-FEEDBACK EDGE SET directly from the sets O(j-FEEDBACK EDGE SET), j¡k. In fact
most of the obstructions can be obtained from the immediately preceding obstruction
set (i.e., with j = k − 1), by using the following observations.

Observation 38: If G is a connected obstruction for k-FEEDBACK EDGE SET then the
following are all connected obstructions for (k + 1)-FEEDBACK EDGE SET.

1. G with an added subdivided edge attached to an edge of G.
2. G with an attached K3 on one of the vertices of G.
3. G with an added edge (u; v), whenever there exists a path of length at least two
between u and v in G\E for each feedback edge set E of k + 1 edges.

It is easy to see that if an obstruction has a vertex of degree two then it is predictable
by observations 1 and 2. The fourth (central) 2-FEEDBACK EDGE SET obstruction in
Fig. 11 (wheel W3) and the last 3-FEEDBACK EDGE SET obstruction in Fig. 12 (W4) are
two examples of graphs where observation 3 predicts the graph. Those 4-FEEDBACK EDGE
SET, 5-FEEDBACK EDGE SET, and 6-FEEDBACK EDGE SET obstructions without vertices of
degree two and cut-vertices are shown in Figs. 13–15. The third 4-FEEDBACK EDGE SET
obstruction in Fig. 13 is not predictable from the 3-FEEDBACK EDGE SET obstructions by
using any of the above observations. Here deleting any edge from this obstruction leaves
a contractable edge that does not remove any cycles, that is, all single edge deleted
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Fig. 11. Connected obstructions for 2-FEEDBACK EDGE SET.

minors are ‘non-minimal’ (see Theorem 34). This obstruction is easily constructed by
4 vertex triples, as promised by our direct enumeration algorithm.
Table 3 shows a summary of how many k-FEEDBACK EDGE SET obstructions there are

for k66. The third column of the table gives the counts for the number of connected
obstructions without vertices of degree 2. The fourth column is obtained from the third
by subtracting the number of remaining obstructions with a cut-vertex. About 20 days
of CPU time (using a single Sparc-20) was used to compute the 6-FEEDBACK EDGE SET
obstructions.

6. Graphs with small hybrid feedback sets

In this penultimate section we generalize the two earlier feedback set families where
we are allowed to cover cycles with both vertices and edges. First we need to prove
that these hybrid feedback set families (i; j)-FEEDBACK VERTEX=EDGE SET can be char-
acterized by minors.

Lemma 39. For any two non-negative integers i and j; the graph family (i; j)-FEEDBACK
VERTEX=EDGE SET is a lower ideal in the minor order.
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Fig. 12. Connected obstructions for 3-FEEDBACK EDGE SET.

Fig. 13. Biconnected 4-FEEDBACK EDGE SET obstructions without degree 2 vertices.
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Fig. 14. Biconnected 5-FEEDBACK EDGE SET obstructions without degree 2 vertices.

Proof: Let G be a member of (i; j)-FEEDBACK VERTEX=EDGE SET with a witness pair
Wv (set of vertices) and We (set of edges) such that any edge in We is not incident to
any vertex in Wv, |Wv|6i and |We|6j. Consider a one-step minor G′6mG. We have
G′\Wv6mG\Wv. So G′\Wv is a member of j-FEEDBACK EDGE SET. This implies that
G′ is a member of (i; j)-FEEDBACK VERTEX=EDGE SET.

A family congruence for (i; j)-FEEDBACK VERTEX=EDGE SET over boundaried graphs
can be de�ned by testsets that are very similar but not exactly the same to the (i+ j)-
FEEDBACK VERTEX SET and (i + j)-FEEDBACK EDGE SET testsets. Consider a test T of
T (i+j)t for (i+ j)-FEEDBACK VERTEX SET, we need to distinguish between the vertex and
edge witnesses. This can be accomplished by replacing a certain number of isolated
K3’s in T with the graph K−

4 = ‘K4 minus one edge’ = ‘C4 with a chord’.

Lemma 40. We can modify the testset for (i+ j)-FEEDBACK VERTEX SET to be a �nite
testset for (i; j)-FEEDBACK VERTEX=EDGE SET.

Proof: For F= (i; j)-FEEDBACK VERTEX=EDGE SET, let Z be an extension such that for
two t-parse s G and H , G ·Z ∈ F and H ·Z 6∈ F. We show how to construct a test T
from Z with the structural properties of the (i+ j)-FEEDBACK VERTEX SET tests, except
that at most i isolated K−

4 may be present. Let Wv⊆V (G · Z) and We⊆E(G · Z) be
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Fig. 15. Biconnected 6-FEEDBACK EDGE SET obstructions without degree 2 vertices.

a pair of witness sets such that

(G · Z\We)\Wv ∈ F

and |Wv|6i and |We|6j. We create T from Z as follows: (1) replace every edge in
We ∩ Z with an isolated K3, (2) delete Wv from Z and add an isolated K−

4 while pre-
serving boundary labels, and (3) reduce the resulting trees by the methods of creating
a k-FEEDBACK VERTEX SET test (see Section 4.2). The graph G ·T is a member of F
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Fig. 16. Connected obstructions for (1; 1)-FEEDBACK VERTEX=EDGE SET.

by the same witness pair (Wv;We). And the graph H ·T is not a member of F or
otherwise we could have found a witness pair for H ·Z .

6.1. The (1; 1)-FEEDBACK VERTEX=EDGE SET obstructions

In Fig. 7 we show (by shaded boxes) the 10 families of graphs based on small
feedback sets that we have characterized in this paper. We characterized the hybrid
graph family (1; 1)-FEEDBACK VERTEX=EDGE SET by the methods of our search theory
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Fig. 17. Known biconnected (1; 2)-FEEDBACK VERTEX=EDGE SET obstructions without degree 2 vertices.

of Section 3. To do so, we needed the following pathwidth bound on the obstructions
of (1; 1)-FEEDBACK VERTEX=EDGE SET.

Lemma 41. If G is an obstruction to (1; 1)-FEEDBACK VERTEX=EDGE SET then the path-
width of G is at most 3.

Proof: The proof is similar to our pathwidth 4 bound for the obstructions of 2-FEEDBACK
VERTEX=EDGE SET. See [10].

In Fig. 16 we show the 23 connected obstructions to the (1; 1)-FEEDBACK VERTEX=EDGE
SET family of graphs. There are also three disconnected obstructions: 3 ·K3, K3 ∪ K4,
and 2 ·K−

4 .
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We have not completely classi�ed the next larger family (1; 2)-FEEDBACK VERTEX=EDGE
SET. We display a partial list of the connected obstructions with no degree two ver-
tices in Fig. 17. We currently have found 246 connected obstructions. We conjec-
ture that pathwidth 4 bounds the width of the largest obstruction in O((1; 2)-FEEDBACK
VERTEX=EDGE SET).

7. Conclusion and open problems

The main results of this paper present a practical version of the general obstruction
set computation methods �rst described by Fellows and Langston [16]. The theory
that we describe here and have implemented has led to the successful computation of
a number of non-trivial and previously unknown obstruction sets, including k-VERTEX
COVER for k65 [7] and, as we describe here, for small values of k-FEEDBACK VERTEX
SET and k-FEEDBACK EDGE SET and related properties.
An important part of our results on these particular problems consists of e�cient

congruences for the properties, based on test sets, that could be also be used in a direct
algorithmic approach to recognizing these properties for graphs of bounded pathwidth
(treewidth) that are given with a path- (tree-) decomposition.
The main open problem is whether the general machinery developed here can be

successfully applied to compute more interesting unknown obstruction sets, such as the
obstruction set for torus embedding that has resisted substantial amounts of traditional
human e�ort of graph theorists for over two decades. One of the main obstacles in
attacking the torus obstruction set with these methods has been the lack of a good
bound on the maximum pathwidth of the torus obstructions. (A congruence based on
test sets is known for this problem.)
In recent work we have found a way to adapt the machinery described in this paper

so that obstruction sets can be computed without knowing in advance a bound on
maximum obstruction pathwidth. There is a way of automatically detecting that a width
is su�cient to capture all of the obstructions. These results are described elsewhere [8]
and have not yet been implemented.
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