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ABSTRACT: In thispaperw em odel infinite processes w ith finite configurations as infinite gam es
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1 Introduction

M any real-world system s can be view ed as Infinite duration processes w ith finie
sates. Several exam ples can be found in com puteroperating system s, air traffic con-
ol system s, banking system s, and the on-going m aintenance of com m unication net-
works. A fimctoning system has to e mobust €g., an operating system should not
crash regardless of w hat the userdoes) . A term nation of any of these system s can be
thoughtof as a failure. Thusw e need an Infinite duration m odel to study properties
of such system s. In practice these system shave only a finite num berof states eg.,a
banking system has a finite num berof custom ers, assets, etc.) .

Overtme, each system enters only a finite num ber of sates and produces an In-
finite sequence of sates, called a run-time sequence. Sce the num ber of sates is
finite, som e of the sates, called persisent sates, appear Nfinitely often n a min-tim e
sequence. The success of a un-tim e sequence is determ ned by w hether or not the
collection of persistent states satisfies certain specfications. Thus, we can view the
mn-tn e sequences as plys of a tw o-playergam e w here one player, called the Sur-
vivor, tres to ensure that persistent states satisfy som e property and the otherplayer,
called the Adversary, does the opposite.

O urproposed m odel for an infinite duration system is based on a finite (directed)
graph. The vertices of the graph represent the states of the system and the edges (or
arcs) corregpond to the legalstate changes, called m oves (Ortransitions), of the system .

DEFINITION 1.1

An Infinite duration game § isafinie @irected) geph G = (V,E),afomily W of
subsetsof V', and tw o players (the Survivorand the A dversary) . W e require thateach
vertex of G has out-degree of at leastone. A memberof W is called a w nning set.
A configuration of a gam e is a pair of the form (v, Survivoy) or (v, Adversary) for
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Thegam e mlesallow configurationm ovesfiom (w, X) to (w', X') such that(w, w')
€ Fand X # X'. Each play of an infinite duration gam e is an Infinite sequence of
configurations (vo, Xo), (v1, X1), ..., (vi, Xi), ... such that the gam e mles are fol-
Iowed. We call a finite prefix sequence of a play a history. W e say that a vertex
v is visited in the play if configuration (v, X) occurs n som e history of the ply.
Note that either the Survivor or the A dversary m ay begh the play. The Surivor
w Ins a play if the set of persistent vertices of the play is a w Iining set, otherw ise the
Adversary w ns. A strategy fora player X; of a gam e is a function from play his-
tories (vo, Xo), - - -, (vi, X;) to configurations (v;41, X;+1) such thatthe m ove from
(vi, Xi) © (Vig1, Xig1) isagamenile.

A gi¥en stategy foraplyer X may eitherw in or loose a gam e w hen starting at
an iital configuration (v, Xo), where vy € V and X is eitherplayer. A player's
wInhg strategy foran hitial configuration is one thatw sno m atterw hat the other
playerdoes.

EXAMPLE 12

IhFigure lwepresentagame§ = (G, W) . A san exam ple of a w Inning strategy for
the Survivorconsiderthe nitial configuration (4, A dversary) . If the A dversary m oves
o vertex 3 then the Survivor sin ply m oves to vertex 1 and the gam e repeats betw een
those two vertices which is a whning set). On the other hand, if the A dversary
m oves to verex 5, the Survivorm oves to vertex 6 forcing the A dversary to m ove t©
4 ,which is then controlled by the Survivor. The Survivorattem pts to force the vertex
=t{4,5,6} It apersisentsetby m oving to vertex 5 . If the A dversary tries to m ove
t© 3 fiom 5 then the Survivor is allow ed t© change s m ind and force {1, 3} as the
persisent setand w n. Thus, the A dversary looses no m atterw hat choice ism ade at
verex 5 .

W e end this section w ith a few r=lated references. Previous work on two-player
Infinite duration gam es on finite bipartite graphs is presented In the paperby M c-
Naughton [1] and extended by Nerode etal. 2]. Ourwork focuses on a subclass of
the gam es congidered by these authors. N erode etal. provide an algorithm fordecid-
g M ANV aughton gam es. Their algorithm nns I exponential tin e of the graph size
forcertain nputs. Forourgam esw e provide tw o sin ple polynom ialtim e algorithm s
fordeciding update netw orks, partially based on the stmictural properties of the under-
Iying graphs. W e also note that several earlier papers have dealtw ith finite duration
gam eson autom ata and graphs eg., see 3,4]).

2 UpdateGam es

W e now model a natural com m unication netw ork problem . Suppose w e have data
stored on each node of a netw ork and w e w ant to continuously update allnodes w ith
consistent data. For nstance, w e are Interested In addressing redundancy issues n
distributed databases. O ften one requirem ent is t© share key inform ation betw een all
nodes of the distributed dat@base. W e can do this by having a data packetof current
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vV ={1,2,3,4,5,6}
E={(1,3),(2,3),(2,4),(3,1),(3,2),(4,3), (4,5), (5,3), (5,6), (6,4) }
W ={{1,3},{2,3,4,5},{4,5,6}}

F1z .1.Exam ple of an nfinite duration gam e.

Inform ation continuously go through all nodes of the netw ork . This is essentially an
Ifinite duration gam e w here the Survivor's objective is to achieve aw Imning setequal
to all the nodes of the netw ork . This gam e is form ally defined as follow s:

DEFINITION 2.1

Anupdate game isan Infinite durationgame G = (G, W) w ith the singleton w imning
s=tW = {V}.Anupdatenetw ork is the underlying graph G of an update gam e w here
the Survivorhas a w ning strategy foreach hital configuration.

Som etim esw e w ill tak abouta graph G being an update gam e w ithoutm entioning
the w nning set, since it isunderstood thatW = {V'}.

EXAMPLE 2 2

The graph displayed below In Figure 2 isan update netw ork . N otdce thatallcycles are
of odd length o that the Survivorand the A dversary altemately control the vertices
w ith m ore than one possible m ove. The Survivorcan use its opportunities to visitall
vertices of the graph.

3 Bipartite UpdateNetworks

W e first study a spectic class of update gam es on bipartite graphs, called bipartie
update games. Forthese gam esw e restrict the dom ain of graphs to bipartite graphs
w here the vertices V' of each graph can be partitoned mto two dispint sets A and
S such that every edge is directed from A © S orfiom S to A. W e also stpulate
that each vertex has an outgoing edge (ie., this ensures thatevery play is of Infinie
duration) . By definition, w e assum e thatthe Survivorm oves from S and the A dversary
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F1c .2.A sinpl exam plk of an update gam e w hich is an update netw ork .

movesfrom A . In essence the vertices (In these bipartite gam es) are owned by the two
players of the gam e. Thus, for these gam es, there are only |V'| gam e configurations
w here each vertex v determ ines a unigue configuration depending on w hetherv isin
S orA . T the nextsection w e retum to the update gam esdefined n D efinition 2 1.

DEFINITION 3.1

A Dbipartite update network is a bipartie graph (V = A U S, E) of a bipartite update
gam e in w hich the Survivorhasa w Inning strategy to visitevery vertex of V' Infinitely
often from every initial configuration. (Thatis, the Survivor can force the persistent
setofverticestobe V' )

W e can easily characterize those bipartite update netw orks w ith only one Survivor
vertex .. These are the bipartite graphs w here out-degree(s) = |A| forthe single Sur-
vivorvertex s .W enow derive severalproperties forall bipartite update netw orks.

LEMMA 32
I(V = AU S, E) is a bipartite update netw ork then forevery vertex s € S there
exigtsatleastonea € A such that(a, s) € E and out-degres{a) = 1.

PrOOF.The dea is to show that if there exists a vertex s that does not satisfy the
statem entof the lem m a then the A dversary can alw aysavoid visiting s . Let A, = {a |
(a,s) € E} and assum e outdegreg(a) > 1 foralla € A . The Adversary has the
follow Ing w Inning strategy . If the play history ends in configurationa € A, then since
outdegreg(a) > 1, the Adversarymovesto s’ fS),wheres’ # s and(a,s’) € E.
This contradicts the assum ption of lemm a. [ |

For the ©ollow Ing results ket (A U S, E) be a bipartite update game B . For any
Survivorverex s define

Foroed (s) = {a | outdegree(a) = 1 and (a, s) € E},

w hich denotes the set of A dversary vertices that are ‘forced’ tomove to s. Notg, by
the previous lemm a, this setw ill be non-em pty forgam es played on bipartite update
netw orks.
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LEMMA 33
If B is a bipartite update netw ork such that|S| > 1 then forevery s € S there exists
ans' # sandana € Foreed s), such that(s', a, s) isa directed path.

PrROOF.Takeany s € S and consider F' = Forced (s). By the Lemma 32 F isnot
empty. Ifthere isan s’ # s adjcentto a vertex (ie., an m-neighbor) n F' we are
done. O therw ise, all s’ # s are notadpcentto any vertex n F'. Thus there exists an
a' notin F' fiom w hich the A dversary hasa w Inning strategy by notm oving to s . This
contradicts B being a bipartite update netw ork . [ |

DEFINITION 3 4

G ven abipartitegraph (SUA, E) aoroed cycle isa (sin ple) cycle(ag, Sk, - - - , G2, S2,
a1, s1) fora; € Foroed s;) ands; € S . N ote thatforoed cycleshave even length since
the graph isbipartite.)

W enow presentourpenultn ate hgredientthatw illbeused to characterize bipartie
update netw orks.

LEMMA 35
IfB isabipartite update netw otk such that|S| > 1 then there exists a foroed cycle of
length atleast4.

PrOOF.Takes; € S.From Lemma 3 3 there exigsapath (s2, a1, $1) In B such that
s3 # $1 anda; € Forced(sy). Now forss we apply the lemm a again to geta path
(s3,a2,82) In B such thatss # s and as € Foroed(ss). IEs3 = s1 we are done.
O therw ise repeatLemma 3 3 forvertex s3 . If sy € {51, 52} we are done. O therw ise
repeatthe lemma fors, . Eventually s; € {s1, S2, ..., S;—2} sice B isfinite. [ |

Thus, if B doesnothave a foroed cycle of kength at least4 then efther|S| = 1 orB
isnota bipartite update netw ork . W e now presenta contraction m ethod thathelpsus
decide if a bipartite gam e is a bipartite update netw ork .

LetB = (SUA, E) beabipartittupdategam ew ith a forced cycle C' = (ay, Sk, - - -
as, 2, a1, 1) of length at least4 . W e can define a contracted bipartite update game
B'=(S"UA' E') asfollow s. Fornew verticesa and s ket

S"'=(S\ {s1,52,...,8})U{s} and A" = (A\{a1,a,...,ar}) U{a}.
W ih E" being the nduced edges of the subgraph B \ {s1, a1, ..., Sk, ar} ket

E'={(s,d') | a’ € A" and (s;,a’) € E, forsomei < k} U
{(a',s) | d' € A" and (d',s;) € E, forsomei < k} U
{(s';a) | s € S"and (s',a;) € E, orsomei < k} U {(a,s),(s,a)} UE".

The next Jem m a show s the relationship betw een gam e B and the reduced game B’ .

LEMMA 3.6

IfB = (SU A, F) isabipartite update gam e w ith a forced cycle C' of length at Jeast
4 then the contracted bipartite update game B’ = (S’ U A, E') is a bipartite update
netw ork ifand only if B isone.
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PrROOF.W e chow that if B’ is an update netw ork then B is also an update netw ork.
W efirstdefine the naturalm apping p from vertices of B onto vertcesof B’ by

plv)=v fovgl
plv)=s FEfvelNnS
pv)=a EvelCnNA.

Then any ply history of B ism apped, vi the function p(v) = v', onto a play hisory
of B' . Considera play history vg, v1, . . . , v, of B thatsarts atvertex vg andwv,, € S.
Let f’ be a w ining strategy n game B’ for the Survivorw hen the gam e begins at
verex vf, . W e use the m apping p to construct the Survivor's shategy f ngame B by
considering the follow Ing tw o cases.

Casev), = s. The stategy is o extend the play (n B) by visiting all the vertices of
the cycle C atleastonce. I f'(v),...,v),) = o/ wherea' # awefindas; € C
such that (s;,a') € E then extend the play again w ith o’ as the Jastm ove. O ther-
wise f'(v,...,vl) = a and the play is extended by picking an aj, € C such that
(Un,ag) € E.

Cassv), # s. Ef'(v),...,v],) = d # a then f willalo move to a’. O therw ise
a' € C and the play isextended by picking an ay, € C' such that(v,,, ax) € E.

Tisnothard to see that f isaw ning strategy forthe Survivoringam e B w henever
f! isaw Ining stategy in B’ .

W enow show thatif B is an update network then B’ is also an update netw ork.

Take any vertex v from B’ .W e show thatthere isaw ining stategy forthe Survivor
starting atwy, . Fix any vertex vy such thatp(vg) = vj) . W ew illkeep a correspondence
betw een positions v; of a play on B w ith positions v} of a play on B'. W e now
sin ulate the w Inning stategy f on B starting atvg . The stategy forthe nital play
history v, € S’ is f'(v}) = p(f(vo)) exceptforthe case v, = s. Tn this exceptional
case the Survivor's nitial stategy istom ove directly to any a’ # a and replace f w ith
the strategy starting ata’ . Now letw(, vi, ..., v}, be any play history of B’ thatoccurs
afterthe nitalplay asdictated above. W e define a stategy for f' whenv), isi S’ by
studying tw o cases.
Casewv], = s. Considerthe previousvertex v, = a' # a of the play history that is
n A" andvy,; = s. Thus i thegameon B, the Adversary from o' elects to move
o eomes; nC. Sihce ngame B’ the A dversary m ay have few er choices, we can
pick, w ithout Joss of generality, that itm oved t© s; where i is the an allestallow able
index. The choice of any dex ¢ is validated because the cycle C' is a forced cycle.
The stategy f' now sinulateswhat f would do from s; . Two cases: (1) if f movesto
avertexa; onC then f' movestoa,or @) if f m ovesto avertex a’ noton C' then also
f' movestoad . I thefirst instance the stategy ' forcesa play thattogglesbetw eena
and s n B’ untilcase 2) hods. And thism usthappen since f is an update stategy.)
Casev,, # s.Hew the stategy issinply f'(v(), ..., v),) = p(f(vo,...,vy)) . Thatis,
the play follow sthe stategy f on the sin ulated gam e history of B .

The stategy f' forthe Survivor is an update stategy since p is am apping from B
onto B’ (ie., ifallverticesof B are infiniely repeated via f then allverticesof B’ are
Infinitely repeated via f'). [ |
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F1c . 3. Show ing the bipartite update gam e reduction of Lemma3 6.

W ith regpect to the contraction m ethod above, Figure 3 show show a forced cycle
of B is reduced to a em aller forced cycle (of length 2) m B .

Forthe nextresultletn denote the order um berofvertices) and m denote the size
(hum berof edges) of a graph.

THEOREM 3.7
There existsan algorthm thatdecidesw hethera bipartite update gam e B isa bipartie
updatenetwork ntine O(n - m) .

PrROOF.W e show thatfinding a cycle that is guaranteed to existby Lemma 3 5 takes
tine atmostO(m) and thatproducing B’ from B i Lemma 3 6 takes tine atm ost
O(n + m) .W e can also detectIn tin e atm ostO(m) when a forced cycle of length at
Jeast4 doesnotexist. Since w e need to recursively do thisatm ostn tin es the overall
wnning tine isshowntobe O(n - m) .

The algorithm term hates w henever a forced cycle of length at least four is not
found. T decides w hether the current bipartite graph is a update netw ork by sin ply
checking thatS = {s} and outdegres(s) = | A|. Thatis, the sigleton Survivorvertex
is connected to all A dversary vertices.

Letus analyze the running tim e forfinding a forced cycle C' . R ecall the algorithm
mplied by Lemm a 3 5 begins atany vertex s; and finds an ln-neighbora; (©fs;) of
outdegree 1 with (sq,a;) € E where sy # s1 . This takes tin e proportional to the
num berof edges ncidentto s; o find such a vertex a4 . R epeating w ith s» wefind an
a2 In tm e proportional to the num berof edges nto 52, etc. W e keep a boolean aray
o Indicate which s; are In the partially constructed forced path (de., the Jook-up tim e
w illbe constant tim e t© detecta foroed cycle of length at least4) . The ol num ber
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of steps to find the cycle is atm osta consant factor tin es the num berof edges in the
graph.

Fially, w e can cbserve thatbuilding the contracted bipartite gam e B’ fiom B and
C nns i lineartim e by the definition of S, A’ and E' . N ote that if the data structure
forgraphs is taken to be adjpcency lists then E' is constructed by copying the lists of
E and replacing one orm ore vertices s; ‘sora; ‘sw ith one s ora, respectively. [ |

The above result indicates the structure of bipartite update netw orks. These are
bagically connected forced cycles, w ith possbly other legal m oves for som e of the
Surwivorand the A dversary vertices. Figure 4 chow s a constructed exam ple of one
such bipartite update netw ork . The Survivor's stoategy is to system atically repeatthe
forced cycles and ‘detour’ to coverthe ram aining non-forced A dversary verticeson a
periodic basis.

F1c . 4: Mustating the stucture of bipartite update netw orks w ith Survivor vertices
black) and A dversary vertices (white).

W e list all the non-isom orphic bipartite netw orks of oxderatmost 5 In Figure 5.
Note that 18 of the 19 netw orks of order 5 w ere generated from three of the net-
works of order4 (see those digplayed on the top 1ow ). This was done by system -
atically adding a new adversary node w ith all possible com binations in-degrees and
outdegrees of 1 and 2. Note that the first four graphs I the first colmn and the
firstand fourth graphs I the lJast colmn are m ninm al in the sense thatall edges are
essential forthese graphs to be bipartite update netw orks.

4 Reocognizing Update N etw orks

W enow wantto presentan algorithm to decide w hethera given update gam e is also
an update netw ork . O ur dea is to t@ke an update gam e § and in plicitly transfom it
nto a bipartite gam e B . Note Bg w illnotbe a bipartite update gam e, as described
in Section 3.) W e then show how to decide if thegraph G (©fG) is an update netw ork
by checking if the Survivorhas a w ining strategy for every nitial configuration of
Bg . Recall that in a bipartite gam e the A dversary and the Survivor only m ove from
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one of the vertex partitions of the graph.
W e define the game Bg = (B, W) from an update game G = (G, {V(G)}) as
follow s:
V(B) {vs |v e V(G)}U{va |v e V(G)}
E(B) = {(vs,ua) | (v,u) € E(G)} U{(va,us) | (v,u) € E(G)}
w {Y |Yv e V(G),3w € Y(w = vs orw = vy)}
Note that the graph B is only tw ice the size of G but the explicit sorage for the
wIming sets W is exponential in the size of §'s w iming sets {V(G)}. Figure 6
show sa sn allexam pke of the construction of B friom G-

Os 0a

()
\ Iy L

2g 24

3s 34

FIe .6.M apping an update gam e graph () to a bipartite gam e graph B).

The vertices of B w ill correspond to a vertex player com bination of the game G .
W e have the follow Ing equivalence.
LEMMA 41
The game G is an update netw ork if and only if the Survivor has a w nning strategy
forevery initial configuration of B .

PrOOF. Firstassum e § is an update netw ork . Forany initial configuration (v, X) of
thegam e § the Survivorhasa w inning strategy f . The Survivorcan use this stategy
f forthe mitdal configuration vy In the game Bg . Recall that n the bipartite gam e
B the Survivorcan only start from a vertex vg) . Sice f forces all vertices of G t©
be visited Infinitely often, at leastone of the vy orwg isvisited nfinitely often n B
forallv € G.

Now assum e that the Survivorhas a w inning stategy f' for B startng at vertex
vx . Every persistent set of vertices Y thatoccurw hen the Survivoruses f' st W .
The Survivorcan sin ulate f' on Bg) forthegam e G w ith mital configuration (v, X)
andw In thegam e.

W e now define for any subset of vertices V' of a bipartite game G the closure
Forced* (V') . This is the setof vertices (containing V') that the Survivorhas a stat-
egy o force the A dversary to visit at Jeast one vertex of V' . W e have the follow ing
algorithm to com pute Forced* (V') .
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algorithm FindForced (V' C V(G)) forbipartitegraph G = (S U A, E)
1 QueueNewVers=V'
SetF =V’
2 whileVertex v nNewVertshead () do
N ew Vertsxem ove (v)
3 if v € A then
SetF' = MmN eighbors @)
New Vertsappend (' \ F')
F=FUF'
endif
4 if v € S then
SetF' =)
5 for Vertex © In InN eighbors @) do
ifoutNeighborsw) C F then F' = F' U {u}
endfor
N ew Vertsappend (F' \ F')
F=FUF'
endif
endw hile
retum F
end

W e prove the correctmess of this algorithm below .

LEMMA 42
A Jorithm FindForced com putes Foroed* (V') forabipartitegraph G = (SU A, E) .

PrROOF.W e show that forevery vertex v, v is In Forced® (V') ifand only ifv is re-
tumed in F' by the algorithm FindForoced. To do thisw e assign a num ber, called the
rank, o each vertex of the graph. The rank indicates the num ber of forced m oves
needed to ach V' fiom a vertex. The rank fimction is inductively defined as fol-
low s:

1.Ifv € V' thenrank(v) = 0.

2.Casev € S and rank(v) isnotdefined. A ssum e all outneighborsof v of ank
of atmosti have been defined. Then rank(v) = i + 1 fther exigtsan u €
outN eighborg(v) w th rank(u) =i.

3.Cazev € A and rank(v) is notdefined. A saum e all outneighbors of v have
defined rank . Thenrank(v) = i+ 1 ifeachu € outN eighbors(v) hasrank(u) <
Q.

Ifv € G doesnotgetranked in the above process then we setrank(v) = co.We
now show thatv € Foreed* (V') ifand only ifrank(v) < oco. Suppose rank(v) =
n < oo.Ifn =0 thenv € V'. Othew ise considertwo cases. Ifv € S thenv is
1 the closure since at least one neighboru of v has an aller rank ({e., the Survivor
canmove o u and rank(u) < rank(v)). Ifv € A then v is i the closure shnce
all neighbors of v have rank less than n ({e., any m ove of the A dversary m oves t©
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a vertex u of rank less than n). Supposerank(v) = co. We wantto show thatthe
A dversary has a stategy that does notallow the Survivorto reach V' . W e note that
follow Ing two observations. Ifv € S then allneighbors of v have rank equal to oo
by definition of the rank fimction (ie., the Survivorcan notreach V' fiom v). Alo
by definition, if v € A then there is at least one neighboru of v w ith rank equal to
o0 (ie., the A dversary can m ove to u thatisnotin the closure) . Now the A dversary’s
stategy to avold V' is the follow ing. Forany v € A withrank(v) = comoveto a
neighborvertex u such thatrank(u) = oo . Clearly this shategy causes allplys to
stay on a subsetofthe set V"' = {w | rank(w) = oo} and V"' NV' = 0.

One can see that the algorithm FindForced addsa vertex v o F' if and only if ithas
finite rank . The algorithm in plicitly lbelsa vertex v of S U A by the dteration count
ofthewhile Joop atline2 whenv isadded o F' (the vertices V' are Jabeled w ith count
0). Hence if a vertex is Jabeled then ithasfinie rank. Statem ent 3 of the algorithm
conespondsto the casev € S andv ¢ V' of the definition of rank w hile Statem ents
4-5 conespond o the case v € A andwv ¢ V. Thism eans that if v hasfinie mnk
then itw illbe labeled by the algorithm . [ |

LEMMA 43
Forbipartite gam es, there exists an algorithm thatmns in time O(m) , where m isthe
size of the graph, that com putes Forced* (V') .

PrROOF.W e show how tom odify the algorithm FindForced to min n O(m) tine. The
algorithm as listed needs t© process each vertex 1n the queue N ew Verts atm ostonce
and foreach of these vertices access is In-neighbors. So excluding the loop at line
5 the algorithm nms in O(m) seps. The process tin e, as Listed, ©© check whether
outN eighbors(u) C F takes atmost O(n) tine. Hence, FindForced mns in tine
O(n-m).

W enow explain how t© raduce the mnning tim e of the loop at Ine 5 of algorithm
FindForced to congtanttin e. nstead of checking the setm em bership outN eighbors{u)
C F wedo the follow Ing. W e keep an anay of ltegers Deg that indicates foreach
vertex how m any neighbors are notcurrently in F'. The entry forvertex 2 is nitially
defined as the outdegree of . W henevera vertex y is added to F' we decrem ent
the entry for each in-neighborz of y by one. W e can now replace the condition
outN eighborg(u) C F by testing w hether Degu] = 0, which can be done in oonslarit
tne.

RecallLemma 4 1 sates thata game § is an update netw ork if and only if the
Surwvivorhas a w ining strategy forevery mitial configuration of B . The next theo-
rem also characterizes update netw orks fiotnecessarily bipartite gam es) by using the
closure operator.

THEOREM 4 4
A game§G = (G,{V(G)}) is an update network if and only if orallv € V(G)
Forced* ({vs,va}) = V(B) i the corresponding bipartiegame Bg = (B, W).

PrROOF. Suppose there isan update netw ok, w ith graph G, such thatForced* ({vs, v4 })
# V(B) breomev € V(G). Take any vertex  of B that does notbelong to this
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closure. U sing the proofof Lemm a 4 2 w e see that the Survivorcan not force the play
tovisitvg orvy friom vertexax € V(B) . Thusthe A dversary w insgam e B¢ begining
from z.ByLemma4 1 thegraph G (of the gam e §) can notbe an update netw ork .

W e now prove the other in plication of the theoram . By Lemma 4 1, i suffices to
show thatthe Survivorcan w in the gam e B from any starting vertex . W e use the fact
thatForced* ({vs,v4}) = V(B), forallv € V(G), obuid aw ining stategy forthe
Survivor Bg . O erthe vertices of G asv!, v?, ..., v". Letx be a sartng verex
of B . The Survivor can use aljorithm FindForced o visiteithervy orv) . Nextthe
Survivorcan force the play t© visitto eilherv% orvi , then ejﬂ'lervg orvi ,etc. The
Survivorthen repeats the forced playsbetw een the pairs v} orv’) ) and (U%'H medn oy
Ui;rlmo‘i”)whidﬁ.yje]dsawjrmjngsetofW. [ |

U sing the previous Jlemm a and theorem we can efficiently recognize update net-
works.

THEOREM 4.5
There exists an algorithm thatdecidesw hetheran updategam e G isan update netw ork
ntmeO(n - m),wheren andm are the orderand size of the underlying graph.

PROOF.W e can constructthe bipartite graph B from the gam e B , w hich corresponds
g = (G,{V(G)}), ih Inear tin e w ith respect to the size of G . W e then Ivoke
Lemma4 3 foreach pairof vertices {vy,vg} forv € V(@) . By using Theorem 4 4,
we accept the input if Forced* ({vg,va}) = V(B) forallv € V(G). The total
wnning tine isn = |V (G)| m ultplied by the tin e needed to com pute the closure (of
two verticesv4 andvg) in B . ThisproductisO(n - m) . [ |

5 Conclusion

T thispaperw e have presented a gam e-theoreticm odelof Infinite duration processes.
A particularem phasis is given t© a class of netw orks w hose objective is to continu-
ously update all the nodes w ith consistentdata. W e have shown that it is algorithm i-
cally feasble to recognize update netw orks. That is, w e have provided an algorithm
w hich solves the update gam e problem n O(n - ) tin e.M oreover, ouralgorithm for
the case of bipartite update gam es can be used t© give a characterization of bipartie
update netw orks.

There are m any open questions that still need to be Ivestigated I this area. For
exam ple, one can try to chatacterize those update gam es forw hich the update netw ork
problem isdecidable h Iineartim e. O ne can also study the question offinding feasble
algorithm s for gam es w hose w Tining conditions are m ore com plex than the one for
update gam es. For the lattercase, w e w ant o efficiently extractw Iming strategies (if
they exist forthe Survivor) foreach sstof vertices n the w Iming sestofagam e.

The gam es considered In this paper occur overfinite graphs. These gam es can be
generalized to gam es over different finite m odels (such as hypergraphs). W e would
Tke to know w hich of these generalized gam e problem s are tractz@ble.
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