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W. Moore, Andrew P. Mullhaupt, and Harlan B. Sexton

Abstract— In this note is reported a collection of constructions of
symmetric networks that provide the largest known values for the
number of nodes that can be placed in a network of a given degree and
diameter. Some of the constructions are in the range of current potential
engineering significance. The constructions are Cayley graphs of linear
groups obtained by experimental computation.

Index Terms—Cayley graphs, interconnection networks, linear groups.

I. INTRODUCTION

The problem of constructing large graphs of a given degree and
diameter has received much attention, and is significant for parallel
processing because it models two important constraints in the design
of massively parallel processing systems: 1) there are limits on the
number of processors to which any processor in the network can be
directly connected, and 2) the distance between any two processors
in the network should not be too great. Other applications of such
networks include shared-key cryptographic protocols and the design
of local area networks. See [3] and [9] for recent surveys.

In this paper we give evidence that the table of largest known
constructions for small values of the two parameters can be improved
for many parameter values by methods based on finite linear groups.
In many cases the networks we describe here are dramatically larger
than those previously known.

Many of our improvements are in the range of the numbers of
processors currently being considered for large parallel processing
systems, suggesting that some of these constructions may merit
further investigation for such applications. This is the focus of
continuing research by some of our party. In this note we present
only our accumulated results on the now classic problem of network
construction. In particular, we do not address the many interesting
problems concerning routing and data exchange that would be crucial
for most parallel processing applications.
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For an overview of our results see Table I, which represents an
updated version, obtained from Bermond [5] of the table published in
[3]. Interested readers are advised that a “current” table incorporating
the results of many workers on this problem is maintained by and
available from that helpful source. The entries in the table that are
due to our efforts and reported on in this note are marked in bold.
Other entries that have been obtained by Cayley graph techniques
are marked with an asterisk. In particular, two other groups of
researchers have recently and independently obtained record-breaking
constructions based on linear groups {4], [8].

II. ALGEBRAIC SYMMETRY AS AN ORGANIZING PRINCIPLE FOR
PARALLEL PROCESSING

There are important considerations apart from degree and diameter
that must figure in any choice of network topology for parallel
computation. A network is (vertex-) symmetric if for any two nodes
u, v there is an automorphism of the network mapping u to v. Our
approach yields symmetric constructions, and we believe that in this
may lie their greater value. Symmetry is one of the most powerful
and natural tools to apply to the central problem of massively
parallel computation: how to organize and coordinate computational
resources.

The symmetries of the networks we describe are represented by
simple algebraic operations (such as 2 x 2 matrix multiplications and
modulo arithmetic). The main advantage of algebraically constructed
networks is that the developed mathematical resources of algebra are
available to structure the problems of

1) design and description

2) testing

3) data exchange and routing

4) scheduling and computation mapping.

The appeal of hypercubes, cube-connected cycles, butterfly net-
works, and others rests in large part on the availability of easily
computed (and comprehended) symmetries. These popular network
designs and those that we describe all belong to a class of algebraic
networks based on vector spaces and their symmetry groups. For re-
cent algebraic approaches to routing algorithms, deadlock avoidance,
emulation, and scheduling for algebraically described networks of
this kind see [2], [1], [8], [11], and [12].

Our main result in this brief paper is a demonstration that algebraic
symmetry provides a powerful approach to problem 1), design and
description. Our approach centers on the following definition.

Definition: If A is a group and S C A is a generating set that
is closed under inverses, i.e., § = S U S™*, then the (undirected)
Cayley graph (A, S) is the graph with vertex set A and with an edge
between elements a and b of A if and only if as = b for some s € S.

Every Cayley network is symmetric (symmetries are given by
group multiplication). The degree of a Cayley graph (A,S) is
A = |S| and the diameter of (A, S) is

D = max {min :
aeA t

a = 81---5¢8; ES,i=1,~",t}-

It is remarkable (but, indeed, natural) that most networks that have
been considered for large parallel processing systems (including hy-
percubes, torus grids, cube-connected-cycles and butterfly networks)
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TABLE 1
ALGEBRAIC SYMMETRY AS AN ORGANIZING PRINCIPLE FOR PARALLEL PROCESSING

A D
2 3 4 5 6 7 8 9 10
3 10 20 38 70 128 184 320 540 938
4 15 40 95 364 734 1081* 2943* 7439* 15657*
5 24 70 182 532 2742 4368 11200 33600 123120
6 32 105 355 1081 7832 13310 50616 202464 682080
7 50 128 506 2162 10554 39732 140000 911088 2002000
8 57 203 842 3081 39258 89373 455544 1822175 3984120
9 74 585 1248 6072 74954 215688 910000 3019632 15686400
10 91 650 1820 12144 132932 486837 2002000 7714494 47059200

are Cayley graphs. A standard reference on Cayley graphs is {7]. For
a Cayley graph description of the cube-connected-cycles see [10].

Symmetry immediately provides the following advantage for the
design problem considered here: to compute the diameter of a Cayley
graph it is only necessary to compute the distances from a single node
to all others. Furthermore, the compactness of an algebraic description
allows for an efficient computational search strategy.

Our results were obtained by experimental computing with rela-
tively simple programs on small machines (an IBM PC and a VAX
11/780). The programs followed closely the above expression for
the diameter of a Cayley graph. Having focused (by setting the
appropriate program parameters) on a particular kind of matrix group,
and on a choice of cardinality for the generating set (hence the degree
of the resulting graph), the diameter was computed for repeated
random choices of the generating set until (in the favorable case)
a new record was obtained. Consonant with the above expression for
the diameter, this is done by starting with the identity of the group as
the live set, multiplying the elements of the live set with the elements
of the generator set, recording any new elements obtained (the new
live set) in a large array representing all elements in the target group,
and repeating this until no new elements are obtained. The number
of repetitions until this occurs is the diameter.

The reader may reasonably wonder about several things, beginning
with the large number of authors of this note and including perhaps
the question of whether some voodoo was employed in choosing
the target groups and in exploring the search space of generator
sets. The explanation of the first is simply that exploration of this
approach to this design problem has continued among us at a low
level for a number of years beginning with the seminal work of the
author subset: Carlsson and Sexton. Although we have tried several
“sophisticated” heuristics for choosing groups and generators, we
must honestly report that none of these has proven better than simple
and straightforward random search, with the exception of the nearly
obvious guidance that one should choose a nonabelian group! Several
of our record-breaking constructions employ upper-triangular matrix
groups, but we are unable to explain why these worked better than
other possibilities.

Thus, in some sense these results are less interesting than one might
at first suppose, although the above information may underscore our
main point: the power of an algebraic approach (even a simple one).
A sophisticated understanding of what is possible by the method of
Cayley graphs would be highly desirable, but it seems to present a
difficult mathematical problem.

The next section describes some examples of our constructions and
the associated costs of our computational explorations.

ITII. EXAMPLE CONSTRUCTIONS

Given that a “winning” set of generators exists for a group it
would be interesting to know the expected time for random search to

discover a winning set. We have no real information on this (it would
seem to be a difficult mathematical problem to give any bounds), but
we do indicate in the example descriptions that follow the time that
was required for the particular search that uncovered the construction
as a rough indication of the amount of computational effort involved.
About half of the record-breaking constructions that we report here
(the ones of smaller order!) were obtained on a PC, by a search
program running in some cases for only a few minutes and in some
cases for a few days. For the approach that we have taken memory
is a more important computational bottleneck than speed.

In what follows GL[n, ¢q] denotes the (general linear) group of
n X n matrices with entries in the finite field with g elements (since
below ¢ is always a prime, this is just the integers mod ¢), and
SL[n, q] is the special linear subgroup of GL|[n, ¢] consisting of those
matrices with determinant 1.

Example 1: Degree 5, diameter 7: 4368 vertices.

This is a Cayley graph on the subgroup of GL[2,13] consisting of
the matrices with determinant in the set {1, —1}. The generators are
the following elements together with their inverses.

01 2 o 11 4
[1 0]order2 [ 12]orderoz [7 5j|orderl4.

The discovery time for this construction was approximately
10 hours on an IBM PC for a small Pascal program.

Example 2: Degree 8, diameter 7: 89373 vertices

This is a Cayley graph on a subgroup of GL[3,31]. The generators
are the following elements together with their inverses.

11
8

1 12 10 1 25 15
0 1 15 order 93 0 1 4 jorder 93
0 0 25 0 0 5
1 29 29 1 27 5
0 1 16 )order 93 0 1 8/{order 31
0 0 5 0 0 1

The discovery time for this construction was approximately 3 hours
of CPU time on a VAX 11/780.

Example 3: Degree 10, diameter 5: 12 144 vertices.

This is a Cayley graph on the group SL{2,23]. The generators are
the following elements together with their inverses.

9 0 13 10 9 10

{18 18}order 11 [18 21]order 11 [0 17}order22
14 7 18 13
[19 3}order 22 [17 2O]order 24.

The discovery time for this construction was approximately 2 hours
on an IBM PC.
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TABLE 11

Parameters Order Group Generators: order § = SU S~1
degree 5 diameter 7 4368  subgroup of GL[2,13] [0,1,1,0]):2 [11,4,7,5):14 [11,2,8,12]:52
degree 5 diameter 8 8788  subgroup of GL[3,13] [1,0,4,0,1,0,0,0,12]:2 [1,5,6,0,1,9,0,0,5]:52 [1,2,12,0,1,8,0,0,5]:52
degree 5 diameter 9 25308  PSL{2,37] [0,36,1,0]:2 [34,26,34,1]:37 {2,16,11,33]:37
degree S diameter 10 123120  GL[2,19] [0,1,1,0]:2 [11,16,0,15]:18 [16,11,2,0]:45
degree 6 diameter 4 355  subgroup of GL{2,71] [54,66,0,1}:5 [5,43,0,1}:5 [57,38,0,1]:5
degree 6 diameter 5 1081  subgroup of GL[2,47] [7,20,0,1):23 [6,33,0,1]:23 [9,42,0,1]:23
degree 6 diameter 7 13310  subgroup of GL[3,11] [1,2,7,0,1,0,0,0,10]:22 [1,5,2,0,1,2,0,0,4]:55 [1,6,10,0,1,3,0,0,5]:55
degree 6 diameter 8 50616  SL[2,37] [32,24,35,2]:19 [23,16,28,34]:36 [12,24,15,27]:37
degree 6 diameter 9 202464  subgroup of GL[2,37] [25,1,31,1]:36 [12,35,23,30):76 [12,4,28,16]:152
degree 6 diameter 10 682080  GL[2,29] [28,10,8,8]:28 [17,13,16,27]:28 [3,4,27,14]:840
degree 7 diameter 4 506  subgroup of GL[2,23] [22,1,0,1]:2 [13,16,0,1}:11 [3,16,0,1]:11 [19,12,0,1]:22
degree 7 diameter 5 2162  subgroup of GL[2,47] [46,1,0,1]:2 [4,20,0,1):23 [20,27,0,1}:46 [29,14,0,1]:46
degree 7 diameter 7 39732 PSL[2,43] [0,42,1,0]:2 [18,16,38,41]:22 [34,2,37,6]:22 [8,28,14,33]:43
degree 7 diameter 8 101232 subgroup of GL[2,37] [0,1,1,0):2 [21,34,17,17]:6 [21,1,4,2]:9 [27,26,4,8].74
degree 7 diameter 9 911088  subgroup of GL[2,37] [0,1,1,0]:2 [23,17,14,26]:18 [25,16,13,6]:36 [27,33,19,22]:684
degree 7 diameter 10 1822176  GL[2,37) [0,1,1,0]:2 [1,19,14,161:17 [36,1,12,0]:18 [35,28,34,12]:456
degree 8 diameter 3 203  subgroup of GL[2,29] [16,9,0,1):7 [16,21,0,1]:7 [25,15,0,1]:7 [25,9,0,1]:7
degree 8 diameter 4 812  subgroup of GL{2,29] [12,1,0,1]:4 [20,24,0,1]:7 6,27,0,1]:14 [15,18,0,1]:28
degree 8 diameter 5 3081  subgroup of GL[2,79] [46,43,0,1]:13 [49,72,0,1]:39 [19,26,0,1]:39 [13,13,0,1]:39
degree 8 diameter 7 89373  subgroup of GL[2,31] [1,4,25,0,1,23,0,0,1]:31 [1,29,29,0,1,16,0,0,51:93 [1,12,10,0,1,15,0,0,25]:93

[1,6,17,0,1,24,0,0,5]:93

degree 8 diameter 8 455544  subgroup of GL[2,37] [21,9,17,5]:57 [0,26,3,1]:171 [28,32,33,33]:171 [9,34,25,16]:342
degree 8 diameter 9 1822176  GL[2,37] [12,13,34,33]:18 [36,6,20,10]:36 [35,3,19,35]:684 [26,10,36,31]:1368
degree 9 diameter 5 6072  PSL[2,23] [0,22,1,0}:2 [2,18,4,2]:11 [10,1,21,16]:24 [6,19,4,9]:24 [22,0,1,22]:46
degree 9 diameter 8 682080 GL{2,29] [0,1,1,0]:2 [5,22,18,26]:14 [17,15,21,4]:840 [2,5,10,21]:840 [23,12,11,21]:840
degree 10 diameter 5 12144  SL[2,23] [9,0,18,18]:11 [13,10,18,21]:11 [9,10,0,17]:22 [14,7,19,3]:22 [18,13,17,20]:24
degree 10 diameter 8 1822176  subgroup of GL[2,37] [21,12,22,5]:57 [9,12,6,26]:456 [35,10,17,32}:684 [5,31,35,14]:684 [11,3,33,7]:1368

IV. THE CONSTRUCTIONS

During the publication process for this note we have become aware
of a new approach to this design problem, not based on Cayley
graphs, that shares with our approach the aspects of 1) a significant
exploitation of symmetry, and 2) computational exploration [5]. This
has had the effect on this note of removing from “bold” seven entries
of the original version of Table 1. We have retained the descriptions
of the Cayley graphs that gave those entries in the table that follows,
as they may still be of interest by virtue of their vertex symmetry
or other properties.

V. CONCLUSIONS

Our main contribution in this brief presentation is the demon-
stration of the power of an algebraic approach to the problem of
constructing large networks of a given degree and diameter. The
success of the relatively limited search we have so far conducted
seems to indicate that further exploration based on Cayley graphs
may be productive. Major problems relevant to applicants in parallel
processing and not addressed here concern message routing and data
exchange. Solutions are likely to be much more complicated in such
networks as we have described than in the familiar (Cayley graph)
networks of hypercubes and cube-connected cycles, and this remains
an area for further research.
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