
How Branch Mispredictions Affect Quicksort

Kanela Kaligosi1 and Peter Sanders2

1 Max Planck Institut für Informatik
Saarbrücken, Germany

kaligosi@mpi-sb.mpg.de
2 Universität Karlsruhe, Germany

sanders@ira.uka.de

Abstract. We explain the counterintuitive observation that finding
“good” pivots (close to the median of the array to be partitioned) may
not improve performance of quicksort. Indeed, an intentionally skewed
pivot improves performance. The reason is that while the instruction
count decreases with the quality of the pivot, the likelihood that the
direction of a branch is mispredicted also goes up. We analyze the ef-
fect of simple branch prediction schemes and measure the effects on real
hardware.

1 Introduction

Sorting is one of the most important algorithmic problems both practically and
theoretically. Quicksort [1] is perhaps the most frequently used sorting algo-
rithm since it is very fast in practice, needs almost no additional memory, and
makes no assumptions on the distribution of the input. Hence, quicksort, its
analysis and efficient implementation is discussed in most basic courses on al-
gorithms. When we take a random pivot, the expected number of comparisons
is 2n ln n ≈ 1.4n lg n. One of the most well known optimizations is that taking
the median of three elements reduces the expected number of comparisons to
12
7 n ln n ≈ 1.2n lg n [2]. Indeed, by using the median of a larger random sample,
the expected number of comparisons can be made as close to n lg n as we want
[3]. For sufficiently large inputs, the increased overhead for pivot selection is
negligible. At first glance, counting comparisons makes a lot of practical sense
since in quicksort, the number of executed instructions and cache faults grow
proportionally with this figure.

However, in comparison based sorting algorithms like quicksort or mergesort,
neither the executed instructions nor the cache faults dominate execution time.
Comparisons are much more important, but only indirectly since they cause
the direction of branch instructions depending on them to be mispredicted.
In modern processors with long execution pipelines and superscalar execution,
dozens of subsequent instructions are executed in parallel to achieve a high peak
throughput. When a branch is mispredicted, much of the work already done
on the instructions following the predicted branch direction turns out to be
wasted. Therefore, ingenious and very successful schemes have been devised to
accurately predict the direction a branch takes. Unfortunately, we are facing a

Y. Azar and T. Erlebach (Eds.): ESA 2006, LNCS 4168, pp. 780–791, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

How Branch Mispredictions Affect Quicksort 781

dilemma here. Information theory tells us that the optimal number of ≈ n lg n
element comparisons for sorting can only be achieved if each element compari-
son yields one bit of information, i.e., there is a 50 % chance for the branch to
take either direction. In this situation, even the most clever branch prediction
algorithm is helpless. A painfully large number of branch mispredictions seems
to be unavoidable.

Related Work: This dilemma can be circumvented by devising sorting algorithms
where comparisons are decoupled from branches [4]. However, the algorithm pro-
posed in [4] is not in-place and requires compiler optimizations that are not uni-
versally available yet. Hence it remains interesting to see what can be done about
branch mispredictions in quicksort. [5] based on a discussion between Sanders
and Moruz in 2004 observes that a reduced number of branch mispredictions
improves the running time of quicksort when inputs are almost sorted. In [6], a
variant of multiway mergesort is proposed that reduces branch mispredictions
by sequentially searching for the next element to be merged. This algorithm is
analyzed for the case of static branch prediction. Compared to this, the inno-
vation of the present paper is that it gives experimental results and concerns a
classical, in-place algorithm. Moreover, for quicksort also dynamic branch pre-
diction is interesting. Martinez and Roura [3] note that nonmedian pivots can
be beneficial if swaps are much more expensive than comparisons. However, it
seems that this situation would correspond to a nonoptimal use of quicksort
because then it would be more efficient to sort references to the elements first,
followed by a permutation of the original input.

Overview: In Section 2, we review quicksort and basic branch prediction mech-
anisms. Section 3 outlines our main theoretical contributions — an analysis of
quicksort in the context of branch mispredictions. For simplicity we assume that
the elements are distinct. We look at two variants of quicksort: random and
skewed pivot, and three branch prediction methods: static, 1-bit predictor and
2-bit predictor. To the best of our knowledge this represents the first analysis
of the interactions of a nontrivial algorithm with dynamic branch prediction
methods. Note that static branch prediction is not useful for analyzing quicksort
variants like random pivot that try to approximate the median. The theoreti-
cal results are complemented by experiments in Section 4. In particular, there
we also look at the classical median-of-three pivot selection. It turns out that
this frequently used improvement only gives a negligible advantage over random
pivot. Its advantages wrt. instruction count basically cancel with its disadvan-
tages wrt. branch prediction. Somewhat surprisingly, taking a pivot with rank
around n/10 can lead to a better performance.

2 Preliminaries

In this section we give a more detailed description of quicksort and then give an
overview of several branch prediction schemes.

782 K. Kaligosi and P. Sanders

2.1 Quicksort

A simple pseudocode of quicksort sufficient for our purposes can be seen in
Algorithm 1. In the rest of the paper, it will be clear from the context, whether n
denotes the input size or the currently relevant subproblem size. The algorithm
can be instantiated with different subroutines for determining the pivot. We
distinguish between three basic schemes: random pivot, median-of-three random
elements, and α-skewed pivot, i.e., a median of rank αn. Note that the latter
scheme is an idealization because in practice only approximations of this value
can be obtained efficiently (using random sampling [3]). However, for sufficiently
big inputs, one could get very good approximations at negligible cost for all but
the lowest levels of recursion.

Algorithm 1. Sort array part a[�..r]
Procedure quicksort(�, r : integer);

if r > � then
i = �; j = r; x = pivot();
repeat

while a[i] < x do i++ ; endwhile {Loop I}
while a[j] > x do j−− ; endwhile {Loop J}
if i ≤ j then swap(a[i], a[j]);

until j ≤ i
quicksort(�, i − 1);
quicksort(i + 1, r);

end if

2.2 Branch Prediction Schemes

In static branch prediction the compiler once and for all labels a branch in-
struction as predict-taken or as predict-not-taken. This scheme does not take
into account the dynamic behavior of the program. Static prediction is useful
together with α-skewed pivot selection. For α < 1/2, the compiler should stati-
cally predict that Loop I is not executed and that Loop J is executed.1

In the standard versions of pivot selection that attempt to approximate the
median, static prediction does not help. Here dynamic branch prediction mech-
anisms provided by the hardware may do better.

The simplest dynamic scheme is a 1-bit predictor. The hardware always pre-
dicts a branch instruction to take the same direction it took the last time it was
executed.

A refined version working better in practice is the 2-bit predictor. In order
to further improve the prediction accuracy, 2-bit prediction schemes were intro-
duced. In these schemes the prediction must be wrong twice before it is changed.
See for example [7]. In Fig. 1 we can see the behavior of a 2-bit predictor scheme.

In fact we can have the general case of a k-bit counter. As in the 2-bit case,
the counter is incremented if the branch is taken and decremented if the branch
1 Modern compilers do that using profiling information.

How Branch Mispredictions Affect Quicksort 783

00
PNTPNT

01

02
PT
03

PT

T

NT

T

NT

NT

T

T

NT

Fig. 1. 2-bit prediction scheme: There are four states, where PT means Predict Taken
and PNT means Predict Not Taken. The arrows show how the states are changed when
a branch is taken T or not taken NT.

is not taken. The branch is predicted taken when the counter is greater than or
equal to half of its maximum value and not taken otherwise. The k-bit prediction
schemes are not widely used since studies have shown that the 2-bit prediction
scheme is good enough for all practical purposes.

Furthermore, there are branch prediction schemes which not only consider the
history of the particular branch to be predicted but also that of other branches
which may be related to the current branch and affect its outcome. In this way
the prediction accuracy is further improved. See [7] for more details. It looks
difficult to analyze quicksort for the most general schemes. It also seems that
simple local prediction is adequate in the case of quicksort since the past behavior
of a branch instruction is likely to yield information whether the pivot is larger
or smaller than the median.

3 Analysis

In this section we analyze the behavior of quicksort in terms of the number of
branch mispredictions it incurs. We give the analysis of the branch mispredictions
occurring in the two inner and consecutive while loops of quicksort that perform
the partitioning step. Note that the remaining branch instructions are much less
frequently executed or easy to predict.

In the next three subsections we outline the proof of the following theorem.

Theorem 1. Let H(α) = −(α lg(α) + (1 − α) lg(1 − α)) be the binary entropy
function. The number of branch mispredictions that occur during the execution of
the partitioning step of quicksort are as described in Table 1. The entries for the
1-bit and the 2-bit predictor give the expected number of branch mispredictions
given the assumption that there is a probability α of an element being smaller
when compared with the pivot that has rank αn.2 For the entry random pivot
2 This assumption means that our analysis is “heuristic” since the knowledge that the

pivot has rank αn introduces slight dependencies between the comparisons. It is an
interesting question whether there is an easy argument proving the same bounds for
the standard average case model.

784 K. Kaligosi and P. Sanders

Table 1. Number of branch mispredictions

random pivot α-skewed pivot

static predictor ln 2
2 n lg n + O(n), ln 2

2 ≈ 0.3466 α
H(α)n lg n + O(n), α < 1/2
1−α
H(α)n lg n + O(n), α ≥ 1/2

1-bit predictor 2 ln 2
3 n lg n + O(n), 2 ln 2

3 ≈ 0.4621 2α(1−α)
H(α) n lg n + O(n)

2-bit predictor 28 ln 2
45 n lg n + O(n), 28 ln 2

45 ≈ 0.4313 2α4−4α3+α2+α
(1−α(1−α))H(α)n lg n + O(n)

with static predictor there is no such assumption and for the entry α-skewed
with static predictor we give a worst case analysis.

In Fig. 2 we see the α-dependent coefficients of n lg n for the case of the α-skewed
pivot. As expected they are maximized for α = 0.5 and their value decreases as
we move towards smaller or larger α’s. Moreover, the best curve is the one for
the static predictor, followed by the one for the 2-bit predictor and then the one
for the 1-bit predictor.

3.1 Static Prediction Scheme

Next we analyze the number of branch mispredictions quicksort could achieve
with static branch prediction if somebody would tell the predictor whether the
pivot is smaller or larger than the median. We can judge dynamic branch pre-
diction by comparing its performance with this “best possible” prediction. We
consider the random pivot and the α-skewed pivot case. For the former we give

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 0.2 0.4 0.6 0.8 1

(#
br

an
ch

 m
is

se
s

-
O

(n
))

 /
 n

 lg
 n

α

static predictor
1-bit predictor
2-bit predictor

Fig. 2. The α-dependent coefficients of n lg n for varying α

How Branch Mispredictions Affect Quicksort 785

an expected case analysis that holds for every input, namely we make no as-
sumptions for the distribution of the input. For the latter we give a worst case
analysis.

Let Bstat(n) denote the expected number of branch mispredictions occurring
in the partitioning step of quicksort with random pivot when a static predictor
is used. Consider one execution of the partitioning step. Let x be the pivot
element and αn its rank for some 0 < α ≤ 1. The rank αn of the pivot can take
each of the values 1, . . . , n with equal probability and after the partitioning we
are left with subproblems of size αn − 1 and (1 − α)n. If α < 1/2 then each
element smaller than the pivot causes a branch misprediction, since Loop I is
predicted not to be executed and Loop J is predicted to be executed. Therefore,
we have at most αn branch mispredictions. If α ≥ 1/2 the prediction of the loop
is the other way around and each element larger than the pivot causes a branch
misprediction and therefore we have (1 − α)n mispredictions. So, we set up the
following recurrence for n ≥ 1, with Bstat(0) = 1.

Bstat(n) ≤ 1
n

(�n/2�∑
αn=1

Bstat(αn − 1) + Bstat((1 − α)n) + αn)

+
n∑

αn=�n/2�+1

(Bstat(αn − 1) + Bstat((1 − α)n) + (1 − α)n
)
.

We solve the recurrence using for example the technique in [8] and we obtain
Bstat(n) ≤ ln 2

2 n lg n + O(n).
Now let Astat(n) be the number of branch mispredictions of quicksort with

α-skewed pivot when the static predictor is used. Similarly to above if α < 1/2
each element smaller than the pivot causes a branch misprediction and if α ≥ 1/2
each element larger than the pivot causes a branch misprediction. So, we set up
the following recurrence for n ≥ 1, with Astat(0) = 1.
Astat(n) ≤ αn + Astat(αn − 1) + Astat((1 − α)n), if α < 1/2 and
Astat(n) ≤ (1 − α)n + Astat(αn − 1) + Astat((1 − α)n), if α ≥ 1/2. We can prove
by induction that Astat(n) ≤ α

H(α)n lg n + O(n), if α < 1/2 and
Astat(n) ≤ 1−α

H(α)n lg n + O(n), if α ≥ 1/2.

3.2 1-Bit Prediction Scheme

We now analyse quicksort when a 1-bit prediction scheme is used. In the 1-
bit prediction scheme we predict that a branch instruction will go in the same
direction as the last time it was executed. Let Xi be the indicator random
variable which is 1 if the i-th element in Loop I causes a branch misprediction
and 0 otherwise. Correspondingly we define Yj for Loop J . We have that Xi = 1 if
a[i] ≥ x and a[i−1] < x or if a[i] < x and a[i−1] ≥ x. Using our assumption that
P [a[i] < x] = α, we get P [Xi = 1] = 2α(1−α). Similarly P [Yj = 1] = 2α(1−α).
Let X =

∑k
i=1 Xi +

∑n
j=k+1 Yj denote the number of mispredictions. Then

E[X] = E[
∑k

i=1 Xi +
∑n

j=k+1 Yj] =
∑n

i=1 E[Xi] = nP [X1 = 1] = 2α(1 − α)n.

786 K. Kaligosi and P. Sanders

Let B1-bit(n) denote the expected number of branch mispredictions when
random pivot is used. Then we obtain the recurrence
B1-bit(n) ≤ 1

n

∑n
αn=1

(
B1-bit(αn − 1) + B1-bit((1 − α)n) + 2α(1 − α)n

)
.

This solves to B1-bit(n) = 2 ln 2
3 n lg n + O(n).

Now let A1-bit(n) denote the expected number of branch mispredictions when
an α-skewed pivot is used. Then
A1-bit(n) ≤ 2α(1 − α)n + A1-bit(αn − 1) + A1-bit((1 − α)n).
It can be shown by induction that it solves to A1-bit(n) = 2α(1−α)

H(α) + O(n).

3.3 2-Bit Prediction Scheme

We now consider the 2-bit prediction scheme. As stated earlier we assume that
an element is smaller than the pivot with probability α independently of the
other comparisons. With this simplification, the branch predictor can be mod-
eled as a Markov chain. First consider the predictor of Loop I. Its corresponding
Markov chain has four states, each one corresponding to a state of the predic-
tors automaton, see Fig. 1. The transition table where entry Pkl represents the
probability of going to state l given that we are in state k is as follows.

P =

⎡
⎢⎢⎣

α 1 − α 0 0
α 0 0 1 − α
α 0 0 1 − α
0 0 α 1 − α

⎤
⎥⎥⎦

Let π0, π1, π2, π3 denote the stationary probabilities of the Markov chain, i.e.,
they are the solution to the system −→π · P = −→π and

∑3
k=0 πi = 1. Then π0 =

α2

1−α(1−α) , π1 = α2(1−α)
1−α(1−α) , π2 = α(1−α)2

1−α(1−α) and π3 = (1−α)2

1−α(1−α) . One can easily
verify this by substitution. Similarly, to the above we obtain the Markov chain
corresponding to Loop J . Now, let Xi be the indicator random variable which is
1 if the i-th element of the Loop I causes a branch misprediction and 0 otherwise.
Correspondingly we define Yj for Loop J .

The ith element causes a branch misprediction in the following cases. After
having considered element a[i − 1] the Markov chain is in state 0 and a[i] ≥ x,
or it is in state 1 and a[i] ≥ x, or it is in state 2 and a[i] < x or it is in state 3
and a[i] < x. Therefore,

P [Xi = 1] = π0 · P [a[i] ≥ x] + π1 · P [a[i] ≥ x] + π2 · P [a[i] < x] + π3 · P [a[i] < x].

By substituting P [a[i] ≥ x] = 1 − α and P [a[i] < x] = α and the values for
π1, . . . , π3 we obtain that P [Xi = 1] = 2α4−4α3+α2+α

1−α(1−α) . The same holds for

P [Yi = 1]. Now let X =
∑k

i=1 Xi +
∑n

j=k+1 Yj be the number of branch mis-
predictions. Then E[X] = E[

∑k
i=1 Xi +

∑n
j=k+1 Yj] =

∑n
i=1 E[Xi] = nP [X1 =

1] = 2α4−4α3+α2+α
1−α(1−α) n. Let B2-bit(n) denote the expected number of branch mis-

predictions of quicksort with random pivot. Then

How Branch Mispredictions Affect Quicksort 787

B2-bit(n) ≤ 1
n

∑n
αn=1

(
B2-bit(αn−1)+B2-bit((1−α)n)+ 2α4−4α3+α2+α

1−α(1−α) n
)
. This

solves to B2-bit(n) = 28 ln 2
45 n lg n + O(n).

Now let A2-bit(n) be the expected number of branch mispredictions of quick-
sort with α-skewed pivot. Then
A2-bit(n) ≤ 2α4−4α3+α2+α

1−α(1−α) n + A2-bit(αn − 1) + A2-bit((1 − α)n), which solves to

A2-bit(n) = 2α4−4α3+α2+α
(1−α(1−α))H(α)n lg n + O(n).

4 Experiments

For our experiments we use one of the fastest quicksort implementations std::sort
from the STL library included in GCC v3.3. This implementation uses the me-
dian of 3 elements as the pivot. We added an implementation of the random pivot
and the idealized α-skewed pivot mechanisms. Our inputs are random permuta-
tion of the integers in the range [1, . . . , n]. We average over max{100,

⌈
107/n

⌉
}

inputs. Note that with a simple calculation we can obtain the element of rank
αn, for a given α. Observe that this makes the cost of finding the pivot element
negligible. If the time taken by quicksort is too large, the STL implementation
switches to an algorithm of O(n lg n) worst case performance. Since we are only
interested in quicksort we have removed this switch. In order to be able to use a
larger number of α’s for the skewed pivot mechanism we changed the threshold
of breaking the recursion from 16 to 20 elements. This does not have any signif-
icant effects. The STL implementation uses insertion sort for sorting the small
instances. The measures in our figures include the cost of the final insertion sort.
This changes the cost of all algorithms by the same amount and therefore does
not affect our conclusions.

We used the PAPI tool which provides an interface that allows to count several
CPU events including the number of branch mispredictions and the number of
instructions executed. When not otherwise stated, the experiments are on a
3GHz Pentium 4 Prescott.

Figs. 3, 4 and 5 show a comparison of the random pivot, the median of 3, the
exact median or 1/2-skewed and the 1/10-skewed pivoting mechanisms in terms
of the execution time, the number of occurring branch mispredictions and the
number of instructions executed for different values of n. In Fig. 3 we see that the
random pivot algorithm is most of the times a little bit worse than the others. On
the other hand the difference is very small and in particular we observe that the
curves for the random pivot, the median of 3 and the exact median are very close
to each other, in contrast to the common concept that the exact median and the
median of 3 should significantly outperform the random pivot. Furthermore, we
see that the 1/10-skewed algorithm has a better performance.

In Fig. 4 we see that the random pivot has for most n a smaller number of
branch mispredictions compared to the median of 3 and the exact median. The
measured prediction quality is better than the quality we would expect for a
1-bit predictor (see Table 1) but not quite as good as to be expected for a 2-bit
predictor. The 1/10-skewed pivot algorithm has of course the smallest number

788 K. Kaligosi and P. Sanders

of branch mispredictions. In Fig. 5 we see the number of instructions that are
executed. These are proportional to the number of comparisons and therefore
we see that the exact median is the best, followed by the median of 3, then the
random pivot and finally the 1/10-skewed pivot. Observe that the curves in this
figure are very flat and smooth in contrast to the curves in Fig. 3. Therefore, it
is not only the number of executed instructions that plays a major role in the
running time. The fluctuations in Fig. 3 indicate architectural effects. Observe
that for n = 216 the number of branch mispredictions of random pivot drop and
for this n we also see a significant drop in its running time. Having a closer look at
the curves we see that the curves of time and those of the branch mispredictions
have the same shape, in the sense that when the branch mispredictions drop, the
running time drops too and when the branch mispredictions increase the running
time increases too. Note that the branch mispredictions only slowly approach

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 8

 8.2

 8.4

 10 12 14 16 18 20 22 24 26

tim
e

/ n
 lg

 n
 [n

s]

lg n

random pivot
median of 3

exact median
skewed pivot n/10

Fig. 3. Time / n lg n for random pivot, median of 3, exact median, 1/10-skewed pivot

 0.32

 0.34

 0.36

 0.38

 0.4

 0.42

 0.44

 0.46

 0.48

 0.5

 10 12 14 16 18 20 22 24 26

#b
ra

nc
h

m
is

se
s

/ n
 lg

 n

lg n

random pivot
median of 3

exact median
skewed pivot n/10

Fig. 4. Number of branch mispredictions / n lg n for random pivot, median of 3, exact
median, 1/10-skewed pivot

How Branch Mispredictions Affect Quicksort 789

 6

 6.5

 7

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 11.5

 10 12 14 16 18 20 22 24 26

#i
ns

tr
uc

tio
ns

 /
n

lg
 n

lg n

random pivot
median of 3

exact median
skewed pivot n/10

Fig. 5. Number of instructions / n lg n for random pivot, median of 3, exact median,
1/10-skewed pivot

 6.8

 7

 7.2

 7.4

 7.6

 7.8

 8

 2 4 6 8 10 12 14 16 18

tim
e

/ n
 lg

 n
 [n

s]

1/α

n=212

n=219

n=226

Fig. 6. Time / n lg n for different values of α

0.5n lgn for the exact median algorithm. The main reason is that the insertion
sort used for small subproblems incurs only O(n) branch mispredictions (each
iteration of the inner loop of insertion sort incurs just one branch misprediction).

Figs. 6, 7 and 8 show the performance of the α-skewed pivot when we vary
α. We tried three different values of n, i.e. 212, 219 and 226. In Fig. 6, where the
running time is measured, we see that we have a parabola like figure and for
α = 1/11 we get the best running time. Moreover, the exact median which is
for α = 1/2 is a lot worse. Figs. 7 and 8 indicate why we have such a shape in
Fig. 6. As α increases, the number of branch mispredictions decreases and the
number of instructions increases. Therefore, we see that α = 1/11 is the place
of compromise.

In order to see the effects of different architectures we reran the experiments
on an Athlon, an Opteron and a Sun machine (Figures will be in the full paper).
We see for large inputs, pivots close to the median are an advantage. Our inter-

790 K. Kaligosi and P. Sanders

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 2 4 6 8 10 12 14 16 18

#b
ra

nc
h

m
is

se
s

/ n
 lg

 n

1/α

n=212

n=219

n=226

Fig. 7. Number of branch mispredictions / n lg n for different values of α

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 2 4 6 8 10 12 14 16 18

#i
ns

tr
uc

tio
ns

 /
n

lg
 n

1/α

n=212

n=219

n=226

Fig. 8. Number of instructions / n lg n for different values of α

pretation is that on the Opteron, memory bandwidth is more of an issue than
on the Pentium 4 architecture (perhaps its long pipelines make branch mispre-
diction more predominant). Hence, for a skewed pivot algorithm one might want
to pick α close to 1/2 for large subproblems but use a smaller value when a sub-
problem fits in cache. A similar strategy might be useful on a Pentium 4, when
we sort larger objects. Since our goal is understanding branch mispredictions
rather than designing an efficient algorithm, we do not dwell on this issue.

5 Conclusions

Somewhat astonishingly, generally accepted “improvements” of quicksort such
as median-of-three pivot selection bring no significant benefits in practice (at
least for sorting small objects) because they increase the number of branch mis-
predictions. For teaching this means that we should either stop after random

How Branch Mispredictions Affect Quicksort 791

pivots or give the full story of what happens for more sophisticated pivot selec-
tion strategies. By actively choosing a skewed pivot, we can slightly improve the
performance of quicksort. Since this increases the instruction count, the better
approach seems to be to avoid branch mispredictions altogether, e.g. using the
techniques described in [4]. However, an in-place sorting algorithm that is better
than quicksort with skewed pivots is an open problem.

Acknowledgments. We would like to thank Roman Dementiev, Dimitrios
Michail and Johannes Singler for crucial assistance with the experiments.

References

1. Hoare, C.A.R.: Algorithm 64: Quicksort. Commun. ACM 4(7) (1961) 321
2. Knuth, D.E.: The Art of Computer Programming—Sorting and Searching. Vol-

ume 3. Addison Wesley (1973)
3. Mart́ınez, C., Roura, S.: Optimal sampling strategies in Quicksort and Quickselect.

SIAM Journal on Computing 31(3) (2002) 683–705
4. Sanders, P., Winkel, S.: Super scalar sample sort. In: 12th European Symposium

on Algorithms (ESA). Volume 3221 of LNCS., Springer (2004) 784–796
5. Brodal, G.S., Fagerberg, R., Moruz, G.: On the adaptiveness of quicksort. In:

Workshop on Algorithm Engineering & Experiments, SIAM (2005) 130–149
6. Brodal, G.S., Moruz, G.: Tradeoffs between branch mispredictions and comparisons

for sorting algorithms. In: Proc. 9th International Workshop on Algorithms and
Data Structures. Volume 3608 of Lecture Notes in Computer Science., Springer
Verlag, Berlin (2005) 385–395

7. Patterson, D.A., Hennessy, J.L.: Computer Architecture: A Quantitative Approach
3rd. ed. Morgan Kaufmann (2003)

8. Sedgewick, R.: Algorithms (Second Edition). Addison-Wesley Longman Publishing
Co. (1988)

	Introduction
	Preliminaries
	Quicksort
	Branch Prediction Schemes

	Analysis
	Static Prediction Scheme
	1-Bit Prediction Scheme
	2-Bit Prediction Scheme

	Experiments
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

