
1 Introduction, Background and Review

Organizational matters

• Lecturer: Dr Mark Wilson.

• Email mcw@cs.auckland.ac.nz. Phone extn 86643.

• Office: City 303.588.

• Lectures: will stick mostly to textbook, but there may be some extra
material. Please ask questions.

• Tutorial: please register immediately - they are compulsory.

• Other resources: course webpages, my handouts directory, lecturers, tu-
torials, class forum, library (books on reserve).

How to multiply two positive integers?

• The well-known algorithm taught at primary school uses the decimal rep-
resentation, and requires a lookup table for 1-digit numbers.

• Russian peasants apparently used a different algorithm, which requires
only addition and multiplication/division by 2. It is well suited to com-
puters.

• How to compare these two algorithms?

• We define the size of an integer x to be the number of its binary digits,
b(x) := 1 + blog2 |x|c.

• How do the resource requirements grow as a function of the problem size?

• What is an elementary operation (basic unit of running time)? Addition
of very large integers is probably not one.

“Russian peasant” multiplication

algorithm russmult(int x, int y)
{ reduce to case of positive input }
s← 1;
if (x < 0) then s← −s; x← −x;
if (y < 0) then s← −s; y ← −y;
{ now multiply positive integers }
t← 0;
while x > 0 do

if (x mod 2 = 1) then t← t + y;
x← x÷ 2;
y ← 2 ∗ y;



return s ∗ t;
end

Correctness of russmult
First note that the algorithm always terminates, by basic properties of nat-

ural numbers.
It is easy to see that the algorithm is correct if and only if it is correct for

nonnegative integer input, so we assume x, y ≥ 0.
We use induction on x. If x = 0, the algorithm returns 0. Now suppose that

x ≥ 1. If x is even, x = 2x′, then t remains 0 after first iteration. The algorithm
now proceeds as though it were being run on x′, 2y. By induction, it returns
t = 2yx′ = xy on these inputs, hence on the original inputs. On the other hand,
if x is odd, x = 2x′ + 1, then t has value y after one iteration. Let T = t− y so
T = 0 now. The algorithm now proceeds as though it were run on input x′, 2y,
with T in place of t. By induction it returns T = 2x′y on this input. Hence the
algorithm returns t = 2x′y + y = xy on the original input.

Analysis of russmult

• If multiplying x, y > 0, problem size is measured by max{b(x), b(y)} or
b(x) + b(y) or just (b(x), b(y)). We can assume b(x) ≤ b(y).

• Number of additions is number of 1’s in binary representation of x, b(x)
in worst case. Number of doublings/halvings is b(x).

• Time is dominated by additions and doubling/halving. If additions have
unit cost then this gives a linear-time multiplication algorithm!

• More realistically, additions take time proportional to size of addends. In
the worst case we have to add numbers of size b(y), b(y) + 1, . . . , b(y) +
b(x) − 1; we end up with a total time of order b(x)b(y), like the primary
school algorithm.

• What about average-case running time? It is still of the same order. See
Assignment 1.

2 Asymptotics

Review: asymptotic notation for f : N→ R+

• f ∈ O(g) means there is C > 0 and n0 ∈ N such that f(n) ≤ Cg(n) for
all n ≥ n0. “Eventually, f grows at most as fast as g”.

• f ∈ Ω(g) means g(n) ∈ O(f(n)):
f(n) ≥ Cg(n) for all n ≥ n0. “Eventually, f grows at least as fast as g”.
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• f ∈ Θ(g) means f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n)):
f(n) ≤ C1g(n) ≤ C2f(n) for all n ≥ n0. “Eventually, f grows at the same
rate as g”.

Note that if always g > 0, then in the definition of O, we can remove n0 at the
expense of a bigger C (why?). Thus f ∈ O(g) if and only if there is C > 0 with
f(n) ≤ Cg(n) for all n ∈ N, in other words f/g is bounded above.

Useful rules for asymptotics

• Limit rule: if eventually g > 0 and L := lim f(n)/g(n) exists,

– if L = 0 then f ∈ O(g) and f 6∈ Ω(g);

– if 0 < L <∞ then f ∈ Θ(g);

– if L =∞ then f ∈ Ω(g) and f 6∈ O(g).

• Sum rule: if f1 ∈ O(g1), f2 ∈ O(g2), then f1 + f2 ∈ O(max{g1, g2}).

• Product rule: if f1 ∈ O(g1), f2 ∈ O(g2), then f1f2 ∈ O(g1g2).

• Transitivity: if f ∈ O(g), g ∈ O(h), then f ∈ O(h).

When using the limit rule, L’Hôpital’s rule from calculus is often useful.

Examples of asymptotics

• n lg n ∈ O(n2), by limit rule;

• loga n ∈ Θ(lg n) for each fixed a > 1, by change of base formula;

• 2n ∈ Ω(n10), by limit rule;

• p(n) ∈ Θ(ndeg p) if p is a polynomial, by limit rule.

• fix k ∈ R and let Sk(n) = 1k + 2k + · · ·+ nk. Then{
Sk(n) ∈ Θ(nk+1) for k 6= −1;
S−1(n) ∈ Θ(log n).

One proof uses approximation by an integral.

Conditional asymptotics

• Sometimes we have a statement like: f(n) ≤ Cg(n) for all sufficiently
large n such that n is a power of 2.

• Without further assumptions we cannot say that f ∈ O(g) uncondition-
ally.
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• However, the smoothness rule does allow us to conclude that f ∈ O(g).
The hypotheses are:

– g is eventually increasing: g(n + 1) ≥ g(n) for all sufficiently large n;

– g has subexponential growth: there is C > 0 such that g(2n) ≤ Cg(n)
for all sufficiently large n;

– f is eventually increasing.

• Similarly we can transfer a conditional f ∈ Ω(g) or f ∈ Θ(g) into the
unconditional version.

Proofs by induction

• “Induction is just recursion for proofs”.

• The technique of proof by induction is equivalent to the technique of the
“minimal criminal”.

– Suppose we have propositions P (n) such that P (0) is true and when-
ever P (k) is true for all k < n then P (n) is necessarily true. We want
to show that P (n) is true for all n.

– Suppose on the contrary that it is false for some n. Then there must
be a least such n, call it n0 (the minimal criminal), for which it is
false.

– Now n > 0 by assumption and by minimality P (k) is true for all
k < n. Thus P (n) is true, contradicting our assumption.

• This can be used to show correctness of many algorithms.

Correctness proofs using induction

• Quicksort, mergesort are correct provided the partitioning/merge steps
are correct (they work for size 1 input and reduce the problem to smaller
instances, so there can’t be a minimal criminal).

• Any recursive algorithm can be treated in the same way.

• Insertion sort reduces the number of inversions (pairs that are out of or-
der), and works when there are no inversions, so we can use induction on
the number of inversions.

• Any iterative algorithm that systematically reduces some nonnegative
measure of badness can be treated in the same way.
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The technique of constructive induction

• You are familiar with the use of induction to prove inequalities, such as
“2n < n! for n ≥ 4”. However for asymptotics we more usually have
something like “show that the Fibonacci numbers grow exponentially and
determine their growth rate”.

• So we try to prove: “for some C > 0, some n0 ≥ 0 and some φ > 1, we
have F (n) ≥ Cφn for all n ≥ n0”.

• The induction step will have to use the recurrence defining F (n). The
inductive hypothesis will give F (n) = F (n − 1) + F (n − 2) ≥ Cφn−1 +
Cφn−2. Notice that as long as φn−1 + φn−2 ≥ φn the inductive step will
follow.

• The largest φ for which this works is the root of φ2 − φ − 1 = 0, namely
(1 +

√
5)/2.

• We can now prove the result using any C that works for two consecutive
base values. Can you find a good C and n0?

3 Some data structures

3.1 Graphs, digraphs, trees

Definitions

• A digraph is a finite set V of nodes together with a binary relation E on
V . The element (v, w) of E is the arc from v to w.

• A graph has the same definition as a digraph, except that the arc relation
is required to be symmetric. In this case we can represent the edge between
u and v as an unordered pair {v, w}.

• A (rooted, ordered) tree is a special type of graph (or digraph) that can
be defined directly in a recursive way.

• (Di)graphs have enormously many applications in studying transporta-
tion/communication/social networks, as well as scheduling and other de-
pendency relations. Trees arise in the analysis of recursive algorithms as
well as explicit data structures.

Standard graph ADT operations

• Create empty (di)graph.

• Return the order (number of nodes) and size (number of arcs).

• Is there an arc between u and v?
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• Add an arc between u and v.

• Delete arc between u and v.

• Add a node.

• Delete node u (and all arcs involving it).

Standard implementations

• Two main implementations for general digraphs: adjacency matrix and
adjacency lists representation.

• A graph can be represented as a symmetric digraph or using unordered
pairs of nodes.

• More specialized classes of (di)graphs can have more efficient representa-
tions. Trees are an example.

• We also need to deal with (arc)-weighted objects where a real number
is associated to each arc. Simple modifications of the matrix and lists
representations can be made.

Java graph implementation

• In CS220 we saw a particular implementation in Java.

• The files are available from the course website and a description is in the
CS220 textbook.

• Please review them immediately and ask questions before the week 3 lab.

Review of important algorithms I

• Tree traversals: preorder, postorder, inorder (for binary tree).

• Graph traversals: visit each node exactly once and explore each arc exactly
once. At each step scan the neighbours of a frontier node and visit a new
one.

– Depth-first search: uses a stack to determine which node to use next
as the frontier node. Can be implemented recursively.

– Breadth-first search: uses a queue to determine which node to use
next as the frontier node.

– Priority-first search: uses a priority queue to determine which node to
use next as the frontier node. Includes depth-first and breadth-first
as special cases.

• Applications of graph traversal: (strongly) connected components, short-
est cycle, 2-colouring, topological ordering. Can all be done in linear time
(Θ(n + e) where n is order, e is size).
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Review of important algorithms II

• Weighted (d)graphs have a number attached to each arc. Common ques-
tion: find something (path, cycle, spanning tree) of minimum total weight.

• Distance from source: Dijkstra (fails when negative weights allowed),
Bellman-Ford.

• Pairwise distances: Floyd.

• Spanning tree: Prim, Kruskal.

• The performance depends considerably on the data structures used. Prim
and Dijkstra are based on priority-first traversal, and implementation of
the priority queue is crucial.

• Note for later: Prim, Kruskal, Dijkstra are greedy algorithms and Bellman-
Ford and Floyd are based on dynamic programming.

3.2 Priority queue ADT

Priority queues

• Recall: a priority queue is a container ADT where every element has a data
field called a key. The basic operations are insert, getmin, deletemin.

• Stack and queue can be considered as special cases (but the usual imple-
mentations are more efficient).

• Many uses: sorting (heapsort), optimization algorithms (Dijkstra, Prim,
branch-and-bound).

• You have seen implementation by means of a binary (min-)heap (a type
of tree nicely representable in an array). All basic operations take time in
O(log n).

• Some applications (such as Dijkstra/Prim) require an additional decreasekey
operation which dominates the computation, so it is important that this
operation be efficient. In a binary heap, decreasing a key value is not very
efficient (how would you do it?)

Priority–first traversal

algorithm PFSv(node s, string alg)
colour[s]← GREY ; seen[s]← time
Q← pqcreate()
insert(Q, s, key(s))
while not isempty(Q) do

u← getmin(Q)
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for v adjacent to u do
if colour[v] = WHITE then

time← time + 1; seen[v]← time
colour[v]← GREY
insert(Q, v, key(v))

colour[u]← BLACK; done[u]← time
deletemin(Q)

time← time + 1
end

subroutine key(node s, string alg)
if (alg = BFS) key ← time
else if (alg = DFS) key ← −time
else key ← priority[s]

Dijkstra/Prim using priority queue

algorithm DijkPrim (weighted digraph (G, c), node v, string alg)
Q← makepq()
for u ∈ V (G) do

insert(Q, u,∞); changekey(Q, v, 0)
while not isempty(Q) do

u← getmin(Q); k ← getminkey(Q); deletemin(Q)
for x ∈ Q do

l← getkey(Q, x)
if (alg = DIJK) n← min{l, k + c[u, x]}
if (alg = PRIM) n← min{l, c[u, x]}
changekey(Q, x, n)

If implemented properly, getkey/changekey are done e times; getmin/getminkey/deletemin
n times.

Priority queue implementations

• In Dijkstra/Prim, decreasekey can dominate the computation. A binary
(min)-heap supports getmin/getminkey in O(1) time and other opera-
tions in O(log n). Much research has been done into improving this.

• It is possible to do decreasekey in O(1) time without ruining other opera-
tions, provided we consider amortized time complexity. The first construc-
tion is called Fibonacci heap. A more recent one (T. Takaoka, University
of Canterbury) is called 2-3 heap. See me for references.

• What is amortized time complexity? Roughly, the idea is to average over
many consecutive operations of the same operation. Each time the oper-
ation changes the data structure and this affects the running time of the
next time. The worst case may be bad but occur infrequently.
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Amortized time complexity

• Suppose we have a function φi that measures the “messiness” of the data
structure after the ith call on a given operation. Define the amortized
time taken by the ith call as t̂i = ti + (φi − φi−1), where ti is time for ith
call.

• Note that
∑n

i=1 t̂i =
∑n

i=1 ti + φn − φ0 by telescoping. Provided φi is
never less than φ0 (we don’t “over-clean”), total time is bounded above
by total amortized time. If we choose φ cleverly, total amortized time can
be easy to compute.

• Example: binary counter (BB p 115, detailed in class). Count from 0 to
n. Let φi be the number of bits equal to 1 after i calls. Total amortized
time is at most 2n. However, worst case for single operation is lg n.

• Example: stack implemented as array with doubling. Detailed in class.

3.3 Union-find ADT

An ADT for set partitions

• Recall that a partition of a set S is a collection of disjoint subsets of S
whose union is S. There is a 1-1 correspondence between partitions of S
and equivalence relations on S.

• There are 3 standard operations on the ADT that represents a partition
of S.

– MakeUnionFind(S) creates a partition in which each element x of S
is in its own singleton set {x}.

– Union(x, y) merges the subset containing x with the one containing
y;

– Find(x) returns the unique subset containing x (we will label this set
by a fixed representative element).

We assume that the first operations performed after creating an empty
object will create n singleton subsets using MakeSet.

• This ADT has applications whenever we have dynamically changing equiv-
alence relation on a set. We will see examples soon.

Array implementation

• Maintain an array A indexed by elements of S, where A[x] gives the rep-
resentative of the set containing x. Thus Find takes constant time.

• The union operation takes time in Θ(n) in worst case because we must
update the values of A[x] for all x in the two sets.
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• There are some obvious speed improvements to be made (at the cost of
more space):

– (Weighted union heuristic) Give the union the name of the larger of
the two sets being merged, so less updating is required.

– Of course this requires us to keep track of the size, and we can use
another array for that.

– Maintain the list of elements in each set (how??) so we don’t have
to scan the whole array to find out what needs updating.

• Could also use a linked list.

Forest implementation

• Maintain each subset in a tree, with one set element per node, and choose
the root as the representative.

• Use the predecessor representation so that we only store the parent of each
node. Declare the parent of a root to be itself.

• The Find operation takes time proportional to the depth of the node.

• The Union operation takes constant time: make the root of one tree point
to the root of the other.

• We can show that the amortized time for Find is O(log n). Can we do
better?

• (Path compression heuristic) after a Find operation, go back along the
path and reset all the pointers on that path to point directly to the root.

Analysis of Find

• If we use weighted union, then every time the set containing x has to
change its name, its size must have at least doubled.

• Since it starts at size 1 and does not exceed n = |S|, it can change name
at most lg n times. Thus Find runs in Θ(log n) time in the worst case.

• If we also use path compression, Find takes more work, but never by more
than a constant factor. The cleaning up done by the compression more
than compensates.

• It can be shown that the amortized time for Find is O(α(n)) where α is
the inverse Ackermann function. This function grows so slowly that it
can’t take a value more than 4 on any practical problem. See book by
Cormen et al. for details.
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4 Greedy algorithms

Design paradigm 1: greedy algorithms

• Build up a solution step-by-step, making the locally best choice, with no
regrets. Usually solution is a vector. We select an element from a set of
candidates, using a selection criterion, and add to our partial solution. A
candidate not chosen may also be rejected. Once a candidate has been
rejected, it is never considered again. On termination, we have a solution.

• Usually we want an optimal solution. Greedy algorithms are usually fast
and sometimes give optimal solutions. Proving that they do is usually
hard.

• A partial solution that can be extended to a solution is called feasible (often
easy to check), and one that extends to an optimal solution is promising
(usually hard).

• Examples you (may) have seen: Dijkstra, Prim/Kruskal. Other examples:
scheduling, change-making, . . . .

A scheduling problem

• We have n jobs to schedule on a single resource. The ith job has a re-
quested start time s(i) and finish time f(i).

• There may be conflicts that make it impossible to fulfil all requests. We
want to maximize the number of jobs scheduled.

• Some greedy ideas:

– Accept in increasing order of s (“earliest start time”);

– Accept in increasing order of f − s (“shortest job time”);

– Accept in increasing order of number of conflicts (“fewest conflicts”);

– Accept in increasing order of f (“earliest finish time”).

• Only the last one always gives an optimal solution. They all give feasible
solutions. In formal greedy framework: candidates: jobs; partial solution:
list of compatible jobs; selection rule: varies; reject if job causes a conflict
with what is already chosen; solution: list of jobs such that no more can
be added.

Proof of optimality of EFT rule

• Basic idea: the greedy algorithm stays ahead throughout.

• Let O = [j1, , . . . , jm] be an optimal list of requests and let A = [i1, . . . , ik]
be the list created by the algorithm. We want to show that k = m.
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• Assume the requests are ordered in time in the obvious way.

• Prove by induction that f(ir) ≤ f(jr). Clear for r = 1 by greedy property.
Induction step is easy.

• If A is not optimal, then m > k. But then f(ik) ≤ f(jk). There is another
feasible job to add after time f(jk). But the greedy algorithm would not
have stopped while there was a compatible job left. Contradiction: so A
is optimal.

Graph algorithms in greedy framework

• (minimum spanning tree) Prim’s algorithm: choose root and grow tree
by adding shortest edge possible. Candidates: edges; partial solution:
set of edges forming subtree; selection: cheapest edge connected to tree;
rejection: if cycle formed.

• (minimum spanning tree) Kruskal’s algorithm: grow forest by adding
cheapest edge possible. Candidates: edges; partial solution: edges forming
forest; selection: cheapest edge; rejection: if cycle formed.

• (single source shortest path) Dijkstra’s algorithm: choose root and grow
tree by adding currently closest node to root; update distances. Candi-
dates: nodes (indices of distance array); partial solution: set of indices;
selection: smallest array element; rejection: never.

Another scheduling problem

• We have a single resource and n jobs to schedule. Job i has deadline d(i)
and takes time t(i) to perform. We must specify for each i the start time
s(i). The finish time is f(i) := s(i) + t(i).

• Define the lateness l(i) to be max{f(i)− d(i), 0}. We aim to minimize the
maximum lateness maxi l(i).

• Some greedy ideas:

– (shortest job first) choose jobs in increasing order of t(i);

– (greatest slack time) choose jobs in decreasing order of d(i)− t(i);

– (earliest deadline first) choose jobs in increasing order of d(i).

• The last one, denoted EDF, works (proof coming up) and the others do
not (as seen by easy examples).
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Proof of optimality of EDF

• Basic idea: exchange argument. Gradually transform an optimal solution
into the greedy solution without sacrificing optimality.

• Let O be an optimal schedule. We may assume that O has no idle time.

• Renumber the jobs so that d(1) ≤ d(2) · · · ≤ d(n) and let A be the schedule
1, 2, . . . , n found by EDF.

• We show that if i precedes j in O and d(i) > d(j), then swapping i and
j gives an optimal schedule. The only thing to check is the new lateness
of i: l̃(i) = f(j) − d(i) < f(j) − d(j) so the maximum lateness has not
increased.

• Iterating this we obtain a schedule with no idle time and no inversions.
Up to a permutation of jobs with identical deadline, it is the same as A.
In particular it has the same objective value so that A is also optimal.

Optimal caching

• We have a set U of n data items in main memory. We have a memory
cache that holds k < n data items. A sequence D of requests (elements of
U) is given. We want to minimize the number of cache misses (a requested
element is not in the cache).

• When an item is added to a full cache, another item must be evicted. We
need to specify an eviction schedule.

• Under real conditions we must solve the online version of this problem
because we don’t know D in advance. But studying the offline version
is important because it gives an upper bound on performance of online
algorithms.

• FIF (Farthest-in-future) rule: evict the data item whose next request is
latest among all elements currently in the cache.

Proof of optimality of FIF

• Exchange argument: let S be an optimal eviction schedule and A the one
chosen by FIF.

• Consider the first point where S deviates from A: element d is brought
in, S evicts e and A evicts f 6= e. We transform to an optimal S′ which
agrees with A at this step also.

• Specifically, S′ evicts e at this step. In future steps, it copies S until one
of the following things happens:

13



– There is a request for g 6=, e, f not in cache of S, and S evicts e.
Then g is not in cache of S′ so we make S′ evict f .

– There is a request for f and S evicts e′. If e′ = e, S′ does not need
to evict and simply accesses f from cache. If e′ 6= e, then S′ evicts
e′ and brings in e.

– In each case S′ now now has the same cache as S and copies S from
now on. Under FIF, one of the cases above must occur before e is
requested. Thus S′ makes no more misses than S.

Knapsack problem

• We have a container with capacity W and must choose items from a list
of n items. The ith item has a weight wi and a value vi. We aim to
maximize the total value in our container.

• Linear programming formulation: maximize
∑

j ajvj subject to
∑

j ajwj ≤
W and 0 ≤ aj ≤ 1.

• Greedy idea: take items in decreasing order of value density vi/wi.

• This is optimal if we can take arbitrary amounts of each type (aj are
real). But it is not if we cannot subdivide objects (aj must be integer).
Example: W = 3, v1 = 1, v2 = 2, w1 = 1, w2 = 3.

• Implementation: sort items in order of decreasing vi/wi, or build a priority
queue and extract repeatedly.

Proof of optimality of greedy algorithm

• Proof of optimality: let j be the first place where an optimal solution
O = [b1, . . . , bn] deviates from the greedy solution A = [a1, . . . , an]. Then
bj < aj , for all i < j we have ai = 1 = bi, and ai = 0 for all i > j.

• Since O is optimal there must be some k > i with bk > 0. But then we
can change bj to bj + bkwk/wj and maintain the weight constraint while
not decreasing the objective. This gives an optimal solution agreeing with
A till step j + 1. Now use induction on j.

• This is an exchange argument, and also shows that the greedy algorithm
stays ahead. For each k, it gives the optimum to the restricted problem
where only objects 1..k can be chosen.

Yet another scheduling problem

• We have n jobs to execute each taking one time unit, and exactly one job
can be done at each time step. The ith job earns us profit gi if and only
if executed before the deadline, time step di. We want to maximize total
profit.
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• Greedy approach: choose jobs in order of decreasing profit, provided we
maintain feasibility (there is some way to permute current vector and
schedule all jobs in it). How to check feasibility efficiently?

• Fact: a list I is feasible if and only if the permutation that has jobs in
increasing deadline order is feasible. Proof: fairly obvious. So only need
to check one order for a subset. There is a better method (only check
the schedule built by considering jobs in order, putting each job as late as
possible). See later.

• We always obtain an optimal solution this way. Proof follows.

Proof of optimality

• Exchange argument. Let I be job list chosen by greedy, and J an optimal
one. Claim: we can feasibly reorder so each job a ∈ I ∩ J occurs at same
time in each schedule.

• Assuming this, suppose that

– a ∈ I is opposite a gap in J . Then can feasibly insert a in J , yielding
more profit than J , contradiction.

– b ∈ J is opposite a gap in I. Then can feasibly insert b in I, so greedy
would have chosen b already, contradiction.

– a in I \ J is opposite b in J \ I. If ga 6= gb, can replace one by the
other and get contradiction, so ga = gb, and hence I is also optimal.

• Proof of claim: if a ∈ I ∩ J , order them feasibly with a occurring at times
tI , tJ . If tI = tJ , done. If tI < tJ , move a in I to time tJ , swapping with
anything that may be there. Still feasible. Similarly if tI > tJ . Once a is
moved, it is never moved again. Hence eventually all such a match up.

Analysis of the algorithm

• Using first feasibility criterion, and array implementation, it takes total
time in Θ(n2) in worst case to do all feasibility checks. At each stage need
to find place to insert latest job, and check that moving others doesn’t
violate deadline.

• Using second criterion, we can do better using the data structure (disjoint
sets ADT). At each stage find latest time available (corresponds to find-
ing which set deadline belongs to) and merge two sets. Can be done in
ALMOST linear time.

15



Dijkstra’s algorithm

algorithm Dijkstra(weighted digraph (G, c), node v)
for u ∈ V (G) do

dist[u]← c[v, u]
S ← {v}
while S 6= V (G) do

find u ∈ V (G) \ S so that dist[u] is minimum
S ← S ∪ {u}
for x ∈ V (G) \ S do

dist[x]← min{dist[x], dist[u] + c[u, x]}

At top of while loop, this property holds:

P : if w ∈ S, dist[w] is the minimum weight of a path to w.

Dijkstra’s algorithm stays ahead

• Proof by induction on m that P holds after m iterations of the while
loop. Call the corresponding statement P (m).

• When m = 0, S0 = {v} and clearly P (0) holds.

• Suppose P (m) holds and that at iteration m + 1, the newest special node
is u (so Sm+1 = Sm ∪ {u}), and the last arc used is (v, u).

• Let w ∈ Sm+1. Note distm+1[w] = distm[w]. If w 6= u then since P (m)
holds, so does P (m + 1).

• If w = u, then by choice of u, any Sm+1-path to u of weight less than
dist[u] must go straight to u on exiting Sm. But the algorithm rejected
this choice when it chose the arc (v, u). Thus P (m + 1) holds.

• By induction P (m) is true for all m.

Minimum spanning tree problem

• Given a connected weighted graph, find a spanning tree (subgraph con-
taining all vertices that is a tree) of minimum total weight. Many obvious
applications.

• Two efficient greedy algorithms presented here: Prim’s and Kruskal’s. This
problem has more greedy algorithms that work.

• Each selects edges in order of increasing weight, subject to not obviously
creating a cycle.

• Prim maintains a tree at each stage that grows to span; Kruskal maintains
a forest whose trees coalesce into one spanning tree.

• Prim implementation very similar to Dijkstra, get O(e + n log n); Kruskal
uses disjoint sets ADT and can be implemented to run in time O(e log n).
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Prim’s algorithm

algorithm Prim(weighted digraph (G, c), node v)
for u ∈ V (G) do

d[u]←∞
d(v)← 0
S ← ∅
while S 6= V (G) do

find u ∈ V (G) \ S so that d[u] is minimum
S ← S ∪ {u}
for x ∈ V (G) \ S do

d[x]← min{d[x], c[u, x]}

Very similar to Dijkstra - uses a priority queue to hold elements of d. Most time
taken by EXTRACT-MIN and DECREASE-KEY operations.

Kruskal’s algorithm

algorithm Kruskal(weighted digraph (G, c))
T ← ∅
sort E(G) by increasing order of cost
for e = {u, v} ∈ E(G) do

if u and v are not in the same tree then
T ← T ∪ {e}
merge the trees of u and v

Keep track of the trees using disjoint sets ADT, with standard operations
FIND and UNION. They can be implemented efficiently so that the main time
taken is the sorting step.

Proof of optimality of Prim and Kruskal

• Basic idea is an exchange argument.

• Claim: let B ⊂ V and let T ⊆ E be promising, and no edge in T leaves
B. Let e be minimum weight edge leaving B. Then T ∪ {e} is promising.

• Assuming claim, proof follows by taking B = nodes of component in-
cluding endpoint of next edge e (Kruskal) or B = nodes of current tree
(Prim).

• Proof of claim: let U be MST containing T . If e ∈ U , done. Else there
is another edge e′ leaving B (to close the cycle). Then removing e′ and
adding e to U gives MST containing T .
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5 Divide and conquer

Design paradigm 2: divide and conquer

• Basic idea: decompose a problem instance into smaller instances (“di-
vide”); solve these instances (recursively); combine their solutions to give
solution for original instance(“conquer”). We can also solve very small
instances nonrecursively if that is more efficient.

• Often most work is in the “divide” step or most work is in the “conquer”
step.

• Examples you (should) have already seen: mergesort (“conquer” type),
quicksort (“divide” type”), quickselect, binary search (simplest case).

• New examples: multiplication, median-finding, . . . .

• Running time analysis leads to a certain type of recurrence relation.

Divide and conquer recurrences

• If the subinstances for a size n instance have sizes p1, . . . , pk, the overhead
cost for dividing and combining is f(n), and n0 is the threshold below
which we use another algorithm for small instances, then the cost T (n)
for this instance is (roughly) given by

T (n) =
∑

i

T (pi) + f(n) for n ≥ n0.

• Examples (cost = number of comparisons):

– binary search: k = 1, p1 = dn/2e or bn/2c, f(n) ∈ Θ(1)

– mergesort: k = 2, p1 = dn/2e, p2 = bn/2c, f(n) ∈ Θ(n)

– quicksort: k = 2, p1 = l, p2 = n− l− 1 (where 0 ≤ l ≤ n− 1 can have
any value), f(n) ∈ Θ(n).

• Need a general method for solving such recurrences, at least asymptoti-
cally. Restrict to the case where k is independent of n and the instance.

Solution of divide and conquer recurrences
Fix a > 0, b > 1 and consider

T (n) = aT (n/b) + f(n) (when n > n0), T (n0) = c.

First solve this when n/n0 is a power of b: put U(i) = T (n0b
i) and g(i) =

f(n0b
i). Get

U(i) = aU(i− 1) + g(i) (when i > 0), U(0) = c.
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Iterate to obtain

U(i) = aic +
i−1∑
k=0

akg(i− k).

Important special case: f(n) = np for some fixed p. Write B = bp.
Then by above (sum a geometric series) we obtain

U(i) =

{
cai + np

0B(ai −Bi)/(a−B) if a 6= B;
cai + inp

0B
i if a = B.

Let e = logb a. Then we have, for n/n0 a power of b,

T (n) =

{
(n0)−e

(
c + np

0bp

a−bp

)
ne − bp

a−bp np if e 6= p;

ne logb n +
(
cn−e

0 − logb n0

)
ne if e = p.

So (conditional on n/n0 = bi) we have

T (n) ∈


Θ(f(n)) if e < p;
Θ(ne) if e > p;
Θ(f(n) log n) if e = p.

Is this result true unconditionally? For general f(n)? What about O,Ω?

Solution of divide and conquer recurrences

• Exact solution when n/n0 not an exact power is complicated. Example:
mergesort T (n) = T (dn/2e) + T (bn/2c) + n has solution T (n) = n lg n +
nθ(n) where θ(n) = 0 if n is a power of 2 and 0 < θ(n) < 0.086 otherwise.

• We only consider asymptotic results from now on. The main idea is as for
exact powers, but there are several technical details.

• The smoothness rule plays a big part.

• Often we have a recurrence inequality; we can analyse by relating to anal-
ogous recurrence equation.

• Previous result with f(n) = np does generalize to case where subproblem
sizes are almost equal and f(n) ∈ Θ(np(log n)q). This is often called the
“Master Theorem”. See me for proof.

Details for example of mergesort

• T (n) = T (dn/2e) + T (bn/2c) + f(n) with f(n) ∈ Θ(n).

• Prove by induction that T is increasing.

• Observe that 2T (bn/2c) + f(n) ≤ T (n) ≤ 2T (dn/2e) + f(n).
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• Define Ť (n) = 2Ť (bn/2c) + f(n), T̂ (n) = 2T̂ (dn/2e) + f(n). Show that
Ť (n) ≤ T (n) ≤ T̂ (n).

• Show that T̂ (n) ∈ O(n lg n) and Ť (n) ∈ Ω(n lg n) conditional on n = 2k.

• Apply the smoothness rule to conclude that T (n) ∈ Θ(n lg n).

Issues arising from analysis

• The relation between subproblem sizes and the number of subproblems is
crucial.

• Reducing a and increasing b are equally important.

• Fine-tuning: how to determine the threshold n0? Note order of asymp-
totics don’t depend on n0. Need to consider lower order terms, and the
implied constants can’t be ignored.

• One way to determine threshold; choose n0 to be minimal such that on
size n0 input, the direct algorithm is no faster than applying recursion
once and then using the direct algorithm.

D & C polynomial multiplication I

• Given (integer) polynomials p(x), q(x) of degree n, m, compute the prod-
uct r(x) = p(x)q(x) efficiently. Integer multiplication is a special case!

• Divide and conquer: suppose first that n = m is exact power of 2. Write
p(x) = p0(x) + xn/2p1(x), q(x) = q0(x) + xn/2q1(x) where deg pi,deg qi ≤
n/2. So r(x) = a0(x) + xn/2a1(x) + xna2(x) where a0 = p0q0, a1 =
p0q1 + p1q0, a2 = p1q1.

• Using distributive rule naively gives 4 multiplications of half the size plus
linear overhead, no improvement. Key idea: reduce to 3 multiplications
of half size at cost of more (still linear) overhead. How??

D & C polynomial multiplication II

• The trick: we only need p0q1 + p1q0, not p0q1 and p1q0. Note that p0q1 +
p1q0 = (p0 + p1)(q0 + q1)− p0q0− p1q1. So we only need 3 multiplications
of half size polynomials!

• Recurrence looks like T (n) ≤ 3T (n/2) + g(n), with g(n) ∈ Θ(n). Solution
T (n) ∈ O(nlg 3), lg 3 = 1.59 . . . , provided we can deal with odd length
numbers!

• Note that if we replace xn/2 by a variable t, then r = a0 + a1t + a2t
2.

We can determine r by evaluating at any 3 points, (interpolation). This
generalizes (see assignment).
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• If m < n, use distributivity to break q into blocks of degree m and multiply
each by p as above, give O(nmlg 3/2) running time.

• Note: the Fast Fourier Transform does multiplication in O(n log n) time.
It is also a D & C algorithm.

D & C for order statistics

• Given an array T of size n and integer s ∈ 1 . . . n, find the s-th smallest
element. If s = dn/2e, this is the median.

• Use quicksort approach: pivot around element p, partitioning T into ele-
ments that are ≤ p, = p, ≥ p. Desired element lies in one of these; it is
trivial to find which one (as for binary search).

• Problem: if we use a fixed choice for pivot, then worst case, as with
quicksort, is quadratic, as subproblems can be very unbalanced. How to
choose pivot? Need good approximation to median.

• One idea: divide T into subarrays Z[i], 1 ≤ i ≤ z := dn/5e of fixed size,
say 5. Form the median of each sample, and then the median of these.
This is the pseudomedian.

Analysis of order statistics algorithm

• Time required to find pivot is t(bn/5c)+O(n). Pivoting step also in O(n).

• At least 3 elements of each Z[i] are ≤ its median. At least dz/2e of these
medians are ≤ p. So at least 3z/2 elements of T are ≤ p.

• So subproblem sizes are somewhat balanced. In worst case we get, for
example, t(n) ≤ dn + t(dn/5e) + t(d7n/10e). Can prove by constructive
induction that t(n) ∈ O(n).

Modular exponentiation

• We wish to compute an mod z, where a ≥ 0, z ≥ 1 are fixed integers and
n is large. Obvious iterative method is too slow.

• Divide and conquer: an = (an/2)2. Let N(n) be the number of multiplica-
tions. For n even get N(n) = N(n/2)+1. Otherwise N(n) = N(n−1)+1
so N(bn/2c) + 1 ≤ N(n) ≤ N(bn/2c) + 2. The smoothness rule yields
N(n) ∈ Θ(log(n)).

• Useful for public key cryptography: send message c := an mod z, eaves-
dropper knows z, n, c, but there is no known fast algorithm for finding a
(“discrete logarithm problem”).
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Constructing a heap

• Recall that we can insert an element into a priority queue implemented as
a binary (max-)heap in a time in O(log n).

• Thus if we start from empty and repeatedly insert, we can form a heap
in time in O(

∑n
i=1 log i), in other words in O(n log n). Can we do better?

Note that we are wastefully restoring the heap property each time but we
only need it at the end.

• Recall that we restore the heap property after insertion by percolating
the new value up to its place, and restore after deleting the maximum by
putting the minimum at the root and percolating down.

• Divide-and-conquer approach: just heapify the left and right subtrees of
the root, and then let the root percolate down to the right place.

• See assignment for more details.

Finding the closest pair of points

• Given n points in the plane, we want to find the pair of points at minimum
distance from each other.

• The obvious brute force method requires Θ(n2) distance calculations. Can
we do better?

• Divide-and-conquer: if we split into two equal pieces and have linear over-
head then the running time will be in Θ(n log n).

• Idea: split them into left part L and right part R by x-coordinate and
solve the problem for each half recursively. Let δ be the minimum distance
found so far. How to proceed?

• Key observations:

– if a ∈ L and b ∈ R and d(a, b) < δ then a and b are both at most
distance δ from the midline;

– there are only at most a constant number of points (independent of
n) within δ of a given candidate.

• So the conquer step requires only O(n) distance calculations and we get
O(n log n) running time.
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