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1 Introduction

Let z denote the vector of complex numbers (z1, . . . , zd) with standard multi-index notation zr :=
zr1
1 · · · zrd

d . Let

F (z) =
∑

arzr =
η(z)∏n

j=1 lj(z)nj
(1.1)

be a d-variable generating function which is the quotient of an analytic function by a product of
linear terms lj = 1−

∑d
i=1 bijzi, with bij being any real numbers. These arise, among other places,

in enumeration problems (see [DS03]), in queuing theory (see [BM93] and [KY96]) and in Markov
modeling (see [Kar02]).

Pemantle and Wilson [PW04] give a method for asymptotic analysis of the coefficients ar in
the general setting where F is a rational function with a pole variety that is locally completely
reducible to unions of smooth sheets. Their methods compute the asymptotics in many cases of
interest, but have two shortcomings. First, their hypotheses require that the singularity of F which
“controls” the asymptotics be a minimal singularity, that is, it must lie on the boundary of the
domain of convergence of F . This hypothesis is considerably weaker than the hypotheses in [BR83]
on behavior of F at the radius of convergence and nonnegativity of the coefficients ar. Nevertheless,
the hypothesis sometimes fails (see Example 4 below, taken from the dimensional analysis of the
stationary measure for a Markov model of TCP-IP protocol). Secondly, the methods of [PW04]
are not computationally effective. Their method is to write the coefficients as multivariate complex
integrals, to isolate the region contributing the most to the integral, and to evaluate the local integral
by means of several integrating tricks. This relies on first identifying the correct minimal point where
the denominator of F vanishes, for which they have a geometric characterization which is neither
universal nor effective.

Our purpose in this paper is to give a complete and effective asymptotic analysis of the coefficients
ar in (1.1). Our methods combine the work of [PW04] with the approach outlined by Bertozzi and
McKenna in [BM93]. They point out that the integral for ar may be represented as a sum of integrals
over basic homology cycles, among which some linear relations hold. They find enough relations to
evaluate the integral in a few low-dimensional cases, and suggest that a more systematic treatment
might prove worthwhile. Indeed, we find an algorithm that gives a full asymptotic series for ar
without the nonnegativity assumption. Asymptotics are as r →∞ and are uniform as long as r/|r|
remains in a compact set whose complement has codimension 1. For asymptotics in this smaller set
of “non-generic” directions, our methods do not apply and the methods of [PW04] are required.

We do not pick up directly where Bertozzi and McKenna left off, which would be to complete the
analysis of the linear relations among the naturally occurring d-dimensional homology cycles. In-
stead, we use stratified Morse theory to compute directly the d-cycles that determine the asymptotic
series for ar. A brief description of this program is as follows.
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1. Write ar as a Cauchy integral

ar =
(

1
2πi

)d ∫
T

z−rF (z)
dz
z

(1.2)

where the torus T is a product of sufficiently small circles around the origin in each coordinate.

2. The torus T may be replaced by a homologous d-cycle in (C∗)d minus the poles of F . Specifi-
cally, we denote by −∞ the set where the integrand in (1.2) is sufficiently small, and represent
T in the homology of (C∗)d minus the poles of F , relative to −∞.

3. Stratified Morse theory identifies these homology classes with saddles of the gradient r log z
of the function zr. Each such saddle lives in a stratum of dimension j < d and yields a
contribution which is an integral over a product of a cycle cyc‖ in the stratum with a cycle
cyc⊥ in a transversal to the stratum.

4. A nonzero contribution at a saddle σ occurs when the vector r is in a certain positive cone
determined by the geometry of the arrangement near σ.

5. The integral over cyc⊥ is equal to an easily computed spline, and the integral over cyc‖ is then
asymptotically evaluated by the saddle point method.

Step 1 is common to [PW01, PW04, BM93, KY96]. This step is valid for completely general
F , not just for functions with linear poles, as considered in this paper. Step 2 is done in [BM93].
Step 3 is new here. Both of these steps are valid again in complete generality, but the description
of the stratification is significantly easier in the linear case. Step 4, is also new, at least in this
level of generality. We have some idea of how this might be computed in the nonlinear case, but
this is work in progress (see [HP02]). The transverse part of Step 5 is found in the literature in
various forms, and this instance draws on [PW04] and [Pem00]. The description of the cones in
Step 4 and the transverse integrals arising there, in the special case of a central arrangement with
common intersection a single point, may be found in [BV99]; in fact some of the lemmas appearing
in Section 5 were proved in another form in [BV99]. The saddle point part is common to all methods.

The remainder of the paper is organized as follows. In the next section we set up definitions
and notation and state our main results, which are asymptotic formulae for ar. Section 3 gives a
more detailed development of notation, explaining some of the terms in the statements of results
and providing examples. Section 4 goes over some topological facts needed for the evaluation of
the multidimensional complex contour integrals. Section 5 proves the main results. Section 6
then discusses how, algorithmically, to compute these formulae. The last section is concerned with
extensions and generalizations. We end this introductory section by re-casting the steps 1 to 5 above
as a sequence of calls to subroutines specified in Section 6.

Algorithm 1.1 (Main routine)
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1. Compute the intersection lattice of the flats defined by lj

2. Find the unique saddle point in each flat

3. Sort the saddles by the height function fr

4. Set σ equal to the highest saddle, and until the leading saddle is identified, do:

(a) Compute the positive cone Kσ at σ;

(b) If r /∈ Kσ then set σ to the next lower saddle and repeat do loop;

(c) compute spline function pσ at σ;

(d) compute the polynomial specialization for the chamber containing r;

(e) if this is identically zero then set σ to the next lower saddle and repeat the loop (this
happens when η is in a certain ideal defined later: in the case of a generic intersection of
hyperlanes containing σ the condition is simply η(σ) = 0);

(f) if r is on the boundary of a chamber then output that r is non-generic and halt;

(g) identify σ as the leading saddle;

5. Compute stationary phase expansion by integrating coefficients of the polynomial.

2 Statements of results

Let F be given by (1.1) in terms of lj , 1 ≤ j ≤ n, which are in turn defined by constants bij . Let
planes denote the union of the coordinate planes and poles := {z :

∏n
j=1 lj(z) = 0} denote the set

of poles of F . Let ξ := z−r−1F (z) dz denote the integrand in (1.2).

Stratified Morse Theory tells us that the surface of integration, T , in equation (1.2) may be
pushed down (with respect to the gradient field of z−r) until it snags on a critical point of some
stratum. We denote by Σ the set of all critical points of strata and let S(σ) denote the stratum for
which σ is a critical point (well defined for generic r). The motivation for the definitions in the next
section is that we are trying to find a cycle homologous to T over which the integral in (1.2) may be
evaluated. It turns out there is a set Σ(S) of saddles associated with each flat S of the hyperplane
arrangement; letting Σ :=

⋃
S∈A Σ(S), there is a subset contrib ⊆ Σ such that the sum of certain

quasi-local cycles cyc(σ) over contrib is homologous to T (a quasi-local cycle is an actual d-cycle
which has certain locality properties).

The purpose of this section is to state the main results that go into the justification of Algo-
rithm 1.1, with as little overhead as possible. There are a number of terms, whose full definitions
are given in a later section, that we define here only by suggestive names. The main purpose of
Section 3 will be to give precise definitions for terms other than those in the following definitions:
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Definition 1 (height function) Given a vector r of positive reals, define the height function f =
fr by

fr(x) := |r|fr̂(x) = −
d∑

j=1

rj log |xj | . (2.1)

The saddles are critical points for this function, hence their location depends on r. The height
function is strictly convex in each orthant of Rd.

Definition 2 (manifold of holomorphy of ξ) Let planes denote the union of the coordinate hy-
perplanes and poles denote the union of hyperplanes in A. Set M := Cd \ (planes∪ poles) to be the
domain of holomorphy of ξ. We let Mc := {x ∈ M : fr̂(x) ≤ c}. The symbol H∗(M,−∞) is used
to denote the homology of the one-point compactification of M relative to infinity, or equivalently,
to the inverse limit of (M,Mc) as c→ −∞. We will see that these spaces are homotopy equivalent
once c < low, the least critical value of fr̂.

In the next section, we will define the cone gen ⊆ (R+)d of generic values for the r vector, whose
complement non has codimension 1. All asymptotic results in this paper assume r ∈ gen and enjoy
the following uniformity:

Asymptotics are uniform as r →∞ with r/|r| remaining in a compact subset of gen.
(2.2)

The poles of the function F form a hyperplane arrangement, the combinatorics and geometry
of which largely determine the asymptotic behavior of the coefficients. The first two theorems,
Theorems 2.1 and 2.2, involve a simplifying assumption of genericity of this arrangement, which is
removed in the next two theorems. Specifically, we say that a hyperplane arrangement is generic if
j ≤ d, any set of planes of cardinality j from among the planes of the arrangement intersects in a
flat of dimension d − j, and no set of more than d of these planes has a common intersection. All
examples in [BM93] satisfy the genericity assumption, the most complicated one of which [BM93,
Example 4.6] has n = d = 3.

Our first result gives a representation of the class [T ] in terms of homology classes associated
with each saddle. The set contrib is defined in Definition 4 below for all arrangements and all generic
r. The cycle cyc‖(σ) is defined in Definition 3 for all arrangements as well, while the cycle cyc⊥(σ)
is defined there only for generic arrangements.

Theorem 2.1 (decomposition of T ) Suppose that the poles of F form a generic hyperplane ar-
rangement. Then for r ∈ gen,

[T ] =
∑

σ∈contrib

sgn(σ) cyc(σ) . (2.3)
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in Hd(M,−∞). Here sgn(x) is the sign of the product of the coordinates of x and cyc(σ) =
cyc⊥(σ)× cyc‖(σ) ∈ S⊥(σ)× S‖(σ).

The next result shows how to integrate: first in the normal direction, which is an iterated residue,
then in the tangential direction. Suppose U and V are orthogonally complementary subspaces of
Rd, with orthonormal bases {u1, . . . , uk} and {v1, . . . , vd−k}. Embed Rd in Cd and let u′j = iuj

and v′j = ivj . Let dxj denote the complexified 1-form duj + idu′j and dyj = dvj + idv′j . Then
dz⊥ := dx1∧· · ·∧dxk and dz‖ := dy1∧· · ·∧dyd−k are holomorphic forms and dz⊥∧dz‖ = ±dz, where
dz is the standard holomorphic volume form. The projection functions onto U and V respectively
are denote z⊥ and z‖.

Theorem 2.2 (evaluation of the normal integral) Suppose that r ∈ gen, that the arrangement
of poles is generic, and that nj ≡ 1. For σ ∈ contrib, let

dz = dz⊥ ∧ dz‖

denote the decomposition of the volume form into components parallel and orthogonal to the flat VS

associated with S(σ). Then∫
cyc(σ)

ξ = (2πi)codim σdet σ(b)−1

∫
cyc‖(σ)

z−r−1 η(z)∏
j /∈S(σ) lj(z)

dz‖

At this point, the asymptotic evaluation of ar is reduced to a standard saddle point integral (see
Lemma 5.5 in Section 5.3).

A representation of the homology class of T is important only up to its evaluation at the cohomol-
ogy element corresponding to the integrand, ξ. We give a less constructive version of Theorem 2.1,
valid when the hyperplane arrangement defined by the lj is not generic, though Theorem 2.4 main-
tains the same computing power as Theorem 2.2.

Theorem 2.3 (decomposition of T , non-generic case) Suppose that r ∈ gen. With no as-
sumption on A, Definition 3 may be extended to define cycles cyc⊥(σ) such that

[T ] =
∑

σ∈contrib

sgn(σ) cyc(σ)

with cyc(σ) = cyc⊥(σ) × cyc‖(σ). If σ ∈ contrib then cyc(σ) is not homologous to zero in
Hd(M,−∞).

Define a grading function on saddles by

|σ| =
∑

j:σ∈Vj

nj .
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Theorem 2.4 (normal integral, non-generic case) For any stratum S = SS, one can define a
function PS : S × S⊥ → C (see Definition 6 in Section 3) having the following properties.

1. P is piece-wise analytic and in fact piece-wise polynomial on any fiber x × S⊥ → C, with
support in the cone KS(x) ⊂ x× S⊥.

2. The degree of Pσ in r satisfies
degPσ ≤ |σ| − codimσ (2.4)

and the homogeneous part of degree |σ| − codimσ is given by

η(x)

 ∏
j /∈S(σ)

lj(x)

−nj

pσ

with pσ defined in Definition 5.

3. ∫
cyc(σ)

ξ = sgn(σ)
∫
cyc‖(σ)

Pσ,z‖ dz
‖ (2.5)

if r is in the set contrib of Theorem 2.2, and is zero otherwise.

Our main result is that Algorithm 1.1 correctly yields asymptotic formulae for ar. This rests on
the following theoretical result, which is essentially the union of Theorems 2.3, 2.4 and a standard
result on Saddle point integration, Lemma 5.5.

Theorem 2.5 (main result) Let F , A, VS, fr and σ be as above. Examine the saddles in decreas-
ing order of the values fr. Let σ∗ be the first one in contrib for which Pσ,x is not identically zero,
the condition for which is that η not lie in the ideal I(σ).

Then ar has a computable full asymptotic expansion, uniform over compact subcones of gen

(cf. 2.2), whose leading behavior, in the case η(σ∗) 6= 0, is given by

ar = (2π)−
1
2 dim σ∗(1 + o(|r|−1))

η(σ∗)∏
j:lj(σ∗) 6=0 lj(σ∗)

pσ∗(r)Λσ∗(r)−1/2(σ∗)−r . (2.6)

If there is more than one point σ∗ which maximizes fr and for which Pσ∗,· not identically zero, then
we must sum (2.6) over all such σ∗. In this case periodic cancellation is possible, so the sum of the
leading terms may not always be the leading term of the sum.
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3 Definitions and examples

We begin the description of notation with a table summarizing the quantities to be defined and
listing which quantities depend on r, which depend only on the unit vector r̂ in the direction r,
which depend on the saddle σ or only on its flat, S, and which depend only on the given data, F .

Notation Name Depends on

b matrix of coefficients

det σ(b) restricted determinant S(σ)

bj , b̃j the jth normal and logarithmic normal x

A arrangement lattice

VS the flat associated with S ∈ A S

SS the stratum associated with S S

Σ the set of all saddles r

S(σ) the S for which σ ∈ SS r̂ , σ

dimσ dimension of the flat S(σ) S

S⊥ the normal to SS S

high, low max and min critical values r̂

cyc⊥ a local cycle in S⊥ S

cyc‖(x) a cycle in S through x

cyc(σ) the quasi-local cycle at σ r̂, σ

KS(x) the direction cone at x ∈ VS x, S

Kσ the cone at the saddle σ r̂, σ

contrib set of contributing saddles r̂

pσ the leading spline at σ r, σ

I(σ) the quasi-local vanishing ideal σ

Λ Hessian at a nondegenerate critical point r , σ
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Let b = (bij) denote the matrix of coefficients of the linear polynomials l̂j = 1 − lj , and let
b̃j := (b1jx1, . . . , bdjxd)T denote the normal to the real hypersurface {lj(ex1 , . . . , exd) = 0}. By
det σ(b) we denote the volume of the zonotope that the rows of b indexed by S(σ) has in S⊥S .

Let A be the intersection lattice of the affine arrangement {l1, . . . , ln} in Cd. Formally, this is
the lattice of all maximal subsets S ⊆ {1, . . . , n} having the same intersections: S ∈ A if and only
if no lk, k /∈ S vanishes on the variety defined by {lj , j ∈ S}. We order the lattice by inclusion,
not by reverse inclusion as is sometimes done, and we omit the empty set and the whole space. A
sub-arrangement A′ � A is the intersection lattice of any subset of these hyperplanes.

Associated with each S ∈ A are its dimension, dimS, a flat VS , a stratum SS and a set of saddles
Σ(S). The flat VS is simply the variety defined by {lj : j ∈ S} (thus by definition of S, VS∪{k} 6= VS

for k /∈ S). The dimension dimS is the dimension of VS , and is a grading function for A. We use
codimS for d− dimS. Define

SS := VS \

( ⋃
T<S

VT

)
. (3.1)

For each stratum SS and each r ∈ (R+)d, define the set of saddles Σ(S) of SS with respect to the
direction r as the set of x ∈ VS for which the gradient (−r1/x1, . . . ,−rd/xd) of f at x is orthogonal
to VS . These are critical values of fVS

. The function f is convex on each orthant, whence in each
orthant, either fVS

is not bounded below or fVS
has a unique critical point which is a minimum. We

conclude that the cardinality of σS intersected with each orthant is 0 or 1 and that the set

Σ :=
⋃

S∈A
Σ(S)

is the set of minima of f restricted to the connected components of VS in orthants of Rd. We
denote by S(σ) the S ∈ A for which σ ∈ Σ(S). We write dimσ for dimS(σ) and we write |σ|
for
∑

j∈S(σ) nj , that is for the degree of the pole of F at σ. Figure 3 shows an arrangement with
two one-dimensional strata and one zero-dimensional stratum. One of the one-dimensional strata
has no saddle (lack of a saddle in a stratum happens only non-generically, when the corresponding
flat is parallel to a coordinate hyperplane). Often every stratum has exactly one saddle, though
Examples 1 and 2 show this need not be the case.

The critical points depend on r only through r̂. For each of these points, σ, it turns out to be
important whether σ ∈ SS , the other possibility being σ(S) ∈ ST for some T < S. Define the set
non of non-generic directions to be the set of r such that for some σ, σ ∈ ST for some T < S(σ). The
complement, gen, of non is the set of r such that σ ∈ SS(σ) for all σ ∈ Σ. The set non is a central
hyperplane arrangement, that is, a union of hyperplanes through the origin (cf. Proposition 6.1) and
we often consider non and gen to be in (RPd−1)+.

The closure of each stratum S is an affine subspace, so it has an orthogonal complement S⊥S . We
summarize the genericity definitions from before as follows, noting that (3.3) is in the hypotheses of
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all our asymptotic results.

genericity of A S ∈ A ⇔ |S| ≤ d. (3.2)

genericity of r For each S ∈ A,Σ(S) ⊆ SS . (3.3)

The columns bj of b for j ∈ S span the normal S⊥S to the stratum SS (or to the flat VS). Let
high := maxσ∈Σ fr̂(σ), and let low := minσ∈Σ fr̂(σ).

Definition 3 (fundamental cycles for generic arrangements) Under genericity of A (3.2),
define the normal link cyc⊥(σ) ⊆ S⊥S(σ), which depends on σ only through S(σ), to be the prod-
uct of circles around zero in each of these coordinates:

cyc⊥(S) := {x : |l̂j(x)| = ε ∀j ∈ S} .

Here we think of ε as infinitesimal, taking it to be any sufficiently small number, and we use l̂j to
denote the homogenized linear function lj, i.e., recentered to vanish at the origin. For x ∈ VS, define
cyc‖(x) := VS ∩ (x + iRd) so that if σ ∈ Σ, then

cyc‖(σ) := VS(σ) ∩ (σ + iRd)

is the imaginary fiber of S passing through the saddle σ. We then define the quasi-local cycle

cyc(σ) := cyc⊥(S(σ))× cyc‖(σ),

which is the set of x + y with x ∈ cyc⊥ and y ∈ cyc‖.

T
x = 0

y = 0

Figure 1: An arrangement with two saddles
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Example 1 Figure 3 shows a two-dimensional arrangement with two strata of co-dimension 1, whose flats

intersect in a stratum of co-dimension 2. Warning: only the two real dimensions of the four-

dimensional space C2 are drawn. The torus T is shown (taking liberties with the third and fourth

dimensions), as well as the local 2-cycle cyc = cyc⊥ at the zero-dimensional stratum. One of the one-

dimensional strata has no saddle (the vertical one), while the other does have a saddle, σ. The local cycle

cyc⊥(σ) is a circle, and cyc‖(σ) is a line (in an imaginary direction); thus cyc(σ) is an infinite cylinder.

Example 2 Consider the arrangement of planes 3x + y + 4z = 8 and 2x + y + 2z = 5 meeting in the line

x = 3 − 2z, y = 2z − 1. The two-dimensional strata each have a unique saddle, but the one-dimensional

stratum intersects the positive orthant and the orthant x, z > 0, y < 0 both in bounded segments, each

containing a saddle. This example and the last show that a stratum may have no saddles or may have two

or more saddles.

To complete the definition we need to choose an orientation for cyc(σ) (we will not need to choose
orientations for cyc⊥ and cyc‖ separately). A convenient choice is as follows. Let S denote S(σ).
Removing the real hyperplanes {Vj ∩ Rd : j ∈ S} from Rd leaves 2|S| open orthants, precisely one
of which, call it B, contains the origin. Each orthant R is a d-chain in the complement of

⋃
j∈S Vj

in either Rd or Cd, and as the latter, has a well defined signed intersection number with the d-cycle
cyc(σ) (cf. further discussion of the dual basis of signed intersection numbers in Section 4.2). The
cardinality of the intersection is always 1, so the signed intersection numbers take on values of ±1 as
R is reflected in each Vj . We choose an orientation of cyc(σ) so that the signed intersection number
is +1 on B. For later use, we remark that this choice is natural with respect to inclusion of the
complement of an arrangement in the complement of a sub-arrangement.

The following example, which is a specific case of the general example analyzed
in [BM93, Example 4.5], serves to illustrate the above definitions.

Example 3 (two complex lines in two space) Let d = n = 2, let 3l1 = 3 − x − 2y, let 3l2 =

3− 2x− y, and let F = 1/(l1l2), that is, η = 1.

The two lines intersect at p = (1, 1). The strata are:

S12 = {p} ;

S1 = V1 \ {p} = {l1 = 0 6= l2} ;

S1 = V2 \ {p} = {l2 = 0 6= l1} .

If r̂ = (α, 1− α) then the saddles are:

σ12 = {p} ;

σ1 =

„
3α, 3

1− α

2

«
;

σ2 =

„
3
1− α

2
, 3α

«
.

10



l 2 l 1

σ1

σ2

σ12

y=0

x=0

Locations of saddles when r = (5,1)

= (5/2 , 1/4)

= (1 , 1)

= (5/4 , 1/2)

Figure 2: a worked example

The normal to S1 is the complex line S⊥1 = {(z, 2z)} while S⊥2 = {(2z, z)}, and S⊥12 is all of C2. The

cycle cyc‖(1) is the set

{(3α + 2it, 3
1− α

2
− it) : t ∈ R}

while cyc‖(12) is the single point p. The cycle cyc⊥(1) is the circle εeiθ(1, 2), where ε is any fixed sufficiently

small positive number and θ ∈ [0, 2π). Taking the product with σ(1) + cyc‖(1), we see that cyc(1) is an

infinite cylinder. The cycle cyc⊥(12) is equal to cyc(12) and is a small torus |3−x−2y| = |3−2x−y| = 3ε

near the point (1, 1).

Given x ∈ VS , define its direction cone

KS(x) = (R+)d ∩ Pos {b̃j : j ∈ S} (3.4)

to be the intersection of the positive orthant of Rd with the positive hull of the vectors b̃j for j ∈ S.
In other words, KS(x) is the set of positive normals to VS at x in logarithmic coordinates.

The cone Kσ := KS(σ)(σ) turns out to be the set of vectors r for which the integral in Step 3
yields a nonzero contribution, as long as η is not in the ideal I(σ). Thus we are led to define a
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subset contrib ⊆ Σ, depending on r, as follows.

Definition 4 Let contrib be the set of σ ∈ Σ for which r ∈ Kσ.

We remark that 1contrib is continuous on gen, that is, it is constant on chambers and that it is
equivalent to use the relative interior of Kσ in place of Kσ in the above definition because r ∈ non

whenever r is in the relative boundary of Kσ (cf. Proposition 6.1).

Proposition 3.1 Let f be a strictly convex function on Rd and B an intersection of halfspaces {y :
y ·vj ≤ 0}1≤j≤k in Rd. Let x ∈ ∂B and order the halfspaces so that for some 1 ≤ k0 ≤ k, x ·vj = 0
exactly when j ≤ k0. Then f has a minimum on B at x if and only if −∇f ∈ Pos {vj : j ≤ k0}.

Proof: Assume without loss of generatlity that x is the origin. If −∇f is in the positive hull,
then for every x with εx ∈ B for some ε > 0, we have −∇f · x ≤ 0. By strict convexity of f , this
implies that f(λx) > f(0) for every λ > 0, which implies that f has a unique minimum on B at 0.
Conversely, if −∇f is not in the positive hull of {vj : j ≤ k0} then −∇f · x > 0 for some x ∈ B,
whence for some ε > 0, f(εx) < f(0), and f is not minimized on B at 0. �

Applying this to the alternate interpretation of KS , with f = fr, we see that σ ∈ contrib if
and only if σ is the location of the minimum of f on an intersection of halfspaces bounded by the
hyperplanes containing S(σ):

σ ∈ contrib⇐⇒ f(σ) = min{f(x) :
d∑

i=1

bijxi ≤ 1∀j ∈ S(σ)} . (3.5)

Example 3 continued: Continuing Example 3, we see that in case Kp(p) is the cone between slopes 1/2

and 2. The positive arc of RP1 is broken into three segments, between the slopes 0 and 1/2, between 1/2 and

2, and between 2 and +∞. Over each of these, σ1 and σ2 are both not equal to p, that is, both genericity

assumptions hold. The set contrib always contains all saddles in strata of codimension 1. Since Kp(p) is

the middle arc, we have that σ12 ∈ contrib if and only if r is in the middle arc (see Figure 3).

Example 4 Consider the generating function whose pole set is drawn in Figure 4:

F (z) :=
2

(1− 2x)(1− 2y)
·

»
2 +

xy − 1

1− xy(1 + x + y + 2xy)

–
The diagonal of this function generates the number of small balls necessary to cover the equilibrium measure

of a Markov chain used in [Kar02] to model a TCP-IP protocol. The denominator of F contains three

factors, (1−2x), (1−2y) and (1−xy(1+x+y +2xy)). The last of these is nonlinear, but the same analysis

applies. For r̂ = (1, 1) (the diagonal direction), all saddles are in contrib. However, on the one where f

is maximized, namely the intersection point (1/2, 1/2) of the two lines, the function η vanishes; this implies

12



r = (0 , *)

σ
12

ε ���������	��
 when r is in this cone

r = (* , 0)

Figure 3: Cones in r-space

η ∈ I(1/2, 1/2) so that the contribution here vanishes (cf. step 4e of Algorithm 1.1). The leading term comes

from the next highest saddles, which are the other two intersection points (there is a symmetry in x and y),

which dominate the saddles of dimension one and yield the leading asymptotics. This example is included to

demonstrate that in relevant examples, one might find that η vanishes on the highest saddle in contrib and

therefore need to look at lower saddles, which is not possible with the technology in [PW04].

Having explained the loop where the leading saddle is identified, we turn finally to the computa-
tion of the integral there. Given S ∈ A and a point x ∈ SS , the function F

∏
j∈S lj is holomorphic

in a neighborhood of x. Let S⊥S denote the affine space through x orthogonal to SS .

Definition 5 (the polynomial pσ) Given a point x in a stratum SS, let Y be the positive orthant
of a real vector space with nj coordinates for each j ∈ S. Define a linear map φS,x : Y → KS(x) by
sending each of the nj standard basis vectors associated with j ∈ S to the vector bj. Let λk denote
Lebesgue measure on (R+)k and define

pσ := (2πi)codim σ · density of φS(σ),σ[λ|σ|] (3.6)

to be the density of the image under φ of Lebesgue measure on (R+)|σ|. It is evident that pσ is
piecewise polynomial of degree |σ| − codimσ; it is in fact a spline.

13



η(σ  ) = 012

x = 0

y = 0 y = 1/2

x = 0

σ

σσ12

13

23

If 

then the other two saddles give the dominant terms

Figure 4: similar methods as for a hyperplane arrangement

Definition 6 (the polynomial Pσ) Denote by Φσ the differential operator pσ[∂] one gets by for-
mally substituting (−∂/∂xi) for xi in pσ. Let ησ := η/

∏
j /∈S(σ) l

nj

j . Define

Pσ := Pσ,z := Φσ(z−r−1ησ) . (3.7)

Under genericity of r (3.3), ησ is analytic in a neighborhood of σ, so Pσ varies analytically with z.
One sees as well from its form that Pσ is a polynomial in r. When ησ(z) 6= 0, the leading term
of this polynomial is gotten by taking all partial derivatives in z−r−1 rather than in ησ. The kth

negative partial derivative ∂/∂xj multiplies by a factor of (rj + k)/xj . If we are only interested in
the leading term in r, we may approximate this by rj/xj , meaning that

pσ[−∂](z−r−1ησ)(σ) ∼ pσ(r1/x1, . . . , rd/xd) · σ−rησ(σ) . (3.8)

In the case σ = 1, this simplifies to

Pσ,z = pσ(r)
(
ησ(1) +O(|r|−1)

)
.

Example 3 continued further: the Jacobian of φp is the constant function 1/3, so that pp = Pp ≡ 3.

In general, pσ has degree zero whenever VS(σ) is a transverse intersection; to be independent of z as well is

14



unusual. We compute the normal integral for σ12 = p:

det 12(b) = det (b) = b11b22 − b12b21

we then see from Theorem 2.2 that (since p−r−1 ≡ 1):Z
cyc(12)

ξ = 3(2πi)2 .

For any r, the function fr is nonpositive on Σ. Thus when r is in the middle arc, since η(p) 6= 0, we have

σ12 ∈ contrib and the dominant contribution to the sum in Theorem 2.1 is from σ12:

ar = 3 +
X
σ 6=p

Z
cyc(σ)

ξ =
1

3
+ O

„
exp(|r|max

i=1,2
fr̂(σi))

«
.

When r is in the upper arc, or if η is replaced by a function vanishing at p, then the leading contribution

to the sum in Theorem 2.1 comes from σ1 (respectively σ2 for the lower arc). From Theorem 2.2 we see that

ar =

Z
cyc(1)

1

6πi

Z
cyc(1)

z−r−1 η(z)

l2(z)
+ O (exp(fr(σ2))) (3.9)

which has a saddle point expansion as σ(1)−r−1 times a series of terms of order r−j−1/2 for j = 0, 1, 2, . . ..

When A is generic, it is easy to determine the highest contributing saddle: after computing
contrib, one eliminates saddles σ where η vanishes (cf. the last statement in Theorem 2.2). In general,
the elimination of saddles requires that an ideal membership question be settled, the effectiveness of
which depends on the nature of the decscription of η. One must choose a ring to work in. Let R be
any ring containing C[z1, . . . , zd] and containing η. Instead of eliminating saddles where η vanishes,
we eliminate saddles σ for which Φσ(z−r−1ησ) is identically zero in a neighborhood of σ in cyc‖(σ),
the ideal of such functions eing denoted below by I(σ).

Two final definitions occurring in Theorem 2.5 are the saddle point determinant at a quadratically
nondegenerate saddle and the vanishing ideal.

Definition 7 Let σ = σ(S) be a critical point for the function fr restricted to VS. Suppose that
dim(S) > 0 and parametrize the real subspace of VS by the orthonormal vectors y1, . . . , yk as in
the definition of z‖. Then the Hessian (matrix of second partial derivatives) of fr with respect to
y1, . . . , yk has a determinant which we denote ΛS(r), which is a homogeneous function of r of degree
k.

Definition 8 (vanishing ideal) Given the critical point σ in the stratum S, define the ideal

I(σ) =

〈∏
j∈S′

l
nj

j : dim〈bj : j /∈ S′〉 < codimS

〉

to be the ideal in the ring of germs of analytic functions at σ of functions η′ for which the pole set
of η′/

∏
lni
i does not have S as a flat. Observe that if S is a single point and nj = 1 for j ∈ S, then

this is the ideal of all functions vanishing at σ; if S is a singleton {j} then I(σ) is generated by lnj

j .

15



In order to make the last few definitions less abstract, we give three more examples.

Example 3 completed: We continue from (3.9) in the case that r is in the upper arc, so σ∗ = σ1. Since

S1 has co-dimension 1, the polynomial pσ∗ is just the constant

|b|−1 =

˛̨̨̨
(
1

3
,
2

3
)

˛̨̨̨−1

=
3√
5

.

Recall that σ1 = (3α, 3(1 − α)/2) where r1/r2 = α/(1 − α) < 1/2. We then have η/l2 = 2/(3 − 9α). To

evaluate Λσ∗ , according to Theorem 2.5, we need to compute the second derivative of −r1 log x1 − r2 log x2

with respect to arclength as x varies along a line that may be conveniently parametrized as σ1 + t(1, 2)/
√

5.

This comes out to be

Λ1 =
4

45

„
r1

α2
+

r2

(1− α)2

«
.

Putting this all together gives

ar = (1 + o(1))
3√
5

2

3− 9α

„
2π

4

45
(
α|r|
α2

+
(1− α)|r|
(1− α)2

«−1/2

(3α)−r1(
3

2
(1− α))−r2

=
3

1− 3α

r
α(1− α)

2π
|r|−1/2 exp {|r| [α log(3α) + (1− α) log((3/2)(1− α))]} .

Observe that the asymptotics cannot be uniform near α = 1/3 since the denominator 1−3α of the asymptotic

expression vanishes.

Example 5 (three concurrent lines) To Example 3, add a third linear factor to the denominator,

3l3 = 3 − (3/2)x − (3/2)y. This also passes through p, so the lattice A is non-generic, having p at the

bottom, covered by each of three one-dimensional strata. The cone Kp is the same as before, but the set of

b̃ vectors, contains not only (1, 2) and (2, 1) but also (3/2, 3/2). Thus pp is now a spline of degree 1, the

image of Lebesgue density under a map sending the three standard basis vectors to (1, 2), (2, 1) and (3/2, 3/2)

respectively. This comes out to the tent function 2min{r, s} −max{r, s}.

The local ring of germs of functions at p has a unique maximal ideal m, namely those functions vanishing

at p. In the previous cases pσ had degree zero, so vanishing of Φσ(z−r−1ησ)(z‖) was equivalent to the

vanishing of η on z‖. In the present case, I(σ) is generated by l1l2, l1l3 and l2l3; these are linearly dependent

so it suffices to take l1l2 and l2l3, which in turn generate the ideal m2 of germs vanishing to order two at

σ1. The quotient by this ideal then has dimension three, with coset representatives 1, l1 and l3; thus η/
Q

lj

may be written as
A

l1l2l3
+

B

l1l2
+

C

l2l3
+

η∗
l1l2l3

with η∗ ∈ I(σ). These four terms generate coefficient arrays that are respectively a multiple of the tent

function, a constant in one sub-chamber of Kp, a constant on the other sub-chamber of Kp, and an array

with exponentially decaying magnitudes.

Example 6 (not all bij ≥ 0) In the previous examples, bij ≥ 0, which implies that all coefficients ar

are nonnegative. Automatically, in that case, the highest contributing saddle is minimal (in the lattice

order) among all contributing saddles. Thus in those cases, the saddle at p was always dominant when it

16



contributed. To see what can happen when this assumption is removed, consider an example where d = n = 2,

with 2l1 = 2− x− y and l2 = 1− (10/9)y + (1/9)x. When r̂ = (α, 1− α), the saddles are given by

σ1 = (2α, 2(1− α))

σ2 = (−9α,
9

10
α)

p := σ12 = (1, 1) .

Ordering these by height we find that

σ2 > p > σ1 on 0 < α < 0.317 . . .

p > σ2 > σ1 on 0.317 . . . < α <
log(20/9)

log 10
≈ 0.346 . . .

p > σ1 > σ2 on
log(20/9)

log 10
< α <

1

2

p = σ1 > σ2 at α = 1/2

p > σ1 > σ2 on α > 1/2 .

The saddles σ1 and σ2 are always in contrib, but p ∈ contrib only when α < 1/2, or equivalently, when

r is above the diagonal. Thus for small α we have exponentially large ar, but there is a constant added in

which takes over when the exponentially large expression turns into an exponentially decaying expression as α

increases past a point approximately equal to 0.317 . . .. As α nears 1/2, another exponentially decaying term

becomes nearly constant, reaching a maximum of Θ(r−1/2) on the diagonal. This term takes over abruptly

as the constant term ceases to contribute below the diagonal. This transition is like the one that occurs in

Example 3.

4 Description of homology and proofs of Theorems 2.1, 2.2

and 2.3

In this section we collect some results on the topology of (M,−∞) and use them to prove the first
three theorems, that is, the ones not relying on cohomological computations. We will draw on some
standard results from Stratified Morse theory, which we quote from [GM88]. We prove a few more
lemmas that are specific to the present analysis, leaving to an appendix some of the more technical
geometric steps. Homology, here and throughout, refers to homology of the singular chain complex.

4.1 Relative and local topology

Subsequent analysis will show that the integral (1.2) is composed of summands, indexed by critical
points σ of fr, each of which is O(exp(|r|fr̂(σ))) where σ is a critical point of f . Any quantity
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that is O(ef(x)) for some x ∈ Mlow is negligible in comparison. With this in mind, the following
proposition explains why we work in relative homology. The proof is given in the appendix.

Proposition 4.1 Let ω be any d-form of at most polynomial growth and holomorphic outside of an
affine set, poles. Let low be the least critical value of fr on poles and let b < low.

1. The integral
∫

C
z−rω is well defined as a function of [C] ∈ Hd(M,Mb) up to terms that are

O(e−|r|b) as r →∞.

2. The integral
∫

C
z−rω is well defined as a function of [C] ∈ Hd(M,−∞).

Definition 9 (imaginary fibers) For x ∈ Rd, let γx denote the d-cycle {x + iy : y ∈ Rd}. This
respects strata, meaning that if x ∈M then γx ⊆M, and if x /∈ VS then γ ∩ VS = ∅.

Definition 10 (normal links) For S ∈ A assume σS ∈ SS and recall that S⊥S is the orthogonal
complement to the linear (not affine) space SS. Let M⊥

S denote the link of the hyperplane arrange-
ment in the normal slice, that is, the complement of the union of those flats VU containing VS in
S⊥S .

Proposition 4.2 If the central arrangement for the normal slice is generic (that is, if |S| =
codimS) then Hcodim S(M⊥

S ) is cyclic and generated by the cycle cyc⊥(S) defined in Definition 3.
If the arrangement is not generic then Hcodim S(M⊥

S ) is a free abelian group and we denote its rank
by n(S).

Proof: The first statement is immediate from the fact that M⊥
S is homeomorphic to a product of

punctured disks. The second follows from the fact that complements of complex affine varieties in d
dimensions are homotopy equivalent to CW-complexes of dimension at most d. �

The main lemma we rely on from Stratified Morse Theory, also proved in the appendix, is the
decomposition of Hd(M,−∞) into a direct sum of local homology groups at each saddle; these
groups will be denoted Hd,σ(M). There are a number of equivalent definitions of these: homology
relative to a small neighborhood of the complement, homology of Mb relative to Ma where (a, b)
contains f(σ), homology of the complement of the sub-arrangement corresponding to σ, or the
homology of the poset of A above σ localized to the top element. For clarity, we take Hd,σ to be an
abstract space and define the following maps.

Observe that M⊥
S retracts to an arbitrarily small neighborhood of the origin, so any class in

Hcodim S(M⊥
S ) has a local cycle representative supported on an arbitrarily small neighborhood of

the origin. For such a cycle, C, we recall from Definition 3 that for x ∈ VS ,

ix([C]) :=
[
C × cyc‖(x)

]
18



denotes the class of the product set {v + y : v ∈ C,y ∈ cyc‖(x)}, with cyc‖(x) = (x + iRd) ∩ VS .

Lemma 4.3 (quasi-local decomposition) Assume genericity of r. For each σ ∈ Σ there is a
group Hd,σ(M) and a natural surjection πσ : Hd(M,−∞) → Hd,σ(M) having the following proper-
ties.

1. Φσ := πσ ◦ iσ is a natural isomorphism between Hcodim σ(M⊥
S(σ)) and Hd,σ(M).

2.
⊕

σ∈Σ πσ is an isomorphism between Hd(M,−∞) and
⊕

σ∈ΣHd,σ(M).

Naturality of the maps is with respect to sub-arrangements in the following sense. If A′ is a sub-
arrangement of A then the inclusion of M in M′ (complementation reverses the direction) induces
a map ι∗ on homology which commutes with the above maps. Specifically, if S is a flat of both M
and M′ and γ ∈ Hd(M,−∞) then for σ ∈ Σ(S),

ι∗(πσ(α)) = πσ(ι∗(α))

while if S is a flat of M but not a flat of M′ then for σ ∈ Σ(S),

ι∗(πσ(α)) = 0 .

Hcodim σ(M⊥
S(σ)) Hd(M,−∞)

Hd,σ(M)

-
iσ

?

πσ

@
@

@
@

@
@

@
@

@
@@R

Φσ
∼=

Remark: The fact that
⊕

σ πσ is an isomorphism is always true of top-dimensional homology of any
stratified space, since it comes from the construction of Mc up to homotopy equivalence by the
attachment of d-dimensional CW complexes as c passes critical values. The fact that there is a map
iσ allowing us to go back is special to the case of hyperplane arrangements, where relative cycles in
(Mb,Ma) may always be extended to cycles in (M,−∞).
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4.2 Another basis for Hd(M,−∞)

The next step in proving Theorem 2.1 is to identify the class of T with respect to another basis.

Definition 11 (fiber basis) Let B denote the set of bounded components B of Rd ∩M. Let bd =⋃
B∈B B denote the union of the closures of the bounded regions. Clearly, if x and x′ are in the

same component of Rd ∩M then γx = γx′ in Hd(M,−∞), and if x is in an unbounded component
of Rd ∩M then γx = 0 in Hd(M,−∞). For B ∈ B, let γB denote the d-cycle γx for some x ∈ B.

Proposition 4.4 The cycles γB are a basis for Hd(M,−∞) as B varies over B.

One proof, via an explicit retraction of the complement of bd to −∞, is given in the appendix.
Since we will need several descriptions of the homology of (M,−∞), we give here a different proof
of Proposition 4.4. The following definition relies on our assumption of genericity of r.

Definition 12 Define a map α : B → Σ by α(B) = σ ∈ Σ such that f |B is minimized at σ.

To see that the minimum really occurs at a saddle, note that B is a polytope whose faces are
subsets of the flats VS . The minimum on a face must occur at a critical point for f or on the
boundary. Thus the minimum of f , which is unique by convexity, occurs in the relative interior of
some face, hence is the critical point for the corresponding stratum.

Lemma 4.5 Assuming genericity of r, |B| ≥ |A|, and in fact α is surjective with

|α−1(σ)| = dimHd,σ(M) .

If the arrangement is generic (3.2), then the map α is one to one, whence |B| = |Σ|.

Proof: Given σ and r, the normals bj to the hyperplanes {Vj : j ∈ S(σ)} span a space containing
−∇f(σ). Thus −∇f(σ) is in the positive hull of {εjbj : j ∈ S(σ)} for some choice of signs ε ∈ {±1}S .
The intersection of halfspaces {x : x·εjbj ≤ 0} contains a unique component B of Rd\(poles∪planes)
with σ ∈ B, on which, by Proposition 3.1, f is minimized. Since f → −∞ at infinity, we see that B
is bounded, i.e., B ∈ B and α(B) = σ. Thus α is surjective.

If the arrangement is generic then the normals {bj : j ∈ S} are independent, so there is a unique
choice of ε for which −∇f ∈ Pos {εjbj : j ∈ S}, and it follows again from Proposition 3.1 that
α−1(σ) is unique. For the proof that dimension is counted by α−1 in the case of a non-generic
arrangement, see tha appendix. �
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Proof of Proposition 4.4: For B ∈ B, let IB denote the map on Hd(M,−∞) taking any
homology class to its signed intersection number with the set B. Since ∂B ⊆ poles ∪ planes,
it is immediate to verify that this is well defined on homology classes. It is also evident that
IB(γB′) = δB,B′ . By Lemma 4.3 and Lemma 4.5, the cardinality of B is equal to the dimension of
Hd(M,−∞). It follows that {γB : B ∈ B} is a basis for Hd(M,−∞) and that {IB : B ∈ B} is a
dual basis. �

4.3 Proofs of Theorems 2.1, 2.2 and 2.3

The basis {γB : B ∈ B} is good for computation since for any cycle C we have

C =
∑
B∈B

IB(C)γB .

A good beginning for expressing [T ] in the cyc(σ) basis is to write each in the γB basis. Since T is
the product of small oriented circles in each coordinate, we see that

IB(T ) =

{
0 if 0 /∈ B,

sgn(B) if 0 ∈ B,
(4.1)

where sgn(B) = sgn(x) for any x ∈ B. On the other hand, by choice of orientation, decomposing
cyc(σ) in the {γB} basis requires

IB(cyc(σ)) =

{
0 if σ(σ) /∈ B,

sgn(B, σ) if σ ∈ B,
(4.2)

where sgn(B, σ) is (−1)N if N hyperplanes containing σ separate B from the origin.

Figure 4.3 depicts, for the arrangement in Example 3, how the identity we are trying to prove,
namely T =

∑
σ∈contrib cyc(σ), looks in the γB basis. The term sgn(σ) is not present since all

saddles are in the positive orthant. The + and − terms in the regions are the values of sgn(B, σ).
These must add up to 0 in any bounded region not touching the origin, and must add up to 1 for the
region that does touch the origin. The figure shows how these identities are preserved as r varies: as
r crosses the non-generic value where σ2 = σ12, the value of 1contrib(σ12) changes from 0 to 1. Both
of the other saddles have co-dimension 1 so are always in contrib. We now prove that something
like this works in general.

Proof of Theorem 2.1: We rely on the following reformulation of Proposition 4.4:

Let Hc
d(M−∞) be the homology with closed support of of (M,−∞). Then the cycles

corresponding to the (standardly oriented) bounded components B ∈ B form a basis in
Hc

d(M,−∞), and the pairing Hd(M,−∞) ⊗ Hc
d(M,−∞) → Z given by the algebraic

intersection number is non-degenerate.
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l 2 l 1

σ1

σ2

σ12

= (5/2 , 1/4)

= (1 , 1)

= (5/4 , 1/2)

Locations of saddles when r = (5,1)

+ −
+ −

l 2 l 1

σ1 = (3/2 , 3/4)

σ2

σ12 = (1 , 1)

= (3/4 , 3/2)

Locations of saddles when r = (1,1)

+ −

+ −

+

− +

−

In particular, to check Theorem 2.1 it is enough to verify that the intersection numbers of right-
and left-hand sides in 2.3 with any of the cycles spanned by bounded components in B is the same.
The intersection number of [T ] with [B] (i.e. the cycle corresponding to B ∈ B) is easy to compute:
it is sgn(

∏
i xi), x ∈ B if closure of B contains the origin, and 0 otherwise. To prove that this

is the same as the intersection number of the RHS of 2.3 with B, we employ a deformation trick.
Specifically, we construct a 1-parametric family of functions {φs : s ∈ R+} such that

• Generically, the functions φ· are Morse;

• For large s, the sum of indices of critical points of φs in B is the same as the intersection index
of [T ] with [B];

• For small s, the sum of indices of critical points of φs in B is the same as the intersection index
of
∑

σ∈contrib sgn(σ) cyc(σ) with [B], and

• The critical points of φs remain in a compact subset of B when s varies in a compact subset
of R+.

The last property ensures the conservation of the total index of φs, which by the two previous
properties, then implies the desired equality.

We construct the family with the desired properties for the positive orthant (R+)d only; the
proof extends to other orthants immediately. Let

φs = fr + s
∑

j

1
lj
.
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For all s, the restriction of ψs to the component Bo in B adjoining the origin is strictly convex, and
therefore has a unique critical point there. As for the other bounded components, let us denote by

R := sup
x∈(R+)d

inf
Tx∈(R+)d\bd T

suptx∈Bo
t

the largest ratio of proportional vectors lying in Bo and in an unbounded component, correspond-
ingly. Then, the restriction of ψs to the line through a vector is, up to an additive constant,

ψs(tx) = −r log t+ s
∑

j

aj

aj − t
, (4.3)

where r =
∑
ri and 0 < a1 < . . . < an ≤ Ra1. Now, to show that for s large enough, there is no

critical point of φs in the bounded components in B other than Bo, it is enough to show that (4.3)
has no critical points between the poles a1 and an. This is easy: taking the derivatives yields

−r
t

+ s
∑

j

aj

(aj − t)2
≥ −r

t
+ s

a1

(a1 − t)2
,

and an elementary computation shows that for s > rR2 the right hand side of the inequality above
is positive in the interval (a1, an).

We turn now to small s. Outside of small vicinity of the poles (shrinking with s), ψs is C1-close
to fr, and therefore has no critical points.

Let σ be a critical point of restriction of fr to a k-codimensional stratum V . As we assumed
genericity of the arrangement, V is the zero locus of k functions li, i ∈ I, |I| = k. Fix a coordinate
system ξ = (ξk)k=1,...,d centered at σ in which {li}, i ∈ I are given by ξi, i = 1, . . . , k. Then

φs =
k∑

i=1

aiξi + q(ξ) + s

(
k∑

i=1

1
ξi

+ c(ξ)

)
, (4.4)

where ai are partial derivatives of fr with respect to ξi’s. Clearly, q and c are holomorphic in a
vicinity U 3 σ (which we assume to not intersect any of the other poles) and dq|σ = 0.

Assume for instance genericity of r. This implies that all ai are nonzero. A point ξ ∈ U is critical
for φs if

aiξ
2
i + (qi + sci)ξ2i = s for i = 1, . . . , k (4.5)

and
qi = −sci for i = k + 1, . . . , d (4.6)

(here ci and qi stand for partial derivatives of c and q with respect to ξi).

One sees immediately, that if at least one of coefficients ai is negative, there are no real solutions
to (4.5) for s small enough. On the other hand, if all ai, i = 1, . . . , k are positive, there exist 2k
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solutions of (4.5,4.6) depending φs which tend, as s → 0, to σ: to see this one can consider 2-
covering s = t2 and look for solutions ξi = tξ′(t). A straightforward application of the implicit
function theorem implies existence of 2k solutions ξ′ for t small enough.

The constructed critical points φs belong to different components into which hyperplanes {xi =
0}, i = 1, . . . , k split U . The second derivative of φs at a critical point ξ is

Hφs = s−1/2diag(h1(s), h2(s), . . . , hk(s), 0, . . . , 0) +Hq + sHc, (4.7)

where Hφs
,Hq and Hc are the Hesse matrices of corresponding functions, and hi are Puiseux series

in s1/2 with constant terms hi(0) = sgn(ξi)a
3/2
i .

For small s the index of the critical point ξ in a component of U is (−1)l, where l is the number
of negative coordinates ξi on the component. On the other hand, this is exactly the index of the
intersection of cyc(σ) with the component containing ξ, which implies the result. �

Proof of Theorem 2.2: Begin by writing
∫
cyc(σ)

ξ as∫
cyc‖

dz‖
∫
cyc⊥

ξ dz⊥ . (4.8)

Letting yj = lj(z), for j ∈ S, we have that dy = det σ(b) dz⊥. Coordinatizing each z ∈ Cd by z‖

and y, we may integrate ∫
cyc⊥

ξ dz⊥ = det σ(b)−1

∫
U

z−r−1 η(z)∏
j /∈S lj(z)

dy
y

where U is the torus {|yj | = ε, j ∈ S}. Iteratively, one may integrate each dyj/yj to get 2πi times
the value at yj = 0, and one arrives at

(2πi)codim σdet σ(b)−1z−r−1 η(z)∏
j /∈S(σ) lj(z)

for the inner integral in (4.8). This proves the theorem. �

Proof of Theorem 2.3: Fix a saddle σ. The quasi-local decomposition lemma gives us cyc(σ).
What is left to show is that this is nonzero if and only if σ ∈ contrib.

By definition, σ ∈ contrib if and only if r is in the positive hull of b̃j for j ∈ S(σ). Since we have
assumed r /∈ ∂KS(σ), we see that this holds if and only if

r is in the positive hull of {b̃j : j ∈ U} for some U ⊆ S(σ) of cardinality codim (σ) . (4.9)

For such a U , let AU denote the generic sub-arrangement of A whose elements are the subsets of U
and let MU denote the complement. If we now consider the collection of inclusions M ⊆MU , we
see that σ ∈ contrib if and only if σ ∈ contrib in the arrangement AU for some U . By the naturality
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clause in the quasi-local decomposition lemma, cyc(σ) maps under these inclusions to the quasi-local
cycles cycU (σ) in the decomposition of Hd(MU ,−∞). By Theorem 2.1 and (4.9), if σ ∈ contrib

then at least one of these images is nonzero, hence [T ] 6= 0 in Hd,σ(M,−∞). On the other hand,
if σ /∈ contrib then all the images are zero. We shall see in the next section that the images of the
cohomology generators for Hd,σ(MU ) generate Hd,σ(M), so that the vanishing of all the images of
cyc(σ) in Hd,σ(M,−∞) implies the vanishing of cyc(σ). �

Together with equation (1.2) and part (ii) of Proposition 4.1, this yields the following corollary:

Corollary 4.6 For sufficiently large r, there is an exact equality

ar =
1

(2πi)d

∑
σ∈contrib

∫
cyc(σ)

sgn(σ)ξ .

�

5 Remaining proofs

5.1 Bases for cohomology

We want to build on our understanding of Hd,σ(M) ∼= Hcodim σ(M⊥
S(σ)) enough to integrate ξ over

classes in this group. We need therefore to examine the dual group, which we call Hd,σ(M), in order
to determine which element of the dual corresponds to integration against ξ. In order to understand
the dual to Hcodim (S)(M⊥

S(σ)), we examine central arrangements with a single point of common
intersection.

Suppose j hyperplanes {li = 0}1≤i≤j in Cd, d ≤ j, have a single point, say the origin, as
their common intersection. The d-dimensional cohomology Hd(X) of the complement X of this
arrangement is generated by forms

ωQ :=
∏
i∈Q

1
li
dz

as Q ranges over sets of cardinality d such that the {li : i ∈ Q} are independent. One may choose as a
basis the forms ωQ where Q is in the no broken circuit complex, BC, defined to be those Q containing
no broken circuit; here, a circuit of the matroid of independence of the linear forms {li : 1 ≤ i ≤ j}
is a minimal dependent set, and a broken circuit is a circuit with its greatest element deleted. If
j = d, then the arrangement is generic, there is only one set of cardinality d, so the d-dimensional
homology is cyclic and generated by ω{1,...,d}. These facts follow from [OT92, Theorems 3.43, 3.126
and 5.89]. Specifically, it is proved that BC indexes the Orlik-Solomon algebra, which is isomorphic
to another algebra, which is isomorphic to H∗(X).

25



The d-dimensional homology of X is generated by local cycles. Integration against local cycles
is a well defined operation on germs of d-forms near the origin. Thus we have a simple proposition
extending the utility of the {ωQ} basis.

Proposition 5.1 Suppose j = d. Let G be a function analytic in a neighborhood of the origin in
X. Then

[G · ωQ] = [G(0) · ωQ] in Hd(X) .

Proof: Suppose G(0) = 0. The functions vanishing at 0 are generated over germs of analytic
functions by {li : i ∈ Q}. Thus G =

∑
i∈Q liGi and so

G · ωQ =
∑
i∈Q

Gi∏
j 6=i lj

.

The ith summand ωi in this sum is a generator for the cohomology of the complement of the sub-
arrangement of the d − 1 hyperplanes other than {li = 0}. Letting ι be the inclusion of X into
the complement of this arrangement, we see that ι∗(ωi) = ι∗(0) = 0 since the complement of the
sub-arrangement has no d-dimensional cohomology. Thus G · ωQ =

∑
i ωi = 0 in Hd(X), and the

proposition follows from linearity. �

Returning to the non-generic case j ≥ d, we resolve local holomorphic d-forms on X into the
{ωQ} basis in several steps.

Let n be a vector of length j of nonnegative integers and write l−n for
∏j

i=1 l
−ni
i . Say the support

of the monomial l−n is the set of i for which ni 6= 0.

Algorithm 5.2

1. Initialize W to be l−n.

2. Repeat until W is empty:

(a) If a monomial in W of the form c l−m contains no broken circuit among its support then
output it and remove it from W .

(b) If a monomial of the form c l−m contains a broken circuit U among its support then let
k be greater than every element of U with U ∪ {k} a circuit and choose ci not all zero so
that lk =

∑
i∈U cili = 0. Replace c l−m in W by∑

i∈U

c ci l
−m+δi−δk .
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At each replacement step, a monomial is replaced by a sum equal to the original monomial. Also,
at each replacement step a monomial is replaced by a sum of monomials with smaller weight, where
the weight of a monomial l−m is

∑
imi. Since weights well order monomials, the algorithm must

halt. The output is therefore a way of writing l−n as the sum of monomials containing no broken
circuit in their support. If the support of l−n is large enough to contain at least one element of BC
then each monomial will have this property. We may generalize Algorithm 5.2 to forms G · l−n dz
by operating only on the l−n part.

Next, pick nonzero vectors {v(Q, i) : Q ∈ BC, i ∈ Q} so that each lk(v(Q, i)) = 0 for all k ∈ Q
with k 6= i. These vectors are uniquely defined up to scalar multiples. Let G · l−n dz be a d-form
with support in Q ∈ BC. We use the symbol ( ∂

∂li
)Q to denote the differential operator on locally

analytic functions defined by (
∂

∂li

)
Q

(G) :=
∇G · v(Q, i)
−bi · (v(Q, i))

.

Lemma 5.3 For any locally analytic G, any monomial l−n with support in Q ∈ BC and any i in
the support of l−n, [

G · l−n−δi dz
]

=
1
ni

(
∂

∂li

)
Q

(G) · l−n dz

in Hd(X).

Proof: For any orthonormal basis {x1, . . . ,xd} the differential of any form Ψ := ψ ·
∧

k≥2 dxk is
equal to

(∂ψ/∂x1) · dV

where {dxk} is dual to {(d/dxk)} and dV :=
∧

k≥1 dxk. Choosing a basis with x1 = v(Q, i) and
observing that ∂lk/∂x1 = 0 for k ∈ Q \ {i} gives

dΨ = (∂ψ/∂v(Q, i)) dV.

The differential dΨ, being exact, is zero in Hd(X). Setting ψ = G · l−n now gives[
∂G

∂v(Q, i)
l−n dV − ni

∂li
∂v(Q, i)

Gl−n−δi

]
dV = 0

in Hd(X), whence [
∂G

∂v(Q, i)
l−n

]
= ni

[
∂li

∂v(Q, i)
G l−n−δi

]
in Hd(X). To get the result, divide by ni∂li/∂v(Q, i) and observe that ∂li/∂v(Q, i) = −bi ·v(Q, i).
�

Corollary 5.4 (cohomology representation) If l−n has support precisely Q then[
G · l−n dz

]
=

1∏
i∈Q(ni − 1)!

∏
i∈Q

(
∂

∂li

)ni−1

Q

(G)(0) · ωQ .
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Proof: Apply the lemma inductively to lower n to a 0-1 vector with the same support, then apply
Proposition 5.1. �

5.2 Proof of Theorem 2.4

Now we return to the setting of an arbitrary hyperplane arrangement A and the form ξ which is
the integrand of (1.2). Fix a σ ∈ Σ and a z‖ ∈ cyc‖(σ). On cyc⊥(z‖), which is defined to be
z‖ + cyc⊥(σ), the form ξ restricts to a form which we also, without ambiguity, can denote ξ. We
use the notation BC(σ) to denote the set of U ⊆ S(σ) containing no broken circuit. The space
X = M⊥

S(σ) is identified with cyc⊥(z‖), with the origin moving to z‖.

We start by writing∫
T

ξ =
∑
σ∈Σ

∫
cyc(σ)

ξ =
∑
σ∈Σ

∫
cyc‖(σ)

[∫
cyc⊥

ξ dz⊥
]
dz‖ .

In each inner integral, we may now replace ξ by anything equal to ξ in the dual space Hd,σ to the
local homology group Hd,σ. In other words, we may compute in separate dual spaces for each σ.
Since ησ is holomorphic in a neighborhood of the stratum S(σ), we may apply Algorithm 5.2, or
specifically the generalization to forms G · l−n dz, separately at each σ. We then use Corollary 5.4
to produce a cohomology representative in Hd,σ, namely

[ξ] =

 ∑
Q∈BC(σ)

α(Q, r, z) (ωQ ∧ dz‖)

 . (5.10)

We remark that after applying Algorithm 5.2 the coefficients are not constant on fibers of z 7→ z‖,
but after applying Corollary 5.4, the coefficients α(Q, r, z) depend on z only through z‖.

Replacing ξ by the LHS of (5.10) in each inner integral, we sum to get∫
T

ξ =
∑
σ∈Σ

∫
cyc(σ)

Iξ,σ(z‖) dz‖ , (5.11)

where
Iξ,σ(z‖) :=

∑
Q∈BC(σ)

α(Q, r, z‖) sgn(Q)1
σ∈contribQ

|detQ|−1 ,

and is zero whenever σ /∈ contrib.

Proof of Theorem 2.4: Part 1 of Theorem 2.4 has only to do with properties of the functions pσ

and Pσ, and these were noted at the time the definitions were given.
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Comparing (5.11) with part 2 of Theorem 2.4, it remains to show that the inner integral Iξ,σ is
correctly computed by pσ[−∂](z−r−1ησ), or in other words, that

Iξ,σ = Pσ . (5.12)

case 1: the distinct normals {bj : j ∈ S(σ)} to the hyperplanes {Vj : j ∈ S(σ)} are linearly
independent, though they may appear with multiplicities greater than 1. In this case,
BC(σ) is the singleton {S(σ)} and equation (5.11) has only one summand, so that

[ξ] =

[
1∏

j∈S(nj − 1)!

(
∂

∂l

)n−1

S

(ησz−r−1)

]
(z‖) · ωS ∧ dz‖ .

Thus

I(σ, z‖) = sgn(S)1
σ∈contribS

|detS|−1 1∏
j∈S(nj − 1)!

[(
∂

∂l

)n−1

S

(ησz−r−1)

]
(z‖) . (5.13)

To complete case 1, we work on an explicit form of Pσ. Renumber the normal vectors b1, . . . ,bk

and denote their multiplicities by n1, . . . , nk. The map φ in the definition of pσ is then a map from
R|σ| to Rk. Write φ = φ2 ◦ φ1 where φ1 maps the nj standard basis vectors corresponding to the
nj appearances of bj all to the jth standard basis vector ej of Rk, and φ2 maps ej to bj . The map
of n standard basis vectors all to the standard basis vector in R1 maps Lebesgue measure on (R+)n

to xn−1(n − 1)! dx, as follows from the fact that the preimage of x is the simplex {
∑n

j=1 xj = x}.
Consequently, the density of the image of Lebesgue measure under φ1 is equal to

k∏
j=1

x
nj−1
j

(nj − 1)!
.

The map φ2 has constant Jacobian |detb|, so the density pσ(y) is equal to

|detb|−1
k∏

j=1

xj(y)nj−1

(nj − 1)!
(5.14)

where xj is the jth coordinate function of the inverse of φ2.

If vj is a vector orthogonal to each bi for i 6= j, then dotting the equation y =
∑k

j=1 λjbj results
in y ·vj = λjbj ·vj . Thus the function xj is computed by (y ·vj)/(bj ·vj). We plug this into (5.14)
to arrive at

pσ(y) = |detb|−1
k∏

j=1

[
1

(nj − 1)!

(
y · vj

bj · vj

)nj−1
]
.

We may substitute yj = ∂/∂xj in this to see that Φσ is the operator defined by

Φσ = |detb|−1
k∏

j=1

[
1

(nj − 1)!

(
∇(·) · vj

bj · vj

)nj−1
]
.
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Going back to Definition 6, we have a function ησ locally analytic at σ, defined by η = l−nησ and
we have

Pσ = Φσ(z−r−1ησ)

= |detb|−1
k∏

j=1

[
1

(nj − 1)!

(
∂

∂lj

)nj−1
]

(ησzr−1) .

Comparing this to equation (5.13) proves (5.12) in the special case.

case 2: general ξ. With ξ = z−r−1ησl−n and n having support S(σ), we let s = |n| =
∑k

i=1 ni. If
s = codimσ, then |S| = codimσ and nj = 1 for j ∈ S. We are then in case 1, and we have already
proved that Pξ = Iξ,σ.

Suppose now for induction that s > codimσ and that the theorem has already been established
for |n| = s − 1. In the definition of Pσ, there is an implicit dependence on the support S of the
denominator ln of ξ; when we compute with ξj in place of ξ, this support will be some Q ∈ BC(σ)
and it will be clearer if we write Pξj instead of Pσ, where

Pξj = pξj [−∂](z−r−1ησ)

and pξj is the image of the density of λ|n| mapped according to the multiplicity of factors in the
denominator of ξj . A conclusion of the induction hypothesis is that the correspondence ξ 7→ Pξ

must satisfy a linearity condition. Specifically, since Pξ = Iξ,σ and Pξj = Iξj ,σ, and since Iξj ,σ is
linear (being an integral), we may conclude that

Pξ =
∑

j

Pξj .

Since this is true as a function of r, we conclude that in fact

pξ =
∑

j

pξj
. (5.15)

To complete the induction, we now let ξ have order s and ξ =
∑

j ξ
j as above. Let m := maxS

be the largest index in S. We remark that the basis exchange steps in Algorithm 5.2 never remove
m from the support of the denominator, so all the terms ξj will have nm ≥ 1. The form lmξ has one
fewer factor of lm in its denominator, so by definition of pξ, we have

pξ(xx) =
∫ ∞

0

plmξ(x− λbm) dλ . (5.16)

The positive cone on {bj : j ∈ S} contains no line, and since this cone is closed under addition of
positive multiples of bm, we conclude that x − λb1 is not in the cone for any x in the cone with
λ(x) sufficiently large. This verifies that upper limit of the integral in (5.16) is finite for each x and
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therefore that the integral exists. Equation (5.16) holds as well for any ξj in place of ξ. Applying
the induction hypothesis to lmξ =

∑
j lmξ

j we see that

pξ =
∫ ∞

0

plmξ(· − λbm) dλ

=
∑

j

∫ ∞

0

plmξj (· − λbm) dλ

=
∑

j

pξj .

It follows from case 1 and linearity of Iξ,σ that

Pξ =
∑

j

Pξj

=
∑

j

Iξj ,σ

= Iξ,σ ,

completing the induction. �

5.3 Saddle integrals

Lemma 5.5 The function φ(z) := −r̂ · log z on SS has a quadratically nondegenerate critical point
at σ(S) which is a maximum on cyc‖(σ(S)). Consequently, if σ ∈ contrib and η /∈ I(σ), then∫

cyc‖(σ(S))

z−r−1 η(z)∏
j /∈S lj(z)

dz‖

has an asymptotic expansion as
η∏

j /∈S l
nj

j

(σ∗)pσ∗(r)Λ(σ∗)−1/2σ−r

times a sequence of decreasing powers of r, whose first k terms may be computed from the partial
derivatives of η/

∏
j /∈S lj at σ(S) up to order k and from the matrix v.

Proof: By strict concavity of the logarithm on R, the function φ on Rd has a single critical point
on each bounded component of SS \ planes, which is a minimum. Complexifying, we find the same
critical points, all being minima in the real directions of SS and maxima in the imaginary directions.
Thus they are maxima on cyc‖(σ(S)), this being an imaginary fiber. The Hessian of the logarithm is
diagonal in the standard basis and nondegenerate, and hence always quadratically nondegenerate on
any affine subspace. The lemma now follows from standard saddle point integration; see, e.g., [BH86,
(8.2.63)] for the two variable case or [Won89, Theorem IX.5.3] for the general case. �

Proof of Theorem 2.5: Follows from Theorems 2.3 and 2.4 and Lemma 5.5. �
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6 Algorithmic aspects and further discussion

6.1 Chamber decomposition of the set of generic r

As mentioned after the definitions of gen and contrib, the orthant (R+)d is divided into open cones
or chambers by the removal of the set non of non-generic values of r. We begin by describing this
decomposition.

Proposition 6.1 For each flat S of A and each flat T > S of dimension greater by 1, define the
hypersurface h(S, T ) to be the union over x ∈ S of the cones KT (x). Then the set non is the cone
in (R+)d (equivalently the subset of the positive orthant in RPd−1) consisting of all surfaces h(S, T ).
In particular, r ∈ non whenever r is in the relative boundary in S(σ)⊥ of Kσ for some σ ∈ Σ.

Proof: Given x ∈ VS with S < T as above, suppose r is in the intersection of (Rd)+ with the linear
span of {b̃j : j ∈ T}. For that r, the critical point of the height function fr on the flat VT is then
in the linear span of {b̃j(x) : j ∈ T}, which is the condition for x to be the saddle σ(T ). Thus for
this r we see that σ(T ) ∈ S and hence r ∈ non. This proves that

⋃
h(S, T ) ⊆ non.

Conversely, if r ∈ non then pick S < T with σ(T ) ∈ S and let x = σ(T ). Then at that x we find
r to be in the linear span of KT (x), proving the reverse inclusion.

Finally, to see that each h(S, T ) is a hypersurface, we describe these sets as follows. Denote the
ambient space as V , and consider the bilinear mapping ∆ : V × V ∗ → Rd given by

((e1, . . . , ed), (f1, . . . , fd)) 7→ (e1f1, . . . , edfd)

(the basis in V is fixed). Given the pair (S, T ) we let C∗+ ⊆ V ∗ denote the space of linear functionals
constant on VT and let L− ⊆ V be the linear space spanned by VS . The image of the restriction of
∆ to L− × C∗+ is an immersed hypersurface in Rd, as the rank of the Jacobian of this restriction is
(d− 1).

Remark: If the dimension of V− or codimension of V+ is one, then the image hypersurface is in fact
a hyperplane. This must always be the case in dimensions up to three. In general the image surface
is not a hyperplane, being a restriction of a quadratic mapping.

The decomposition of gen into components is in general a finer decomposition than is necessary:
there may be facets of non across which no discontinuities occur in any terms of the asymptotic
formula for ar. While Proposition 6.1 gives some understanding of the structure of gen, the problem
of effectively and efficiently listing chambers is by no means trivial and has been studied in various
contexts. Even counting the number of chambers is cited in [DS03] as an open problem, stated
in [Ki01, page 57]. That problem, it should be noted, concerned the chamber complex for Kostant’s
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partition function, which is from our point of view simple in that all hyperplanes of A pass through
(1, . . . , 1). Hence b̃j ≡ bj for all j and x, and the problem reduces to describing chambers of a dual
hyperplane arrangement; the geometry of non may be more complicated if not all the hyperplanes
pass through a single point.

6.2 Finding the highest saddle in contrib

The first three steps of Algorithm 1.1 involve finding all the flats of A, finding the saddle in each
flat, and sorting these by according to their height, fr(σ). Here, we consider briefly the complexity
of these computations.

One might imagine doing these computations in two ways: for a given r, or simultaneously for
all r. The asymptotic formulae we have derived are uniform estimates over compact subsets of the
chambers of gen. Typically there are discontinuities or non-analyticities across these boundaries, so
a formula valid for all r is nothing more than a description of the chambers of gen together with
a compilation of formulae valid in chambers of gen. Having done the best we can to describe the
chambers of gen, we assume henceforth that r, or its chamber, is fixed.

Consider now the problem of finding the highest saddle(s) in contrib. Given Σ in some kind
of list form, the problem of height ordering the elements of Σ involves testing inequalities among
logarithms of solutions to linear equations. If all the bij are rational, then these are logarithms of
rational numbers, so, exponentiating, the problem is reduced to testing inequalities among algebraic
numbers. One need not be satisfied with numerical testing here: rigorous testing algorithms are
available; see [GS96].

The complexity of this task in general seems no less than the complexity of listing Σ and sorting
by means of an efficient sorting algorithm which calls either a numeric or a rigorous testing procedure
for each comparison. There is, however, one special case in which the problem of finding the highest
saddle in contrib can be shown to be solvable in polynomial time, namely when the coefficients of
F are known to be nonnegative.

Let D be the domain of convergence of the power series for F about the origin, and let D+ be the
intersection of this with the positive orthant in Rd. Then ∂D is the union of tori, each one of which
intersects D+ in a unique point, x. Since F is meromorphic, there is a pole somewhere on each of
such torus, so the power series is not absolutely convergent on these tori. As λ ↑ 1, F (λx) → +∞
by nonnegativity of the coefficients and divergence of the power series, whence x ∈ ∂D+. We
conclude that the interior of the region B0 ∈ B in the positive orthant with the origin in its closure
is contained in D. It follows that if σ ∈ ∂B0 for some σ ∈ Σ, then σ is a (weakly) minimal point in
the terminology of [PW01], meaning that it is on the boundary of a polydisk whose interior is in the
domain of convergence of F . Consequently, there can be at most one such σ ∈ ∂B0 (though there
may be others on the boundary of the same polydisk if the coefficients of F have periodicity).
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On the other hand, let σ be the location of the minimum of the convex function fr on B0. Then
σ is in the relative interior of precisely one face of B0, and it follows that σ = σ(S) for the flat S
of which this face is a subset with nonempty relative interior. We see that there is precisely one
σ ∈ Σ ∩ ∂B0 and that it is where fr is minimized on B0. The problem of minimizing a smooth
convex function on a polytope is solvable in polynomial time by means of interior point methods. It
is possible that specific polynomial time bounds such as are given in [NN94] may be improved upon
due to the special nature of our convex objective function. In particular, we may explicitly compute
the mimimum on any face. Algorithms designed to produce solutions within ε of optimal at a time
cost of polylog(ε) may therefore be told at some point to quit and produce the exact minimum. How
best to do this remains a topic for further investigation.

6.3 Nonlinear pole sets

Much of our analysis is valid in a more general setting where the pole variety is the union of smooth
components but these are no longer required to be flat. In particular, the five steps beginning with
equation (1.2) are valid whenever the pole variety is locally bi-analytically equivalent to a hyperplane
arrangement. An additional layer of computation is incurred in Lemma 5.3 since computing higher
derivatives of forms will involve the higher derivatives of the linearizing diffeomorphism. The leading
contribution will, however, be unchanged as long as it the numerator is locally non-vanishing:

Proposition 6.2 Let H be a product of linear functions vanishing at the point p and not at the
origin and let C be a nonzero cycle local to p in the complement of the zero set VH of H. Let φ be
an analytic map on a neighborhood of p whose derivative at p is the identity, let η be analytic and
nonvanishing near p, define F = η/H and F̃ = F ◦ φ. Then∫

C

z−rF dz ∼
∫

C

z−rF̃ dz

as functions of r.

Proof: Changing coordinates by φ in the second integral yields
∫

C′(η̃/H)z−r dz for some η̃ = (1 +
h)η and h(p) = 0. The cycle C ′ is homologous to C. We then have that the difference of the integrals

is
∫

C
(hη/H)z−r dz and we may apply, for instance (3.8), to see that this is O

(
|r|−1|

∫
C

Fz−r dz
)

.

�

Suppose, for example, that the denominator of F is a toric polynomial, that is, the product of
some number k of binomials:

∏k
j=1(1−xm(j)). The toric denominator (together with a unimodularity

restriction) is precisely the problem considered in [DS03], where it is applied to provide an exact
count of nonnegative integer solutions to simultaneous linear equations. De Loera and Sturmfels use
various algebraic-geometric methods to find this piecewise polynomial and to do so more rapidly than
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existing methods for this “benchmark” problem. To solve this problem in our framework, we would
need to apply cohomological reduction to the form z−rFdz/z near the point 1 := (1, . . . , 1). This is
algorithmically straightforward, since the linearizing diffeomorphism at 1 is just the logarithm (one
must take extra care since the domain of convergence is not strictly logarithmically convex). The
nonlinear version of Algorithm 1.1 may therefore be carried out for this problem.

At this point our emphasis in on existence of an algorithm for as wide a class as possible, rather
than on finding a good algorithm for a particular problem. Let us compare our methods to those
used to solve a particular case of unimodular counting. The Birkhoff polytope Bn is the polytope
in (R+)n2

of n × n doubly stochastic matrices. The Ehrhardt polynomial of the Birkhoff polytope
is the polynomial Hn(t) counting the number of rational points with denominator t of the Birkhoff
polytope. This turns out to be equal to at1 where {ar} are coefficients of a generating function
whose denominator is a toric polynomial. The leading term of Hn(t) is, properly normalized, the
volume of the Birkhoff polytope. The most efficient determination to date of this volume is carried
out in [BP03] by methods similar to ones in the present paper. Computing this single integer is
hard enough that in [BP03], Beck and Pixton can only get up to n = 9 (a later note solving the
n = 10 case with the equivalent of 17 years of 1 GHz computing time was recently web posted).
If we are interested only in computing the leading term, Proposition 6.2 allows us to replace the
actual generating function by its linearization near 1. We may then use Theorem 2.5 to compute
the leading term. We do not expect the procedure outlined in Section 5.1 to do any better than
that in [BP03]. In fact the discussion after [BP03, Corollary 4] indicates that the cohomological
reductions in Section 5.1 mirror the steps of their algorithm before they apply simplifying tricks. On
the other hand, we demonstrate an effective procedure for all instances of generating functions with
affine pole sets, whereas the methods in [BP03] seem tailored to the Birkhoff polytope problem in
a somewhat ad hoc way. For the computation of the entire piecewise polynomial whose generating
function has poles on a toric variety, we are virtually certain that the nonlinear version of our method
does not perform as well as those in [DS03].

Finally, we turn to the most general nonlinear case that could be handled by our methods, namely
when the pole variety is a union of smooth hypersurfaces. In general, application of the five steps of
this program requires an effective means of accomplishing the representation of T in the quasi-local
basis. At present, we know how to do this only for specific cases such as hyperplane arrangements,
toric varieties and smooth algebraic curves [HP02]. We hope to make further progress on this in the
near future.

6.4 Non-generic directions

It is somewhat unsatisfying that our formulae are restricted to the interiors of chambers and can
become invalid near non. For asymptotics as r → ∞ in non, the only known results are given
in [PW04]. There the singularity, already in normal form, is resolved completely, and the region
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of integration becomes the product of an open disk with a simplex. When r ∈ non, the stationary
phase point is located on the boundary of the simplex and asymptotics are available via halfspace
and other more complicated stationary phase integrals.

In short, for directions in non, there are results available which are technically difficult and are
restricted to the case where the highest σ ∈ contrib is a minimal point. Unification of these results
with the formulae on the interiors of chambers is even more problematic. One would like to find a
scaling exponent α so that if the distance from r to non is or order |r|α, then one has a formula
for ar that smoothly interpolates between the behavior in the directions in non and behavior in
directions in the interior of the nearby chamber. The first results we know of in this regard were
obtained in [BFSS01], where a Airy-type scaling limit was derived. General results in this direction
were then obtained by Lladser [Ll04]. Aside from these results, nothing appears to be known, and
the area cries out for further research.

7 Appendix

7.1 Relative homology

We begin by quoting the basic lemma of Stratified Morse Theory [GM88, Theorem I:3.2].

Proposition 7.1 (no topological change between critical values) If [a, b] contains
no critical value of the Morse function f , then Ma is a strong deformation retract of Mb. �

Recall we have denoted ξ = z−r−1F (z)dz. The previous proposition then yields:

Corollary 7.2 If b < low and C ∈ Hd(Mb) then
∫

C
ξ = 0 for sufficiently large r.

Proof: For any a < b < low, the manifold Ma is a strong deformation retract of Mb. Thus any
integrating j-cycle C in Mb can be retracted into any lower Ma. This can in fact be done so as to
result in a chain Ca not coming too close to the poles of F and possessing not too much volume:
the exact statement is that ∫

Ca∩A(a,2a)

F (z)dz < P (a)

where A(a, 2a) is the set of {z : a < |z| < 2a} and P is a polynomial. When r is sufficiently large,
we then see that ∫

Ca

z−rF (z) dz → 0 (7.1)

as a→∞; since the integral is independent of a, it is zero. �
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Recalling that (M,−∞) is the inverse limit of the homotopy equivalent space (M,Mc) for
c < low, we may now formalize the fact that cycles in Mb may be ignored.

Proof of 4.1: Suppose C1 and C2 are chains with [C1] = [C2] in Hd(M,−∞). By hypothesis there
are chains D and Eb on M and Mb respectively such that ∂D = C1−C2−Eb. By Stokes’ Theorem,
the integral of any holomorphic form over ∂D vanishes, so we see that∫

C1

z−rω −
∫

C2

z−rω =
∫

Eb

z−rω

whence the first result follows from the fact that f ≤ |r|fr̂(b) on Mb, with fr̂(b) < low.

For part (ii), let C be a chain in M which is a cycle in (M,−∞) homologous to 0. by the
argument in part (i), C = ∂D + Eb where Eb ∈ Mb for any b. Since

∫
D
ω = 0 and

∫
Eb
ω → 0 as

b→ −∞, we see that
∫

C
ω = 0. �

7.2 Proof of the quasi-local decomposition lemma

A standard Morse theoretic argument is that if f is a smooth height function with finitely many
critical points, all hyperbolic, then an arbitrarily small perturbation fε of f may be chosen so that
all the critical values of fε are distinct and such that the family {ft : 0 ≤ t ≤ ε} induces an
isomorphism on all the subsequent Morse theoretic constructions. For details, see for example the
critical point exchange construction in [Vas01, Section 12.4]. We may therefore assume without
loss of generality that the critical values of f are distinct. The topology of (M,−∞) may now be
constructed inductively, up to homotopy equivalence, by observing the change in Mc as c increases
past a critical value.

Proposition 7.3 (cycles across critical values generate) Suppose that the critical values of f
are distinct and let S be the set of critical points of f . For each x ∈ S, then choose ax < f(x) < bx for
which the interval [ax, bx] contains no other critical value of f . Let πx denote the map on homology
induced by the projection (Mbx

,−∞) →Mbx
,Max

). Then there are cycles {Cx,j : x ∈ S, j ≤ n(x)}
such that for each x the cycles {πx(Cx,j) : j ≤ n(x)} are independent in Hi(Mb,Ma), and such that
{Cx,j : x ∈ S, j ≤ n(x)} generate Hi(M,−∞).

Proof: We show inductively on c that if c is not a critical value, then we may choose {Cx,j : f(x) ≤
c, j ≤ nx} generate Hi(Mc,−∞). This is true if c < low since then there is nothing to generate.
Proposition 7.1 shows that if it is true for a, it is true for any b such that [a, b] contains no critical
value of f . Thus it suffices inductively to assume it for a = ax and prove it for b = bx.

Accordingly, we suppose is true a = ax = f(x) − ε and set b = bx = f(x) + ε. Pick γ ∈
Hi(Mb,−∞). The short exact sequence

0 −→ (Ma,−∞) −→ (Mb,−∞) −→ (Mb,Ma) −→ 0
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gives rise to a long exact sequence in which one finds

Hi(Ma,−∞) ι−→ Hi(Mb,−∞) πx−→ Hi(Mb,Ma) . (7.2)

Choose a preimage {Cx,j : j ≤ n(x)} of a basis for the image of πx. These are elements of
Hi(Mb,−∞). Write πγ =

∑
j qjπx(Cx,j). Then γ −

∑
j qjCx,j is in the kernel of πx, and hence

ιγ′ = γ −
∑
qjCx,j for some γ′. By induction, γ′ is in the span of {Cx′,j : f(x′) < f(x)}. Thus γ is

in the span of {Cx′,j : f(x′) ≤ f(x)}, completing the inductive proof of the proposition. �

It is then shown [GM88, Theorem I:3.5.4] that for each critical point σ and for a and b chosen
so that f(σ) is the only critical value of f in [a, b], there is a neighborhood N of σ which may be
taken arbitrarily small, so that the inclusion (Mb ∩N ,Ma ∩N ) → (Mb,Ma) induces a homotopy
equivalence. We denote the d-dimensional homology of either of these spaces by Hd,σ(M), which is
the notation that appears in the quasi-local decomposition lemma.

Next it is shown [GM88, Theorem I:10.7] that the pair (Mb∩N ,Ma∩N ) is homotopy equivalent
to a space gotten from Ma by attaching a CW-complex which is a topological product of pairs

(A,B)× (C,D) ∼= (Dλ, ∂Dλ)× (l+M, ∂l+M) , (7.3)

where the topological product means

(A,B)× (C,D) = (A× C,A×D ∪B × C) .

When computing the homology of an attachement relative to the space before the attachement, the
attaching map is irrelevant, so the “Morse data” A,B,C and D suffice to determine H∗(Mb,Ma).

In (7.3), the disk A is a small neighborhood of the the critical point in the stratum and B is
the part of this where the Morse function f has diminished in value by ε. It is then not hard to see
that the “tangential Morse data”’ (A,B) is always the product of a disk of dimension d∗ − λ with
the pair (Dλ, ∂Dλ), where d∗ = 2 dimS is the real dimension of the stratum and λ is the index of
the critical point, which is always d = (1/2)d∗ when f is a locally analytic function. The space C
in (7.3) is a neighborhood of the origin in M⊥

S and the space D is the portion of C where f has
diminished by ε.

These facts from [GM88] are true for any stratified spaces, the d-dimensional homology of a
complement in Cd of a complex algebraic variety, we can say more. The complement of a complex
variety in Cd always has homology dimension at most d (see, e.g., [Mil63, Theorem 7.1]). Therefore
in the long exact sequence for

0 −→ (Ma,−∞) −→ (Mb,−∞) −→ (Mb,Ma) −→ 0

all the homology vanishes above dimension d and (7.2) becomes

0 −→ Hd(Ma,−∞) ι−→ Hd(Mb,−∞) πx−→ Hd(Mb,Ma) .

38



There is no torsion in the top dimension of the space (Mb,Ma) (this follows from the natural
orientation on a complex variety and its complement). Thus if each πσ is surjective, then we see
inductively that

Hd(M,−∞) ∼=
⊕
σ∈Σ

Hd(Mbσ
,Maσ

) =
⊕
σ∈Σ

Hd,σ(M) (7.4)

although we have no natural way yet to represent this sum until we define πσ.

It is possible to see that for any complement of a complex variety, each πx is surjective on Hd, but
it is easiest to use the special properties of hyperplane arrangements to do so, as these are necessary
anyway for the last step in proving the quasi-local decomposition lemma.

The first special fact we use about hyperplane arrangements is that we may choose explicit cycle
representatives cyc‖ for Hdim S(VS) which are actual cycles in (M,−∞). Thus the map ix may be
defined so as to be an explicit and natural candidate for an isomorphism between Hcodim σ(M⊥

S(σ))
and what will turn out to be π−1

σ (Hd,σ(M)).

The second special fact about hyperplane arrangements is that the homology of (C,D) is actually
the local homology of M⊥

S . It is shown in [GM88, Theorem III:3.2] by “fitting together cycle halves”
that any relative cycle τ in Hcodim S(l+M, ∂l+M) is actually a true local (codimS)-dimensional cycle of
M⊥

S The fact that M⊥
S retracts to a small neighborhood of the origin means that there is a natural

map from Hcodim S(M⊥
S ) to Hcodim S,loc(M⊥

S ), which may then be projected to Hcodim S(C,D).
Fitting together halves reverses this map and shows that

Hcodim S(C,D) ∼= Hcodim S(M⊥
S )

which is part (i) of the quasi-decomposition lemma.

Also, mapping Hd,σ first by this natural map and then by the natural map iσ provides a map
from Hd,σ(M) to Hd(M,−∞) which is inverted by πσ, thus proving part (ii) of the lemma. �

Proof of Lemma 4.5: To see in general that |α−1(σ)| computes the dimension of the local ho-
mology, use the fact [GM88, Theorem III:3.5] that the d-dimensional local homology of M and the
0-dimensional local homology of M∩Rd at σ are equal since both are given by the (d−1−dimR σ))-
dimensional homology of the order complex above S(σ) relative to the complement of the top flat.
The 0-dimensional real local homology is just the number of components intersecting the level set
f(σ) + ε that do not intersect f(σ) − ε. This is the number of components containing σ in their
boundaries, for which f attains a minimum at σ, or in other words, the cardinality of α−1(σ). �

7.3 Retraction of the complement of bd to −∞

Lemma 7.4 For any neighborhood N of bd in M, The inclusion of (M,M\N ) into (M,−∞) is
a homotopy equivalence and therefore induces a homology isomorphism.
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The proof is via construction of a retraction of M\N to −∞.

Lemma 7.5 There is a continuous vector field v on Rd \ planes such that

1. v ≡ 0 on bd;

2. v respects the strata: for any x ∈ VS, v(x) ∈ Tx(VS);

3. for x /∈ bd, the product in each coordinate, xivi(x), is strictly positive.

Proof: Let Eλ denote the L1-sphere {x ∈ Rd :
∑d

i=1 |xi| = λ}. For sufficiently large λ, the set Eλ

is disjoint from bd and intersects each unbounded component U of M∩Rd. The set poles ∪ planes

subdivides Eλ into convex polytopes. The vertices pj of these polytopes vary affinely with λ as
xj + λyj . We include enough vertices so that these polytopes subdivide the subdivision by poles ∪
planes, so that no line segment goes through poles without stopping. Fix a sufficiently large λ and
triangulate Eλ by simplices in a way that respects the subdivision by poles ∪ planes and respects
the affine homothety that increases λ. Define v(xj +λyj) := yj for all vertices. Within each simplex
of the triangulation extend by convex combination. The resulting field w respects that strata since
it is forced to be in each stratum at vertices of the triangulation. Also, xivi(x) is always positive,
since the ray x + λv(x) extends without bound avoiding planes. Finally, extend this to Rd \ bd by
letting v(ρx) = ρ−λ0

1−λ0
v(x), where λ0 = inf{ρ : ρx /∈ bd}. This automatically yields a limit of 0 at

bd, so extending to be zero on bd finishes the construction. �

Corollary 7.6 The vector field on Cd \ planes defined by

w(x + iy) = v(x) + iy

extends v to a continuous vector field on Cd vanishing precisely on bd, respecting the strata, and
such that ∇fr(x) · w(x) < 0 for all x /∈ bd and all r.

Proof: The constraints on the imaginary parts of each strata are linear, not affine, so v(x) + iy
respects strata if v respects real strata. Continuity, extension and vanishing exactly on bd are
immediate. Since vi(x) has the same sign as xi, it follows that ∇f · v is strictly negative on
Rd \ planes, and it follows that ∇f · w is strictly negative on Cd \ planes. �

Proof of Lemma 7.4: Let Φt(x) denote the image of x at time t under the flow x′ = w(x). Outside
of bd this is a homotopy of M preserving the strata SS , S ∈ A. Given N , r and c < low, there is a
t sufficiently large such that Φt[M\N ] ⊆Mc. �

Acknowledgement: The second author thanks Vic Reiner and Richard Ehrenborg for helpful
discussions concerning Theorem 2.1.
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