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Abstract. Uniform asymptotic formulae for arrays of complex numbers of the form (fr,s), with r and
s nonnegative integers, are provided as r and s converge to infinity at a comparable rate. Our analysis
is restricted to the case in which the generating function F (z, w) :=

P

fr,sz
rws is meromorphic in a

neighborhood of the origin. We provide uniform asymptotic formulae for the coefficients fr,s along directions
in the (r, s)-lattice determined by regular points of the singular variety of F . Our main result derives from
the analysis of a one dimensional parameter-varying integral describing the asymptotic behavior of fr,s.
We specifically consider the case in which the phase term of this integral has a unique stationary point,
however, allowing the possibility that one or more stationary points of the amplitude term coalesce with
this. Our results find direct application in certain problems associated to the Lagrange inversion formula
as well as bivariate generating functions of the form v(z)/(1 − w · u(z)).

1. Introduction

Suppose that G(z,w) and H(z,w) are analytic functions of the complex variables z and w in an open
polydisk centered at the origin and assume that H(0, 0) 6= 0. Then, the function

F (z,w) :=
G(z,w)

H(z,w)

is analytic in a neighborhood of the origin in C
2; in particular, it has a power series expansion of the

form
∑

fr,sz
rws, where the indices r and s are nonnegative integers. In what follows we use the notation

[zrws]F to refer to the coefficient of zrws in the power series expansion of F . We also use the notation
(r, s) → ∞ as a shorthand for r → ∞ and s → ∞.

Generating functions of the above form occur frequently in the study of discrete random structures
and analysis of algorithms (see [PemWil05] for a comprehensive account of examples). For a wide class of
bivariate functions of this kind the coefficients [zrws]F are expected, up to an exponential factor, to be

of order s−(p+1)/n as (r, s) → ∞ with r/s fixed. Here, the coefficients p and n are functions of the ratio
r/s. In particular, the asymptotic behavior of [zrws]F can be understood even if r/s varies but in such
a way that p and n do not change. In this paper we show how to provide uniform asymptotic formulae
for the coefficients [zrws]F as (r, s) → ∞ when r/s is restricted to a set of values where the coefficient p
may not remain constant.

From this point on we assume as given a point (ζ, ω) which is a strictly minimal simple zero of H. By
simple zero we mean that H(ζ, ω) = 0, however, the complex gradient ∇H(ζ, ω) 6= 0. By strictly minimal
zero we mean that ζ ·ω 6= 0 and that (ζ, ω) is the only zero of H(z,w) in the polydisk where |z| ≤ |ζ| and
|w| ≤ |ω|.
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The pioneering work of Pemantle and Wilson [PemWil01] implies that it is possible to determine an
asymptotic expansion for the coefficients of F only along certain direction in the (r, s)-lattice specified by
(ζ, ω). This direction corresponds to the line

(1.1) dir(ζ, ω) := {(r, s) ∈ R
2 : r · ω Hw(ζ, ω) − s · ζ Hz(ζ, ω) = 0} ,

where Hw and Hz respectively denote the complex partial derivative of H with respect to w and z. For
simplicity it will be assumed ahead that Hw(ζ, ω) 6= 0. In particular, (r, s) ∈ dir(ζ, ω) if and only if
r/s = d(ζ, ω), where

d(ζ, ω) :=
ζ Hz(ζ, ω)

ω Hw(ζ, ω)
.

The strict minimality of (ζ, ω) implies that d(ζ, ω) ≥ 0 (see Lemma 2.1 in [PemWil01]). Furthermore, if
this quantity is a rational number, Pemantle and Wilson show that there are integers n = n(ζ, ω) ≥ 2
and p = p(ζ, ω) ≥ 0 and coefficients cj = cj(ζ, ω), with j ≥ p and cp 6= 0, such that

(1.2) [zrws]F ≈ ζ−rω−s

2π

∞
∑

j=p

cj s−(j+1)/n ,

for all (r, s) ∈ dir(ζ, ω), as (r, s) → ∞. The asymptotic notation used above is in the standard sense

where the sequence (s−(j+1)/n)j≥p is the so called auxiliary asymptotic sequence. This means that the
difference between the left and the right-hand side term above, with the summation truncated to the term
in which j = m, is O(ζ−r ω−s s−(m+2)/n), as (r, s) → ∞.

The technique used to obtain the asymptotic formula in (1.2) proceeds by relating the coefficient
[zrws]F , with (r, s) ∈ dir(ζ, ω), to a one dimensional Fourier or Laplace like integral of the form

(1.3)
ζ−rω−s

2π

∫

a(θ; ζ, ω) exp{−s · f(θ; ζ, ω)}dθ .

We will refer loosely to a(θ; ζ, ω) and f(θ; ζ, ω) respectively as the derived amplitude and phase term.

Roughly speaking, the expansion in (1.2) is in powers of s−1/n because the derived phase term vanishes to
degree n in the variable θ about θ = 0, which turns out to be the dominant critical point of the integral.
Furthermore, [zrws]F is of order ζ−r ω−s s−(p+1)/n because the derived amplitude term vanishes to degree
p at θ = 0. (See [Bru81] and [BleHan86] for a compelling introduction to the main techniques used to
study the asymptotic behavior of Fourier-Laplace integrals.)

The asymptotic expansion in (1.2) holds usually along a wider set of directions in the (r, s)-lattice.
Indeed, suppose that K is a compact set of strictly minimal simple zeros of H and consider the set

(1.4) Λ :=
⋃

(ζ,ω)∈K

{

(r, s) ∈ R
2 :

r

s
= d(ζ, ω)

}

.

Observe that Λ is a cone if K is connected. Theorem 3.3 in [PemWil01] implies that (1.2) holds uniformly
as (r, s) → ∞, with (r, s) ∈ Λ, provided that the derived amplitude and phase term in (1.3) do not
change their degree of vanishing about θ = 0 as (ζ, ω) varies over K. In particular, if for each (r, s) ∈ Λ,
(ζ, ω) = (ζ(r, s), ω(r, s)) ∈ K is such that d(ζ, ω) = r/s then

(1.5) [zrws]F ∼ cp(ζ, ω) · ζ−rω−s

2π
· s−(p+1)/n ,

uniformly for all (r, s) ∈ Λ, as (r, s) → ∞. The notation used above means that the ratio of the two sides
tends to 1 as (r, s) → ∞.

However, when there is a change of degree of the derived amplitude or phase term in (1.3) the hypotheses
of [PemWil01] are not met and therefore no conclusion may be drawn from it. When the change of degree
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is in the phase term one needs to build a bridge between differently scaled regions. This is hard work and
will be presented in the forthcoming paper [Lla05]. (For further details on this case see Theorem 6.6 in
Chapter 6 in [Lla03].)

The main contribution of the present paper is to settle the case in which only the derived amplitude
term may undergo a change of degree. Although it is not mentioned in [PemWil01] the asymptotic
formula in (1.2) is still valid for (r, s) ∈ Λ but it requires a more careful interpretation. To amplify on
this consider the case in which at a particular point (ζc, ωc) ∈ K, the derived amplitude term in (1.3)
vanishes to degree q yet, for all (ζ, ω) ∈ K nearby (ζc, ωc), the derived amplitudes vanish to some degree
p < q. Then (1.5) implies that up to the exponential factor ζ−rω−s,

(1.6) [zrws]F is of order

{

s−(q+1)/n, if r/s = d(ζc, ωc);

s−(p+1)/n, otherwise ,

as (r, s) ∈ Λ goes to infinity, provided that r/s remains constant.
A problem of interest is how to bridge the gap between the asymptotic orders in (1.6) as r/s ap-

proaches d(ζc, ωc), as (r, s) → ∞. As we shall see in the coming section, we resolve this problem with
great generality, and we can provide a uniform asymptotic expansion for the coefficients [zrws]F as long
as (r, s) ∈ Λ and |r/s − d(ζc, ωc)| is sufficiently small. Our main result builds on the asymptotic analysis
of an integral such as the one in (1.3) which does not rely on having the term a(θ; ζ, ω) vanish to con-
stant degree as (ζ, ω) varies over K. The technique we propose to analyze integrals of this kind draws
on the techniques of Chester et al. [CFU57], the results of Levinson on polynomial canonical represen-
tations [Lev60a], [Lev60b], and the work of Pemantle and Wilson [PemWil01]. All these techniques are
founded on complex variable methods. For a compelling introduction to function theory of one or several
complex variables see [Car73], [Rud87] or [Tay02].

Under appropriate hypotheses, our main result implies that [zrws]F has (up to an exponentially de-
creasing factor) an asymptotic expansion of the form

(1.7) [zrws]F =

q
∑

j=p

cj(r/s) · s−(j+1)/n + o(s−(q+1)/n) ,

where the coefficients cj(r/s) are analytic functions of r/s and, except for j = q, they all vanish when r/s =
d(ζc, ωc). Furthermore, the above expansion is uniform as (r, s) → ∞ provided that r/s is sufficiently
close to d(ζc, ωc). Observe how the condition of having cj(d(ζc, ωc)) = 0, for j 6= q, and cq(d(ζc, ωc)) 6= 0
explains the asymptotic behavior described in (1.6).

In well behaved situations one finds that the coefficients cj(r/s) in (1.7) are all nonnegative. This sign
constraint prevents cancellation between the terms participating in the summation in (1.7). As a result,
one obtains that

[zrws]F = (1 + o(1)) ·
q
∑

j=p

cj(r/s) · s−(j+1)/n ,

if r/s → d(ζc, ωc) as (r, s) → ∞. On the contrary, when the coefficients cj(r/s) have mixed signs, and
depending on the rate at which r/s approaches to d(ζc, ωc), it is possible that terms in the summation
in (1.7) cancel one another and therefore

q
∑

j=p

cj(r/s) · s−(j+1)/n = o(s−(q+1)/n) .

Thus, in situations where r/s → d(ζc, ωc) in such away that the above asymptotic formula holds, our main

result allow us to conclude only that [zrws]F is o(s−(q+1)/n) as (r, s) → ∞. The effect of cancellation
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to determine asymptotic formulae for the coefficients [zrws]F is illustrated in Application 2 on the next
section.

2. Main Definitions and Results with Applications

To state our main definition we recall that if U(z,w) is analytic in an open neighborhood of a point
(z0, w0) in C × C then it is possible to represent U in the form

U(z,w) =

∞
∑

k=0

Uk(z) · (w − w0)
k ,

where Uk(z) := ∂kU
∂wk (z,w0). The above series is usually referred to as the Hartog’s series of U in powers

of (w − w0) about the point (z0, w0). This series is uniformly convergent for all (z,w) in polydisks of
the form {(z,w) : |z − z0| ≤ ǫ, |w − w0| ≤ ǫ|} provided that the polydisk is completely contained in the
domain where U is analytic (see Section 4.5 in [Lla03]).

To state our main result the following definition will be used.

Definition 1. Given nonnegative integers p < q and a function U(z,w) analytic in an open neighborhood
of a point (z0, w0) in C × C, we say that U has a p-to-q change of degree about w = w0 as z → z0

provided that the Hartog’s series of U in powers of (w − w0) about the point (z0, w0) is of the form
U(z,w) = Up(z) · (w − w0)

p + . . . + Uq(z) · (w − w0)
q + . . . where Uj(z0) = 0, for all p ≤ j < q, however,

Uq(z0) 6= 0. On the contrary, if U(z,w) = Up(z) · (w −w0)
p + . . . with Up(z0) 6= 0 we say that U vanishes

to constant degree p about w = w0 as z → z0. Alternatively, we will sometimes say that U has a p-to-p
change of degree about w = w0 as z → z0.

In what follows, G(z,w) and H(z,w) are given analytic functions in some open polydisk D centered
at the origin in C

2 and it is assumed that H(0, 0) 6= 0. We also assume as given a compact set K ⊂ D
of strictly minimal simple zeros of H containing a particular point (ζc, ωc) such that Hw(ζc, ωc) 6= 0. The
Implicit Function Theorem (see IV.5.6 in [Car73]) lets us then parametrize the zero set of H near (ζc, ωc)
in the form ω = g(ζ), where g is certain analytic function of ζ near ζ = ζc.

For each (ζ, ω) ∈ K, dir(ζ, ω) is the line defined as in (1.1) and Λ is the cone defined in (1.4). For each
(r, s) ∈ Λ such that r/s = d(ζc, ωc) we define (ζ(r, s), ω(r, s)) := (ζc, ωc). Furthermore, for each (r, s) ∈ Λ
we let (ζ, ω) = (ζ(r, s), ω(r, s)) ∈ K be such that (r, s) ∈ dir(ζ, ω). For the validity of our main result, we
require the continuity condition

(ζ(r, s), ω(r, s)) → (ζc, ωc) ,

as r/s → d(ζc, ωc). Indeed, since

(r, s) ∈ dir(ζ, ω) ⇐⇒ r

s
= −ζg′(ζ)

g(ζ)
,

to satisfy the continuity condition it is enough to select ζ(r, s) = ζ and ω(r, s) = g(ζ), where ζ is the
closest solution to ζ = ζc (among a finite number of solutions) to the equation above. In particular, ζ
and ω can be thought of as homogeneous functions of degree zero in the variable (r, s).

We define

a(ζ, θ) :=
−G(ζeiθ, g(ζeiθ))

g(ζeiθ)Hw(ζeiθ, g(ζeiθ))
,(2.1)

f(ζ, θ) := ln

{

g(ζeiθ)

g(ζ)

}

− iθ
ζg′(ζ)

g(ζ)
,(2.2)

which are analytic for all θ sufficiently small and ζ sufficiently close to ζc.
Our main result is the following one.
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Theorem 1. Let G(z,w), H(z,w), K, (ζc, ωc), etc. be as above. Define F (z,w) := G(z,w)/H(z,w). If
there are nonnegative integers p ≤ q such that a(ζ, θ) has a p-to-q change of degree about θ = 0 as ζ → ζc,
while f(ζ, θ) vanishes to constant degree n about θ = 0 as ζ → ζc, then there is a constant C > 0 and
functions Ak(ζ) and Bk(ζ; s), with p ≤ k ≤ q, analytic in ζ near ζ = ζc, such that

Ak(ζc) = 0, p ≤ k < q ,(2.3)

Aq(ζc) 6= 0 ,(2.4)

and

(2.5) [zrws]F =
ζ−rω−s

2π







q
∑

k=p

Ak(ζ) · Bk(ζ; s) + O(e−s·C)







,

uniformly for all (r, s) ∈ Λ such that r/s is sufficiently close to d(ζc, ωc). Furthermore, there are coeffi-
cients ck(ζ; j), with j ≥ k, which are analytic in ζ near ζ = ζc such that each coefficient Bk above admits
an asymptotic expansion of the form

(2.6) Bk(ζ; s) ≈
∞
∑

j=k

ck(ζ; j) ·
(

1 + (−1)j · D(j, n)
)

· 1

n
Γ

(

j + 1

n

)

· s−(j+1)/n,

as s → ∞, uniformly for all (r, s) ∈ Λ such that r/s is sufficiently close to d(ζc, ωc), where we have defined

(2.7) D(j, n) :=

{

1 , n even ;

exp
(

− iπ(j+1)
n · sign{i · [θn]f(ζc, θ)}

)

, n odd .

Remark 1: The analytic coefficients Ak in (2.3) and (2.4) together with an auxiliary function α = α(ζ, θ)
are the unique analytic solutions (near ζ = ζc and θ = 0) to the system of equations

∫ θ

0
a(ζ, w)dw =

q
∑

k=p

Ak(ζ)

k + 1
αk+1 ,

Ak(ζc) = 0 , p ≤ k < q ,

Aq(ζc) 6= 0 ,

α = α(ζ, θ) = θ + . . .

In particular, it follows that

Ap(ζ) = [θp]a(ζ, θ) ,(2.8)

Aq(ζc) = [θq]a(ζc, θ) .(2.9)

Remark 2: In (2.6) one has that

ck(ζ; k) = ([θn]f(ζ, θ))−(k+1)/n .(2.10)

More generally, the coefficients ck(ζ; j) are characterized by the identity ck(ζ; j) = [βj ]αk ∂α
∂β where, for

all ζ sufficiently close to ζc, the variables α and β are related to each other through the variable θ via the
relations

α = α(ζ, θ),

β = α · ([θn]f(ζ, θ))1/n ·
(

1 +
f(ζ, θ) − ([θn]f(ζ, θ)) αn

([θn]f(ζ, θ)) αn

)1/n

.

Theorem 1 is essentially equivalent to Theorem 3.3 in [PemWil01] when the amplitude term a(ζ, θ)
in (2.1) vanishes to constant degree in the variable θ about θ = 0 (the case p = q). The first application
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we show is concerned with precisely this case. The generating function in the following example is an-
alyzed in [PemWil01]. However, here we perform a similar analysis but from the perspective of Theorem 1.

Application 1. (Lattice Paths.) The Delannoy numbers (see [Sta99], pp. 185) are the coefficients
fr,s that count the number of paths in the Z × Z-lattice that join (0, 0) with (r, s) with steps of the form
(0, 1), (1, 1) and (1, 0). With the understanding that f0,0 = 1 and fr,s = 0 whenever r < 0 or s < 0, it
follows that fr,s = fr−1,s + fr−1,s−1 + fr,s−1, for all integers r, s ≥ 0 except when (r, s) = (0, 0). Using
this recursion it is almost direct to see that

F (z,w) :=
∑

r,s≥0

fr,s zr ws =
1

1 − z − w − zw
.

The strictly minimal simple zeros of the denominator of F are all of the form (ζ, ω), with ζ ∈ (0, 1)

and ω = g(ζ) := 1−ζ
1+ζ . Furthermore, one finds that

(r, s) ∈ dir(ζ, ω) ⇐⇒ r

s
=

2ζ

1 − ζ2
.

This allows an asymptotic analysis for [zrws]F as (r, s) → ∞, uniformly for (r, s) in any cone of the form
Λ = {(r, s) : d1 ≤ r/s ≤ d2}, with d1 > 0 and d2 > 0 arbitrary constants. On the other hand, as shown
in [PemWil01], one finds for (r, s) ∈ Λ that

(r, s) ∈ dir(ζ, ω) ⇐⇒ ζ =

√
r2 + s2 − s

r
, ω =

√
r2 + s2 − r

s
.

Using definitions (2.1) and (2.2) it follows that

a(ζ, θ) =
1

1 − ζeiθ

=
1

1 − ζ
+

iζ

(1 − ζ)2
θ + . . .

f(ζ, θ) = ln

{

(1 − ζeiθ)(1 + ζ)

(1 + ζeiθ)(1 − ζ)

}

+
2iζ

1 − ζ2
θ

=
ζ(1 + ζ2)

(1 − ζ2)2
θ2 +

iζ(1 + 6ζ2 + ζ4)

3(1 − ζ2)3
θ3 + . . .

Since a(ζ, θ) and f(ζ, θ) respectively vanish to constant degree 0 and 2 at θ = 0, for all ζ ∈ (0, 1), Theorem
1 implies that there is a constant c > 0 and coefficients B(r, s) such that

[zrws]F =
1

2π

(√
r2 + s2 − s

r

)−r(√
r2 + s2 − r

s

)−s

·
{

r · B(r, s)

r + s −
√

r2 + s2
+ O(e−s·c)

}

,

B(r, s) = 2
√

π
s

r

(√
r2 + s2 − s

r
+

r√
r2 + s2 − s

)−1/2

· s−1/2 + O(s−3/2) ,

uniformly for (r, s) ∈ Λ as (r, s) → ∞. In particular, it follows that

[zrws]F ∼
(√

r2 + s2 − s

r

)−r(√
r2 + s2 − r

s

)−s

·
√

rs

2π(r + s −
√

r2 + s2)2
√

r2 + s2
,

whenever (r, s) → ∞ at a comparable rate.2
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Although the computations in Theorem 1 can be involved, it gives a precise and unified understanding
of the elements that are important to take into consideration when analyzing the asymptotic behavior of
the coefficients of meromorphic functions in two variables. Furthermore, the calculations greatly simplify
in situations where the coefficients Ak(ζ) are easily available. This is the main point of the following
result which is a direct consequence of Remark 1.

Corollary 1. Under the hypothesis of Theorem 1 but for the special case in which q = p + 1, if for all ζ
sufficiently close to ζc, θ(ζ) is the only non-trivial solution of the equation: a(ζ, θ) = 0, with θ in some
open neighborhood of θ = 0, then

Ap(ζ) = [θp]a(ζ, θ) ,(2.11)

Ap+1(ζ) =





(−1)p+1

(p + 1)(p + 2)
· {[θp]a(ζ, θ)}p+2 ·

{

∫ θ(ζ)

0
a(ζ, ξ)dξ

}−1




1/(p+1)

,(2.12)

where the branch of the (p + 1)-root above is to be selected so as to have lim
ζ→ζc

Ap+1(ζ) = [θp+1]a(ζc, θ).

Application 2. (Lagrange Inversion Formula.) If t(x) is an analytic function of x near x = 0 such
that t(x) = x · u(t(x)), for a certain analytic function u(x) with u(0) 6= 0, then [xr]t(x) = [xr−1](u(x))r/r
(see Section 5.4 in [Sta99]). More generally, many problems related to the Lagrange Inversion Formula
naturally lead to study the asymptotic behavior of coefficients of the form [xr](u(x))sv(x), as (r, s) → ∞
(see [Drm94] and [BFSS00]). These coefficients are related to those of a bivariate generating function via
the identity

(2.13) [xr](u(x))sv(x) = [zrws]
v(z)

1 − wu(z)
.

(See final remark on Section 2 in [BFSS01] and remark 5.22 in [Lla03] for the uses of multivariate gen-
erating functions in problems associated to the Lagrange Inversion Formula. See [Wil05] for a discussion
in the context of Riordan arrays.)

In what follows we assume that the radius of convergence of v(z) is greater or equal to that of u(z).
In the context of Theorem 1, a point of the form (ζ, 1/u(ζ)) is a strictly minimal simple zero of the
denominator in the right-hand side of (2.13) provided that ζ · u(ζ) 6= 0 and that |u(x)| is maximized
on the circumference |x| = |ζ| solely at x = ζ. We emphasize that this condition is easily satisfied for
ζ > 0 and within the radius of convergence of u(z) whenever u(z) is aperiodic and has non-negative Taylor
coefficients. Asymptotic formulae for the coefficients in (2.13) are then available along the directions in the
(r, s)-lattice where r/s = ζu′(ζ)/u(ζ). Furthermore, if K is a compact set of strictly minimal simple zeros
and (ζc, 1/u(ζc)) is an interior point of K, then Theorem 1 can be used to provide asymptotic formulae
in an open cone of directions in the (r, s)-lattice containing the line r/s = ζcu

′(ζc)/u(ζc), provided that
there are non-negative integers p ≤ q and n such that

a(ζ, θ) := v(ζeiθ) ,(2.14)

f(ζ, θ) := ln

{

u(ζ)

u(ζeiθ)

}

+ iθ
ζu′(ζ)

u(ζ)
,(2.15)

respectively have a p-to-q and n-to-n change of degree about θ = 0 as ζ → ζc.

To fix ideas consider the case in which u(x) := (1 − x)−1 and v(x) := (1 − 2x). Then every point of the
form (ζ, 1− ζ), with ζ ∈ (0, 1), is a strictly minimal simple zero of the denominator in the right-hand side
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of (2.13). Furthermore, (r, s) ∈ dir(ζ, 1 − ζ) if and only if r/s = ζ/(1 − ζ); in particular,

(r, s) ∈ dir(ζ, 1 − ζ) ⇐⇒ ζ =
r

r + s
.

This motivates us to define ζ(r, s) := r/(r + s), for all (r, s) such that r · s > 0.
Observe that back in (2.14) and (2.15) one finds that

a(ζ, θ) = (1 − 2ζ) − 2iζθ + . . .

f(ζ, θ) =
ζ

2(1 − ζ)2
θ2 + . . .

While f(ζ, θ) vanishes to constant degree 2 about θ = 0, for all ζ ∈ (0, 1), a(ζ, θ) has a 0-to-1 change of
degree about θ = 0, as ζ → 1/2. As a result, using Theorem 1, we can determine the asymptotic behavior
of [xr](1 − x)−s(1 − 2x) as (r, s) → ∞ so long as r and s grow at a comparable rate.

Theorem 1 implies almost immediately that

(2.16) [xr](1 − x)−s(1 − 2x) =
1√
2π

(

r

r + s

)−r ( s

r + s

)−s

·
{

(

1 − r

s

)(

1 +
s

r

)1/2
s−1/2 + O(s−1)

}

,

as (r, s) → ∞, uniformly for r/s restricted to a compact subset of (0, 1) ∪ (1,∞).
On the other hand, Corollary 1 implies that there is an ǫ > 0 such that

[xr](1 − x)−s(1 − 2x) =
1√
2π

(

r

r + s

)−r ( s

r + s

)−s

·
{

A0

(

r

r + s

)

· B0(r, s) + A1

(

r

r + s

)

· B1(r, s)

}

,

as (r, s) → ∞, uniformly for (1 − ǫ) ≤ r/s ≤ (1 + ǫ), where

A0(ζ) := 1 − 2ζ ,

B0(r, s) = α0

(

r

r + s

)

s−1/2 + O(s−3/2) ,

α0(ζ) :=
1 − ζ√

ζ
,

A1(ζ) :=
i(1 − 2ζ)2

2(1 − 2ζ + ln(2ζ))
,

B1(r, s) = α1

(

r

r + s

)

s−3/2 + O(s−5/2) ,

α1(ζ) := −i(1 − ζ)2 · 5 − 9ζ − 12ζ2 + 20ζ3 + 2(1 + 5ζ − 8ζ2) ln(2ζ)

4ζ
√

ζ(1 − 2ζ)(1 − 2ζ + ln(2ζ))
.

Observe that Theorem 1 asserts that A1(ζ) and α1(ζ) are analytic about any ζ ∈ (0, 1). The apparent
singularity of A1(ζ) at ζ = 1/2 is not such because its denominator vanishes to degree 2 about ζ = 1/2.
On the other hand, the numerator and denominator of α1(ζ) vanish to degree 3 about ζ = 1/2. Indeed,
the first few terms of the Taylor series of A1(ζ) and α1(ζ) about ζ = 1/2 are found to be

A1(ζ) = −i − 4i

3

(

ζ − 1

2

)

+
2i

9

(

ζ − 1

2

)2

+ . . .

α1(ζ) = − i
√

2

4
+

31i
√

2

24

(

ζ − 1

2

)

− 503i
√

2

180

(

ζ − 1

2

)2

+ . . .



Pr
ep

rin
t

UNIFORM FORMULAE FOR COEFFICIENTS OF MEROMORPHIC FUNCTIONS IN TWO VARIABLES. PART I. 9

Since A0(r/(r + s)) = 0 whenever r = s, the above expansion for [xr](1 − x)−s(1 − 2x) implies that

(2.17) [xr](1 − x)−s(1 − 2x) = −4(s−1)

√
π

{

s−3/2 + O(s−5/2)
}

,

as (r, s) → ∞ with r = s. This corresponds to the asymptotic expansion one would obtain after using
Stirling’s formula to find the leading asymptotic order of the factorial terms in the identity

[xr](1 − x)−r(1 − 2x) = − (2r − 2)!

r((r − 1)!)2
.

Formulae (2.16) and (2.17) characterize the asymptotic behavior of the coefficients [xr](1−x)−s(1−2x)
as (r, s) → ∞ along the diagonal line r = s or along directions completely away from it. More explicit
asymptotic formulae for these coefficients, as r/s → 1, can be obtained looking at the Taylor coefficients
of the functions A0(ζ) · α0(ζ) and A1(ζ) · α1(ζ) about ζ = 1/2. Indeed, it follows for all constant δ > 0
that

(2.18) [xr](1 − x)−s(1 − 2x) =
−1

2
√

π

(

r

r + s

)−r ( s

r + s

)−s

·
{

r − s

r + s
· s−1/2 +

s−3/2

2
+ O(s−5/2)

}

,

as (r, s) → ∞, uniformly for (r, s) in the region 1 − δ/s ≤ r/s ≤ 1 + δ/s.
If r/s approaches 1 from above then cancellation between the first two terms in the curly bracket above

is ruled out. As a result, if r/s = 1 + |O(s−1)| then

(2.19) [xr](1 − x)−s(1 − 2x) ∼ −1

2
√

π

(

r

r + s

)−r ( s

r + s

)−s

·
{

r/s − 1

r/s + 1
· s +

1

2

}

· s−3/2 .

This means that in the (r, s)-lattice a bandwidth of size s−1 from above the line r = s is what separates
the behavior of [xr](1 − x)−s(1 − 2x) as prescribed in (2.16) from the one in (2.17).

On the other hand, if r/s approaches 1 from below then a cascade effect of cancellation in (2.18) may
reduce the size of [xr](1− x)−s(1− 2x) to arbitrarily small orders. Refined estimates in this case depend
on the precise rate of convergence of r/s toward 1. To amplify on this consider coefficients α > 0, β ≥ 1,
γ 6= 0 and δ > 0 and suppose that

r

s
= 1 − αs−β + γs−(β+δ) + o(s−(β+δ)) .

In particular, (r − s)/(r + s) = −αs−β(1 + αs−β/2)/2 + γs−(β+δ)/2 + o(s−2β + s−(β+δ)). Using this in
(2.18) we obtain that

[xr](1 − x)−s(1 − 2x) ∼ −1

4
√

π

(

r

r + s

)−r ( s

r + s

)−s

·







(1 − α)s−3/2 , if α 6= 1 and β = 1;

γs−(3/2+δ) , if α = 1, β = 1 and 0 < δ < 1;

s−3/2 , if β > 1.

As a result and unlike the asymptotic description in (2.19), we see that if (r, s) → ∞ with r/s ↑ 1 then there
is no well-defined bandwidth that separates the asymptotic behavior of [xr](1−x)−s(1−2x) as prescribed
in (2.16) from the one in (2.17). Furthermore, if α = β = 1 and 0 < δ < 1 then [xr](1 − x)−s(1 − 2x)
is of an asymptotic order smaller than anyone observed as (r, s) → ∞ along any diagonal line in the
(r, s)-lattice. This finding is consistent with the identity

[xr](1 − x)−s(1 − 2x) =
(s − r − 1) · (r + s − 2)!

r! · (s − 1)!
,

from which we see that [xr](1 − x)s(1 − 2x) = 0 whenever r/s = 1 − s−1.2
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Remark 3: The determination of the coefficients Ak(ζ) in Theorem 1 becomes more difficult the bigger
is the change of degree of the amplitude term a(ζ, θ) in (2.1). However, the linear dependence between the
asymptotic expansion of the coefficients of F and of a(ζ, θ) can be exploited to overcome this problem.
Indeed, if a(ζ, θ) has a p-to-q change of degree in the variable θ, with p < q, then one can rewrite
a(ζ, θ) = a0(ζ, θ) + a1(ζ, θ), where a0(ζ, θ) is a polynomial in the variable θ (of degree less than q) and
a1(ζ, θ) vanishes regardless of ζ to constant degree q in θ. Theorem 1 can now be used to obtain an
asymptotic expansion for each of the terms in a0(ζ, θ) as well as for a1(ζ, θ). Combining these linearly,
one obtains an asymptotic expansion for [zrws]F that resembles the one in (2.5).

3. Proof of Main Results

3.1. Associating a parameter-varying integral. In this section we show some preliminary results
that are required to prove Theorem 1. We assume that there are functions G(z,w) and H(z,w) analytic
in an open polydisk D centered at (0, 0) on which F (z,w), the generating function associated to the
coefficients (fr,s), satisfies the identity F (z,w) = G(z,w)/H(z,w). In addition, we assume as given a
compact set K ⊂ D of strictly minimal simple zeros of H containing a particular point (ζc, ωc). It is
assumed that Hw(ζc, ωc) 6= 0. In particular, the Implicit Function Theorem implies that (ζc, ωc) has an
open neighborhood of the form Z × W ⊂ D and there is an analytic map g : Z → W such that for all
(z,w) ∈ Z × W , H(z,w) = 0 if and only if w = g(z). Without loss of generality we may assume that
0 /∈ W .

We now adopt the following notation. For all 0 < ǫ < π/2, the notation | arg{z}| ≤ ǫ signifies that
z = |z|eiθ, for some θ ∈ [−ǫ, ǫ]. Accordingly, the notation | arg{z}| ≥ ǫ is used to mean that z = |z|eiθ,
for some θ ∈ [ǫ, π] ∪ [−ǫ,−π].

Lemma 1. For all ǫ1 > 0 sufficiently small there is a δ1 > 0 such that for all (ζ, ω) ∈ K, H is zero-free
on the set {(z,w) : |z| = |ζ|, | arg(z/ζ)| ≥ ǫ1, |w| ≤ (1 + δ1)|ω|}.

Proof: Without loss of generality, assume that 0 < ǫ1 < π/2. If K consisted of only one point the lemma
would follow directly from the continuity of H together with the strict minimality of its only element.
More generally, define for each (ζ, ω) ∈ K the quantity δ1(ζ, ω) to be the supremum of those δ > 0 such
that H is zero-free on the set {(z,w) : |z| = |ζ|, | arg(z/ζ)| ≥ ǫ1, |w| ≤ (1 + δ)|ω|}. To prove the lemma
it is enough to show that inf{δ1(ζ, ω) : (ζ, ω) ∈ K} > 0. We prove this by contradiction. Assuming
otherwise there would be a sequence of points (ζj, ωj) ∈ K such that δ1(ζj , ωj) → 0, as j → ∞. In
particular, for all j sufficiently large, there would be a (zj , wj) such that |zj | = |ζj |, | arg{zj/ζj}| ≥ ǫ1,
|wj | = (1+ δ1(ζj , ωj))|ωj |, and H(zj , wj) = 0. But, since K is a compact set, there is no loss of generality
in assuming that (ζj , ωj) → (ζ, ω) ∈ K and (zj , wj) → (z,w), as j → ∞. In particular, |z| = |ζ|, |w| = |ω|,
z 6= ζ, however, H(z,w) = 0. This contradicts the fact that (ζ, ω) is a strictly minimal zero of H and
therefore we conclude that inf{δ1(ζ, ω) : (ζ, ω) ∈ K} > 0. This completes the proof of the lemma.2

Lemma 2. For all ǫ2 > 0 sufficiently small there is a δ2 > 0 such that all zeros of H in the set
{(z,w) : |z − ζc| < ǫ2, |w| ≤ (1 + δ2)|g(z)|} are of the form w = g(z).

Proof: The strict minimality of (ζc, ωc) together with the analyticity of H imply that there is η > 0 such
that w = ωc is the only zero of H(ζc, w) in the disk {w : |w| ≤ (1+η)|ωc|} (see Theorem 10.18 in [Rud87]).
Without loss of generality we may assume that {w : |w − ωc| ≤ η|ωc|} ⊂ W . Observe that H(ζc, w) is
zero-free on the set {w : η|ωc| ≤ |w − ωc| and |w| ≤ (1 + η)|ωc|}. Thus, since H is uniformly continuous,
it follows for all ǫ2 > 0 sufficiently small that H is zero-free in the set {(z,w) : |z − ζc| ≤ ǫ2 , η|ωc| ≤
|w − ωc| and |w| ≤ (1 + η)|ωc|}. In this case, the condition that {w : |w − ωc| ≤ η|ωc|} ⊂ W implies that
all zeros of H in the polydisk {(z,w) : |z − ζc| ≤ ǫ2, |w| ≤ (1 + η)|ωc|} are of the form w = g(z). The
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lemma follows after selecting ǫ2 > 0 small enough and defining δ2 > 0 so as to have

(1 + δ2) = (1 + η) inf
z:|z−ζc|≤ǫ2

∣

∣

∣

∣

ωc

g(z)

∣

∣

∣

∣

> 1 .

The above inequality is always possible because g(ζc) = ωc. This completes the proof of the lemma.2

The next result pretty much follows the lines of Lemma 4.1 in [PemWil01]. It is included in here for
the sake of completeness.

Lemma 3. For a sufficiently small choice of ǫ > 0 and for all |θ| ≤ ǫ and ζ sufficiently close to ζc, consider

the functions a(ζ, θ) and f(ζ, θ) as defined in (2.1) and (2.2) respectively. Then f(ζ, 0) = ∂f
∂θ (ζ, 0) = 0.

In addition, for all (ζ, ω) ∈ K sufficiently close to (ζc, ωc) and for all nonzero θ such that −ǫ ≤ θ ≤ ǫ,
ℜ{f(ζ, θ)} > 0. Furthermore, if

(3.1) Σ(ζ; s) :=

∫ ǫ

−ǫ
e−s·f(ζ,θ)a(ζ, θ) dθ ,

then there is a constant c > 0 such that

(3.2) [zrws]F =
ζ−rω−s

2π

{

Σ(ζ; s) + O(e−sc)
}

,

uniformly for all (r, s) ∈ dir(ζ, ω) and (ζ, ω) ∈ K sufficiently close to (ζc, ωc).

Proof: Let ǫ2 > 0 and δ2 > 0 be as in Lemma 2. Consider ǫ3 > 0 be such that the functions a(ζ, θ) and
f(ζ, θ) are analytic for |ζ − ζc| ≤ ǫ3 and |θ| ≤ ǫ3. In addition, consider for ǫ1 > 0 the sets

Kc := {(ζ, ω) ∈ K : |ζ − ζc| ≤ ǫ1} ,

γ1(ζ) := {z : |z| = |ζ| and | arg{z/ζ}| ≥ ǫ1} ,

γ2(ζ) := {z : |z| = |ζ| and | arg{z/ζ}| ≤ ǫ1} .

Select ǫ1 > 0 small enough so as to have γ2(ζ) ⊂ {z : |z − ζc| ≤ min{ǫ2, ǫ3}}, whenever (ζ, ω) ∈ Kc.
Furthermore, chose ǫ1 > 0 sufficiently small so that the conclusion of Lemma 1 applies with some δ1 > 0.
Select δ so as to satisfy 0 < δ < min{δ1, δ2, 1}. The strict minimality of (ζ, ω) ∈ Kc implies that H is
zero-free on the polydisk {z : |z| ≤ |ζ|} × {w : |w| ≤ (1 − δ)|ω|}. Cauchy’s Formula [Rud87] then can be
used to represent the coefficients of F by the integrals

(3.3) [zrws]F =
1

2π

{

∫

z∈γ1(ζ)
+

∫

z∈γ2(ζ)

}

1

zr

(

1

2πi

∫

|w|=(1−δ)|ω|

G(z,w)

H(z,w) · ws+1
dw

)

dz

iz
,

where all contour integrals are in the standard counter-clockwise orientation.
Lemma 1 implies for all (ζ, ω) ∈ Kc that H is zero-free on the set γ1(ζ) × {w : |w| ≤ (1 + δ)|ω|}. As a

result,
∣

∣

∣

∣

∣

∫

z∈γ1(ζ)

1

zr

∫

w=(1−δ)|ω|

G(z,w)

H(z,w) · ws+1
dw

dz

iz

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

z∈γ1(ζ)

1

zr

∫

w=(1+δ)|ω|

G(z,w)

H(z,w) · ws

dw

iw

dz

iz

∣

∣

∣

∣

∣

,

≤ (2π)2|ζ|−r{(1 + δ)|ω|}−s · sup
Γ1

|F | ,

where for convenience we have defined Γ1 to be the set of all those points of the form (z,w) such that
there exists a (ζ, ω) ∈ Kc such that z ∈ γ1(ζ) and |w| ≤ (1+ δ)|ω|. Since Γ1 is compact and H is zero-free
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over it, then sup
Γ1

|F | must be finite. Back in (3.3), this implies that

(3.4) [zrws]F =
1

2π

∫

z∈γ2(ζ)

1

zr

(

1

2πi

∫

|w|=(1−δ)|ω|

G(z,w)

H(z,w) · ws+1
dw

)

dz

iz
+ O(|ζ|−r|ω|−s(1 + δ)−s) ,

uniformly for all r, s ≥ 0 and all (ζ, ω) ∈ Kc. However, Lemma 2 implies that for each (ζ, ω) ∈ Kc and
z ∈ γ2(ζ), w = g(z) is the only singularity of the integrand above within the disk {w : |w| ≤ (1+δ)|g(z)|}.
The Residue Theorem in one variable [Rud87] lets us conclude that

1

2πi

∫

|w|=(1−δ)|ω|

G(z,w)

H(z,w) · ws+1
dw =

−G(z, g(z))

Hw(z, g(z)) · {g(z)}s+1
+

1

2πi

∫

|w|=(1+δ)|g(z)|

G(z,w)

H(z,w) · ws+1
dw .

But, observe that if |w| = (1 + δ)|g(z)| and z ∈ γ2(ζ) then the strict minimality of (ζ, ω) ∈ Kc implies
that |g(z)| ≥ |g(ζ)| = |ω|. In particular,

∣

∣

∣

∣

∣

1

2π

∫

z∈γ2(ζ)

1

zr

(

1

2πi

∫

|w|=(1+δ)|g(z)|

G(z,w)

H(z,w) · ws+1
dz

)

dz

iz

∣

∣

∣

∣

∣

≤ |ζ|−r{(1 + δ)|ω|}−s · sup
Γ2

|F | ,

where we have defined Γ2 to be the set of points (z,w) for which there exists a (ζ, ω) ∈ Kc such that
z ∈ γ2(ζ) and |w| = (1 + δ)|g(z)|. Since Γ2 is a compact set and H is zero-free over it, from (3.4) we can
conclude that

(3.5) [zrws]F =
1

2π

∫

z∈γ2(ζ)

1

zr

−G(z, g(z))

Hw(z, g(z)) · {g(z)}s+1

dz

iz
+ O(|ζ|−r|ω|−s(1 + δ)−s) ,

uniformly for all r, s ≥ 0 and all (ζ, ω) ∈ Kc.
The integral on the right-hand side in (3.5) can be parametrized using polar coordinates. Indeed,

substituting z = ζeiθ, with −ǫ ≤ θ ≤ ǫ, one obtains that

[zrws]F =
ζ−rω−s

2π

∫ ǫ

−ǫ
e−s·f(θ;ζ,r/s)a(ζ, θ)dθ + O(|ζ|−r|ω|−s(1 + δ)−s) ,

uniformly for all r, s ≥ 0 and all (ζ, ω) ∈ Kc, where a(ζ, θ) is defined as in (2.1) and f(θ; ζ, λ) :=

ln
{

g(ζeiθ)
g(ζ)

}

+ iλθ. Observe that f
(

0; ζ, r
s

)

= 0 and

∂f

∂θ

(

0; ζ,
r

s

)

= i

(

ζg′(ζ)

g(ζ)
+

r

s

)

,

= i

(

r

s
− ζHz(ζ, ω)

ωHw(ζ, ω)

)

.

In particular we see that ∂f
∂θ

(

0; ζ, r
s

)

= 0, for all (r, s) ∈ dir(ζ, ω). Furthermore, the strict minimality

of (ζ, ω) ∈ Kc implies that |g(ζeiθ)| > |g(ζ)|, for all nonzero θ such that −ǫ ≤ θ ≤ ǫ and, as a result,
ℜ{f(ζ; θ)} > 0 for all such θ. The lemma follows by noticing that whenever (r, s) ∈ dir(ζ, ω) then
f (0; ζ, r/s) = f(ζ; θ), with f(ζ; θ) as defined in (2.2).2

3.2. Polynomial Canonical Representations. A result of Levinson [Lev61] implies that if a function
H(u, v) is analytic in a neighborhood of the origin in C

2 and its Hartog’s series vanishes to degree q ≥ 1
in the variable v about the origin, then H admits a near (0, 0) a representation of the form

(3.6) H(u, v) =

q
∑

j=0

Hj(u)wj .
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Above the coefficient functions Hj are analytic near the origin and such that Hj(0) = 0, for all 0 ≤ j < q,
however, Hq(0) 6= 0. In addition, w = w(u, v) is a certain analytic function near the origin such that

w(u, 0) = 0 and ∂w
∂v (u, 0) = 1. In [Lla03] it is proved using one complex variable methods that this

representation is indeed unique. The following more precise representation will be more suitable to prove
our main result.

Lemma 4. Let 0 ≤ p ≤ q with q ≥ 1 be nonnegative integers. Suppose that H(u, v) is analytic in a
neighborhood of the origin and it has a p-to-q change of degree about v = 0 as u → 0. Then, H admits
near the origin a unique representation of the form

(3.7) H(u, v) =

q
∑

k=p

Hk(u) · wk ,

where Hk(0) = 0, for p ≤ k < q, Hq(0) 6= 0, and w = w(u, v) is such that w(u, 0) = 0 and ∂w
∂v (u, 0) = 1.

Furthermore,

(3.8) Hp(u) =
1

p!

∂pH

∂vp
(u, 0) .

Proof: The uniqueness of the representation in (3.7) is immediate from the uniqueness of the represen-
tation in (3.6). Suppose that the representation in (3.6) applies for all (u, v) in an open neighborhood of
the polydisk {(u, v) : |u| ≤ ǫ and |v| ≤ ǫ}, for some ǫ > 0. Since H(u, v) has a p-to-q change of degree
about v = 0 as u → 0, H has a Hartog’s series of the form

H(u, v) =

∞
∑

k=p

hk(u) vk ,

where the coefficients hk are analytic for |u| ≤ ǫ, hp(u) is not identically zero in any neighborhood of
u = 0, and hq(0) 6= 0.

Consider the map Φ(u, v) = (u,w(u, v)). The conditions imposed over w in (3.6) imply that the
Jacobian matrix ∂Φ

∂(u,v)(0, 0) is triangular with all entries equal to 1 along the diagonal. Since Φ(0, 0) =

(0, 0), the Inverse Mapping Theorem lets us assume without loss of generality that Φ is holomorphic and
1-to-1 over the polydisk {(u, v) : |u| ≤ ǫ, |v| ≤ ǫ}. In particular, for all u such that |u| ≤ ǫ, w(u, ·) is
1-to-1 for |v| ≤ ǫ. Furthermore, since w(u, 0) = 0, the Open Mapping Theorem implies that there are
ρ1, ρ2 > 0 such that {w : |w| ≤ ρ1} ⊂ w(u, {v : |v| < ǫ}) and the pre-image of {v : |v| < ρ1} under w(u, ·)
contains the disk {v : |v| ≤ ρ2}. As a result, using Cauchy’s Formula in (3.6) and then the substitution
w = w(u, v), it follows for all 0 ≤ j ≤ q, that

Hj(u) =
1

2πi

∫

|w|=ρ1

1

wj+1

(

q
∑

k=0

Hk(u) · wk

)

dw ,

=
1

2πi

∫

|v|=ρ2

H(u, v)

{w(u, v)}j+1

∂w

∂v
(u, v) dv ,

=
1

2πi

∞
∑

k=p

hk(u) ·
∫

|v|=ρ2

vk

{w(u, v)}j+1

∂w

∂v
(u, v) dv ,

where for the last identity we have used that the Hartog’s series of H converges uniformly over compact
subsets of {(u, v) : |u| ≤ ǫ and |v| ≤ ǫ}. However, observe that the conditions imposed over w in (3.6)

imply that, for all j < p ≤ k, the function vk

{w(u,v)}j+1

∂w
∂v (u, v) is analytic in v in an open neighborhood
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of {v : |v| ≤ ρ2}. Consequently, for j < p, all the terms in the above summation vanish and therefore
Hj(u) = 0. This shows (3.7). Furthermore, if j = p then the Residue Theorem implies that

Hp(u) =
hp(u)

2πi
·
∫

|v|=ρ2

vp

{w(u, v)}p+1

∂w

∂v
(u, v) dv ,

= hp(u) · Res

(

vp

{w(u, v)}p+1

∂w

∂v
(u, v); v = 0

)

,

= hp(u) .

This shows (3.8) and completes the proof of the lemma.2

3.3. Asymptotic Analysis. In this section we prove Theorem 1. This is accomplished by analyzing the
asymptotic behavior of the integral Σ(ζ; s) in (3.2), as s → ∞. Observe that Σ(ζ; s) = Σ1(ζ; s)+Σ2(ζ; s),
where we have defined

Σi(ζ; s) :=

∫ ǫ

0
e−s·f(ζ,(−1)i+1θ)a(ζ, (−1)i+1θ)dθ , i = 1, 2.

Because of the similarity of Σ1(ζ; s) and Σ2(ζ; s), we analyze only the asymptotic behavior of Σ1(ζ; s)
under the hypotheses that f(ζ, θ) and a(ζ, θ) have respectively an n-to-n and p-to-q change of degree
about θ = 0 as ζ → ζc, and that f(ζ, θ) has the properties stated in Lemma 3. A similar analysis of the
asymptotic behavior of Σ2(ζ; s) is summarized at the end of this section.

Lemma 3 implies that n ≥ 2. In particular, we may write

(3.9) f(ζ, θ) = u(ζ) · θn + . . .

where u is certain analytic function near ζc such that u(ζc) 6= 0. Since for all nonzero θ ∈ [−ǫ, ǫ],
ℜ{f(ζc, θ)} > 0, we must have ℜ{u(ζc)} ≥ 0.

On the other hand, Lemma 4 implies that there is a unique representation of the form

(3.10)

∫ θ

0
a(ζ, w)dw =

q
∑

k=p

Ak(ζ)

k + 1
αk+1 ,

where Ak(ζc) = 0, for all p ≤ k < q, Aq(ζc) 6= 0, and α = α(ζ, θ) is such that α(ζ, 0) = 0 and ∂α
∂θ (ζ, 0) = 1.

The coefficients Ak, p ≤ k ≤ q, correspond to those appearing in Remark 1. The Inverse Mapping Theorem
implies that Ψ1(ζ, θ) := (ζ, α(ζ, θ)) is a biholomorphic map from an open neighborhood of (ζ, θ) = (ζc, 0)
to an open neighborhood of (ζ, α) = (ζc, 0). In particular, assuming that ǫ > 0 is sufficiently small, we
can perform in Σ1(ζ; s) the change of variables α = α(ζ, θ) to obtain that

Σ1(ζ; s) =

q
∑

k=p

Ak(ζ)

∫ α(ζ,ǫ)

0
e−s·g(ζ,α)αkdα ,

where g(ζ, α) := f(Ψ−1
1 (ζ, α)). This last function is analytic in a neighborhood of the origin. Furthermore,

its Hartogs series about (ζ, α) = (ζc, 0) in powers of α is of the form g(ζ, α) = u(ζ)αn + . . . with u(ζ) is
as in (3.9). This motivates us to consider the map

Ψ2(ζ, α) :=

(

ζ, α · (u(ζ))1/n ·
(

1 +
g(ζ, α) − u(ζ)αn

u(ζ)αn

)1/n
)

,

where the principal branch of the n-th root function is to be used in both cases. Since u(ζc) 6= 0
and ℜ{u(ζc)} ≥ 0, it follows that Ψ2 is well-defined and holomorphic near (ζc, 0). Furthermore, if
β = β(ζ, α) is such that Ψ2(ζ, α) = (ζ, β(ζ, α)), the Inverse Mapping Theorem implies that Ψ2(ζ, α) is
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biholomorphic between open neighborhoods of (ζ, α) = (ζc, 0) and (ζ, β) = (ζc, 0). In particular, it follows
that g(Ψ−1

2 (ζ, β)) = βn and therefore

Σ1(ζ; s) =

q
∑

k=p

Ak(ζ)

∫ β(ζ,α(ζ,ǫ))

0
e−s·βn

(α(ζ, β))k
∂α

∂β
(ζ, β)dβ ,

provided that ǫ > 0 is chosen sufficiently small to start with. We claim that the domain of integration of
the integrals participating in the summation above can be replaced by a real interval of the form [0, δ],
for some δ > 0. For this observe that the condition ℜ{f(ζc, ǫ)} > 0 implies that ℜ{(β(ζc, α(ζc, ǫ)))

n} >

0. On the other hand, since β(ζc, α(ζc, ǫ)) = (u(ζc))
1/nǫ + O(ǫ2), with ℜ{u(ζc)} ≥ 0, we conclude

that | arg{β(ζc, α(ζc, ǫ))}| < π/(2n). Since β(ζ, α(ζ, ǫ)) → β(ζc, α(ζc, ǫ)), as ζ → ζc, we conclude that
| arg{β(ζ, α(ζ, ǫ))}| < π/(2n), for all ζ sufficiently close to ζc. Choosing δ := ℜ{β(ζc, α(ζc, ǫ))}, it follows
that there is a constant c > 0 such that

∫ β(ζ,α(ζ,ǫ))

δ
e−s·βn

(α(ζ, β))k
∂α

∂β
(ζ, β)dβ = O(e−sc) ,

as s → ∞, uniformly for all ζ sufficiently close to ζc and for all p ≤ k ≤ q. This implies that

(3.11) Σ1(ζ; s) =

q
∑

k=p

Ak(ζ)

∫ δ

0
e−s·βn

(α(ζ, β))k
∂α

∂β
(ζ, β)dβ + O(e−sc) ,

as s → ∞, uniformly for all ζ sufficiently close to ζc. An asymptotic expansion for the integrals par-
ticipating in the summation above is easily obtained using the standard stationary phase method (see
Chapter 6 in [BleHan86]). Indeed, since the Hartog’s series of (α(ζ, β))k ∂α

∂β (ζ, β) in powers of β about

(ζ, β) = (ζc, 0) must be of the form

(α(ζ, β))k
∂α

∂β
(ζ, β) =

∞
∑

j=k

ck(ζ; j)βj ,

with ck(ζ; k) = (u(ζ))−(k+1)/n, then from (3.11) it follows that

Σ1(ζ; s) =

q
∑

k=p

Ak(ζ) · Bk(ζ; s) + O(e−sc) ,(3.12)

Bk(ζ; s) ≈
∞
∑

j=k

ck(ζ; j)

n
Γ

(

j + 1

n

)

· s−(j+1)/n ,(3.13)

uniformly for all ζ sufficiently close to ζc as s → ∞. The coefficients ck(ζ; j) correspond to those appearing
in Remark 2. (3.12) and (3.13) provide a complete asymptotic description for Σ1(ζ; s) which is uniform
for all ζ sufficiently close to ζc as s → ∞.

To obtain an asymptotic expansion for the term Σ2(ζ; s), the uniqueness of the decomposition in (3.10)
is relevant to relate the coefficients appearing in the expansion of Σ2(ζ; s) with those in (3.12) and (3.13).
Without delving into details it follows that

(3.14) Σ2(ζ; s) =

q
∑

k=p

Ak(ζ) · B̃k(ζ; s) + O(e−sc) ,
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where for the case in which n is even it applies that

(3.15) B̃k(ζ; s) ≈
∞
∑

j=k

(−1)jck(ζ; j)

n
Γ

(

j + 1

n

)

· s−(j+1)/n ,

however for the case in which n is odd,

(3.16) B̃k(ζ; s) ≈
∞
∑

j=k

(−1)jD(j, n)ck(ζ; j)

n
Γ

(

j + 1

n

)

· s−(j+1)/n ,

where D(j, n) := exp
(

− iπ(j+1)
n · sign{i[θn]f(ζc, θ)}

)

. (2.5) and (2.6) in Theorem 1 are now a direct con-

sequence of (3.12)-(3.16). This completes the proof of Theorem 1.2
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