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A case study in bivariate singularity analysis
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Abstract. The multivariate singularity analysis of Pemantle and Wilson is
explored and then used to derive an asymptotic expression for the number of
bicolored supertrees, realized as the diagonal sequence of a bivariate rational

function F. These asymptotics have been obtained previously by univariate
methods, but the analysis contained herein serves as a case study for the gen-
eral multivariate method. The analysis itself relies heavily on the structure of

a height function h along the pole set V of F. What makes this example inter-
esting is the geometry of h on V, namely that h has a degenerate saddle point
away from the boundary of the domain of analyticity of F that contributes to
the asymptotic analysis. Due to the geometry of h at this point, the coefficient

analysis can not be computed directly from the standard formulas of multi-
variate singularity analysis. Performing the analysis in this case represents a
first step towards understanding general cases of this geometric type.

1. Introduction

Let F (x, y) = P (x, y)/Q(x, y) =
∑

r,s≥0 ar,sx
rys be the rational generating

function defined by

P (x, y) = 2x2y
(

2x5y2 − 3x3y + x+ 2x2y − 1
)

,

Q(x, y) = x5y2 + 2x2y − 2x3y + 4y + x− 2.
(1.1)

In this paper we use multivariate singularity analysis to derive the asymptotic
estimate

(1.2) an,n ∼ 4n

8Γ(3/4)n5/4
.

While this result has been obtained previously by univariate methods, the multi-
variate analysis of this sequence proves to be interesting to the study of multivariate
singularity analysis itself. Specifically, this example is interesting because it does
not lend itself to automatic computation by the formulas set forth in [PW02], the
main reference for the multivariate techniques we will use. In what follows, we
briefly discuss how this affects the ultimate goal of producing automatic asymp-
totic analyses for multivariate rational generating functions. Before proceeding,
however, it is important to discuss from where the function F originates.
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The coefficients an,n actually count bicolored supertrees, which are defined as
follows. First, denote by G the class of Catalan trees, i.e. rooted, unlabelled, planar
trees, counted by the number of nodes. The class G has generating function

G(x) =
1

2

(

1 −
√

1 − 4x
)

,

whose coefficients are the Catalan numbers. Denote by G̃ the class of bicolor-

planted Catalan trees: Catalan having an extra red or blue node attached to the
root (likewise counted by the number of nodes). The class G̃ has generating function

G̃(x) = 2xG(x).

Then the class of bicolored supertrees, denoted by K, is defined by the combinatorial
substitution K = G ◦G̃. That is, the elements of K are Catalan trees with each node
replaced by bicolor-planted Catalan trees. The class K has algebraic generating
function K(x) = G(G̃(x)). More explicitly,

K(x) =
1

2
− 1

2

√

1 − 4x+ 4x
√

1 − 4x = 2x2 + 2x3 + 8x4 + 18x5 + 64x6 +O(x7),

with coefficients from [Slo09]. Denote by kn the coefficient of xn in the expansion
of K(x) above, i.e. the number of bicolored supertrees having n nodes. An asymp-
totic estimate for the kn has been obtained by univariate analysis of K(x) [FS09,
examples VI.10 and VII.20].

As it turns out, an,n = kn, and F (x, y) was produced by Alex Raichev and Mark
Wilson to have this exact property (see [RW08]). This was done using Safonov’s
algorithm, which is roughly a procedure for realizing multivariate algebraic gener-
ating functions as so-called diagonals of rational generating functions in one higher
variable [Saf00]. The idea proposed by Raichev and Wilson was to use Safonov’s
algorithm to reduce asymptotic computations on algebraic generating functions to
those on rational generating functions, albeit in one higher dimension. In the case
of bicolored supertrees, however, the multivariate analysis is not straightforward,
for reasons we presently discuss.

The technique of multivariate singularity analysis has the following basic struc-
ture: begin with Cauchy’s Integral Formula, manipulate the integral/integrand,
and end with saddle point integration. To be more explicit, let F = η/Q be the
generating function of the coefficients to be analyzed, with η : Cd → C entire
and Q ∈ Q [x1, . . . , xd] . Cauchy’s Integral Formula expresses the coefficients as
an integral of a particular d-form. By appropriately adjusting this integral, we
can rewrite this as the integral of a related (d − 1)-form defined on the variety
VQ = {x : Q(x) = 0} along a cycle C ⊆ VQ. We define a height function h on the
variety VQ related to the rate of decay of this new integrand. We then push this
cycle down along VQ, minimizing the maximum of h along C at critical points of
the function h. Under the right conditions, the coefficients can finally be approx-
imated as saddle point integrals along C in small neighborhoods of a finite set of
these critical points, known as the contributing points. In the case d = 2, all critical
points of h are actually saddle points of h, i.e. critical points of h which are not
local extrema.

This technique has been well studied (see [PW02] and [PW08]), to the point
that bivariate rational generating function asymptotics can be computed automat-
ically in many cases. Specifically when all the contributing points are minimal —
that is, on the generating function’s boundary of convergence — then an explicit
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algorithm exists for determining which critical points contribute and computing
the saddle point integral near these points (in the bivariate case). And when the
generating function is combinatorial, i.e. when all its coefficients are non-negative,
then the contributing points will all be minimal (under the standing assumption of
[PW08], Assumption 3.6). In the case examined presently, however, the generating
function is not combinatorial. Thus there is no guarantee that any contributing
points will be minimal. In fact, we will show that the contributing point is not

minimal.
Thus [PW02] does not provide us with the locations of the contributing points.

Worse than that, however, is that even once the contributing points have been
found, there is no formula automatically producing the correct saddle point com-
putation in a neighborhood of these points. This is because the contour followed by
C in a neighborhood of the contributing points is not automatically known. (On the
contrary, for minimal contributing points, an explicit path for C near these points
is known; see [PW02]). This is particularly bad when the contributing point is a
degenerate saddle point for the height function. Since the height on C is locally
maximized at the contributing point, it must locally approach and depart along as-
cent and descent paths. A greater degree of degeneracy means more ascent/descent
paths, hence more possibilities for the local path followed by C. And indeed in the
case presently studied, the contributing point is a degenerate saddle point of the
height function.

Understanding the saddle point integration near these degenerate saddles is
particularly important because degenerate saddles arise frequently in combinato-
rial applications (despite the fact that they are nongeneric). A careful analysis
of [PW02] reveals that, in the absence of such degenerate saddles, one obtains
leading term asymptotics only of the form cAnnp/2 (for constants c, A and integer
p). By Safonov’s algorithm, any univariate algebraic generating function can be
realized as the diagonal of a bivariate rational generating function. But by univari-
ate asymptotic methods, we know that the coefficients of such univariate functions
can produce leading term asymptotics of the form cAnnp/q for arbitrary q ∈ N

(see [FS09, Section VII.7]), and so a multivariate analysis of the corresponding
bivariate rational function should turn up a degenerate saddle whenever q > 2.

Understanding this example represents a first step towards understanding what
to do when the contributing saddle point is not on the boundary of convergence, and
when the height function is a degenerate saddle at this point. The rest of this paper
is concerned with examining this example. In Section 2 we will present the theory
needed to reduce Cauchy’s Integral Formula to a series of saddle point integrals, as
outlined above. In Section 3 we will apply these methods to the function F (x, y)
defined earlier, obtaining our asymptotic estimate.

2. Multivariate Singularity Analysis

2.1. Coefficient Representation. For the duration of this paper, let F :
Cd → C be a function analytic in a neighborhood of the origin, having representa-
tion

F (x) =
∑

r∈Nd

arx
r,
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where xr is shorthand notation for xr11 . . . xrd

d . The goal is to obtain an asymptotic
expansion for the coefficients ar given F, and the main tool for this is Cauchy’s
Integral Formula.

Theorem 2.1 (Cauchy’s Integral Formula). Let F be as above, analytic in a

polydisc D0 = {x : |xj | < εj ∀ j}, for some positive, real εj . Assume further that

F is continuous on the boundary torus T0 = ∂D0, a product of loops around the

origin in each coordinate, each one positively oriented with respect to the complex

orientation of its respective plane. Then

ar =

∫

T0

ωF ,

where

ωF =
1

(2πi)d
· F (x)

x1 · . . . · xd
x−r dx.

Cauchy’s Integral Formula can be found in most textbooks presenting complex
analysis in a multivariable setting, and follows easily as an iterated form of the
single variable formula. See, for example, [Sha92, p. 19].

We wish to use the structure of Cauchy’s formula to obtain an asymptotic
formula for ar as r → ∞, but first we need to be more precise about what is meant
by “r → ∞.” There are many ways to send the vector r to infinity, but one of the
most natural ways is to fix a direction in the positive d-hyperoctant and send r to
infinity along this direction. Specifically, define the (d− 1)-simplex ∆d−1 by

∆d−1 =







(r̂1, . . . , r̂d) : r̂j ≥ 0∀j,
d
∑

j=1

r̂j = d







,

where we choose the convention that the r̂j sum to d for later notational con-
venience. Then any r in the positive d-hyperoctant can be written uniquely as
r = |r|r̂, where |r| ∈ R+ and r̂ ∈ ∆d−1. We examine r as |r| → ∞ and r̂ → r̂0 for
some fixed direction r̂0 ∈ ∆d−1.

Now we turn to the structure of the integrand ωF , specifically x−r (the portion
that changes as we vary r). With an eye on the end goal of reducing our computation
to a saddle integral, we use the following representation (away from the coordinate
axes):

x−r = exp



−
d
∑

j=1

rj lnxj



 = exp (|r|Hr̂(x)) ,

where

(2.1) Hr̂(x) = −
d
∑

j=1

r̂j lnxj .

When no confusion exists, we will simply refer to the function Hr̂ as H. Now the
overall magnitude of the integrand will be an important factor in computing an as-
ymptotic expansion for ar, and so we next examine the magnitude of exp (|r|Hr̂(x)) .
We have

|exp (|r|Hr̂(x))| = exp (|r|ℜHr̂(x)) = exp (|r|hr̂(x)) ,
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where

(2.2) hr̂(x) = ℜHr̂ = −
d
∑

j=1

r̂j ln |xj |.

When no confusion exists, we will simply refer to the function hr̂ as h. The geometry
of the height function h will play an important role in our analysis.

As |r| → ∞, the above equations show that the magnitude of the integrand
grows at an exponentially slower rate along points further away from the origin
(where the height function h is smaller). This motivates pushing the domain of
integration out towards infinity, reducing the growth rate of the integrand on the
domain over which it is integrated. Of course if F has poles they will present an
obstruction, but we can still try push the domain of integration around these poles.
In the end we obtain an integral over two domains: one near the pole set of F
(obtained by pushing the original domain around the poles), and one past the pole
set of F (far away from the origin). This idea is formalized in the theorem below.

Theorem 2.2. Let F = P/Q, with P,Q : Cd → C entire, where the vanishing

set VQ of Q is smooth. Let T0 be a torus as in Cauchy’s Integral Formula. Let

T1 ⊆ Cd be a torus homotopic to T0 under a homotopy

K : T × [0, 1] → Cd, with T0 = T × {0}, T1 = T × {1},
passing through VQ transversely. Identifying K with its image in Cd, assume further

that K does not intersect the coordinate axes, and that ∂K ∩ VQ = ∅. Define

C = K ∩ VQ.
Then for any tubular neighborhood ν of of C in K, we have

ar =

∫

T0

ωF =

∫

∂ν

ωF +

∫

T1

ωF ,

given the proper orientation of ∂ν.

Note: when we say VQ is smooth we mean that VQ has the structure of a
smooth manifold (see [Bre93, p. 68]). And when we say that K passes through
VQ transversely we mean that the image of K intersects with VQ transversely as
(real) submanifolds of Cd (see [Bre93, p. 84]).

Proof. Counting (real) dimensions, dimVQ = 2d − 2 and dimK = d + 1.
Hence their transverse intersection C is a d− 1 real-dimensional subspace of K.

Now take any tubular neighborhood ν of C in K. As ν is a full-dimensional
submanifold of the orientable manifold K, ν is orientable and hence its boundary
∂ν is orientable too. Given the proper orientation of ∂ν, we have that

∂(K \ ν) = T1 − T0 + ∂ν.

Note that ωF is holomorphic on K \ ν. By Stokes’ Theorem ([Bre93, p. 267])
and the fact that ωF is an exact form we get

∫

T1−T0+∂ν

ωF =

∫

K\ν
dωF =

∫

K\ν
0 = 0,

leading to the equality of the theorem. �
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When T1 is far enough away from the origin,
∫

T1
ωF is negligible (possibly even

0), and so the asymptotic analysis of the coefficients ar reduces to an integral near
the pole set of F. In the next section, we reduce this further to an integral on the
pole set of F.

2.2. The Residue Theorem. In this subsection we present a theory gener-
alizing the theory of residues of the complex analysis of one variable. The theory
was developed by Jean Leray in 1959, and more details regarding the construction
can be found in [AY83, Section 16]. The main result we obtain is Theorem 2.8
below, an analogue of the Cauchy Residue Theorem in one variable. Its application
to coefficient analysis is found in Corollary 2.9.

We restrict our attention to a limited part of Leray’s theory, focusing on mero-
morphic d-forms in Cd.

Definition 2.3. Let η be a meromorphic d-form, represented as

η =
P

Q
dx on a domain U ⊆ Cd

where P and Q are holomorphic on U. Denote by VQ the zero set of Q on U, and
assume that η has a simple pole everywhere on VQ. Denote by ι : VQ → U the
inclusion map. Then we define the residue of η on VQ by

Res(η) = ι∗θ,

where ι∗ denotes pullback by ι (see [Bre93, p. 263]), and where θ is any solution
to

dQ ∧ θ = P dx.

Before delving into the existence and uniqueness of the residue, we do a few
example computations.

Example 2.4. For η = P/Qdx as above, wherever Qi = ∂Q
∂xi

does not vanish
we have the representation

Res(η) = (−1)i−1 P

Qi
dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxd.

As a special case, note that for Q = x1 we obtain

Res(η) = P (0, x2, . . . , xd) dx2 ∧ · · · ∧ dxd.
In the case where d = 1, this reduces to Res(P (x)/x) = P (0), which is precisely
the ordinary residue of P (x)/x at x = 0. This motivates the above definition as a
genuine extension of the single variable residue.

Example 2.5. As the most pertinent case of the Example 2.4, we examine
Res(ωF ) where F = P/Q is meromorphic. Away from the coordinate axes, ωF can
be written as

ωF =

1
(2πi)d · P (x)

x1...xd
exp(|r|H(x))

Q(x)
dx,

where the numerator and denominator are holomorphic functions. So wherever Qd
and the xj do not vanish (for all j), we have

Res(ωF ) =
(−1)d−1

(2πi)d
· P (x)

x1 . . . xdQd(x)
e|r|H(x)dx1 ∧ · · · ∧ dxd−1.
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We now show existence and uniqueness of the residue form along the simple
pole set VQ.

Proposition 2.6. Let η be as in Definition 2.3. Then for any point p ∈ VQ,
there is a neighborhood V ⊆ U of p and a holomorphic (d− 1)-form θ on V solving

the equation

(2.3) dQ ∧ θ = P dx.

Furthermore, the restriction ι∗θ induced by the inclusion ι : VQ ∩V → V is unique.

Proof. First, we prove the existence of a solution θ to (2.3) in a neighborhood
of p. As Q has a simple zero at p, the implicit function theorem implies that for
some neighborhood V of p there is a biholomorphic function ψ : Cd → V such that
Q(ψ(x)) = x1. Define the form θ0 by

θ0 = (P ◦ ψ)|J | dx2 ∧ · · · ∧ dxd,
where J is the Jacobian of the function ψ. The claim is that θ = (ψ−1)∗θ0 is a
solution to (2.3).

Indeed, by definition of θ0 we have that dx1 ∧ θ0 = (P ◦ ψ)|J | dx. Pulling back
both sides of this equation by ψ−1 yields

d(ψ−1(x)1) ∧ (ψ−1)∗θ0 = P · (ψ−1)∗(|J | dx),

which simplifies to dQ ∧ θ = P dx, as desired.
To prove uniqueness, assume that we have two (d− 1)-forms θ and θ̃ such that

dQ ∧ θ = P dx and dQ ∧ θ̃ = P dx. Then dQ ∧ (θ − θ̃) = 0, which implies

ψ∗(dQ ∧ (θ − θ̃)) = dx1 ∧ ψ∗(θ − θ̃) = 0.

But this means that ψ∗(θ − θ̃) is a multiple of dx1. Pulling back by (ψ−1)∗, this

implies that θ− θ̃ is a multiple of dQ. Finally, pulling back by ι∗, this implies that
ι∗(θ− θ̃) is a multiple of d(Q◦ ι) = 0. Thus ι∗(θ− θ̃) vanishes, and so ι∗θ = ι∗θ̃. �

Remark 2.7. Let η be as in the definition of the residue form, and let ψ : V →
U be a biholomorphic function. Then

(1) The residue form is natural, i.e. Res(η) does not depend on the particular
P and Q chosen to represent η as (P/Q) dx.

(2) The residue form is functorial, i.e. Res(ψ∗η) = ψ∗ Res(η) (where on the
right side of the equation, ψ is restricted to the domain ψ−1(VQ) = VQ◦ψ).

Theorem 2.8 (Cauchy-Leray Residue Theorem). Let η be a meromorphic d-
form on domain U ⊆ Cd, with pole set V ⊆ U along which η has only simple poles.

Let N be a d-chain in U, locally the product of a (d− 1)-chain C on V with a circle

γ in the normal slice to V, oriented positively with respect to the complex structure

of the normal slice. Then
∫

N

η = 2πi

∫

C

Res(η).

Proof. We proceed by examining the structure of the integral locally. So fix
an arbitrary p ∈ C. In a neighborhood V ⊆ Cd of p, the surrounding space looks



8 TIMOTHY DEVRIES

like a direct product of V ∩ V (isomorphic to Cd−1 for V small) and the normal
space to V ∩ V (isomorphic to C). Hence there is a biholomorphic function

ϕ : V → C × Cd−1

x 7→ (ϕ1(x), ϕ2(x))

where the map ϕ−1
2 is a parametrization of V ∩ V, and

ϕ(V ∩ V ) = {0} × ϕ2(V ∩ V ),

ϕ(N ∩ V ) = γ × ϕ2(C ∩ V ),

where γ ⊆ C is a loop around the origin, positively oriented. Furthermore, if V is
chosen small enough, we can guarantee that the meromorphic form (ϕ−1)∗η has a
global representation as P/Qdx. Note that, by the structure of η and definition of
ϕ, Q must vanish on the set

ϕ(V ∩ V ) = {x ∈ Cd : x1 = 0},
where it has only simple zeroes.

I claim that if we can prove the equality stated in the residue theorem restricted
to V , we will be done with the theorem. This is due to the additivity of integration
and the compactness of C: we can split up a tubular neighborhood of C (containing
N) into finitely many such neighborhoods on which the theorem holds, then prove
the theorem by breaking the integral into a sum over these pieces.

So without loss of generality, we may assume that this local structure holds
globally on C and that the domain of the map ϕ is all of Cd. By changing variables,
we get

(2.4)

∫

N

η =

∫

γ×ϕ2(C)

P

Q
dx =

∫

p∈ϕ2(C)

(

∫

γ×{p}

P

Q
dx1

)

dx2 ∧ · · · ∧ dxd.

the upshot being the ability to split the above into an iterated integral, by the
product structure of γ × ϕ2(C).

The next step is to compute the inner integral from (2.4) by the ordinary residue
theorem, but doing so will require a change of variables. To that end, define the
function ψ : Cd → Cd by

ψ(x) = (Q(x), x2, x3, . . . , xd),

and fix some p ∈ Cd−1. The claim is that ψ is biholomorphic in a neighborhood
W ⊆ Cd of (0,p). By the inverse function theorem, this is true if and only if
|J(p)| = Q1(p) 6= 0, where J is the Jacobian of ψ. As Q has a simple zero at p,
it can’t be true that Qi(p) = 0 for all i. But Qi(p) = 0 for all i 6= 1, because Q is
constant (equal to 0) on the entire plane x1 = 0. Thus Q1(p) 6= 0, as desired. Note
that ψ−1 must have the form

ψ−1(x) = (f(x), x2, x3, . . . , xd)

for some function f, and that Q ◦ ψ−1 = x1.
We’d like to perform a change of variables and compute the inner integral from

(2.4) over the domain ψ(γ × {p}). The only problem with this is that there is
no guarantee that γ × ϕ2(C) ⊆ W. But we can make this guarantee by shrinking
N, i.e. shrinking the loop γ closer to the origin, and by (potentially) restricting
our attention to a small portion of C. Note that shrinking N has no effect on the
original integral (the new N will differ from the old N by a boundary, and we are
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integrating a closed form), and that, as we have already stated, we need only prove
the residue theorem locally. Thus we may assume without loss of generality that
γ × ϕ2(C) is contained entirely within the domain of ψ.

After the suggested change of variables, we obtain
∫

N

η =

∫

p∈ϕ2(C)

(

∫

ψ(γ×{p})

P ◦ ψ−1

x1

∂f

∂x1
dx1

)

dx2 ∧ . . . ∧ dxn.

By the form of ψ, ψ(γ × {p}) is simply a loop around the origin in the plane
{x ∈ Cd : (x2, . . . , xd) = p}. So by the ordinary residue theorem we can compute

∫

ψ(γ×{p})

P ◦ ψ−1

x1

∂f

∂x1
dx1 = 2πi · P (ψ−1(0,p))

∂f

∂x1
(0,p).

Substituting back into (2.4) yields
∫

N

η = 2πi

∫

p∈ϕ2(C)

P (ψ−1(0,p))
∂f

∂x1
(0,p) dx2 ∧ . . . ∧ dxn

= 2πi

∫

{0}×ϕ2(C)

Res

(

P ◦ ψ−1 · ∂f
∂x1

x1
dx

)

,

where the second equality comes from the residue computation of Example 2.4.
But note that

(ψ−1)∗
(

P

Q
dx

)

=
P ◦ ψ−1

x1





d
∑

j=1

∂f

∂xj
dxj



 ∧ dx2 ∧ · · · ∧ dxd

=
P ◦ ψ−1

x1

∂f

∂x1
dx,

and so the integral equation becomes
∫

N

η = 2πi

∫

{0}×ϕ2(C)

Res

(

(ψ−1)∗
(

P

Q
dx

))

= 2πi

∫

{0}×ϕ2(C)

Res
(

(ψ−1)∗(ϕ−1)∗η
)

.

Finally, by the functoriality of the residue form, we obtain
∫

N

η = 2πi

∫

{0}×ϕ2(C)

(ψ−1)∗(ϕ−1)∗ Res(η) = 2πi

∫

C

Res(η).

�

The residue theorem applies directly to the coefficient analysis of the previous
subsection by the following corollary.

Corollary 2.9. Under the assumptions and notation of Theorem 2.2

ar = 2πi

∫

C

Res(ωF ) +

∫

T1

ωF ,

given the proper orientation of C.

Proof. By the residue theorem,
∫

∂ν
ωF = 2πi

∫

C
Res(ωF ). The result follows

by substituting this equality into the conclusion of Theorem 2.2. �
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And thus the asymptotic coefficient analysis reduces to the integration of a
d− 1 form along a cycle on the pole set of the coefficient generating function. The
final step is to compute this integral by means of the saddle point method.

2.3. Critical Points of the Height Function. The goal is to obtain an
asymptotic expansion for 2πi

∫

C
Res(ωF ), where F = P/Q for some entire functions

P and Q, F is analytic in a neighborhood of the origin, and VQ is smooth. By
Example 2.5 we can expect Res(ωF ) to take the form

Res(ωF ) =
(−1)d−1

(2πi)d
· P (x)

x1 . . . xdQd(x)
e|r|H(x)dx1 ∧ · · · ∧ dxd−1

(where Qd does not vanish), and as before we see that the exponential growth of
this form is governed by the height function h. This motivates a deformation of
the cycle C along VQ, pushing C down to a homologous cycle C̃ on which the
maximum modulus of h is minimized. This procedure is obstructed when the
cycle gets trapped on a saddle point of h on VQ, and the idea is to arrange C̃ so

that the local maxima of h along C̃ are all achieved at such saddle points. Away
from the highest saddle points (the contributing points) the integral will contribute
asymptotically negligible quantities, and near the contributing points the integral
will be amenable to the saddle point method.

Thus the first task is to identify the location of the critical points of hr̂|VQ
.

These points can be realized as the zero set of d equations, as exhibited below.

Theorem 2.10 (Location of Critical Points). Assume r̂d 6= 0. Then the crit-

ical points of hr̂ restricted to VQ are precisely those points p ∈ Cd satisfying the

following d equations:

Q(p) = 0,

r̂dpjQj(p) − r̂jpdQd(p) = 0 ∀ j 6= d.

In the case d = 2, these critical points are actually saddle points of hr̂|VQ
.

For the purposes of computation it should be noted that when Q is a polyno-
mial, the above set of critical points is generically finite and can be found algorith-
mically by the method of Gröbner bases (see [CLO05, Section 1.3]).

Proof. The equation Q(p) = 0 is clear: any critical point of h|VQ
will have

to be on VQ. So we turn to the remaining d− 1 equations.
Fix a point p ∈ VQ (not on the coordinate axes). By the Cauchy-Riemann

equations, p is a critical point of ℜ
(

H|VQ

)

if and only if it is a critical point of

ℑ
(

H|VQ

)

. Thus p is a critical point of h|VQ
exactly when

∇(H|VQ
)(p) = 0.

But ∇(H|VQ
)(p) is simply the projection of ∇H(p) onto the tangent space TpVQ.

Hence the previous equation is true if and only if

∇H(p) ||∇Q(p),

as ∇Q(p) is a vector normal to the tangent space to VQ at p. This condition reduces
to the equation

(−r̂1
p1

, . . . ,
−r̂d
pd

)

= λ (Q1(p), . . . , Qd(p))

for some scalar λ, which is captured by the remaining d−1 equations of the theorem.
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For the d = 2 case, let p be any critical point of h|VQ
(hence a critical point of

H|VQ
by the above). In a chart map in a neighborhood of the origin, we can write

H|VQ
(z) = c0 + ckz

k(1 +O(z)),

for some constants c0 and ck and k ≥ 2. As h = ℜ(H), it follows that h|VQ
has a

kth order saddle at p. �

After deforming the domain of integration so that h is locally maximized at the
critical points located above, the final step is to obtain an asymptotic expansion
by applying the saddle point method near these points. In the case where d = 2,
this results in a single variable saddle integral. Specifically, we will make use of the
following theorem.

Theorem 2.11. Let A and φ be holomorphic functions on a neighborhood of

0 ∈ C, with

A(z) =

∞
∑

j=l

bjz
j , φ(z) =

∞
∑

j=k

cjz
j

where l ≥ 0, k ≥ 2 and bl 6= 0, cj 6= 0. Let γ : [−ε, ε] → C be any smooth curve

with γ(0) = 0, γ′(0) 6= 0 and assume that ℜφ(γ(t)) ≥ 0 with equality only at

t = 0. Denote by γ+ the image of γ restricted to the domain [0, ε]. Then for some

coefficients aj we have a full asymptotic expansion
∫

γ+

A(z)e−λφ(z) dz =

∞
∑

j=l

aj
k

Γ

(

1 + j

k

)

(ckλ)
−(1+j)/k

as λ → ∞, where the choice of kth root in (ckλ)−(1+j)/k is made by taking the

principal root of v−1(ckλv
k)1/k where v = γ′(0). The leading two coefficients aj are

given by

al = bl, al+1 = bl+1 −
2 + l

k
· ck+1

ck
.

For the purposes of computation it should be noted that each coefficient aj can be

effectively computed from the values bl, . . . , bj and ck, . . . , ck+j−l.

See [Pem09] for the proof, or [Hen91, Section 11.8] for a treatment from which
the above may be derived. It should be noted that, while the saddle point method
is a very well known and well understood technique, it is often presented only as a
method for solving a general class of problems — theorems are usually only given
for limited, special case applications. Theorem 2.11 is stated in a generality not
easily found in the literature.

3. Application to Bicolored Supertrees

The purpose of this section is to apply the methods of Section 2 to the example
presented in the introduction. Throughout this section we use the notation of
Section 2, and in the case of bicolored supertrees this means

F =
P

Q
, P and Q defined as in (1.1)

|r| = n, r̂ = r̂0 = (1, 1),

H(x, y) = − lnx− ln y

h(x, y) = − ln |x| − ln |y|.
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Then as outlined in Section 2, the procedure will be as follows.

(1) Reduce the asymptotic computation to an integral on the variety VQ using
Corollary 2.9.

(2) Locate the critical points of h|VQ
and deform the contour of integration

so as to minimize the maximum of h at such points.
(3) Compute an asymptotic expansion for this integral by applying Theorem

2.11 near these maxima and bounding the order away from these maxima.

These three steps will be carried out in the subsections that follow. Thanks to all
the work laid out in the previous section, many of these steps will be automatic.
The most difficult step will be step (2), finding the new saddle point contour and
actually proving that it possesses the right properties (Lemma 3.6). The rest will
be a matter of applying the theorems when appropriate.

Before jumping into computations, however, we will need to do some initial
work on describing the variety VQ.

3.1. Describing the Variety. Because Q is quadratic in the variable y, we
can explicitly solve Q = 0 for y as a function of x. This will allow us to parametrize
VQ by x where possible. So define

y1(x) =
−x2 + x3 − 2 +

√
x4 + 4x2 − 4x3 + 4

x5
,

y2(x) =
−x2 + x3 − 2 −

√
x4 + 4x2 − 4x3 + 4

x5
,

where in each case the principal root is chosen. Then by the quadratic formula

VQ = {(x, yj(x)) : x ∈ C \ {0}, j = 1, 2} ∪ {(0, 1/2)},
(though note that we may write (0, 1/2) = (0, y1(0)) by analytically continuing y1
to x = 0). To parametrize VQ by x, we define the parametrization functions

ι1(x) = (x, y1(x)), ι2(x) = (x, y2(x)).

For the purposes of later computation, it will be nice to know a domain on which
these parametrization functions are holomorphic.

Lemma 3.1. ι1 and ι2 are holomorphic on the punctured strip
{

x ∈ C \ 0 : ℑ
(

1 ±
√

1 − 2i
)

< ℑx < ℑ
(

1 ±
√

1 + 2i
)}

.

Proof. By definition of the functions y1 and y2, the only points where ι1 and
ι2 may fail to be holomorphic are when x = 0 or f(x) = x4 +4x2 − 4x3 +4 ≤ 0 (by
the choice of principal square root). Thus we examine when f(x) is a nonpositive
real number.

Denote a = ℜ(x) and b = ℑ(x). We are interested in when f(a+ ib) ≤ 0, so we
first examine the equation ℑf(a+ ib) = 0, or

4b(a− 1)(a2 − 2a− b2) = 0.

The solution set of the above equation is the union of the lines a = 1, b = 0 and the
hyperbola a2 − 2a− b2 = 0. The points x = 1 ±

√
1 ± 2i where f(x) = 0 partition

the set ℑf(x) = 0 into 5 components on which ℜf(x) is either all positive or all
negative (by continuity of f on the connected set ℑf(x) = 0). See Figure 1, page
13 (dashed lines denoting the boundary of the strip).
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ℑx

ℜx

Figure 1. Zero sets
of ℑf and f.

ℑx

ℜx

p2

p3

p4

p5

p1

Figure 2. The pen-
tagonal path p.

Only one of these 5 components enters the strip ℑ
(

1 ±
√

1 − 2i
)

< ℑx <

ℑ
(

1 ±
√

1 + 2i
)

, and by plugging a sample point of this component into f (say
f(0) = 4) we see that f is positive on this component. Thus at no point within this
strip is f(x) ≤ 0, and so ι1 and ι2 are holomorphic on the claimed domain. �

Finally, as evidenced by Example 2.5, it will be useful for representing the
residue form to know where Qy = ∂Q

∂y is nonzero along VQ. Computing a Gröbner

basis of the ideal 〈Q,Qy〉 in Maple ([Wat08]) via the command

Basis([Q,diff(Q,y)],plex(y,x));

we obtain the univariate polynomial x4 + 4x2 − 4x3 + 4 as the first basis element.
Hence the x coordinate of any point where Q and Qy simultaneously vanish must
be a root of this polynomial. This justifies the following remark.

Remark 3.2. Along VQ, Qy is nonzero whenever x 6= 1 ±
√

1 ± 2i (the roots
of the equation x4 + 4x2 − 4x3 + 4 = 0).

3.2. Integral on the Pole Variety. The following lemma accounts for the
first step of the analysis: using Corollary 2.9 to reduce the computation of an,n to
an integral on VQ.

Lemma 3.3. For ε > 0, define

Cε = {x ∈ C : |x| = ε},
the circle of radius ε about 0 ∈ C, oriented counterclockwise. Then for sufficiently

small ε > 0,

(3.1) an,n = 2πi

∫

ι1(Cε)

Res(ωF ) + 2πi

∫

ι2(Cε)

Res(ωF ).

Proof. We first verify that the variety VQ is smooth. This is true only if Q,
Qx and Qy do not simultaneously vanish, which is true if and only if the variety I =
〈Q,Qx, Qy〉 is trivial (the whole polynomial ring). We check this algorithmically,
using Gröbner bases. In Maple, we compute the Gröbner basis of I with the
command
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Basis([Q,diff(Q,x),diff(Q,y)],plex(y,x));

Maple returns the basis [1] for I, so the ideal is indeed trivial.
Now, let ε > 0, δ > 0 be sufficiently small so that

an,n =

∫

T0

ωF , where T0 = {(x, y) ∈ C2 : |x| = ε, |y| = δ}

by Cauchy’s Integral Formula. Define the quantities

m0 = inf{|yj(x)| : x ∈ Cε, j = 1, 2},
M0 = sup{|yj(x)| : x ∈ Cε, j = 1, 2}.

For ε sufficiently small, note that M0 <∞ (by continuity of the yj ; see Lemma 3.1)
and m0 > 0 (the x-axis intersects VQ only at the point (2, 0)).

Assume δ is chosen small enough so that δ < m0. Fix any M > M0. Then
define the homotopy

K : T0 × [0, 1] → C2

(x, y, t) 7→
(

x, y
(

1 + t
(

M
δ − 1

)))

,

expanding T0 in the y direction past VQ. Then K intersects VQ in the set C =
ι1(Cε) ∪ ι2(Cε) and avoids the coordinate axes. Furthermore, K intersects VQ
transversely (as K expands in the y direction, intersecting VQ where it is a graph
of x). Thus, by Corollary 2.9 we obtain

(3.2) an,n = 2πi

∫

ι1(Cε)

Res(ωF ) + 2πi

∫

ι2(Cε)

Res(ωF ) +

∫

T1

ωF ,

where Cε is oriented counterclockwise (determined by examination of Theorem 2.2
and the Residue Theorem).

Now fix n large and let M vary. As the rest of the terms in (3.2) have no M
dependence,

∫

T1
ωF must be a constant function of M. But by trivial bounds, we

can show that
∫

T1

ωF = O(M1−n) as M → ∞,

as P
(2πi)2xyQ = O(1), exp(nH) = O(M−n) and the area of T1 is O(M). For n > 1,

M1−n → 0 as M → ∞. Hence the only constant
∫

T1
ωF can be equal to is 0. �

3.3. Saddle Points and Contour Deformation. Step (2) in the analysis
is to locate the saddle points of h|VQ

and deform the contour of integration appro-
priately, using this information. The saddle points can be found automatically as
follows.

Lemma 3.4. h|VQ
has three saddle points, located at

(

2, 1
8

)

= ι1(2),
(

1 −
√

5, 3+
√

5
16

)

= ι1(1 −
√

5),
(

1 +
√

5, 3−
√

5
16

)

= ι2(1 +
√

5).
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Proof. By Theorem 2.10, the critical points of h|VQ
are those points where Q

and xQx−yQy simultaneously vanish. We can compute these points algorithmically
by computing the Gröbner basis for the ideal I = 〈Q,xQx − yQy〉 . This is done in
Maple with the command

Basis([Q,x*diff(Q,x)-y*diff(Q,y)],plex(y,x));

which returns a basis consisting of the following two polynomials:

32 − 8x2 − 32x+ 20x3 − 8x4 + x5, x4 − 48 − 6x3 + 8x2 + 128y + 16.

The first polynomial factors as (x2−2x−4)(x−2)3, with roots x = 2 and x = 1±
√

5.
Substituting these values of x into the second polynomial and solving for y yields
the critical points claimed in the lemma. �

We note here the interesting geometry near the critical point (2, 1/8), which
will turn out to be the sole contributing point. Expanding H(ι1(x)) near x = 2, we
obtain

H(ι1(x)) = H(ι1(2)) +
1

16
(x− 2)4 +O((x− 2)6),

and hence h|VQ
has a degenerate saddle (of order 4) near this critical point, with

steepest descent directions emanating from x = 2 at angles π/4 + j(π/2) radians
(j = 1, 2, 3, 4.). We also see that along the path |x| = 2, h(ι1(x)) is locally minimized

at x = 2, as this path passes through the critical point along ascent directions.
Hence x = 2 is a local maximum for |y1(x)| along this path, and so there are points
(x, y) ∈ VQ near (2, 1/8) such that |x| = 2 and |y| < 1/8. Because VQ cuts in toward
the origin near ι1(2), this critical point is not on the boundary of the domain of
convergence of F. In the terminology of the introduction, this critical point is not

minimal.
Knowing where the saddle points of h are, the next task is to deform the contour

of integration in (3.1) so as to minimize the maximum modulus of h along the new
contour at said saddle points. The integral over domain ι2(Cε) will actually be
shown to vanish, while the domain ι1(Cε) will be pushed to a “pentagonal” path
through the critical point (2, 1/8).

The specific path to which ι1(Cε) will be deformed is ι1(p) where p is the
pentagonal path depicted in Figure 2 on page 13, with vertices at the points

{

4
3 − i23 , 2,

4
3 + i23 ,− 2

3 + i23 ,− 2
3 − i23

}

.

Denote by p1, . . . , p5 the edges of p, as denoted in the figure.
Performing the suggested deformation results in the following lemma.

Lemma 3.5.

(3.3) an,n = 2πi

∫

ι1(p)

Res(ωF ),

where p is oriented counterclockwise.

Proof. For δ < ε, let K be a homotopy shrinking the circle Cε to the circle
Cδ. By holomorphicity of ι2 (Lemma 3.1), ι2 ◦ K is a homotopy from ι2(Cε) to
ι2(Cδ) along VQ, and Res(ωF ) is holomorphic along this homotopy. By Stokes’
Theorem we obtain

∫

ι2(Cε)

Res(ωF ) =

∫

ι2(Cδ)

Res(ωF ).
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Now fix n large and let δ vary. Note that as the left hand side of the above
equation has no δ dependence, neither does the right.

By the fact that y2(x) = −4x−5(1 +O(x)) as x→ 0, we get that −P
(2πi)2xyQy =

O(δ−4), exp(nH) = O(δ4n) and the area of ι2(Cδ) is O(δ−4) as δ → 0. This implies
that

∫

ι2(Cδ)

Res(ωF ) =

∫

ι2(Cδ)

1

(2πi)2
· −P
xyQy

enH dx = O(δ4n−8)

as δ → 0 (note that this representation of the residue is valid by Remark 3.2). For
n > 2, δ4n−8 → 0 as δ → 0. Thus we must have that this integral is equal to 0.

As for the the integral over ι1(Cε) in (3.1), let K now be a homotopy expanding
the circle Cε to the pentagonal path p. Then by Lemma 3.1, ι1 ◦K is a homotopy
from ι1(Cε) to ι2(p) along VQ, and Res(ωF ) is likewise holomorphic along the image
of this homotopy. Then by Stokes’ Theorem,

∫

ι1(Cε)

Res(ωF ) =

∫

ι1(p)

Res(ωF ),

where p is oriented counterclockwise. The theorem follows. �

Now we show that h is indeed maximized on ι1(p) uniquely at the point (2, 1/8).
That this is true local to the saddle point (2, 1/8) is clear from the form of H near
this point, as explored following the proof of Lemma 3.4. To show that this is true
globally will require more effort.

Lemma 3.6. h(ι1(x)) < h(ι1(2)) = ln 4 ∀x ∈ p \ {2}.

Proof. Because h(ι1(x)) is continuous on the connected set p, we need only
show that h(ι1(x)) 6= ln 4 for all x ∈ p\{2}, and that h(ι1(x)) < ln 4 for some x ∈ p\
{2}. The latter condition can be easily checked by plugging some arbitrary point into
h(ι1(x)). As for the former condition, the idea will be to cook up some polynomial
equations that must be satisfied in order for it to be true that h(ι1(x)) = ln 4. We
then use techniques from computational algebra to show that these equations can
not be satisfied for any (x, y) with x ∈ p \ {2} and y = y1(x).

The conditions from which we will derive our polynomial equations are as
follows:

(1) x ∈ pj for some j ∈ {1, . . . , 5}.
(2) y such that (x, y) ∈ VQ.
(3) h(x, y) = ln 4, or eh(x,y) = 4.

Each of these conditions implies a (set of) polynomial equations in the variables
ℜ(x), ℑ(x), ℜ(y) and ℑ(y), as we will show shortly. Note that we are throwing
away some important information in condition 2 above, namely we want y = y1(x),
not y = y2(x). This will be important later in the proof.

We examine first the case where x ∈ p3. Denote a = ℜ(x), b = ℑ(x), c = ℜ(y)
and d = ℑ(y). Then condition 1 implies the polynomial constraint:

P1 = b− 2

3
= 0.

Note: condition 1 implies the additional constraint a ∈ [−2/3, 4/3], which we will
make use of shortly.
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Condition 2 implies the following two polynomial constraints:

P2 = ℜ(Q(a+ ib, c+ id)) = 0,

P3 = ℑ(Q(a+ ib, c+ id)) = 0.

Finally, condition 3 translates to 4|x||y| = 1, or

P4 = 16(a2 + b2)(c2 + d2) − 1 = 0.

We are interested in whether these four polynomial equations have a common
real-valued solution, and we will use Gröbner bases and Sturm sequences to answer
this question. Since we expect the variety generated by I = 〈P1, P2, P3, P4〉 to be
finite — I is generated by four polynomials in four unknowns — we hope to use
Gröbner bases to eliminate variables and produce a univariate polynomial B(a) ∈ I.
Any point (a, b, c, d) solving Pj = 0 for all j will likewise solve B = 0. Then we try
to use Sturm sequences to that such a B has no real roots a ∈ [−2/3, 4/3], proving
that h(ι1(x)) 6= ln 4 for x ∈ p3.

We compute the Gröbner basis with the command

Basis([P1,P2,P3,P4],plex(d,c,b,a))

and find that the first element B of the basis is univariate in the variable a, a
polynomial of degree 16. We can check that B(−2/3) 6= 0 and B(4/3) 6= 0 by
direct computation in Maple. To check whether or not B has any roots on the
interval (−2/3, 4/3) we employ Sturm’s Theorem (see [BPR06, p. 52]).

To employ Sturm’s Theorem, we must verify that B is squarefree. This is true
if and only if the ideal 〈B,B′〉 is equal to the trivial ideal 〈1〉 . Indeed, computing
the Gröbner basis for 〈B,B′〉

Basis([B,diff(B,a)],plex(a));

returns the trivial basis [1], i.e. B is squarefree.
Then to count the number of roots in (−2/3, 4/3) via Sturm’s Theorem, we

enter the command

sturm(sturmseq(B,a),a,-2/3,4/3)

and Maple returns that there are 0 real roots on the interval (−2/3, 4/3).
Computations are similar for p4 and p5, but things are a bit more complicated

along p1 and p2. Let’s look at p2. The first polynomial equation becomes

P1 = a+ b− 2 = 0,

with a ∈ [4/3, 2], while the rest of the polynomial equations remain the same.
Going through the same procedure as before, we can produce a Gröbner basis for
〈P1, P2, P3, P4〉 with an element B(a) univariate in a. B(a) factors as

B(a) = (a− 2)4B̃(a),

where by direct computation we see that B̃ is nonzero at a = 4/3 and a = 2. Note:
we expected that B would have a root at a = 2, corresponding to the fact that
h(ι1(2)) = ln 4.

The next step would be to attempt to show that B̃ has no roots on the interval
(4/3, 2), but this is not true. Using Sturm sequences, one can show that B̃ has
exactly one root a0 ∈ (4/3, 2), and this is because there is a pair x, y with x ∈ p2\{2}
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and h(x, y) = ln 4. The claim is that this corresponds to a point where y = y2(x),
not where y = y1(x).

To see that there must be such a pair, note that y2(x) → 0 as x → 2. Hence
h(ι2(x)) → ∞ as x→ 2. But by direct computation we can show that h(ι2(4/3)) <
ln 4. As h(ι2(x)) is continuous on p2\{2}, there must be some x ∈ p2\{2} such that
h(ι2(x)) = ln 4. This pair x, y = y2(x) satisfies the polynomial equations Pj = 0.

Now assume by way of contradiction that h(ι1(x)) = ln 4 for some x ∈ p2 \{2}.
Because B̃ has just one root a0 ∈ (4/3, 2), it must be that this occurs at the same
x value for which h(ι2(x)) = ln 4, specifically x0 = a0 + (2 − a0)i. Hence we have

|x0||y1(x0)| = |x0||y2(x0)| =
1

4
,

which implies that |y1| = |y2| at the point x0. So at this value of x we have

c2 + d2 = |y|2 = |y1y2| =
|x− 2|
|x|5

The preceding equation implies that |x|10(c2 +d2)2 = |x−2|2, which translates into
the polynomial equation

P5 = (a2 + b2)5(c2 + d2)2 − ((a− 2)2 + b2) = 0.

We now have a new polynomial equation that must be satisfied in order that
h(ι1(x)) = ln 4 on p2 \ {2}. But if we compute a Gröbner basis for 〈P1, . . . , P5〉 , we
get the trivial basis [1], meaning that the polynomials have no common solution.
Hence h(ι1(x)) 6= ln 4 for x ∈ p2 \ {2}. Analogous methods can be used to handle
the case of p1. �

3.4. Saddle Point Integration. The final step in the analysis is to use saddle
point techniques and order bounds to prove (1.2).

Theorem 3.7.

kn = an,n ∼ 4n

8Γ(3/4)n5/4
.

Proof. We proceed from Lemma 3.5. The theorem will be proved in 2 steps:
bounding the integral in (3.3) outside a neighborhood of the critical point, then
applying saddle point techniques near that critical point.

For any neighborhood N of x = 2, we look at
∫

ι1(p\N)
Res(ωF ), which can be

written as
∫

ι1(p\N)

1

(2πi)2
· −P
xyQy

enH dx

(note that this representation is valid by Remark 3.2). As h ◦ ι1 is continuous on
the compact set p \N, h ◦ ι1 achieves an upper bound M on p \N. By Lemma 3.6,
M < ln 4. Thus by trivial bounds we have

∫

ι1(p\N)

Res(ωF ) = O(eMn) = o((4 − δ)n)

for sufficiently small δ > 0, as n→ ∞. Hence

(3.4) an,n = 2πi

∫

ι1(p∩N)

Res(ωF ) + o((4 − δ)n).

for any neighborhood N of x = 2, provided δ is sufficiently small.
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For N small enough, p ∩ N = (p1 ∩ N) ∪ (p2 ∩ N). We examine the integral
over ι1(p1 ∩ N) and ι1(p2 ∩ N) separately, starting with ι1(p2 ∩ N). By using the
aforementioned representation of the residue form (and changing variables), we
obtain

2πi

∫

ι1(p2∩N)

Res(ωF ) =

∫

p2∩N

1

2πi
· −P (ι1(x))

xy1(x)Qy(ι1(x))
enH(ι1(x)) dx.

After another change of variables (x→ x+2) and a suitable choice of neighborhood
N, the above integral can be rewritten as

4n
∫

γ+

A(x)e−nφ(x) dx,

where we have, for some fixed ε > 0,

γ(x) = (i− 1)x; x ∈ [−ε, ε],

A(x) =
1

2πi
· −P (ι1(x+ 2))

(x+ 2)y1(x+ 2)Qy(ι1(x+ 2))
,

φ(x) = ln 4 −H(ι1(x+ 2)),

and we recall that γ+ is the restriction of the image of γ to the domain [0, ε]. The
series expansion of A and φ at x = 0 begin

A(x) =
i

16π
x3 +

i

32π
x4 +O(x5),

φ(x) =
−1

16
x4 +O(x6),

and ℜφ(x) is uniquely minimized on γ+ at x = 0 where we have φ(0) = 0, as a
consequence of Lemma 3.6. Thus this is exactly the situation where the saddle
point technique of Theorem 2.11 can be applied. The values of bj and cj are as in
the expansions above. Then v = γ′(0) = i− 1, and we compute the principal root

(cknv
k)1/k

v
=

((−1/16)n(i− 1)4)1/4

i− 1
=

−1 − i

2
√

2
n1/4.

The conclusion of Theorem 2.11 is then

2πi

∫

ι1(p2∩N)

Res(ωF ) = 4n

(

−i
4π
n−1 +

(1 + i)
√

2Γ(5/4)

8π
n−5/4 +O(n−3/2)

)

As for the integral over ι1(p1 ∩N), the same argument yields

2πi

∫

ι1(p1∩N)

Res(ωF ) = −4n
∫

γ+

A(x)e−nφ(x) dx,

where A and φ are the same but γ is defined by γ(x) = (−i−1)x (and the negative
sign out in front comes from a reversal of orientation). For v = γ′(0) = −i− 1, we
compute the principal root

(cknv
k)1/k

v
=

((−1/16)n(−i− 1)4)1/4

−i− 1
=

−1 + i

2
√

2
n1/4.

Then by Theorem 2.11 we obtain

2πi

∫

ι1(p1∩N)

Res(ωF ) = 4n

(

i

4π
n−1 +

(1 − i)
√

2Γ(5/4)

8π
n−5/4 +O(n−3/2)

)

.
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Adding up the contribution over each piece and plugging into (3.4) yields

an,n = 4n

(√
2Γ(5/4)

4π
n−5/4 +O(n−3/2)

)

+ o((4 − δ)n) ∼ 4n
√

2Γ(5/4)

4π
n−5/4.

Using the identity Γ(5/4)Γ(3/4) = π/(2
√

2), the theorem follows. �
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