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1 Introduction

1.1 Background and motivation

Problems in combinatorial enumeration and discrete probability can often be attacked by means of
generating functions. If one is lucky enough to obtain a cloosed form generating function, then the
asymptotic enumeration formula, or probabilistic limit theorem is often not far behind. Recently,
several problems have arisen to which can be associated very nice generating functions, in fact ra-
tional functions of several variables, but for which asymptotic estimates have not followed (although
formulae were found in some cases by other means). These problems include random tilings (the
so-called Aztec and Diabolo tilings) and other statistical mechanical ensembles (cube groves) as well
as some enumerative and graph theoretic problems discussed later in the paper.

A series of recent papers [PW02; PW04; BP04] provides a method for asymptotic evaluation of
the coefficients of multivariate generating functions. To describe the scope of this previous work, we
set up some notation that will be in force for the rest of this article. Throughout, we will assume
that the generating function converges in a domain defining there a quasirational function

F (Z) =
P (Z)

Q(Z)s
∏k

j=1Hj(Z)nj

=
∑
r

arZr (1.1)

with polynomial P,Q, affine-linear Hj ’s, integer nj ’s and real s. (Here the quatities in boldface are
vectors of dimension d and the notation Zr is used to denote

∏d
j=1 Z

rj

j .) In dimension three and
below, we use X,Y, Z to denote Z1, Z2 and Z3 respectively. We let V := {Z : Q(Z) = 0} ⊆ Cd

denote the pole variety of F , that is, the complex algebraic variety where Q vanishes (Q will always
be a polynomial). Analytic methods for recovering asymptotics of ar from F always begin with the
multivariate Cauchy integral formula

ar =
1

(2πi)d

∫
T

Z−rF
dZ
Z
. (1.2)

Here T is a d-torus, i.e. the product of circles about the origin in each coordinate axis (importantly,
choice of a torus affects the corresponding Laurent expansion (1.1)). The pole set V is of central
importance because the contour T may be deformed without affecting the integral as long as one
avoids places where the integrand is singular.

When V is smooth or has singularities of self-intersection type (where locally V is the union
of smooth divisors), a substantial amount is known. The case where V is smooth is analyzed
in [PW02]; the existence under further hypotheses of a local central limit theorem dates back at
least as far as [BR83]. The more general case where the singular points of V are all unions of smooth
components with normal intersections is analyzed using explicit changes of variables in [PW04]
and by multivariate residues in [BP04], the pre-cursor to which is [BM93]. Applications in which
V satisfies these conditions are abundant, and a number of examples are worked in [PW07]. For
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bivariate generating functions, all rational generating functions fall we have seen fall within this class.
Other local geometries are possible, namely those of irreducible monomial curve, e.g., Xp− Y q = 0,
but, as will become clear, they cannot contribute to the asymptotic expansions, being non-hyperbolic.

In dimension three and above, there are many further possibilities. The simplest case not handled
by previous techniques is that of isolated quadratic singularity. The purpose of this paper is to
address this type of generating function. All the examples in the title and in Section 4 are of this
type. In fact, all the rational 3-variable generating functions we know of, that are not one of the
types previous analyzed, have isolated, usually quadratic, singularities. The simplest case is when
the denominator is irreducible and its variety has a single, isolated quadratic singularity; a concrete
example in dimension d = 3 is the cube grove creation generating function, whose denominator
Q = 1 +XY Z − (X + Y + Z +XY + Y Z + ZX)/3 has the zero set illustrated in figure 1.

Figure 1: an isolated quadratic singularity

The main results of this paper, Theorems 3.7 and 3.9 below, are asymptotic formulae for the
coefficients of a generating function having a divisor with this geometry. In addition to one or more
isolated quadratic singularities, our most general results allow Q to be taken to an arbitary real
power and we allow the possibility of other smooth divisors passing through the singluarities of Q.
These generalizations complicate the exposition somewhat but are necessary to handle some of the
motivating examples.

As a preview of the behavior of the coefficients, consider the case d = 3 and F = 1/Q illustrated
in figure 1. The leading homogeneous term of Q in the variables (x, y, z) = (logX, log Y, logZ) is
xy + xz + yz. The outward normal cone (dual cone) at this point is the cone N∗ on which Q∗ ≥ 0,
where Q∗(r, s, t) = (r + s + t)2 − 2(r2 + s2 + t2) is the dual quadratic to Q (see Section 2.6 for
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definitions). The asymptotics for ar in this example are given by Corollary 3.8 for r in the interior
of N∗ and by an easier result (Proposition 2.23) when r /∈ N∗:

ar ∼

CQ∗(r)−1/2 if r is in the interior of N∗

exponentially small if r /∈ N∗

The behavior of ar near ∂N∗ is more complicated and is not dealt with in this paper. The generating
function 1/Q is the creation rate generating function for cube groves, discussed in Section 4.2. The
edge placement generating function for cube groves (edge placement probabilities have more direct
interpretations than do creation rates) has an extra factor of (1−Z) in the denominator. Theorem 3.9
gives the asymptotics in this case, for r interior to N∗, as

ar ∼ C arctan θ(r)

where θ is a homogeneous degree 0 function of r whch can be expressed in terms of dual quadratic
form Q∗. Homogeneity of θ implies that that there is a limit theorem aλr → θ(r̂) as λ→∞, where
r̂ := r/|r| is the unit vector in the direction r.

A total of five motivating applications will be discussed in detail in Section 4. All of these may
be seen to have factors with isolated quadratic singularities. There are known trivariate rational
generating funtions with isolated singularities that are not quadratic. For example, the diabolo or
fortress tiling ensemble has an isolated quartic singularity. Some of our results apply to this case,
but a detailed analysis will be left for another paper. The last example goes slightly beyond what
we do in this paper, but we include it because the analysis follows largely the same methods.

Aztec diamond placement probability generating function [JPS98]

F (X,Y, Z) =
Z/2

(1− Y Z)(1− Z
2 (X +X−1 + Y + Y −1) + Z2)

. (1.3)

Cube groves edge probability generating function [PS05]

F (X,Y, Z) =
2Z2

3(1− Z)(1 +XY Z − 1
3 (X + Y + Z +XY +XZ + Y Z))

. (1.4)

Quantum random walk space-time probability generating function [ABN+01; BBP08]

F (X,Y, Z) =
XZ − (1 +XY )Z2 + Y Z3)

(1− Z2)(1− (X +X−1 + Y + Y −1)Z/2 + Z2)
. (1.5)
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Friedrichs-Lewy-Szegö graph polynomial [SS06]

F (X,Y, Z) = [(1−X)(1− Y ) + (1−X)(1− Z) + (1− Y )(1− Z)]−β (1.6)

Super-ballot number generating function [Ges92]

F (X,Y, Z) =
1− 2X√
1− 4XZ

1
1−X − Y − Z + 4XY Z

. (1.7)

1.2 Methods and organization

Our methods of analysis owe a great debt to two bodies of existing theory. Our approach to
harmonic analysis of cones is fashioned after the work of [ABG70]. We not only quote their results
on generalized Fourier transforms, which date back somewhat farther to computations of [Rie49] and
generalized function theory as decribed in [GS64], but we also employ their results on hyperbolic
polynomials to produce homotopies of various contours. Secondly, our understanding of the existence
of these homotopies has been greatly informed by Morse theoretic results of [GM88]. We do not
quote these results directly because our setting does not satisfy all their hypotheses, but the idea to
piece together deformations local to strata is really the central idea behind stratified Morse theory
as explained in [GM88]; see also the discussion of stratified critical points in Section 2.5.

An outline our methods is as follows. The chain of integration in the multivariate Cauchy
integral (1.2) is a d-dimensional torus, T embedded in the complex torus Cd

∗, where C∗ := C−{0}.
Changing variables by Zj = exp(zj), the chain of integration becomes a chain C, the set of points
with a fixed real part. Under this change of variables, the Cauchy integral (1.2) becomes∫

C
exp(−r · z)f(z) dz (1.8)

where f := F ◦ exp. Morse theoretic considerations tell us we can deform the chain of integration
so that it is supported by the region where e−r·x is small (for large |r|) except near certain critical
points. To elaborate, we can accomplish most of the deformation by moving x. The allowable region
for such deformations of x is a component of the complement to amoeba of F (see Section 2.1 for
definitions). Heuristically, we move x to the support point xmax on the boundary of this region for a
hyperplane orthogonal to r (see Sections 2.5 and those preceding for details). Unfortunately, when
xmax is on the boundary, (1.8) fails to be integrable. Ignoring this, however, and continuing with
the heuristic, we let q := Q ◦ exp and hj := Hj ◦ exp and we denote the leading homogeneous parts
of q and hj by q̃ and h̃j respectively. We then express f near xmax as a series in negative powers of
q̃ and h̃j (this is carried out in Section 2.7). Integrating term by term, each integral has the form∫

C
exp(−r · z) zm

q̃(z)sh̃(z)n
dz
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where h̃n :=
∏k

j=1 h
nj

j . Replacing z by iz, we recognize the Fourier transform of a product of a
monomial with inverse powers of quadratics and linear functions.

Much of what has been described thus far is based on known methods and results, most of which
are collected in the preliminary Section 2. The bulk of the work, however, is in making rigorous
these identities which involve Fourier integrals that do not converge, taken over regions which are
not obviously deformations of each other (the part above where we said, “ignoring this, . . .”). For
this purpose, some carefully chosen deformations are constructed, based largely on deformations
found in Sections 5 and 6 of [ABG70]. Specifically, we use results on hyperbolic polynomials (see
Section 2.3 for definitions) established in [ABG70] and elsewhere, to construct certain vector fields
on Cd. These vector fields, based on the construction of [ABG70, Section 5] and described in our
Section 5.1, then allow us to construct deformations in Section 5.2, which satisfy several properties.
First, they enact what Morse theory has guaranteed: they push the chain of integration to where
the integrand of (1.8) is very small, except near critical points, as in figure 2 below. Secondly, they
do this without intersecting V, thereby allowing the integral to remain the same. This localizes the
integral to the critical points, and allows us to concentrate on one critical point at a time. The
resulting chain of integration is depicted in figure 2.

Real part = xmax

(a) in log space (b) in the original domain

Figure 2: the localizing chain, in logarithmic and original coordinates

Thirdly, they allow us to “straighten out” the chain of integration. Figure 3 shows that the
chains in figure 2, as well as the original chain, are homotopic near the critical point to a (slightly
perturbed) conical chain.

Combined with the series expansion by homogeneous functions, this reduces all necessary inte-
grals to a small class of Fourier-type integrals. Many of these are evaluated as generalized func-
tions in [ABG70; Rie49; GS64] and elsewhere. In Section 6.2 and 6.3 we summarize the relevant
facts about generalized functions. The above deformations allow us to show, in Sections 6.4 – 6.6,
that these generalized functions, defined as integrals over the straight contour on the left of figure 3,
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Real part = u

Figure 3: the projective chain

do approximate the integrals we are interested in, which we must evaluate over the chains shown on
the right of figure 2 and on figure 3 in order for the localizations to remain valid. Not all of the com-
putations we need are available in the literature. In Section 6.6 we use a construction from [ABG70],
the Leray cycle, along with a resiude computation, to reduce the Foruier transform of 1/(q̃ · h̃)
to an explicitly computable one-dimensional integral. It is this computation that is responsible for
the explicit asymptotic formula for placement probabilities in the Aztec Diamond and Cube Grove
problems.

To summarize, the organization of the rest of the paper is as follows. Section 2 defines some
notation in use throughout the paper, and collects preliminary results on amoebas, convex duals,
hyperbolicity, and expansions by powers of homogeneous polynomials. Section 3 states the main
results. Section 4 has five subsections, each discussing one of the five examples. The next two
sections are concerned with the proofs of the main results. Section 5 constructs homotopies that
shift contours of integration, while Section 6 evaluates several classes of integrals via the theory of
generalized Fourier transforms. Finally, Section 7 concludes with a discussion of open problems and
further research directions.

2 Notation and preliminaries

Several notions arising repeatedly in this paper are the logarithmic change of variables, duality
between r and z, and the leading homogeneous part of a function. We employ some meta-notation
designed for ease of keeping track of these. We use upper case letters for variables and functions in
the complex torus Cd

∗, and lower case letters in the logarithmic coordinates. We will never use the
notations without defining them, but knowing that, for example, F ◦ exp will always be denoted f

and z will always be log Z, should help the reader quickly recognize the setting. We will always use
x and y for the real and imaginary parts of the vector z ∈ Cd. Boldface is reserved for vectors. The
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leading homogeneous part of a function is denoted with a bar. Rather than considering the index r
of ar to be an element of Zd, we consider it to be an element of a space (Rd)∗ that is dual to the
domain Cd in which z lives, with respect to the pairing r · z (the space (Rd)∗ is a subset of the full
dual space (Cd)∗ but all our dual vectors will be real). Many functions of r use in what follows are
homogeneous degree 0; letting r̂ denote the unit vector r/|r| we will often write these as functions
of r̂. The logarithm and exponential functions are extended to act coordinatewise on vectors. Thus

exp(z1, . . . , zd) := (exp(z1), . . . , exp(zd)) ;

log(Z1, . . . , Zd) := (log(Z1), . . . , log(Zd)) .

We also employ the slightly clunky notation

ReLog Z := (log |Z1|, . . . , log |Zd|) = Re {log Z}

for the coordinatewise log-modulus map, having found that the notations in use in [GKZ94] do not
allow for quick visual distinction between log and ReLog .

Our chief concern is with generating functions that are ordinary power series, convergent on the
unit polydisk, and whose denominator is the product of smooth and quadratically singular factors
that intersect the closed but not the open unit polydisk. It costs little, however, and there is some
benefit to work in the greater generality of Laurent series representing functions with polynomial
denominators. Indeed, Laurent series arise naturally in the examples (though these Laurent series
have exponents in proper cones, and may therefore be reduced by log-affine changes of coordinates
to Taylor series).

Definition 2.1 (homogeneous part). For analytic germ f : (Cd, z) → C at a point z ∈ Cd, we
let deg(f, z) denote the degree of vanishing of f at z. This is zero if f(z) 6= 0 and in general is the
greatest integer n such that f(z + w) = O(|w|n) as w → 0. Also, deg(f, z) is the least degree of
any monomial in the ordinary power series expansion of f(z+ ·) around 0. We let hom(f, z) denote
the sum of all monomials of minimal degree in the power series for f(z + ·) and we call this the
homogeneous part of f at z. Thus

f(z + w) = hom(f, z)(w) +O
(
|w|deg(f,z)+1

)
for small |w|.When z = 0, we may omit z from the notation: thus, hom(f) := hom(f,0).

A number of connections between zeros of a Laurent polynomial F , the Laurent series for 1/F ,
the Newton polytope for F and certain dual cones to this polygon were worked out in the 1990’s by
Gelfand, Kapranov and Zelivinsky. We summarize some relevant results from [GKZ94, Chapter 6].

2.1 The Log map and amoebas

Let F be a Laurent polynomial in d variables. Let VF denote its zero set in Cd
∗. Let (C∗)d ⊆ Cd

denote the d-tuples of nonvanishing complex numbers. Following [GKZ94] we define the amoeba
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of F to be the image under ReLog of the zero set of F :

amoeba(F ) := {ReLog z : z ∈ VF ∩ (C∗)d} ⊆ Rd .

The simplest example is the amoeba of a linear function, such as F = 2−X−Y , shown in figure 4(a).
The amoeba of a product is the union of amoebas, as shown in figure 4(b).

(a) amoeba(2−X − Y ) (b) amoeba(3− 2X − Y )(3−X − 2Y )

Figure 4: two amoebae

The rational function 1/F has, in general, a number of Laurent series expansions, each convergent
on a different subset of Cd. Combining Corollary 1.6 in Chapter 6 of [GKZ94] with Cauchy’s integral
theorem, we have the following result.

Proposition 2.2. The connected components of Rd \ amoeba(F ) are convex open sets. The com-
ponents are in bijective correspondence with Laurent series expansions for 1/F as follows. Given
a Laurent series expansion of 1/F , its open domain of convergence is precisely ReLog−1B where
B is a component of Rd \ amoeba(F ). Conversely, given such a component B, a Laurent series
1/F =

∑
arZr convergent on B may be computed by the formula

ar =
1

(2πi)d

∫
T

Z−r−1 1
F (Z)

dZ

where T is the torus ReLog−1(x) for any x ∈ B. Changing variables to Z = exp(z) and dZ = Z dz
gives

ar =
1

(2πi)d

∫
x+iTR

e−r·z 1
f(z)

dz (2.1)

where f = F ◦ exp and TR is the torus Rd/(2πZ)d. �
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2.2 Dual cones, tangent cones and normal cones

Let (Rd)∗ denote the dual space to Rd and for y ∈ Rd and r ∈ (Rd)∗, use the notation r ·y to denote
the pairing. Let L be any convex open cone in Rd. The (closed) convex dual cone L∗ ⊆ (Rd)∗ is
defined to be the set of vectors v ∈ (Rd)∗ such that v · x ≥ 0 for all x ∈ L. Familiar properties of
the dual cone are

L ⊆M ⇒ L∗ ⊇M∗ ; (2.2)

(L ∩M)∗ = ch(L∗ ∪M∗) . (2.3)

Suppose x is a point on the boundary of a convex set C. Then the intersection of all halfspaces that
contain C and have x on their boundary is a closed convex affine cone with vertex x (a translation
by x of a closed convex cone in Rd) that contains C. Translating by −x and taking the interior
gives the (open) tangent cone to C at x, denoted by tanx(C). An alternative definition is

tanx(C) = {v : x + εv ∈ C for all sufficiently small ε > 0}

(where B is the unit ball). The (closed) normal cone to C at x, denoted N∗
x(C), is the convex

dual cone to the negative of the tangent cone:

N∗
x(C) = (−tanx(C))∗ .

Equivalently, it corresponds to the set of linear functionals on C that are maximized at x, or to the
set of outward normals to support hyperplanes to C at x.

Definition 2.3 (proper dual direction). Given a convex set C, say that r is a proper direction
for C if the maximum of r · x on L is achieved at a unique xmax ∈ C. We call xmax the dual point
for r. The set of directions r for which r · x is bounded on C but r is not proper has measure zero.

The term tangent cone has a different meaning in algebraic contexts, which we will require these
as well. (The term normal cone has an algebraic meaning as well, which we will not need.) To avoid
confusion, we define the algebraic tangent cone of f at x to be Vhom(f,z)

. An equivalent but
more geometric definition is that the algebraic tangent cone is the union of lines through x that are
the limits of secant lines through x; thus for a unit vector u, the line x+tu is in the algebraic tangent
cone if there are xn ∈ Vf distinct from but converging to x for which (xn − x)/||xn − x|| → ±u.
This equivalence and more is contained in the following results. We let S1 denote the unit sphere
{(z1, . . . , zd) : |z1|2 + · · ·+ |zd|2 = 1} and let Sr := rS1 denote the sphere of radius r.

Lemma 2.4 (algebraic tangent cone is the limiting secant cone). Let q be a polynomial
vanishing to degree m ≥ 1 at the origin and let q̃ := hom(q) be its homogeneous part; in particular,

q(z) = q̃(z) +R(z)
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where q̃ is a nonzero homogeneous polynomial of degree m and R(z) = O(|z|m+1). Let qε denote the
polynomial

qε(z) := ε−mq(εz) = q̃(z) +Rε(z)

where Rε(z) = ε−mR(εz) → 0 as ε→ 0. Let Vε := Vqε
∩ S1 denote the intersection of {qε = 0} with

the unit sphere. Then Vε converges in the Hausdorff metric as ε→ 0 to Vq̃ ∩ S1.

Proof: On any compact set, in particular S1, Rε → 0 uniformly. If z(n) → z and z(n) ∈ V1/n then
for each n,

|q̃(z(n))| = |q1/n(z(n)) +R1/n(z(n))| = |R1/n(z(n))| → 0 .

Hence q̃(z) = 0 by continuity of q̃ and we see that any limit point of Vε as ε → 0 is in Vq̃ ∩ S1.
Conversely, fix a unit vector z ∈ Vq̃. The homogenous polynomial q̃ is not identically zero, therefore
there is a projective line through z along which q̃ has a zero of finite order at z. Back in affine space,
there is a complex curve γ in the unit sphere along which q̃ is holomorphic with a zero of some finite
order k at z. As ε→ 0, the holomorphic function Rε goes to zero uniformly in a neighborhood of z
in γ; hence there are k zeros of qε converging to z as ε→ 0, and therefore z is a limit point of Vε as
ε→ 0. �

2.3 Hyperbolicity for homogeneous polynomials

The notion of hyperbolic polynomials arose first in [G̊ar50] in connection with solutions to wave-like
partial differential equations. The same property turns out to be very important as well for convex
programming, cf. [Gül97] from which much of the next several paragraphs is drawn.

Let f be a complex polynomial in d-variables and f(D) denote the corresponding linear partial
differential operator with constant coefficients, obtained by replacing each xj by ∂/∂xj . For example,
if f is the standard symplectic quadratic S(x) = x2

1 −
∑d

j=2 x
2
j then S(D) is the wave operator

(∂/∂x1)2 −
∑d

j=2(∂/∂xj)2. G̊arding’s object was to determine when the equation

f(D)u = g (2.4)

with g supported on a halfspace has a solution supported in the same halfspace. The wave operator
has this property, and in fact there is a unique such solution for any such g. It turns out that the class
of f such that (2.4) always has a solution supported on the halfspace is precisely characterized by
the property of being hyperbolic, as defined by G̊arding. In this case, it was later shown ([Hör90,
Theorem 12.4.2] that the solution is in fact unique. The theory of hyperbolic polynomials serves in
the present paper to prove the existence of deformations of chains of integration past points of the
pole manifold at which the pole polynomial is locally hyperbolic. in order to

We begin with hyperbolicity for homogeneous polynomials, which is a simpler and better devel-
oped theory. As before, we use A rather than f for a homogeneous polynomial.
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Definition 2.5 (hyperbolicity). Say that a homogeneous complex polynomial A of degree m ≥ 1
is hyperbolic in direction v ∈ Rd if A(v) 6= 0 and the polynomial A(x+tv) has only real roots when x
is real. In other words, every line in real space parallel to v intersects VA exactly m times (counting
multiplicities).

While seemingly weaker, the requirement of avoiding purely imaginary roots is in fact easily seen
to be equivalent.

Proposition 2.6. Hyperbolicity of the homogeneous polynomial A in the direction v is equivalent
to the condition that A(v + iy) 6= 0 for all y ∈ Rd.

Proof: Because A is homogeneous, when λ 6= 0, we have A(λz) = 0 if and only if A(z) = 0. With
λ = i · s, a purely imaginary number not equal to zero, we see that A(v + iy) 6= 0 for all y ∈ Rd is
equivalent to A(y + isv) 6= 0 for all y ∈ Rd and all nonzero real s. Writing z = t+ is, this becomes
A(y + tu + isu) 6= 0 for all y ∈ Rd and real s 6= 0, which is equivalent to A(y + zu) 6= 0 when z is
not real, which is the definition of hyperbolicity. �

The further properties we need are well known and are proved, among other places, in [Gül97,
Theorem 3.1].

Proposition 2.7. The set of v for which A is hyperbolic in direction v is an open set whose
compenents are convex cones. Denote by Kv(A) the connected component of this cone that contains
a given v. Some multiple of A is positive on Kv(A) and vanishing on ∂Kv(A), and for x ∈ Kv(A),
the roots of A(x + tv) will all be negative. �

Semi-continuity properties for cones of hyperbolicity play a large role in the construction of
deformations. A lower semi-continuous function f satisfies f(x) ≤ lim infy→x f(y). The property is
important in elementary analysis because a lower semi-continuous function on a compact set achieves
its infimum; generalizing to set-valued functions, the conclusion is roughly that the empty set is not
a limit value and therefore that a continuous section can be defined. In this section, we develop
semi-continuity properties for cones of hyperbolicity (a topic that occupies many pages of [ABG70]).

The following proposition and definition define a family of cones {KA,B(x)}x∈Rd which will be
used to prove two critical semi-continuity results for cones of hyperbolicity for log-Laurent polyno-
mials (Theorem 2.14 below).

Proposition 2.8 (first semi-continuity result). Let A be any hyperbolic homogeneous polyno-
mial, and let m be its degree. Fix x with A(x) = 0 and let a := hom(A,x) denote the leading
homogeneous part of A at x. If A is hyperbolic in direction u then a is also hyperbolic in direction
u. Consequently, if B is any cone of hyperbolicity for A then there is some cone of hyperbolicity for
a containing B.
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Proof: This follows from the conclusion (3.45) of [ABG70, Lemma 3.42]. Because the development
there is long and complicated, we give here a short, self-contained proof, provided by J. Borcea
(personal communication). If P is a polynomial whose degree at zero is k, we may recover its
leading homogeneous part hom(P ) by

hom(P )(y) = lim
λ→∞

λkP (λ−1y) .

The limit is uniform as y varies over compact sets. Indeed, monomials of degree k are invariant
under the scaling on the right-hand side, while monomials of degree k + j scale be λ−j , uniformly
over compact sets.

Apply this with P (·) = A(x + ·) and y + tu in place of y to see that for fixed x,y and u,

a(y + tu) = lim
λ→∞

λkA(x + λ−1(y + tu))

uniformly as t varies over compact sub-intervals of R. Because A is hyperbolic in direction u, for
any fixed λ, all the zeros of this polynomial in t are real. Hurwitz’ theorem on the continuity of
zeros [Con78, Corollary 2.6] says that a limit, uniformly on bounded intervals, of polynomials having
all real zeros will either have all real zeros or vanish identically. The limit, a(y + tu) has degree
k ≥ 1; it does not vanish identically and therefore it has all real zeros. This shows a to be hyperbolic
in direction u. �

Definition 2.9 (family of cones in the homogeneous case). Let A be a hyperbolic homogeneous
polynomial, let B be a cone of hyperbolicity for A. If A(x) = 0, define

KA,B(x)

to be the cone of hyperbolicity of hom(A,x) containing B, whose existence we have just proved. If
A(x) 6= 0 we define KA,B(x) to be all of Rd.

As an example of a hyperbolic polynomial, let S = x2
1 − x2

2 − · · · − x2
d be the standard Lorentian

quadratic. Then Ke1(S) is the Lorentz cone {x : x1 ≥
√
x2

2 + · · ·+ x2
d}. Any quadratic of Lorentizan

signature is obtained from this one by a real linear transformation; we see therefore that for any
Lorentzian quadratic, the boundary of the cone of hyperbolicity is the algebraic tangent cone.

The class of hyperbolic polynomials in a given direction direction v is closed under products,
and Ku(AA′) = Ku(A) ∩Ku(A′). The class contains all linear polynomials not annihilating v and
all real quadratic polynomials p of Lorentzian signature for which p(v) > 0 (v is time-like).

2.4 Hyperbolicity and semi-continuity for log-Laurent polynomials on the

amoeba boundary

For a function that is not locally homogeneous, there are two natural generalizations of the definition
of hyperbolicity. Both are equivalent to the notion of hyperbolicity already defined, in the case of a
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homogeneous polynomial. Useful features of the two definitions are revealed in the subsequent two
propositions.

Definition 2.10. Let f : Cd → C vanish at z and be holomorphic in a neighborhood of z. We
say that f is strongly hyperbolic at z in direction of the unit vector v̂ if there is an ε > 0 such
that f(z + tv′ + iu) 6= 0 for all real 0 < t < ε, all |v′ − v̂| < ε, and all u ∈ Rd of magnitude at
most ε. In this case we may say that f is strongly hyperbolic at z in direction v̂ with radius ε.
Say that f is weakly hyperbolic in direction v if for every M > 0, there is an ε > 0 such that
f(z + tv + iu) 6= 0 for all real 0 < t|v| < ε, and for all u ∈ Rd of magnitude at most ε additionally
satisfying |u|/(t|v|) ≤M .

Proposition 2.11. Let A = hom(f, z). Then A is hyperbolic in direction u if and only if f is
weakly hyperbolic in direction u at z.

Proof: The homogeneous polynomial A fails to be hyperbolic at in direction u if and only if there
is some real y such that A(u+ iy) = 0. By Lemma 2.4, this happens if and only if f(z+wn) = 0 for
some sequence {wn} converging to 0 with wn/wn converging to (u+ iy)/|u+ iy|. This is equivalent
to failure of weak hyperbolicity of f at z in direction u. �

Remark. It is immediate from the definition that strong hyperbolicity is a neighborhood property:
if f is strongly hyperbolic at x+ iy in direction v̂ with radius ε, then for |y′−y| < ε and |v̂′− v̂| < ε,
f is strongly hyperbolic at x + iy′ in direction v̂′ with direction ε −max{|y′ − y|, |v′ − v̂|}. Weak
hyperbolicity of f at z in direction v extends to a neighborhood of v by Propositions 2.7 and 2.11.
Extending weak hyperbolicity to neighboring z is much trickier.

Proposition 2.12. Let F be a Laurent polynomial in d-variables. Suppose that B is a component of
amoeba(F ) and x ∈ ∂B, so that f := F ◦exp vanishes at some point x+iy. Let f := hom(f,x+iy)
denote the leading homogeneous part of f(x + iy + ·). Then f is strongly hyperbolic at x + iy, some
complex scalar multiple of f is real and hyperbolic, and some cone of hyperbolicity Ku(f) contains
tanx(B).

Proof: Strong hyperbolicity of f in any direction u ∈ tanx(B) follows from the definition of
the amoeba. Strong hyperbolicity is stronger than weak hyperbolicity, hence hyperbolicity of f in
direction u follows from Proposition 2.11. The vector u ∈ tanx(B) is arbitrary, whence Ku(f) ⊇
tanx(B). To see that some multiple of f is real, let u be any real vector in tanx(B), let m denote
the degree of f , and let γ denote the coefficient of the zm term of A(fu + y). Then γ is the degree
m coefficient of f(zu), hence is nonzero and does not depend on y. For any fixed y, the fact that
f(zu+y) has all real roots implies that the monic polynomial γ−1f(zu+y) has all real coefficients.
�

Definition 2.13 (hyperbolicity and normal cones at a point of Vf). Let F be a Laurent
polynomial, B a component of Rd \ amoeba(F ), and Z = exp(x + iy) ∈ Vf with x ∈ ∂B. We let
f := F ◦ exp and let

Kf,B(Z) := Ku(hom(f,x + iy)) , (2.5)
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denote the (open) cone of hyperbolicity of f := hom(f,x + iy) that contains B, whose existence is
guaranteed by Proposition 2.12. We also define the normal cone

N∗(Z) := (N∗)f,B(Z) = (Kf,B(Z))∗ . (2.6)

We see immediately from Proposition 2.12 that

Kf,B(Z) ⊇ tanx(B) (2.7)

and hence
N∗(Z) ⊆ N∗

x(B) .

In order to produce deformations, we will need to know that the cones Kf,B(Z) vary semi-
continuously as Z varies over the torus exp(x + iRd). We have seen already that all of these cones
contain tanx(B). What is needed, therefore, is an argument showing that Kf,B(Z′) contains any
u ∈ Kf,B(Z) when Z′ is sufficiently close to Z and u /∈ tanx(B). In fact, not every polynomial
admits a semi-continuous choice of tangent subcone; a counterexample is xy + z3. However, in the
case where x ∈ ∂B, we are able to use strong hyperbolicity in directions v ∈ tanx(B) to prove
semi-continuity even outside of tanx(B). The main result of this section is exactly such an analogue
of Proposition 2.8:

Theorem 2.14. Suppose that an analytic function f is strongly hyperbolic in direction v at the
point z = x + iy. Let f := hom(f, z). Let u ∈ Kv(f) be any point in the cone of hyperbolicity of f
containing v. Then f is strongly hyperbolic in direction αv + (1− α)u for every 0 ≤ α ≤ 1.

Corollary 2.15.

(i) If B is a component of amoeba(F )c and x ∈ ∂B, then Kf,B(Z) is semi-continuous in Z as
y varies with Z = exp(x + iy), meaning that Kf,B(Z) ⊆ lim infZ′ Kf,B(Z′).

(ii) If A is a homogeneous polynomial and B is a cone of hyperbolicity for A, then KA,B(y) is
semi-continuous in y.

Proof: Pick any v ∈ tanx(B). The function f is strongly hyperbolic in direction v, hence by
Theorem 2.14, it is strongly hyperbolic at x + iy in every direction u ∈ Kv(f). Because strong
hyperbolicity is a neighborhood property, it follows that for every y′ in some neighborhood of y,
some cone of hyperbolicity of f contains Kv(f). All these cones contain v, hence these are the
cones Kf,B(Z′) (with Z′ := exp(x + iy′)), and hence all these cones contain Kf,B(Z). The proof
in the homogeneous case is analogous, again because each a := hom(A,y) is strongly hyperbolic in
direction v for any v ∈ B. �

Proof of Theorem 2.14: The proof is based on a technique of G̊arding [G̊ar50, Theorem H 5.4.4]
that is used in the proof of [ABG70, Lemma 3.22]. Let f be strongly hyperbolic at x+iy in direction
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v with radius ε and choose any u ∈ Kv(f). For the remainder of this argument, we assume that y′

and v̂′ satisfy
|y′ − y|, |v̂′ − v̂| < ε

2
;

a consequence is that f is strongly hyperbolic in direction v̂′ at x + iy′ with radius ε/2. For any
b ∈ Rd, if s is purely imaginary with |s||b| < ε/2, then the imaginary vector sb+ i(y′−y) will have
magnitude less than ε. By hypothesis, when 0 < t < ε, the function

s 7→ f(x + iy′ + sb + tv̂′) (2.8)

will therefore be nonzero.

As the complex argument s tends to zero, there is an expansion

f(x + iy + s(αv̂′ + (1− α)u)) = smf(αv̂′ + (1− α)u) + sm+1B(α, s)

where B is analytic. The homogeneous function f does not vanish on the convex hull of u and the
(ε/2)-ball about v̂, hence |f(αv̂′+(1−α)u)| is uniformly bounded away from zero for α ∈ [0, 1] and
|v̂′ − v̂| ≤ ε/2. It follows that for a sufficiently small δ (which we take also to be less than ε), the
function

s 7→ f(x + iy′ + s(αv̂′ + (1− α)u) + tv̂′)

has exactly m roots bounded in absolute value by δ, as long as |y′ − y| and t are both bounded in
magnitude by δ. Once 2δ|αv̂′+(1−α)u| < ε for all 0 ≤ α ≤ 1, then, taking b = αv̂′+(1−α)u in (2.8),
we see that these m roots cannot be purely imaginary, and their real parts must therefore retain the
same sign as α, β and y′ vary. When α = 1, these are the m roots in s of f(x + iy′ + (s+ t)v̂′), so
the real parts are t less than the real parts of the roots of f(x + iy′ + sv̂′) which are all negative by
strong hyperbolicity of f at x + iy′ in direction v̂′. We conclude that for all positive real s in the
interval 0 < s < δ, the function f(x + iy′ + s(αv̂′ + (1− α)u)) does not vanish, finishing the proof
of strong hyperbolicity with neighborhood size δ, for any α ∈ [0, 1]. �

Corollary 2.16. Let F be a Laurent polynomial and f := F ◦ exp. Let x ∈ ∂B for some component
B of amoeba(F )c. Let θ be a continuous unit section of Kf,B(exp(x + i·)). In other words, θ :
(R/(2πZ))d → Sd−1 is continuous and θ(y) ∈ Kf,B(exp(x + iy)) for each y. Then there is some
ε0 > 0 such that for all 0 < ε < ε0, f(x + iy + εθ(y)) 6= 0.

Proof: For each y, let ε(y) be a radius of strong hyperbolicity for f at x + iy in direction θ(y).
Choosing a neighborhood N (y) such that |θ(y′) − θ(y)| < ε(y)/2 when y′ ∈ N (y), we see that
ε(y)/2 is a radius of strong hyperbolicity for f at x + iy′ for any y′ ∈ N (y). Covering the
compact set (R/(2πZ))d with finitely many neighborhoods N (y(1)), . . . ,N (y(n)), we may choose
ε0 = minn ε(y(n)). �
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Examples and counterexamples

It is important to understand how semi-continuity may fall short of continuity. This is illustrated in
the following examples. To avoid misleading you with the pictures, we note that all of the upcoming
figures show complex lines in C2, but that for obvious dimensional reasons, only the intersection
with the R× R subspace is shown.

Example 2.17 (cones drop down on a substratum). Let F = L1L2 = (3−X−2Y )(3−2X−Y ).
This differs from figure 6 in that now l2 also passes through (1, 1). However, since L2 in this example
is the inversion of L2 in example 2.19, the amoeba is the same as in example 2.19. We will see
that the cone K(Z) drops discontinuously as Z → (1, 1), in contrast to example 2.19. The subset of

(1,1)

L

L2

1

Figure 5: the zero set of the function L1L2 := (3−X − 2Y )(3− 2X − Y )

VF lying in ReLog−1(B) is the union of two rays {(Y − 1) = −(X − 1)/2 : X ≤ 0} ∪ {(Y − 1) =
−2(X − 1) : X ≥ 0} with the common endpoint (1, 1). For any point Z in this set other than (1, 1),
the cone K(Z) is equal to tanlog ZB which is a halfspace. For Z = (1, 1), the cone K(Z) is still equal
to tanlog Z(B), but now this is a proper cone bounded by rays with slope −1/2 and −2. This cone
is the intersection of the two halfspaces that are possible values of the cone at nearby points, thus
K(1, 1) is equal to the lim inf of K(Z) for nearby Z, but there is a discontinuity at (1, 1).

Compare this to example 2.19. Here, VF ∩ ReLog−1(B) is the union of two rays with different
endpoints (1, 1) and (−1,−1) and K(Z) is continuous, being constant on each ray and equal to a
different halfspace on each ray.

The containment tanx(B) ⊆ Kf,B(Z) for Z = exp(x + iy) ∈ Vf may be strict. We will see later
that this causes a headache, so we formulate a property allowing us to bypass this trouble in some
cases.
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Definition 2.18. Say that x is a well covered point of ∂B if Kf,B(Z) = tanx(B) for some Z =
exp(x + iy).

We now give two examples of points that are not well covered.

Example 2.19 (two lines with ghost intersection). Let F = L1L2 = (3−X−2Y )(3+2X+Y ).
The variety VF is shown on the left of figure 6. Its amoeba is identical to the amoeba on the right of
figure 4. Indeed, it is the union of amoeba(3−X−2Y ) and amoeba(3+2X+Y ), the latter of which
is identical to amoeba(3 − 2X − Y ) because the amoeba of F (−X,−Y ) is the same as the amoeba
of F (X,Y ). The component B of Rd \ amoeba(F ) containing the negative quadrant corresponds to

(1,1)

L

L

1

2

(−1,−1)

(a) VF

B

(b) a component of amoeba(F )

Figure 6: the zero set of (3−X − 2Y )(3 + 2X + Y ) from example 2.19 and the OPS component

the ordinary power series. An enlargement of this component is shown on the right of figure 6. For
x 6= (0, 0) ∈ ∂B, the only point Z = exp(x + iy) of Vf is the real point Z = ± exp(x), the positive
point being chosen for the part of ∂B in the second quadrant and the negative point for the part of
∂B in the fourth quadrant. In either case, K(Z) is equal to the half space tanx(B).

On the other hand, when x = (0, 0), the linearization of f at x is just `1`2 := (X+2Y )(2X+Y ).
The zero set of which contains the two rays forming the boundary of

tanx(B) = {(u, v) ∈ R2 : 2u+ v < 0 and u+ 2v < 0} .

There are two points Z ∈ VF in ReLog−1(0, 0), namely (1, 1) and (−1,−1). The first is in VL1

and the second is in VL2 . The cone K(1, 1) is the halfspace {(u, v) ∈ R2 : u + 2v < 0}, while the
cone K(−1,−1) is the halfspace {(u, v) ∈ R2 : 2u + v < 0}. Both of these cones stricly contain the
cone tanx(B). The term “ghost intersection” refers to the fact that the two curves ReLogVL1 and
ReLogVL2 intersect at (0, 0) but the lines VL1 and VL2 have different imaginary parts and have no
intersection on the unit torus (though they do intersect at (−3, 3)).

17



Next we include an example which is the closest we can get in two dimensions to the amoeba of
a cone point (cone points occur only in dimensions three and higher).

Example 2.20 (critical set has large intersection with a torus). Let F = 1−
√

1/2(1−X)Y −
XY 2 be the denominator for the generating function for a one-dimensional Hadamard quantum
random walk (see [BP07]). The component B of Rd \ amoeba(F ) corresponding to the ordinary
power series is that component of the complement of the shaded region in figure 7 which contains
the negative quadrant.

Figure 7: the amoeba for F = 1− (1−X)Y/
√

2−XY 2

To illuminate this example a little more, observe that as we go around the boundary of the
amoeba, starting at the origin and leaving to the northwest, the dual cone is a single projective
direction λ ∈ RP1 at every point other than the origin. Parametrizing RP1 by λ = y/x, we see λ
decreasing from c := (1−

√
1/2)/2 to zero as the tentacle goes to infinity, then from 0 to −∞ coming

back down the other side of tentacle and from +∞ to 1 going up and out the northwest tentacle,
and so forth. For each point of ∂(amoeba(F )) other than the origin, there is a unique x ∈ R2 and
y ∈ T 2 with f(x + iy) = 0; the cone K(exp(x + iy)) is equal to the halfspace tanx(B).

On the other hand, when x = (0, 0), the cone tanx(B) is bounded by the two rays λ = c and
λ = 1 − c. This is noted in figure 7 by the arrow matching the interval [c, 1 − c] to the single

18



point at the origin. It is easy to check that if (X,Y ) ∈ VF then |X| = 1 if and only if |Y | = 1.
Thus the intersection of VF with the unit torus is the smooth topological circle parametrized by
{(φ(eiy), eiy) : y ∈ R/(2πZ)}.

As (x, y) varies over this curve, the cone K(eix, eiy) remains a halfspace, the slope of whose
normal varies smoothly between (1+

√
1/2)/2 and (1−

√
1/2)/2 and back. All of these cones strictly

contain tanx(B). Thus the cone tanx(B) is the intersection of the cones {K(Z) : Z ∈ VF ∩ T 2} but
these all strictly contain tanx(B).

2.5 Critical points

It is time to give further examination to the role of xmax. The modulus of the term Z−r in the Cauchy
integral is constant over tori, and among all tori in ReLog−1(B) the infimum of |Z−r| occurs on the
torus ReLog−1(xmax). This already indicates that this torus is a good choice, but we may get some
more intuition from Morse theory. The space V is a Whitney stratified space: a disjoint union
of smooth real manifolds, called strata, that fit together nicely. The axioms for this may be found
in Section 1.2 of part I of [GM88], along with some consequences. We will use Morse theory only as
a guide, quoting precisely one well known result, namely local product structure:

A point p in a k-dimensional stratum S of a stratified space V has a neighborhood
in which V is homeomorphic to some product S ×X.

(2.9)

This is needed only for the proof of second part of Proposition 2.22 below, which in turn is used
only for classifiying critical points when computing examples. According to [GM88], a proof may
be found in mimoegraphed notes of Mather from 1970; it is based on Thom’s Isotopy Lemma which
takes up fifty pages of the same mimeographed notes.

A point Z ∈ V is a critical point for the smooth function h if dh|S vanishes at Z, where S is the
stratum containing Z. Goresky and MacPherson show that in fact such points are the only possible
topological obstacles to lowering the value of h. Taking h = −r̂ · ReLog Z, we see that (i) if there
is no critical point in ReLog−1(xmax) then this torus is in fact not the best chain of integration,
and (ii) if there is a critical point in this torus then we may use this fact to help us compute xmax.
Because we do not give a rigorous development of stratified Morse theory here, we give a definition
of the critical set in terms of cones of hyperbolicity, then indicate the relation to Morse theory.

Definition 2.21 (minimal critical points in direction r). Fix a Laurent polynomial F in d

variables and a component B of of Rd \ amoeba(F ). For a proper direction r, let xmax(r̂) denote
the unique point on ∂B maximizing r̂ ·x and let V1 = V1(r̂) = V1(xmax) denote the intersection of V
with ReLog−1(xmax). Recall the notation N∗(Z) for the dual cone to the cone Kf,B(Z) and define
the set of minimal critical points by

crit(r) := {Z ∈ V1(r) : r ∈ N∗(Z)} .
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A logarithmic version of crit is

W(r) := {y ∈ TR : exp(xmax + iy) ∈ crit(r)} .

The term “minimal” refers to the fact that ReLog Z ∈ ∂B and following the terminology of [PW02;
PW04].

Proposition 2.22. Fix a Laurent polynomial F in d variables, let f := F ◦ exp, and let B be a
component of Rd \ amoeba(F ). If Z ∈ V1(r) is not in crit(r) then there is some v ∈ Kf,B(Z) with
r̂ · v = 1. Conversely, if Z ∈ crit(r) then Z is a critical point for the function φ := r̂ · log Z on the
stratified space V.

Proof: If Z /∈ crit(r) then by definition of the dual cone, the maximum of r̂ · x on tanx(B) is
strictly positive. Letting v′ denote a vector in tanx(B) for which r · x > 0, we may take v to be the
appropriate multiple of v′.

For the converse, suppose that Z is not a critical point of the function φ on V. Then z := log Z
is not a critical point for f := F ◦ exp on logV; denoting d(φ ◦ exp) by r, we see, by definition of
criticality in the stratified sense, that r|S is not identically zero, where S is the stratum of logV in
which z lies.

We claim that the linear space Tz(S) is what [ABG70] call a lineality for the function f◦ :=
hom(f, z), meaning that f◦(w + w′) = f◦(w) for any w′ ∈ Tz(S) and any w ∈ Cd. To see this, for
any w ∈ Cd, let w = w‖+w⊥ denote the decomposition into an element w‖ ∈ TX(z) and an element
in the complementary space TX(z)⊥. Write f as a power series

∑
crwr

‖ in w‖ with coefficients that
are power series in w⊥. The coefficients cr(0) vanish for |r| < m := deg(f, z). By (2.9), the degree
of vanishing of f at any point of S is the same, hence cr(w⊥) vanish identically for r < m. This
implies that the only degree m terms in the power series for f near z are those of degree m in w‖,
which implies that f◦(w) depends only on w‖, proving the claim.

By Proposition 2.12 we know that f◦ is hyperbolic. By [ABG70, Lemma 3.52], the real part
of the linear space TX(S) is in the edge of cKf,B(Z), meaning that Kf,B(Z) is invariant under
translation by vectors in TX(S). Any real hyperplane not containing the edge of a cone intersects
the interior of the cone. Applying this to the real hyperplane {x : r · x = 0}, (recall by assumption
of noncriticality that this hyperplane does not contain TX(S)), we conclude that there is some point
p ∈ cKf,B(Z) with r · p = 0. This implies Z /∈ crit(r). �

Showing that crit(r) is contained in the set of critical points of the logarithmic gradient enables us
to use algebraic computational methods, cf. the Aztec Diamond computations in Section 4.1. Some
of this algebraic apparatus is detailed further in [PW04; BP04]; for the present purpose, the following
observations will suffice. When Z is a smooth point of VF , the homogeneous part f of f := F ◦ exp
is a linear map vanishing on the tangent space to f at log Z. Hence the cone of hyperbolicity of f
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is an open halfspace, and the dual is the normal vector to this halfspace, which is the logarithmic
normal to VF at Z. (Thus in some sense, the dual cone N∗ is a set-valued generalization of the
logarthmic gradient map.) To compute the smooth points of crit(r), we observe that the gradient of
r · log Z is (r1/Z1), . . . , (rd/Zd). Thus, for Z to be a smooth critical point, on the divisor {Hj = 0}
we must have

Hj = 0 ;(
Z1
∂Hj

∂Z1
, . . . , Zd

∂Hj

∂Zd

)
‖ r . (2.10)

Similarly, for a stratum which is the transverse intersection of k smooth divisors {Hj : 1 ≤ j ≤ k}
with logarithmic normals ∇logHj , the equations for critical points in direction r are H1 = · · · =
Hk = 0 and

r ∈ 〈∇logH1, . . . ,∇logHk〉 , (2.11)

the linear span of the k logarithmic gradients. Generically, this defines a zero-dimensional variety,
meaning that the number of solutions is finite and nonzero.

For functions f and g, define the notation

f = oexp(g) ⇔ |f(x)| ≤ e−βxg(x)

for some β > 0 and all sufficiently large x.

Proposition 2.23. Let F be a Laurent polynomial and
∑

r arZ
r be a Laurent series for 1/F ,

convergent on a domain ReLog−1(B) where B is a component of amoeba(F ). Let −B∗ denote the
negative convex dual of the set B.

(i) If r /∈ −B∗ then ar = O(e−β|r|) for any β.

(ii) If x ∈ B then ar = oexp(e−r·x) for all r.

(iii) If x ∈ ∂B but the dot product with r is not maximized over B at x. then ar = oexp(e−r·x).

(iv) If r is proper and crit(r) is empty, then ar = oexp(e−r·x).

Proof: The first three statements follow directly from the integral formula (2.1) by taking x · r
to +∞ in (i) and taking x′ · r > x + r in (ii) and (iii). The fourth conclusion is an immediate
consequence of something we will prove in Section 5: under the hypotheses, the contour of integration
in (2.1) may be deformed so that Re {−r · y} < −r · x for every y on the contour. �
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2.6 Quadratic forms and their duals

Let S denote the standard Lorentzian quadratic x2
1− x2

2− · · · − x2
d. Any real quadratic form A with

signature (1, d) may be written as S ◦M−1 for some invertible linear map M . We now define the
dual quadratic form A∗ in two ways. The classical definition is that A∗(r) is the reciprocal of the
unique critical value of A on the set r(1) := {x : r · x = 1}. It is easy to compute the dual S∗ to
S. The point x is critical for S|r(1) if and only if ∇S||r, that is, if and only if x||(r1,−r2, . . . ,−rd).
Thus the unique critical point of S|r(1) is (r1,−r2, . . . ,−rd)/(r21 − r22 − · · · − r2d) and the reciprocal
of S there is S∗(r) := r21 − r22 − · · · − r2d. In other words, S∗ in the dual basis {r1, . . . , rd} looks
exactly like S in the original basis {x1, . . . , xd}. For the second definition, note any real quadratic
form A with signature (1, d) may be written as S ◦M−1 for some invertible real linear map M . Let
M∗ denote the adjoint to M , that is, < M∗r,x >=< r,Mx >; in our coordinates, this is just the
transpose. We see from the diagram below that Mx is a critical point for A|r(1) if and only if x is a
critical point for S|(S∗r)∗ , leading to the alternative definition A∗(r) = S∗(M∗r).

For computation, it is helpful to compute the matrix for the quadratic form A∗. We have

A(x) = S(M−1x) = xT (M−1)TDM−1x

whereD is the diagonal matrix with entries (1,−1, . . . ,−1). Thus the matrix for A is (M−1)TDM−1.
On the other hand, since A∗(r) = S∗(MT r) = rMDMT rT , we see that the matrix for A∗ is MDMT .
In other words, the matrices for the quadratic forms A and A∗, are inverse to each other.

Our definition of the dual quadratic is coordinate free in the following sense. Let A = S ◦M−1 as
above, and let v = (v1, . . . , vd) denote coordinates in which A is represented by the standard form;
in other words, v = M−1x and

A = S(M−1(x)) = v2
1 − v2

2 − · · · − v2
d .

Suppose that an element L ∈ (Rd)∗ is represented by (`1, . . . , `d) in v-coordinates, that is, L
maps

∑
ajvj to

∑
aj`j . Then Lx = (`1, . . . `d)M−1x, that is, L is represented by the row vec-

tor (`1, . . . , `d)M−1 with respect to the x-basis. Computing in the x-basis, using this row vector for
L and the representation MDMT for A computed above, we have

A∗(L,L) = (`1, . . . `d)M−1
(
M DMT

)
(M−1)T (`1, . . . , `d)T

= (`1, . . . `d)D(`1, . . . `d)T .

In the v coordinates, A = S and A∗ = S∗, whence A∗(L,L) = `21 − `22 − · · · − `2d and we see that
dualization indeed commutes with linear coordinate changes.

Dual quadratics are important because they and their partial derivatives appear in the asymptotic
formulae for ar given in Theorems 3.7, 3.9 and 6.9. In order to interpret such asymptotic estimates
and series, it is good to know the size of A∗ and its partial derivatives. It is easy to see that if F
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is homogeneous of degree n then ∂F/∂rj is homogeneous of degree n − 1. It follows that for any
multi-index m ∈ (Z+)d, the m-partial derivative of (A∗)α is homogeneous of degree 2α − |m| and
hence that (

∂

∂r

)m

[S∗(r)α] = O
(
|r|2α−|m|

)
(2.12)

The upper estimate is sharp, in the sense that the left-hand side is Θ(|r|2α−|m|) except on a subset
of positive codimension where the m-partial derivative may vanish.

2.7 Linearizations

The Fourier integral in (2.1) turns out to be much easier to evaluate if the function f in the de-
nominator is replaced by its leading homogenous part. Unfortunately, if q is a polynomial with
homogenous part q̃, then the fact that q − q̃ is of smaller order at the origin than q̃ does not imply
that q ∼ q̃, which would be necessary for a straightforward estimate of q−1 by q̃−1. However, on
any cone where q̃ does not vanish, we do have such an estimate, and in fact a complete asymptotic
expansion of q−s in decreasing powers of q̃.

Lemma 2.24 (expansion in decreasing powers of one function). Suppose that q(x) = q̃(x)+
R(x), where q̃ is homogeneous of degree h, and R is analytic in a neighborhood of the origin with
R(x) = O(|x|h+1). Let K be any closed cone on which q̃ does not vanish. Then on some neighborhood
of the origin in K, q does not vanish and there is an expansion

q(x)−s =
∞∑

n=0

q̃(x)−s−n

 ∑
|m|≥n(h+1)

c(m, n)xm

 . (2.13)

Furthermore,
q(x)−s −

∑
|m|−hn<N

c(m, n)xmq̃(x)−s−n = O(|x|−hs+N ) (2.14)

on K as x → 0. An expansion of the same type is possible for p(x)q(x)−s whenever p is analytic in
a neighborhood of the origin.

Proof: Let R(x) =
∑

|m|≥h+1 b(m)xm be a power series for R absolutely convergent in some ball
Bε centered at the origin. Let

M :=
sup|x|∈Bε

∑
|b(m)||x|m

inf |x|∈∂Bε∩K q̃(x)
.

Then by homogeneity, ∑
m

|b(m)xm|
|q̃(x)|

≤ 1/2
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on the ε/(2M) ball. The binomial expansion (1 + u)−s =
∑

n≥0

(−s
n

)
un converges for |u| < 1 and in

particular for |U | = 1/2. Therefore, plugging in
∑

m b(m)xm/q̃(x) in for u yields a series(
1 +

R(x)
q̃(x)

)−s

=
∑
n≥0

(
−s
n

)(∑
m

b(m)
xm

q̃(x)

)n

that converges on Bε/(2M) ∩K. Multiply through by q̃−s to get (2.13). Convergence on any neigh-
borhood of the origin implies the estimate (2.14). �

3 Results

3.1 Cone point hypotheses and preliminary results

We are interested in the asymptotics of the power series coefficients ar of a rational generating
function F0, in cases where there is a cone singularity and previous known results do not apply.
Among the properties of F0 discussed in Section 2 there are a number of hypotheses and notations
that will arise repeatedly. So as to be able to refer to these en masse, we state them here.

Hypotheses 3.1 (cone point hypotheses).

1. Let F be the product P0F
s1
1 · · ·F sη

p of an analytic function P0 with nonzero real powers of
Laurent polynomials Fj with no common factor. Assume without loss of generality that sj /∈ Z+

(since otherwise we may absorb F sj

j into P0).

2. Let B be a component of the complement of amoeba(
∏η

j=1 Fj) so that F has a Laurent series
expansion on B.

3. Let r be a dual vector in the dual cone −B∗ and assume r is proper with r · x maximized at
xmax.

4. Assume that W(r) is finite and nonempty. Let w ∈ TR be an element of W(r) and denote

z := xmax + iw , Z := exp(z) .

The remaining assumptions enforce a particular set of degrees for the denominator, namely a
real power of a quadratic together with positive integer powers of smooth divisors.

5. With Z fixed, we let P be the product of P0 with all Fj such that Fj(Z) 6= 0 and collect terms,
writing

F =
P

Qs
∏k

j=1H
nj

j

.

Denote q := Q ◦ exp, hj := Hj ◦ exp, p := P ◦ exp, and denote the homogeneous parts of q and
hj by q̃ := hom(q, z) and h̃j := hom(hj , z).
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6. Assume that q̃ is an irreducible quadratic with signature (1,−1, . . .− 1) and let M be a linear
map such that q̃ = S ◦ M−1. We allow s = 0, in which case there is no quadratic factor
vanishing at z.

7. Assume that h̃j are linear and that nj are a positive integers.

Remark. We lose little generality in assuming W(r) is non-empty in clause 4 above, for the following
reason. If W(r) is empty, then part (iv) of Proposition 2.23 guarantees that |ar| is less than x−r by
a factor that grows exponentially with |r|.

In the Aztec and cube grove examples, at the point Z of interest, s = 1, k = 1, n1 = 1, in other
words, the denominator of F is a product of (the first power of) a quadratic and a smooth factor.
In the QRW example, η = 2 but k = 1 (at each of the two cone points, only one of the other factors
vanishes). There are contributions at the cone points (where s = k = n1 = 1) but they turn out
to be dominated by the contributions at smooth points (s = 0). In the superballot example, η = 2
with F1 = 1 − 4xz, F2 = 1 − x − y − z + 4xyz, s1 = −1/2 and s2 = −1. At the cone point,
Z = (1/2, 1/2, 1/2), F2 is quadratic, s = 1, and n1 = 1/2. In the graph polynomial example, η = 1
and s = β.

We extend the expansion in Lemma 2.24 to the generality of the cone point hypotheses as follows.

Lemma 3.2 (general cone point expansion). Assume the cone point hypotheses. Let K be any
closed cone on which q̃

∏k
j=1 h̃j is nonvanishing. Then there is some neighborhood of 0 in K such

that for all N ≥ 1 the following estimate holds uniformly:

f(xmax + iw + y) =
∑

m,`,n:|m|−2`−kn<N

c(m, `, n)ymq̃(y)−s−`
k∏

j=1

h̃j(y)−nj−n +O
(
|y|2`+|n|+N

)
.

(3.1)
The sum is finite because c(|m|, `, n) vanishes unless |m| ≥ 3`+ (k + 1)n.

Proof: Apply Lemma 2.24 once with q(x + ·) in place of q, for the given value of s, and once with∏k
j=1 h

nj

j (x + ·) in place of q, setting s = 1. This yields two convergent power series. Multiply the
two series together and multiply as well by the power series for p(x + ·). �

The results in this paper can be summarized as follows. First, ar is well approximated by a
sum of contributions indexed by W(r), these contributions being integrals localized near points
xmax + iw, for w ∈W(r). Secondly, depending on the geometry at xmax + iw, this contribution is
well approximated by a certain explicit funtion of r. The result giving the decomposition as a sum is
stated as Theorem 3.3 below, with the remaining theorems in this section giving the contributions in
various special cases. It should be noted that Theorem 3.3 is like a trade for the proverbial “player
to be named later”, in that it allows us to state a complete set of results even though the meaning
will not be clear until the other results have been stated.

25



Theorem 3.3 (localization). Assume the cone point hypotheses and notations. Then there is a
conical neighborhood N of r in (Rd)∗ and there are chains {Cw : w ∈ W(r0)} defined in the text
surrounding Theorem 5.4 in Section 5 below, such that

ar =
∑

w∈W(r0)

contrib(w) + oexp

(
x−r

max

)
. (3.2)

The estimate is uniform when |r| → ∞ while remaining within N . The summand is defined by

contrib(w) :=
(

1
2πi

)d ∫
Cw
e−r·z p(z)

q(z)s
∏k

j=1 hj(z)nj

dz . (3.3)

Proof: This is an immediate consequence of Corollary 5.5 below. �

3.2 Asymptotic contributions from cone points

Next, we identify the contributions contrib(w). In the case where w is a smooth point (s =
0, k = 1, n1 = 1), these are already known. A formula involving the Hessian determinant for a
parametrization of the singular variety V of F was given in [PW02, Theorem 3.5], which was then
given in more canonical terms in [BBP08].

Theorem 3.4 ([PW02; BBP08]). Assume the cone point hypotheses and suppose that s = 0, k = 1
and n1 = 1, so Z is a simple pole for F . Let

∇log := ∇f(z) =
(
x1

∂f

∂x1
, . . . , xd

∂f

∂xd

)
denote the gradient of H := H1 in logarithmic coordinates and let κ = κ(z) denote the (possibly
complex) Gaussian curvature of Vf at z. Suppose that κ 6= 0. Letting | · | denote the euclidean norm,
we have:

contrib(w) ∼ (2π |r|)(1−d)/2 p(z)√
κ(z)|∇log|

z−r

The estimate holds uniformly over a sufficiently small neighborhood of r such that: (i) the cone point
hypotheses are satisfied, (ii) κ 6= 0, and (iii) the point Z = Z(r) varies smoothly. The square root
should be taken as the product of the principal square roots of the eigenvalues of the Gauss map. �

In the case where w is on the transverse intersection of smooth (local) divisors, formulae are
also already known. There are a number of special cases, depending on the dimension of the space,
the dimension of the intersection, and the number of intersecting divisors. We will not need these
results in this paper (we need only the upper bound in Lemma 5.9) but statements may be found
in [PW04, Theorems 3.1, 3.3, 3.6, 3.9, 3.11] and in [BP04]. The novel results in this paper concern
the case at a cone point, that is, where s 6= 0. Let N∗

x(B) denote the dual to the tangent cone
tanx(B). The cone N∗

x(B) will have nonempty interior. By contrast, in example 2.19 the cone
tanx(B) is always a half space and N∗

x(B) is always a single ray.
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Definition 3.5 (obstruction). Assume the cone point hypotheses and notations. Say that r is
non-obstructed if r is in the interior of N∗

x(B) and if for any x in the boundary of the cone of
hyperbolicity of A, the cone KA,B(x) contains a vector v with r · v > 0.

This condition is not transparent, so we pause to discuss it. First, note that the non-obstruction
condition will turn out to be satisfied for all r in the interior of N∗

x(B) when k = 0 (locally, the
denominator of F is an irreducible quadratic). To see this, recall from Proposition 2.7 that the cone
of hyperbolicity of q̃ is a component of its cone of positivity. At any point v on the boundary of
this cone, other than the origin, q̃ is smooth and hence hom(q̃,v) is linear, vanishing on the tangent
plane at v to {q̃ = 0}. The normals to these planes are precisely the extreme points of the cone
N∗

x(B). Therefore, for any r in the interior of N∗
x(B), r is not perpendicular to the tangent plane

at to {q̃ = 0} at any point v 6= 0, which implies that r is non-obstructed. An example where there
are obstructed directions interior to N∗

x is as follows.

Example 3.6 (obstruction). Suppose the denominator of F is H := H1H2H3 := (1 − X)(1 −
Y )(1 −XY ). Then h̃ := Cxy(x + y). The cone tan(0,0)(B) is the negative orthant. The dual cone
N∗

x(B) is the positive orthant. The vector r = (1, 1) lies in the interior of the dual cone. Let
x = (t,−t) for some t 6= 0. Then KA,B(x) is the halfspace {(x, y) : x + y < 0} and r · (x, y) is
maximized at zero on this cone.

Secondly, we see that the condition of non-obstruction is not merely technical, but is necessary
for the conclusions we wish to draw. To elaborate, we would like our asymptotics to be uniform
as r varies over the interior of N∗

x(B). Unfortunately, this is not always possible. In the previous
example, if F = 1/H = 1/[(1 −X)(1 − Y )(1 −XY )], then ar = min{r1, r2}. Analytic expressions
for ar will not be uniform as r approaches the diagonal. This is in fact because movement of the
contour of integration in (2.1) will be obstructed, requiring different deformations for r in the positive
quadrant on different sides of the diagonal.

Theorem 3.7 (quadratic, no other factors). Assume the cone point hypotheses 3.1, and suppose
that k = 0, in other words, F = P/Qs with no further factors in the denominator. Assume further
that

s 6= 0,−1,−2, . . . and s 6= d

2
− 1,

d

2
− 2, . . . .

Let c(m, n) be the coefficient of xmq̃(x)−1−n in the expansion (2.13). Let K∗ be any compact subcone
of the interior of N∗. Then, uniformly over r ∈ K∗, there is an expansion

contrib(w) ∼ |M |
22s−1πd/2−1Γ(s)Γ(s+ 1− d/2)

Z−r
∑

n

∑
|m|≥3n

c(m, n)(−1)|m| ∂
m

∂rm

(
q̃∗(r)s+n−d/2

)
.

(3.4)
The series is asymptotic in the following sense. For any N , restricting the series to terms with
|m| − 2n < N yields an approximation whose remainder term is O(|r|2s−d−N ), all of whose terms
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are generically of order |r|2s−d−N+1. If P (Z) 6= 0 then

contrib(w) ∼ P (Z) |M |
22s−1πd/2−1Γ(s)Γ(s+ 1− d/2)

Z−r
[
q̃∗(r)s−d/2

]
. (3.5)

Remark. Comparing to equation 2.12, we see that the remainder terms are no larger than the first
omitted term of (2.12). For a true asymptotic expansion, this should be smaller than the last term
that was not omitted, but in general there may be directions r in which (∂m/∂rm)q̃∗(r)s−d/2 is of
smaller order than |r|2s−d−|m|. This may occur after the first term in the expansion (3.4), though
not in the leading term (3.5). Also, by Theorem 3.3, we may be adding up several of these formulae,
thereby obtaining some cancellation. For example in the case of the Aztec diamond, ar = 0 when∑
rj is odd. This manifests itself in the symmetry F (Z) = F (−Z), and in two cone points at (1, 1, 1)

and (−1,−1,−1). Contributions from the two cone points will sum or cancel according to the parity
of r.

As a corollary, for ease of application, we state the asymptotics in the three variable case for a
single power of Q in the denominator. Theorem 3.7 is proved in Section 6.4, while Corollary 3.8
follows immediately.

Corollary 3.8. Assume the cone point hypotheses with d = 3, k = 0 and s = 1. Let c(m, n) be the
coefficients in the expansion 2.13. Let K∗ be any compact subcone of the interior of N∗, the dual
cone to tanx(B). Then, uniformly over r ∈ K∗, there is an expansion

contrib(w) ∼ |M |
2π

Z−r
∞∑

n=0

∑
|m|=n

c(m, n)
∂m

∂rm

[
q̃∗(r)−1/2

]
. (3.6)

Here, asymptotic development means that if one stops at the term n = N − 1, the remainder term
will be O(|r|−1−N ), while the last term of the summation will be of order |r|−N . In particular, if
P (Z) 6= 0 then

contrib(w) ∼ P (Z) |M |
2π

Z−r
[
q̃∗(r)−1/2

]
(3.7)

uniformly on K∗. �

Remark. Again, the leading term estimate (3.7) is a true asymptotic estimate, while the right-hand
side of (3.6) may vanish for certain m and r.

3.3 The special case of a cone and a plane

Our last main result addresses the simplest case where the are both a quadratic and a linear factor.
The case of a quadratic along with multiple linear factors is also interesting. We address this in
Section 6.5. Because there are a great number of subcases and we have no motivating examples,
we do not state here any theorems about that case, and instead describe in Section 6.5 a number
of results that pertain to this case. In the case of a single factor of each type, in three variables,
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significant simplification of the general computation is possible. The remaining results concern this
special case.

Assume the cone-point hypotheses with d = 3, s = 1 and k = 1. Because k = 1, we drop the
subscript and denote H := H1. We assume also that the linear factor ` := h̃1 of the homogeneous
part of (QH) ◦ exp shares two real, distinct projecive zeros with the quadratic factor q̃, and we
denote these by α1 and α2. The given component B on which the Laurent series

∑
r arZ

r converges
is the intersection B1 ∩B2 of a component of amoeba(Q)c and amoeba(H)c. By hyperbolicity, we
know that the quadratic q̃ is a scalar multiple of a real hyperbolic quadratic; multiplying by −1 if
necessary, we may assume the signature to be (1, 2); in particular, we may write

q̃(λv + w) = λ2 − |w|2

for some v ∈ tanx(B1) and all w ∈ tanx(B1)⊥. The set B1 is a cone over an ellipse E and its dual
−B∗

1 is a component of positivity of the cone q̃∗ = 0. The linear function h̃ may be viewed as a
point of (R3)∗. Figure 8 shows a plot of q̃∗ = 0 and of the point h̃ in (R3)∗. Also shown is the line
of points r for which q̃∗(r, h̃) = 0. These shapes in the projective (r|s|t)-space (RP2)∗ are shown via
their slices at t = 1.

*q  (r,r) >  0 

*q  (r,h) =  0

 

h

Figure 8: the cone N∗ depicted by its slice at t = 1

The assumption that α1, α2 are real implies that the point h̃ lies outside B∗
1 . The normal cone

N∗
x(B) is the convex hull of the normal cone B∗

1 of Q and the normal cone {h̃} of H. This teardrop-
shaped is the entire shape shown in Figure 8. The tangent lines to B∗ from h̃ intersect B∗ in two
projective points, namely those r for which q̃∗(r, h̃) = q̃∗(r, r) = 0. The non-obstructed set is a
disjoint union B∗

1 ∪ E, where the cone E is the non-convex region N∗
x(B) \ B∗

1 . Observe that the
dotted arc in figure 8 is obstructed and thus is in neither B∗

1 nor E, these being the two components
of the non-obstructed set.

To state the final theorem, we must define one more quantity. If A is a homogeneous quadratic
and L is a linear function, define a quantity Res(2) as follows. Let θ denote the form (z dxdy −
y dzdx+x dydz)/(A ·L). The second iterated residue of θ is a 0-form, defined on the two lines α1, α2

where A = L = 0. Because θ is homogeneous of degree zero, its second residue has a common value
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at any affine point in the line αj . We let Res(2) = Res(2)A,L(αj) denote this value. In coordinates, we
have a number of formulae for Res(2), one being

Res(2)(α) =
z

∂A

∂x

∂L

∂y
− ∂A

∂y

∂L

∂x

∣∣∣∣∣∣∣∣
(x,y,z)∈α

. (3.8)

Theorem 3.9 (quadratic and one smooth factor). Assume the cone point hypotheses with
d = 3, s = 1 and k = 1 and let ` denote the linear factor, h̃1 at the point z. Assume p(z) 6= 0
and assume that the two projective solutions α1, α2 to ` = q̃ = 0 are real and distinct, so that the
non-obstructed set N∗ is the union of an elliptic cone B∗

1 and a nonconvex cone E as describd above.

Let q̃∗ denote the dual to the quadratic q̃. Let arctan denote the branch of the arctangent mapping
(0,∞) to (0, π/2), while mapping (−∞, 0) to (π/2, π) rather than to (−π/2, 0). Then

contrib(w) = Z−rP (Z)

[
Res(2)

π
arctan

(√
q̃∗(r, r)

√
−q̃∗(`, `)

q̃∗(r, `)

)
+R

]
(3.9)

where the remainder term satisfies R = O(|r|−1) uniformly as r ranges over compact subcones of
B∗

1 . On the other hand, we have the estimate

contribw = Res(2)P (Z)Z−r +R

where R = O(|r|−1) uniformly as r ranges over compact subcones of E.

4 Five motivating applications

One feature is common to all but one of our applications, namely that 0 is on the boundary of the
amoeba of the denominator of the generating function. In this case, by part (iii) of Proposition 2.23,
the coefficients ar decay exponentially as |r| → ∞ in directions r̂ for which supy∈tan0(B) r̂ · y > 0,
in other words for r /∈ N∗, the dual cone to tan0(B). In such a case, the only significant (not
exponentially decaying) asymptotics are in directions in the dual cone (tan0(B))∗. We therefore
restrict our attention in every case but the superballot example to r ∈ (tan0(B))∗, and consequently,
to xmax = 0.

4.1 Tilings of the Aztec diamond

The model

The Aztec diamond of order n is a union of lattice squares in Z2, whose vertices are the pairs (±i,±j)
with i, j ≥ 1 and i + j = n or n + 1. Thus the order 1 Aztec diamond consists of the four squares
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adjacent to the origin, the order 2 diamond consists of these together with the square centered at
(3/2, 1/2) and its seven images under the symmetries of the lattice rooted at the origin. This was

Figure 9: the Aztec diamond of order 4, tiled by dominoes

defined in [EKLP92], where questions were considered regarding the statistical ensemble of domino
tilings of the Aztec diamonds. A domino tiling of a union of lattice squares is a representation of
the region as the union of 1× 2 or 2× 1 lattice rectangles with disjoint interiors. Figure 9 shows an
example of a domino tiling of an order 4 Aztec diamond. The set of domino tilings of the order n
Aztec diamond has cardinality 2(n

2) [EKLP92]. Let µn be the uniform measure on this set, that is,
the probability measure giving each tiling a probability of 2−(n

2). Limit theorems for characteristics
of µn have been proved, the most notable of which is the Arctic Circle Theorem which states that
outside a (1 + ε) enlargement of the inscribed circle the orientations of the dominos are converging
in probability to a deterministic brick wall pattern, while inside a (1− ε) reduction of the inscribed
circle the measure has positive entropy [JPS98]. Further results of [CEP96] include a new proof and
identify the distributional limit at rescaled locations inside the circle.

Via an algorithm called domino shuffling [Pro03], the following generating function was found.
Color the square centered at (i − 1

2 , j −
1
2 ) in the Aztec diamond of order n black if i + j + n is

odd and white if i + j + n is even. A domino is said to be northgoing if its white square is the
(0, 1)-translate of its black square. For i + j + n odd, let p(i, j, n) denote the probability that the
domino covering the square centered at (i − 1

2 , j −
1
2 ) is northgoing. Then the generating function

for the quantities p(i, j, n) is given by (1.3), which we recall here:

F :=
∑

p(i, j, n)XiY jZn =
Z/2

(1− Y Z)[1− (X +X−1 + Y + Y −1)Z/2 + Z2]
. (1.3)

The sum is taken over n ≥ 1 and −n < i, j ≤ n with |i − 1
2 | + |j − 1

2 | ≤ n and i + j + n − 1 ≡ 0
modulo 2. The first results on these probabilities were derived using bijections and other algebraic
combinatorial methods [EKLP92]. The formula (1.3) for F was first proved in [JPS98].

Related to the probabilities p(i, j, n) are the creation rates c(i, j, n) := 2(p(i, j, n) − p(i, j −
1, n−1)). Their generating function is the same except that the factor (1−Y Z) in the denominator
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is omitted:
Fcreate =

Z/2
1− (X +X−1 + Y + Y −1)Z/2 + Z2

.

The creation rates have an interpretation via the shuffling algorithm [GIP96]. In [CEP96], this
generating function is related to Krawtchouk polynomials, and the Arctic Circle limit theorem
is derived by combining some known facts about these polynomials with contour integrals that
determine coefficients of these polynomials [CEP96]. The method of contour integration used there
is in some sense a special case of the contour methods in the present paper, tailored to the particular
case in which one need compute coefficients only of the relatively simple expression (1−Z)n−b(1+Z)b.

It was guessed that the asymptotics of the creation rates c(i, j, n) could be derived directly
from the generating function F along the methods of [PW02; PW04], and some progress along these
lines, was made by Cohn and Pemantle in an unpublished manuscript. Via resolution of singularities,
they reduce the Cauchy integral for Fcreate to one in which the denominator factors into irreducible,
smooth divisors. The phase function in (1.8) becomes e−φ(x) for some φ that is more complicated
that r · x. Technical difficulties with the phase function and the topology of the integral prevented
Cohn and Pemantle from completing their proof.

The amoeba and normal cone

We apply the results of Section 3. An outline is as follows. After verifying the cone point hypotheses,
the localization Theorem 3.3 computes ar asymptotically as a finite sum∑

w∈W(r)

contrib(w) .

The point (0, 0, 0) is on the boundary of the component B and is in fact a quadratic cone point. We
will compute its normal cone N∗ which is the teardrop shaped region shown in figure 3.3. Outside of
N∗, the probabilities decay exponentially. When r ∈ ∂N∗ we cannot say anything, but for r interior
to N∗ we will obtain, via Theorem 3.9, a 2-periodic contribution at the critical points ±(1, 1, 1).
The leading term asymptotics (4.2) will follow once we show all other contributions to be negligible.

Corresponding to the notation in the cone point hypotheses, we write F = P/(QH) where
Q := 1− (X +X−1 + Y + Y −1)Z/2 + Z2, H := 1− Y Z and P := Z/2. Using a computer algebra
system to compute a Gröbner basis for {Q,QX , QY , QZ}, we find that VQ is singular precisely
at Z = ±(1, 1, 1). Letting q := Q ◦ exp and q̃ := hom(q,0), we find at the point (1, 1, 1) that
q̃(x, y, z) = z2− 1

2x
2− 1

2y
2; the computations for the point (−1,−1,−1) are analogous and are done

at the end of the discussion. We see that near (1, 1, 1), Q is an irreducible quadratic, while h̃ is linear,
with linearization h̃(x, y, z) = y + z. To specify B, observe that the components of amoeba(f)c are
intersections of complements of amoeba(Q) with components of the complement of amoeba(H).
A glance at the series

∑
p(i, j, n)XiY jZn shows that the series is convergent for any fixed X and
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Y as long as Z is sufficiently small. Hence the component B of the complement of amoeba(QH)
corresponding to this series is the one containing (0, 0,−λ) for sufficiently large λ. The amoeba of
1 − Y Z is just the line y = −z in log space, and the component of amoeba(H) containing the ray
(0, 0,−λ) is the halfspace B1 := {y+ z < 0}. Turning to Q, we recall from [GKZ94, Chapter 6] that
the components of the complement of the amoeba(Q) correspond to vertices of the Newton polytope
P(Q). The newton polytope is an octahedron with vertices (±1, 0, 1), (0,±1, 1) and and (0, 0, 1± 1).
There is one vertex, namely (0, 0, 0), for which (0, 0,−λ) is in the interior of the normal cone. Let
B2 to be the component of amoeba(Q)c containing a translate of this cone. Let B = B1 ∩B2. This
completes (1)–(2) of the cone point hypotheses.

As discussed at the beginning of Section 4, in the case where 0 ∈ ∂B, we will be chiefly interested
in asymptotics in directions r for which r·x ≤ 0 for x ∈ B. Let us verify that 0 ∈ ∂B. Let Z = UXY .
Observe that if X,Y, U < 1 then the series (1.3) is absolutely convergent. Sending U,X, Y to 1 sends
(X,Y, Z) to (1, 1, 1) which is therefore on the boundary of the domain of convergence of (1.3); hence
0 = log(1, 1, 1) is on the boundary of amoeba(QH). We now compute N∗ := −(K q̃·h̃,B)∗. This was
done in general in Section 3.3, so to complete the description, we need merely to identify the dual
quadratic q̃∗ and the dual projective pont h̃. The quadratic q̃ is already diagonal: q̃ = z2−(x2+y2)/2;
hence q̃∗ = (1/2)t2 − r2 − s2. Letting (r̂,̂ ,̂ ) be the unit vector r/|r|, we obtain the plot in figure 10.
The projective point h̃ is the point (0|1|1), which in the t = 1 slice is given by (0, 1); this is outside
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Figure 10: the disk B∗
2 and the point h̃

the dual cone B∗
1 , reflecting the fact that q̃ and h̃ have two common real solutions.

Classifying critical points

Suppose that r is in the interior of B∗
2 . Then xmax = 0 and r is non-obstructed and proper. To

finish verifying cone point hypotheses (4)–(5), we need to identify W(r) and check that it is finite.
As noted before, it will turn out that

∑
w∈W(r)

contrib(w) is dominated by the contributions from
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w = 0 and w = (π, π, π). We may therefore identify the remaining critical points somewhat less
explicitly.

Finding the critical points requires an explicit stratification of VF . The coarsest Whitney strat-
ification is as follows.

V1 := {(1, 1, 1), (−1,−1,−1)}

V2 := VQ ∩ VH \ V1

V3 := VH \ (V1 ∪ V2)

V4 := VQ \ (V1 ∪ V2)

defines a Whitney stratification of VF . The points of V1 are isolated (quadratic) singularities of
VQ, while the remaining strata are VQ, VH and their interstecion, which may be parametrized by
{(z±1, z−1, z) : z ∈ C∗}. By definition, any function is critical on a zero-dimensional stratum, whence
both points of V1 are critical for all r ∈ N∗. Below, we will show that in fact contrib(w) = Θ(1)
for exp(iw) ∈ V1. When r is in the interior of N∗, we will show that the remaining critical points
break down as follows.

V2 : No critical points
V3 : No critical points
V4 : Finitely many critical points

(4.1)

By Theorem 3.4, the critical points in V4, which are smooth, each contribute o(1) to the asymptotics,
so we will be done once we evaluate the contributions from ±(1, 1, 1) and prove (4.1).

Turning to the issue of counting critical points, we begin with the easiest stratum V3. Recall
from (2.10) that on the smooth stratum VH , the point Z is critical if and only if ∇logZ is parallel
to r. The logarithmic gradient of H the constant vector (0, 1, 1), which is on the boundary of N∗,
whence V3 contains no critical points interior to N∗. To compute critical points on V2, we evaluate
∇logQ(z±1, z−1, z) and find that independent of z, we always obtain the projective point (∓ 1

2 ,
1
2 , 1).

This shows that VQ intersects VH transversely, and by (2.11), that V2 produces critical points only
when r is in the union of two projective lines, one joining (0, 1) to ( 1

2 ,
1
2 ) and the other joining (0, 1)

to (−1/2, 1/2). This union does not intersect the interior of N∗.

To solve for critical points in V4, fix r = (r, s, t) and solve the equations (2.10): Q = 0, tXQX −
rZQZ = 0 and tY QY − sZQZ = 0. Multiplying each of these by 2xy clears denominators and
allows us to use a computer algebra system to compute a Gröbner basis for the solution. With
lexicographic term order plex(x, y, z), the almost-elimination polynomial for z is yz(1 + z)2(1− z)2

times a quadratic polynomial in r, s, t and z2:

(r4 − 2 r2s2 − 2 t2r2 + s4 − 2 t2s2 + t4) +
(
−2 s4 + 4 r2s2 − 2 r4 − 4 t2s2 − 4 t2r2 + 2 t4

)
z2

+
(
r4 − 2 r2s2 − 2 t2r2 + s4 − 2 t2s2 + t4

)
z4

It is easy to check that for every r, s, t, this polynomial is not identically zero, hence there are only
finitely many solutions. The basis contains a polynomial in y and z (over C(r, s, t)) that is linear
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and non-constant in y, implying that for each z there is at most one y. The same is true for x if we
use the term order plex(y, x, z). It follows that there are finitely many critical points in V4 for each
r. Summing up, have verified (4)–(5) of the cone point hypotheses for r interior to N∗.

Computing the estimate

The computation for w = (π, π, π) (hence Z = (−1,−1,−1)) are almost identical to those for w = 0
and Z = (1, 1, 1). We do the latter computation and indicate changes needed to do the former. We
observe also that Q and H are invariant under (X,Y, Z) 7→ (−X,−Y,−Z), while the numerator,
Z/2, is odd; this corresponds to the parity constraint of p(i, j, n) vanishing when i+ j + n is even.

The cone point hypotheses have now been spelled out and verified. Let w := 0 and Z := (1, 1, 1).
To check that we are in the case covered by Theorem 3.9, we need to check that the two projective
solutions to q̃ = h̃ = 0 are real and distinct. This is easy: plugging in y = −z, we get z2− 1

2z
2− 1

2x
2 =

0 which has the two real solutions y = −z = ±x.

The quantity q̃∗(r, r) is the quadratic that is positive on the interior of the disk, reaching a
maximum of 1 at (0, 0, 1) and vanishing on the boundary of the disk. In coordinates, it is given by

q̃∗(r, r) = t2 − 2s2 − 2r2 .

The quantity q̃∗(r, h̃) is equal to t− 2s. This vanishes on the line shown in figure 3.3. The branch of
the arctangent chosen in the conclusion of Theorem 3.9 varies continuously through π/2 as q̃∗(−r, h̃)
varies through zero and the argument of the arctangent passes through ±∞. The arctangent goes
to zero where q̃∗(r, r) = 0 and q̃∗(r, h̃) > 0 (the part of the boundary of the disk to the left of the
vertical line) and to π where q̃∗(r, r) = 0 and q̃∗(r, h̃) < 0 (the part of the boundary of the disk
to the right of the line). The residue Res(2) is immediately computed from (3.8) and is equal to 1.
Finally, we have P (z) = 1/2 and q̃∗(h̃, h̃) = −1. Thus, as r varies over the interior of the projective
disk B∗

2 we have

contrib(0) ∼ 1
2π

arctan

(√
q̃∗(r, r)
q̃∗(r, h̃)

)
=

1
2π

arctan

(√
t2 − 2r2 − 2s2

t− 2s

)
.

The computation for w = (π, π, π) is entirely analogous, leading to the same contribution but with
an extra sign factor of (−1)i+j+n+1. We have already shown that all other contributions are of
order O(|r|−1). Therefore, we may sum these results to obtain the following asymptotic, plotted in
figure 11.

ar ∼
(r + s+ t) mod 2

π
arctan

(
t2 − 2r2 − 2s2

t− 2s

)
(4.2)

which is equal to π−1 arctan
(

1− 2r̂2 − 2ŝ2

1− 2ŝ

)
on odd multi-indices, and zero on even multi-indices,

where (r̂, ŝ) := (r/t, s/t).
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Figure 11: asymptotics for northgoing probabilities in the Aztec Diamond

4.2 Cube groves

The model

After [CS04; PS05], we define a collection of lattice subgraphs known as cube groves. Let Ln be
the triangular lattice of order n ≥ 0, by which we mean the set of all triples of nonnegative integers
(r, s, t) ∈ (Z+)3 such that r+ s+ t = n with edges between nearest neighbors (thus the degree of an
interior vertex is 6). We depict this in the plane as a triangle with n+ 1 vertices in the top (zeroth)
row, and so on down to 1 vertex in the nth row.

The cube groves of order n are a subset Cn of the subgraphs of Ln. The set Cn has a description
where one begins with the unique cube grove of order zero, then produces sequentially groves of
orders 1, 2, . . . , n, each produced from the previous by a “shuffle” which injects some information
in a manner similar to the domino shuffling used by [CEP96] in studying and enumerating domino
tilings of the Aztec diamond. The set Cn has other, static definitions in terms of graphs that look
like stacks of cubes and in terms of graphical realization of certain terms of generating functions
(see [PS05]), but here we will take the shuffling procedure to define the set Cn of order n cube groves.
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Define C0 to be the singleton whose element is the one-point graph. If T is a downward-pointing
triangular face of Ln, let T ′ be the rotation of T by 180◦ about its center. The union of the vertices
of the triangles T ′ is a translation of the graph Ln+1, provided that one adds in the three corner
vertices of Ln+1. The edge sets of the triangles T ′ are disjoint and their union is the edge set of
Ln+1, provided that one adds in the six edges adjacent to corner vertices.

Figure 12: an order 4 cube grove, shuffled to become an order 5 grove

Given a cube grove G ∈ Ln and a downward-pointing triangular face T of Ln, let G(T ) be the
collection of graphs on T ′ that have: no edges if G has two edges in T ; one edge if G has one edge
e ∈ T , in which case the edge of T ′ must be the edge of T ′ parallel to e; two edges if G has no edges
in T , in which case any two of the three edges of T ′ will do. Let C(G) be the direct sum of G(T )
as T varies over downward-pointing triangular faces of Ln. That is, choose an element of G(T ) for
each T and take the union of these. Figure 12 shows an order 4 grove, G and one of the 27 elements
of C(G). Finally, let Cn+1 be the (disjoint) union of the collections C(G) as G runs over Ln.

Looking at a picture of a uniformly chosen random cube grove of order 100, one sees regions of
order and disorder similar to those of the Aztec Diamond. Let pn(i, j) be the probability that the
horizontal edge with barycentric coordinates (i, j, n − i − j) is present in a uniformly chosen cube
grove of order n. The creation rates En(i, j) may be defined in terms of the shuffling procedure but
in this case they satisfy the simple relation En−1(i, j) = 3

2 (pn(i, j)− pn−1(i, j)) [PS05, Theorem 2].
We recall here the explicit generating function (1.4), which is derived in [PS05, Section 2.2]:

F (X,Y, Z) =
2Z2

(1− Z)(3 + 3XY Z − (X + Y + Z +XY +XZ + Y Z))
:=

2Z2

HQ
.

It is quick to verify that longer factor, Q, in the denominator has a quadratic cone singularity and
that F therefore is singular on the union of a quadratic cone with a smooth surface. The real part
of this is pictured in figure 14.

The amoeba and the normal cone

All multi-indices in the generating function are nonnegative, so it is an ordinary generating function
and B will be the component of amoeba(F )c containing the negative orthant. Again, we are chiefly
interested in directions r for which xmax(r) = 0, these being the directions of non-exponential
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Figure 13: a random cube grove of size 100

decay. The polynomial Q has a single cone point at (1, 1, 1). To compute tanxmax(B), we intersect
B1 := {(x, y, z) : z < 0} with the cone B2 of hyperbolicity of Q at (1, 1, 1). Changing to exponential
coordinates via q := Q ◦ exp and computing the leading homogeneous term gives

q(x, y, z) = q̃(x, y, z) +O(|z|3)

where q̃(x, y, z) := 2xy + 2xz + 2yz .

It follows that B2 is the cone containing the negative orthant and bounded by {q̃ = 0}. The dual
quadratic is represented by the matrix 0 1 1

1 0 1
1 1 0


−1

=
1
2

 −1 1 1
1 −1 1
1 1 −1

 ,
hence

q̃∗(r, s, t) = rs+ rt+ st− 1
2
(r2 + s2 + t2) .

The dual cone −B∗
1 is the subcone of the positive orthant bounded by q̃∗ = 0. Again, the point h̃,

which is equal to (0, 0, 1) in the (r, s, t) coordinates, lies outside this cone, and again the solutions to
q̃ = h̃ = 0 are the solutions to z = 0 = xy which are two distinct projective points, namely the x-axis
and the y-axis. We could again depict this by the slice through t = 1, viewing B∗

2 as the interior
of a parabola in the first quadrant, opening in the Northeast direction and tangent to the axes at
(1, 0) and (0, 1), with h̃ at (0, 0). It is easier to see what is going on if we change coordinates to
u := (1, 1, 1)/

√
3, letting U⊥ denote the complementary space. For r = (r ·u)u+ r⊥ with r⊥ ∈ U⊥,
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Figure 14: the pole variety of the cube grove generating function

we then have |r|2 = (r · u)2 + |r⊥|2, whence

|r⊥|2 = r2 + s2 + t2 − 1
3
(r + s+ t)2 =

1
3
(r2 + s2 + t2)− 2

3
q̃∗(r, s, t) .

Thus q̃∗(r, s, t) = 0 when |r|2 = 3|r⊥|2, or equivalently, |r · u|2 = 2|r⊥|2. Viewing projective space
via the slice r · u = 1, we see that q̃∗ vanishes on the circle centered at the origin of radius

√
1/2.

The projective point h̃ = (0, 0, 1) intersects the slice |r ·u| = 1 at (0, 0,
√

3), whose projection to U⊥

has squared norm 2. This is pictured in figure 15. In these coordinates, the only difference between
this figure and that for the Aztec Diamond is that the distance from the origin to the point h̃ is
twice the radius of the circle, rather than

√
2 times the radius, and the tangents subtend an arc of

120◦ rather than 90◦.

Classifying the critical points

The stratification is similar to that for the Aztec Diamond generating function. There is just one
singular point of Q, namely (1, 1, 1). This is on VH as well. The surfaces VH and VQ intersect in
the set {x = z = 1} ∪ {y = z = 1}, which is smooth away from (1, 1, 1), leading to the following
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Figure 15: the dual cone in symmetrized coordinates

stratification.

V1 := {(1, 1, 1)}

V2 := VQ ∩ VH \ V1

V3 := VH \ (V1 ∪ V2)

V4 := VQ \ (V1 ∪ V2)

The logarithmic gradient of H is parallel to (0, 0, 1), which is not in N∗, so for r ∈ N∗ there are
never any critical points on V3. There are critical points on V4, but we verify as before that there
are only finitel many. They are smooth, so by Theorem 3.4, their contributions are o(1). On V2, the
logarithmic gradient of Q is parallel to either (1, 0, 1) or (0, 1, 1). The logarithmic gradient of H is in
the t direction, so the span of the two logarithmic gradients is either the r-t plane or the s-t plane.
Neither of these planes intersects the interior of N∗ (the planes are tangent to N∗ at the projective
points (1, 0, 1) and (0, 1, 1) respectively). The for r interior to N∗, there are no contributions from
V2; it remains to compute the contribution from V1.

Computing the estimate

Completing the computation as in the Aztec case, we evaluate Res(2) using (3.8) but switching the
roles of x and z because only the z-derivative of h̃ is non-vanishing. This gives Res(2) = 1

2 . With
P = 2Z2, and only one contributing point w = (0, 0, 0), we have q̃∗(r, h̃) = (r + s − t)/2 and
q̃∗(h̃, h̃) = −1/2, whence Theorem 3.9 gives

ar ∼ 1
π

arctan


√

1
2 q̃
∗(r, r)

(r + s− t)/2


=

1
π

arctan

(√
2(rs+ rt+ st)− (r2 + s2 + t2)

r + s− t

)
.

40



Again, the arctangent is taken in (0, π) so that as we cross the line t = r + s the arctangent varies
continuously across π/2.

4.3 Two-dimensional quantum random walk

The model

We begin with a brief review on one-dimensional quantum random walk (QRW). In the classical
simple random walk, the law at time n is a probability measure on Z and the evolution operator
on this law is (1/2)σ+ + (1/2)σ−, where σ+ is the right-shift operator σ+µ(n) = µ(n − 1) and σ−

is the left-shift operator σ−µ(n) = µ(n + 1). In the quantum world, the law at time n is given by
the values of |ψ(n)|2 where the wave function ψ is not a positive unit vector in L1(R) but rather a
unit vector in L2(C). Evolution operators must be unitary. While the shifts σ± are unitary, linear
combinations of these such as (1/2)σ+ + (1/2)σ− are not.

An idea for constructing a quantum simple random walk, apparently due to [Mey96], is to enlarge
the space to := Z × {U,D}, adding a hidden “spin” variable. To take a step of the random walk,
first the spin is randomized, then all particles with spin up move one step right and all particles with
spin down move one step left. A number of choices are available for the operator that executes the

randomization of spins. One common choice is the Hadamard coin-flip, B :=
1√
2

(
1 1
1 −1

)
. The

terminology reflects the fact that the matrix is a multiple of a matrix with ±1 entries, these being
known as Hadamard matrices. Under this operator, either state (1, 0) or (0, 1) becomes an equal
mix of U and D states. Let A be the operator which maps state (n,U) to (n+ 1, U) and (n,D) to
(n− 1, D). If we begin in state (0, U), then do S := A ◦B, the particle is in an equal mix of states
(1, U) and (−1, D). If we measure the position, we will have executed a step of QRW.

The n-step simple random walk is defined to be the operator Sn := (AB)n. If the position if
this is measured at time n, the probability of being at position k is |Sn(k, U)|2 + |Sn(k,D)|2. Since
no measurement is made until time n, the various possible coin-flips and movements interfere, both
positively and negatively, and the result is somewhat complicated. The analyses in [NV00; ABN+01]
show that unlike classical simple random walk, QRW spreads out linearly, with location distrubuted
over the interval [−n/

√
2, n/

√
2]; see also the review article [Kem05].

To define a two-dimensional QRW, we need a four-fold auxilliary state. Denote these four states
by {N,S,E,W}. Any 4× 4 unitary matrix may be used for the quantum coin-flip. The Hadamard
matrix

U :=
1
2


1 −1 −1 −1
−1 1 −1 −1
−1 −1 1 −1
−1 −1 −1 1
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is known (http://www.santafe.edu/ moore/gallery.html) as the Hadamard quantum coin-flip. N.B.:
This is different from the Hadamard QRW in [GJS04], which also uses a Hadamard matrix, namely
the tensor product of two copies of the one-dimensional Hadamard matrix. A step of the two-
dimensional Hadamard QRW is the product AU where A maps ((r, s), N) to ((r, s+ 1), N), and so
forth. The following generating function for the probability amplitudes of a QRW in any dimension
with any quantum coin-flip matrix is given in [BP07, Proposition 3.1]. Let M be obtained from
U by multiplying the first row by XZ, the second by Y Z, the third by X−1Z and the fourth by
Y −1Z. We consider the rows and columns of M as indexed by the ordered quadruple (E,N,W, S).
Then an entry of M t such as (M t)N,E counts the number of t-step paths from N to E, weighted
by M : the XrY sZt coefficient of this is the wave function at position ((r, s), N) and time t starting
from ((0, 0), N). Summing in t shows that the components of (I −M)−1 =

∑
M(r, s, t)XrY sZt

are the generating functions for the wave function at all positions and times: each M(r, s, t) is a
matrix, whose (ξ, η)-entry is the generating function

∑
r,s,t c(ξ, η; r, s, t)X

rY sZt where c(r, s, t) is
the probability amplitude, starting from state ((0, 0), ξ) at time zero, of being in state ((r, s), η) at
time t.

The entries of (I −M)−1 have denominator (1− Z2)Q where

Q := 1− 2
X +X−1 + Y + Y −1

4
Z + Z2 .

We recognize the same polynomial factor that occurred in the Aztec denominator. The numerators
in the first row are half of the following.

P1 = 2− (Y + Y −1 +X−1)Z + Z3

P2 = XZ − (1 + Y −1X)Z2 + Y −1Z3

P3 = XZ − (Y X + Y −1X)Z2 +XZ3

P4 = XZ − (1 +XY )Z2 + Y Z3

The chiralities {N,E, S,W} and the location (i, j) are simultaneously measurable, so the probability
of a QRW started at ((0, 0), N) to be found at (r, s) at time t is the sum over 1 ≤ k ≤ 4 of |Cr,s,tPk|2,
the squared moduli of the probability amplitudes of going from ((0, 0), N) to ((r, s), ξ) in time t for
ξ ∈ {N,E, S,W}.

A number of different two-dimensional QRW’s are analyzed in [BBP08]. In these examples, the
variety defined by the common denominator det(I −M) of the entries of (I −M)−1 turns out to
be smooth, and amplitudes may be computed from Theorem 3.4. We now restrict our attention to
the Hadamard QRW. This is not analyzed in [BBP08], because the denominator factors, one factor
having a cone point at ±(1, 1, 1).

42



The amoeba and the normal cone

Denoting H1 = 1−Z,H−1 = 1+Z, we have Fj = Pj/(QH1H−1), which is in the format of the cone
point hypotheses with η = 2. The origin is on the boundary of a component B of the complement of
amoeba(QH1H−1) containing the negative z-axis. As before, the cone tan0(B) is the intersection
of components of amoeba(Q)c, amoeba(H1)c, and amoeba(H−1)c. The latter two are just the
halfspaces {(x, y, z) : z < 0}, which are equal and contain the component B0 := {(x, y, z) : z <
0, z2 > (x + 2 + y2)/2, which we recognize from the Aztec Diamond example. Therefore, B = B0

and B∗ = {t2 > 2(r2 + s2)} as in Section 4.1.

Classification of critical points

The intersection of VQ with VHj
is the set{
Z = j =

X +X−1 + Y + Y −1

4

}
.

The varieties VH1 and VH−1 do not intersect. We therefore stratify by

V1 := {(1, 1, 1), (−1,−1,−1)}

V2+ := VQ ∩ VH1 \ V1

V2− := VQ ∩ VH−1 \ V1

V3+ := VH1 \ (V1 ∪ V2+)

V3− := VH−1 \ (V1 ∪ V2−)

V4 := VQ \ (V1 ∪ V2± ∪ V3±)

Again, we are interested in the region of non-exponential decay, where xmax = 0; checking where
the strata intersect the unit torus, we find that the strata V2± do not intersect the unit torus. The
strata V3± intersect the unit torus on the set {|X| = |Y | = Z = 1}, and the logarithimic gradient
is always in the t direction. The factors H1 and H−1 cause this direction to be obstructed and we
are therefore not able to say anything about asymptotics in the (0, 0, t) direction. This direction
corresponds to the bright spot in the middle of the amplitude intensity plot in figure 16, where there
appears to be a bound state (probability amplitude for being precisely at the origin does not decay
with time).

Contributions from V1 occur for r interior to N∗. The big-O estimate, Lemma 5.9 below, allows
us to bound the magnitude of these contributions. We first compute the homogeneous degree of F
at the point (1, 1, 1). The factor 1/Q has degree −2 here, the factor 1/H1 has degree −1, and the
factor 1/H2 has degree zero. The numerators Pj vanish to order two at (1, 1, 1) for all 1 ≤ j ≤ 4.
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We therefore have deg(F, (1, 1, 1)) = deg(f, (0, 0, 0)) = 2− 2− 1 = −2. Applying the lemma, we find
that for the cone point w = 0, we have contrib(w) = O(t−2).

Finally, we compute the contribution from V4. It is shown in [Bra07] that for each r interior
to N∗, there are precisely four smooth critical points on the unit torus, a conjugate pair and its
negative: Z(r̂),Z(r̂),−Z(r̂),−Z(r̂). Denoting log Z(r̂) = z = iw, Theorem 3.4 tells us that

contrib(w) ∼ C(r̂)|r|−1 exp(−ir ·w)

where the magnitude of C(r̂) is proportional to the −1/2-power of the complex curvature of logVQ

at z. Adding this to the contribution from Z, namely contrib(ww), we obtain a quantity whose
magnitude is 2 cos θ(r) times the magnitude of contrib(w), where θ is the argument of contrib(w);
note that θ differs from r · w by π/4 because the curvature is complex and its −1/2 power has
argument −σπ/4, where σ is the signature of q̃, which in our case is 1 − 2 = −1; see [BBP08,
Section 2.3] for details on the phase of the curvature. Adding the contribution from the negatives
of these two points kills the terms for which r + s + t is odd and doubles the even terms. This
corresponds to periodicity of the walk. For fixed t, the phase term cos θ(r) varies rapidly (with
period of order 1). Ignoring the Moire pattern resulting from this term, the probabilities are of
order t−2 and are spread over the disk r2 + s2 = t2/2, which is the slice of the normal cone at the
fixed value of t.

Figure 16: two-dimensional Hadamard QRW probability amplitudes at time 200

4.4 Friedrichs-Lewy-Szegö graph polynomials

In the the study of a discretized time-dependent wave equation in two spatial dimensions, Friedrichs
and Lewy required a nonnegativity result for the coefficients of Q−1 where Q(X,Y, Z) := (1−X)(1−
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Y )+(1−X)(1−Z)+(1−Y )(1−Z). To solve this problem, Szegö [Sze33] showed that the coefficients
of Q−β are nonnegative for all β ≥ 1/2. Scott and Sokal [SS06] later observed that Q is a special
case of a spanning tree polynomial of a graph. They proved a generalization of Szegö’s result to all
series-parallel graphs. Their results are proved via the stronger property of complete monotonicity
and are related to the half-plane property. In order to investigate whether these results might hold
for the polynomials of a larger class of graphs, Scott and Sokal needed a means of checking the
asymptotics of the coefficients: asymptotic nonnegativity is a necessary condition for term-by-term
nonnegativity.

The simplest nontrivial case in which asymptotics may be worked out is the one above. Szegö’s
1933 proof of nonnegativity was, according to Scott and Sokal, “surprisingly indirect, exploiting
Sonie-type integrals for products of Bessel functions.” It is evident that asymptotics in this case
may be derived directly from Theorem 3.7. We remark that the connection between these coefficients
and harmonic analysis of symmetric cones is known to Scott and Sokal, who exploit the connection
and cite several results on the subject from the sources [FK94; Ish00].

We first check that 0 is on the boundary of the component B of amoeba(Q)c corresponding to
the ordinary power series 1/Q =

∑
r arZ

r. This follows if we show that Q(X,Y, Z) 6= 0 for X,Y, Z
in the open unit disk. To see this, let D1 denote the open unit disk, let D2 denote the open disk
{|z − 1| < 1}, and let D3 denote the halfspace {z : Re {z} > 1/2}. The set D3 is the image under
z 7→ 1/z of D2 and D2 = 1−D1. Therefore, Q has a zero on the open unit polydisk D3

1 if and only
if XY + Y Z + ZX has a zero on D3

2; this is equivalent to 1/X + 1/Y + 1/Z having a zero on D3
2

which is equivalent to X + Y + Z having a zero on D3
3. This is impossible because D3 is contained

in the open right half-plane.

Composing with the exponential, then taking the leading homogeneous part, we obtain

q̃ = hom(Q ◦ exp,0) = xy + xz + yz .

We recognize this as half the quadratic factor in Section 4.2. Therefore q̃∗ is twice what is was there:

q̃∗(r, s, t) = 2(rs+ rt+ st)− (r2 + s2 + t2) .

Let P (Z) ≡ 1. Recalling thatM is chosen so that the matrix for the quadratic form is (M−1)TDM−1,

we see that the determinant of M is det(q)−1/2; plugging in the matrix

 0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

 for q we obtain

|M | = 2. Thus, for β > 1/2, equation (3.5) gives

ar ∼
41−β

√
πΓ(β)Γ(β − 1/2)

(2rs+ 2rt+ 2st− r2 − s2 − t2)−1/2

as r varies over compact subsets of the cone 2(rs+ rt+ st) > r2 + s2 + t2. To check this estimate,
let r = s = t = 50 and compute

ar ≈
41−β7500β−3/2

√
π Γ(β) Γ(β − 1/2)

≈ 0.000222832 . . .
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when β = 3/4. We then use Maple to crank out the true value of a50,50,50 which is rational number
near 0.000223464, for a relative error of around 1/400.

4.5 Superballot numbers and multiset permutations

Gessel [Ges92] defines the super ballot numbers by

g(n, k, r) :=
(k + 2r)! (2n+ k − 1)!

(k − 1)! r!n! (n+ k + r)!
.

These are a generalization of the ballot numbers
k

2n+ k

(
2n+ k

n

)
(obtained by setting r = 0),

which are in turn a generalization of the Catalan numbers (set k = 1). The Catalan number and
the ballot numbers are integral and have combinatorial interpretations. Gessel shows that the super
ballot numbers are integers as well and sets as a goal to find a combinatorial interpretation.

After re-indexing via B(a, b, c) := g(a, b−a− c, c) for b > a+ c, one may extend this definition to
all nonnegative (a, b, c) and obtain the generating function F (X,Y, Z) =

∑
a,b,c≥0B(a, b, c)XaY bZc

from equation (1.7). The numbers B(a, b, c) satisfy the same recurrence as the numbers N(a, b, c)
defined to have generating function 1/(1 − X − Y − Z + 4XY Z) and shown in [Ask75] to have
nonnegative coefficients. There is no direct combinatorial interpretation known for N(a, b, c) but
it may be represented as a difference of cardinalities of multi-set permutations [AI76]. Gessel goes
on to find several more identities involving these numbers and their generating functions, but no
asymptotics are derived.

The coefficients of F are of greater interest than the coefficients of G, but the fractional power on
the non-quadratic term takes this problem beyond the main results of this paper. The deformations
in Section refsec:homotopies still apply, but the further analysis in Section 6.6 via Leray cycles does
not work when this factor is algebraic rather than a simple pole. We therefore do not state detailed
asymptotics for F , reserving this for future work.

Let Q(X,Y, Z) := 2 −X − Y − Z +XY Z, so that 2/Q is the ordinary power series generating
function for 2−a−b−cN(a, b, c). It is easy to check (e.g., via Gröbner bases) that Q and its gradient
vanish simultaneously exactly at the point 1. We have q := Q ◦ exp = xy + yz + xz +O(|(x, y, z)|3,
whose homogeneous part (at 0) is given by q̃ = xy + yz + xz. Again,

q̃∗(r, s, t) = 2(rs+ rt+ st)− (r2 + s2 + t2)

and |M | = 2.

There is a component B of amoeba(Q)c containing a translate of the negative orthant (cor-
responding to the ordinary power series expansion); let us check that 0 ∈ ∂B. Proceeding as in
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Section 4.4, it suffices to verify that Q has no zero in the open unit polydisk D1, which is equivalent
to checking that Q(1 + Z) has no zero in −D3

2 where D2 = {z : |z + 1| < 1}. We have

Q(1 + Z) = XY Z +XY +XZ + Y Z = XY Z

(
1 +

1
X

+
1
Y

+
1
Z

)
,

whence this is further equivalent to 1+X+Y +Z having no zero in −D3
3, where −D3 is the halfplane

{z : Re {z} < −1/2}. This is obvious, because the real part of X+Y +Z is bounded above by −3/2
on D3

3.

We now apply Corollary 3.8 to obtain the asymptotics of 2−a−b−cN(a, b, c) inside the cone N∗,
these asymptotics being exponentially small outside N∗. Letting P (Z) ≡ 2, we plug P , |M | and q̃∗

into (3.7) to obtain the leading term asymptotics for the coefficients of 2/Q, which give

N(a, b, c) ∼ 2a+b+c 4
2π

(2ab+ 2ac+ 2bc− a2 − b2 − c2)−1/2

uniformly on compact subcones of N∗. For example, if a = 1, b = 20, c = 30, then the approximation
yields N(a, b, c) ≈ 2.595 × 1016 while the actual value of N(10, 20, 30) to three decimal places is
2.547× 1016.

5 Homotopy constructions

Recall from the heuristic discussion following (1.8) that moving the chain of integration in (1.2) to
the torus ReLog−1(xmax) is not enough. Our goal in this section is to construct homotopies moving
this chain of integration, within the domain of holomorphy of the integrand (but not within the
domain of convergence of the Laurent series) to a different chain on which the maximum modulus
of the integrand is small except in a neighborhood of crit(r). While the Morse theoretic methods
of [GM88] are in principle constructive, we follow [ABG70], taking advantage of hyperbolicity in
order to produce vector fields along which chains may be shifted.

5.1 Vector fields

Let TR := (R/2πZ)d denote the d-dimensional flat torus. Given a Laurent polynomial F and a
component B of the complement of amoeba(F ), pick a unit vector r̂ in the interior of the convex
dual −B∗. We suppose that r is a proper direction for B. Let

U =
⋃

w∈W(r)

Uw (5.1)

be the disjoint union of neighborhoods of each w ∈ W(r), where W(r) are the logarithmic critical
sets from Definition 2.21.
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Lemma 5.1 (Vector field away from the critical set). Let F be a Laurent polynomial, let B
be a component of Rd \ amoeba(f), and let r̂ be a unit vector in the interior of the convex dual
−B∗. Suppose r̂ ·x is maximized at a unique xmax in ∂B and define the neighborhood U of W(r) as
in (5.1). Then there is a smooth vector-valued function ηUc : TR \ U → Rd such that:

(i) ηUc(y) ∈ Kf,B(exp(xmax + iy));

(ii) r̂ · ηUc(y) = 1 for all y ∈ TR \ U .

Proof: First, for each y /∈ U , we will find a neighborhood Ny and a vector vy such that ηUc ≡ vy

fulfills (i)–(ii) on Ny.

Fix y /∈ U . If f(xmax + iy) 6= 0 then choose a neighborhood Ny of y in Rd such that for v ∈ Ny,
the quantity f(xmax + iv) does not vanish. Choose vy with r̂ · vy = 1.

Alternatively, suppose that f(xmax + iy) = 0. By Proposition 2.12, the homogeneous part, call
it Ay, of the function v 7→ f(xmax + iy + v) is real and hyperbolic, and by Proposition 2.8, there is
a cone K of hyperbolicity containing tanxmax(B). Also by the first part of Proposition 2.22, there is
some vy ∈ K with r̂·vy = 1. By semi-continuity (part (i) of Corollary 2.15), vy ∈ K(exp(xmax+iu))
for every u in some neighborhood Ny of y.

The collection {Nw : w /∈ U} covers U c; shrink it slightly if necessary so that the closure of its
union does not intersect W(r). We may (shrinking some of the ηw slightly if necessary) choose a
finite subcover {Nw : w ∈ Ξ} whose union has closure disjoint from W(r). Choose a partition of
unity {ψw : w ∈ Ξ} subordinate to the subcover. Define

ηUc(y) :=
∑
w∈Ξ

ψw(y)vw(y) .

Now (i) is satisfied by convexity and (ii) is satisfied by linearity. �

Corollary 5.2 (Vector field defined everywhere). Under the conditions of Lemma 5.1 there is
a smooth vector field η satisfying

η(y) ∈ Kf,B(exp(x + iy)) ; (5.2)

r̂ · η(y) = 1 on U c . (5.3)

Proof: Let ηw : Uw → Cd be any map for which ηw(y) ∈ Kf,B(exp(x + iy)). To see that we
may choose such a map smoothly, note that the constant map ηw(y) ≡ v is such a map whenever
v ∈ tanx(B). The reason for allowing a general function ηw in place of a constant is that later we
will use (5.4) with functions ηw tailored to more specific needs. The collection {Nw : w ∈ Ξ}∪{Uw :
w ∈W(r̂)} covers TR. Choose a partition of unity {ψw} subordinate to this and define

η(y) :=
∑
w∈Ξ

ψw(y)vy(w) +
∑

w∈W(r̂)

ηw(y) . (5.4)
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This proves the corollary. �

We remark for later use that if r̂ is replaced by a non-unit vector r, then applying the above
constructions to r̂ replaces (5.3) by r · η(y) = |r| on U c. Next, we give a projective version of the
above construction. We say that a 1-homogeneous function φ is smooth if it is smooth away from
the origin.

Lemma 5.3 (projective vector field). Let A be a real homogeneous polynomial in d variables of
degree m ≥ 1 and let B be a cone of hyperbolicity for A whose dual −B∗ has nonempty interior. For
each y ∈ Rd, recall the cone KA,B(y) defined in Proposition 2.8. Let r be a non-obstructed vector
in the interior of −B∗. Then there is a 1-homogeneous, smooth vector field η on Rd such that for
all y ∈ Rd and all r′ in a neighborhood of r,

(i) η(y) ∈ KA,B(y);

(ii) r′ · η(y) ≥ |r′||y|.

Proof: This is a homogeneous version of the proof of Lemma 5.1. Assume first that |y| = 1. We
define η locally and then piece these together via a partition of unity. When A(y) 6= 0 we can find
neighborhoods Ny of y and N ∗

y of r such that A vanishes nowhere on Ny and there is a v for which
r′ · v > |r′| on N ∗

y . By the trivial part of the definition, vy ∈ KA,B(y).

When A(y) = 0, because r is non-obstructed, there is a vector vy ∈ KA,B(y) with r · vy > 0.
By semi-continuity (part (ii) of Corollary 2.15), vy ∈ KA,B(u) for every u in some neighborhood
Ny of y. By continuity, r′ ·vy > 0 for every r′ in some neighborhood N ∗

y of r. We may then replace
vy by some positive multiple so that r′ · vy > |r′| for r ∈ N ∗

y .

To define the 1-homogeneous function η, it suffices to define it on the set S1 of vectors y of
norm 1. Cover S1 by finitely many neighborhoods {Nw : w ∈ Ξ} and use a partition of unity
subordinate to the cover to define η via (5.4) on S1. Extending 1-homogeneously via η(λy) := λη(y)
finishes the construction. �

5.2 Homotopies

Given any triangulation of the torus TR by oriented d-simplices, one may regard any continuous
function φ : TR → Ω as a d-chain on Ω (composing with the singular simplices of the triangulation).
The integral of d-forms on such a chain is independent of the triangulation, so we may refer to φ
itself as a d-chain. Let η be any continuous vector field on TR and fix any ε > 0. Define the homotopy
Φ = Φε,η : TR × [0, 1] → Cd by

Φt(y) := iy + x + ε [(1− t)u + tη(y)] . (5.5)
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We specialize now to η given by Corollary 5.2. Setting t = 0 gives a cycle whose range is the torus
Tu := −εu + iTR. Setting t = 1 gives another cycle, which we call Cη, shown to be homotopic to T
in Cd via the homotopy {Φt : 0 ≤ t ≤ 1}.

Theorem 5.4 (The homotopy defined by η avoids Vf). Let η satisfy (5.2)–(5.3) and define
Φt by (5.5). Then for ε > 0 sufficiently small and all 0 ≤ t ≤ 1, f(Φt(y)) 6= 0.

Proof: This follows from Corollary 2.16. �

Let {Uw : w ∈ W(r)} be disjoint open neighborhoods of the points of W(r) as before, and let
Cw denote the restriction of Cη to Uw. Let CUc denote the restrition of Cη to U c. The chain Cη is
representable as a sum

Cη = CUc +
∑

w∈W(r)

Cw .

An immediate consequence of the previous constructions is:

Corollary 5.5 (localization of the Cauchy integral). The chain Tu is homotopic in (C/(2πZ))d\
Vf to a sum of chains

CUc +
∑

w∈W(r)

Cw

where CUc and each ∂Cw are supported on the set of z such that r ·Re {z}−r ·x ≥ ε|r|. Consequently,
the integral (2.1) decomposes as

ar =
(

1
2πi

)d ∫
x+iTR

e−r·z 1
f(z)

dz

= R+
∑

w∈W(r)

(
1

2πi

)d ∫
Cw
e−r·z 1

f(z)
dz

where R = O(e−ε|r|), and Theorem 3.3 follows. �

While the above general construction, e.g., with ηw ≡ u, suffices to localize the Cauchy integral,
explicit computations for a cone and a plane, done in Section 6.6, will require specific choices of ηw.
Say that ηw is projective if ηw(w + ·) is homogeneous of degree 1 and smooth away from 0. The
first of these two results follows immediately from Lemma 5.3.

Theorem 5.6. Let A be a hyperbolic homogeneous polynomial with cone of hyperbolicity B. Let r
in the interior of −B∗ be non-obstructed and let η be the projective vector field of Lemma 5.3. Let
{Φt} be the homotopy on Rd defined by (5.5) with x = 0. Then A(Φt(y)) 6= 0 for all 0 ≤ t ≤ 1
except when t = 1 and y = 0, and r ·Φ1(y) ≥ c|y|. Consequently, for u ∈ tanx(B), the chain u+ iRd

is homotopic in the complement of VA to the projective chain C0 := Φ1[Rd] on which r · y grows
linearly in |y|. This construction is uniform as r varies over some neighborhood N . �
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Definition 5.7. Let Cδ
0 denote the chain parametrized by TR defined by

y 7→ iy + ε[(1− t(1− (δ − |y|)+)))u + t(1− t(1− (δ − |y|)+))η(y)] .

This is obtained by replacing t is the definition of C0 by t(1−(δ−|y|)+); the definition does not change
the homotopy outside the ball of radius δ, but inside this ball the homotopy stops early, stopping at
time 1− δ at the origin and interpolating linearly in |y|.

Theorem 5.8 (locally projective homotopy). Let f be a Laurent polynomial and let B be a
component of Rd \ amoeba(f). Suppose r is proper with dual point xmax, that W(r) is finite, and
that r is non-obstructed. For each w ∈ W(r), let fw = hom(f,w) and let ηw be the vector field
constructed in Lemma 5.3 with fw in place of f . Let {Uw : w ∈W(r)} and U be defined as in (5.1),
define η by (5.4), and define {Φε,η

t } by (5.5).

Then, if ε > 0 and the neighborhoods {Uw} are taken to be sufficiently small, the homotopy {Φt}
will avoid Vf . Also, the inequality

r′ · Φ1(y)− r′ · x ≥ δ min
w∈W(r)

|y −w| (5.6)

will be satisfied for some δ > 0, for every y ∈ TR and every r′ in some neighborhood of r.

Proof: By consruction, vw(y) ∈ Kfw,B(y). By semi-continuity (part (i) of Corollary 2.15), also
vw(y) ∈ Kf,B(y) for y in some neighborhood U ′w ⊆ Uw. Replacing the sets Uw by sufficiently small
sets, we therefore have vw(y) ∈ Kf,B(y) for all y ∈ Uw. The argument is now the same as the proof
of Theorem 5.4. �

5.3 Consequences and an example

As outlined in Section 1.2, the deformations constructed in Theorems 5.4 and 5.8 allows us to localize
and then compute the Cauchy integral. These computations are carried out in the next section using
Fourier apparatus. We record here a preliminary estimate that is useful in a more general context
(see, e.g., [Bra07]). If

F :=
k∏

j=1

Q
sj

j (5.7)

is the product of d-variate polynomials to arbitrary real powers and Z is any complex vector, the
homogeneous degree deg(F,Z) of F at Z is defined by

deg(F,Z) :=
k∑

j=1

sj deg(Qj ,Z)

(it is easy to check that this is independent of the representation of F as such a product).
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Lemma 5.9 (big-O estimate). Let F =
∏k

j=1Q
sj

j and let G denote the product of all the Qj for
which j is not a positive integer, so that VG is the singular locus of F . Let f := F ◦ exp and let
B be the component of Rd \ amoeba(G) containing a translate of the negative orthant (whence the
corresponding Laurent series is the ordinary power series expansion). Fix a proper, non-obstructed
direction r in the interior of −B∗, and let Φt be the locally projective homotopy constructed in
Theorem 5.8 via the neighborhoods Uw and vector fields ηw for w ∈W(r). Then

(i) If φ(z) = O(|z|β) and β + d > 0 then

|zr|
∫
Cw

exp(−r · z)φ(z) dz = O
(
|r|−d−β

)
. (5.8)

(ii) Consequently, if deg(f,w) + d > 0, then for any bounded funtion ψ, the following integral is
absolutely convergent and

|zr|
∫
Cw
e−r·zψ(z)f(z) dz = O

(
|r|−(d+deg(f,w))

)
.

(iii) It follows further that the Taylor coefficients ar of F satisfy ar = O (|z|−r|r|−α) where

α = d+ max
w∈W(r)

deg(f,w) .

Proof: The chain Cw is a cone avoiding the singular locus of the homogeneous function f . Let
S denote the section {z : Re {r̂ · z} = 1} of this cone. We have Cw = [0,∞) × S. Write f(z) =
|z|deg(f,w)F0(z/|z|) for some smooth function F0 on S and decompose dz = td−1 dt ∧ dS for some
form dS on S. Let M :=

∫
S
|F0(u)| dS(u) and M ′ := sup |ψ|. Integrating first over S then over

[0,∞) gives∣∣∣∣zr

∫
Cw
e−r·zψ(z)f(z) dz

∣∣∣∣ =
∣∣∣∣∫ ∞

0

tdeg(f,w)td−1dte−|r|t
[∫

S

ψ(u)F0(u) dS
]∣∣∣∣

≤
∫ ∞

0

e−|r|ttd+deg(f,w)−1MM ′ dt

which is absolutely convergent and O(|r|−(d+deg(f,w))) as desired.

We have seen that the chain (x + u) + iTR is homotopic to the sum CUc +
∑

w∈W(r)
Cw in the

domain of holomorphy of f . Consequently, the Cauchy integral∫
x+u+iTR

e−r·zf(z)dz

is equal to the sum of the integrals over Cw and CUc . The last result now follows. �

We close the section with an example of the conclusion of Lemma 5.3 and Theorem 5.8 in the
case of the product of a quadratic cone Q and a linear function H. We give an explicit construction
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a vector field η satisfying the conclusion of the lemma; this explicit construction will be useful in
computing an integral in Section 6.6.

We consider the case of F = 1/(QH), where q := Q ◦ exp and h := H ◦ exp are respectively
quadratic and smooth at the origin:

q = q̃ +R1

h = h̃+R2

with q̃ homogeneous quadratic, h̃ linear, R1(y) = O(|y|2), and R2(y) = O(|y|3). The signature of q̃
is assumed to be (1, 2) whence the zero set of q̃ in real space is a cone over a circle. Suppose that
the zero sets of q̃ and h̃ intersect transversally in real space. In other words, the plane {h̃ = 0}
intersects the cone {q̃ = 0} in two lines; in projective space, the line {h̃ = 0} intersects the circle
{q̃ = 0} in two points.

The construction of η depends on the choice of the cone of hyperbolicity B of q̃h̃; in the applica-
tions below, this is the component of amoeba(QH)c containing the negative half of the z-axis. Let
us assume in this example that A := q̃h̃ is hyperbolic with respect to −e3. We also assume without
loss of generality that h̃(−e3) > 0. We have seen in several of the examples that B := B1∩B2 where
B1 is a halfspace dual to h̃ and B2 is the projective ellipse defined by q̃. The dual cone is the cone
over the teardrop pictured in figure 3.3: here the conic is the dual to B1, and the vertex is the line
dual to the hyperplane B2; as usual, the dual to the intersection of the convex sets is the convex
hull of their respective duals.

We will construct the section η guaranteed by Lemma 5.3 for which r · η(y) > 0, along with a
null section η̃ satisfying r · η̃ = 0 that is needed in Section 5.3.

Fix r ∈ N∗. There are two nearly identical cases, depending on whether or not r ∈ B∗
2 . Assume

first that r ∈ B∗
2 . In figure 17 below, height is the linear functional defined by −r, so the plane

Xr := {r · x = 0} is drawn as as horizontal, with r · x increasing as one goes downward. This plane
intersects the real cone {q̃ = 0} only at the origin, hence the cone has a positive (lower) and a
negative (upper) half; we have assumed −e3 is in the upper half. The construction of η̃ is automatic
if we mandate that η̃(y) = −e3|y|+ λy for some λ. In order to obtain r · η̃(y) = 0, we need to take

λ = |y|r · e3
r · y

. (5.9)

Wherever r · y 6= 0, this is clearly smooth and 1-homogeneous. Setting aside the points where
r ·y = 0, at every other point y where q̃ or h̃ vanishes but not both, the cone KA,B(y) is a halfspace
bounded by the tangent plane at y to {A = 0}. This halfspace contains the vector y, making it
obvious that of the two halfspaces bounded by this plane, η̃(y) is in the one containing −e3, thus
is in KA,B(y). When y is in the intersection q̃ = h̃ = 0, again η̃(y) ∈ KA,B(y), because this cone
is the intersection of two halfspaces, each of which we have seen to contain η̃(y). Finally, to deal
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with the points where r · y = 0, note that q̃ is nonvanishing (outside of the origin) on this set. In
a neighborhood of the point h̃ = 0, we use a smooth bump function ψε : R → [0, 1] that is one on
[−ε, ε] and zero outside [−2ε, 2ε]. Letting x be any vector with x · r = 0 and h̃(x) > 0, we take

η̃(y) := |y|ψε(r · ŷ)x + (1− ψε) (−|y|e3 + λy)

where λ is defined by (5.9). This completes the construction of η̃. When A(y) 6= 0, the cone KA,B(y)
is all of Rd, so verification that η(y) ∈ KA,B(y) is trivial; we conclude that η̃ is a 1-homogeneous
section of KA,B(·) with r · η ≡ 0.

What we have accomplished is to find a single formula for η that works for all strata of {A = 0},
resorting to partitions of unity, only in one place, away from {q̃ = 0}; this will be useful in the
sequel. For a pictorial description of the construction we have just completed, see figure 17. In the
upper half of the cone, η̃ points inside, as does −e3. In the lower half (not shown), both η̃ and −e3
point outside. To obtain the vector field of Lemma 5.3, we set η(y) = η̃(y) + ε|y|e3 for a sufficiently
small ε.

Figure 17: the vector field η̃

When r is outside the circle, but inside the teardrop, the plane orthogonal to r does intersect
the real cone q̃ = 0. In projective space, the analogue of figure 17 is figure 18. This case is in
some ways simpler because one may choose a vector v in the cone B2 for which r · v = 0. Because
B2 ⊆ KA,B(y) for every y where q̃ vanishes, setting η(y) ≡ v works everywhere except where h̃
vanishes and KA,B(y) may be smaller. In a neighborhood of this projective line, we may instead
take η̃(y) ≡ −y − ce3 for some c > 0. Piecing these together, projectively, via a parition of unity,
finishes the construction.

Finally, we note that when r is on the dashed boundary in figure 3.3, it is obstructed and the
above construction does not work.
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r = 0h = 0

q = 0

Figure 18: when r is outside B∗
2

6 Evaluation of integrals

6.1 Reduction to integrals of meromorphic forms over projective cycles

In this section we prove Theorems 3.7 and 3.9. The first step is to show that the linearization in
Lemma 3.2 may be integrated term by term, and also that the chain of integration may be replaced
by the cone Cδ

0 . With Cw as in Theorem 5.8, we recall from (3.3) the quantity

contrib(w) :=
(

1
2πi

)d ∫
Cw
e−r·z p(z)

q(z)s
∏k

j=1 hj(z)nj

dz .

Lemma 6.1. Let F satisfy the cone point hypotheses. Let Cδ
0 be as given in Definition 5.7. Let

c(m, l, n) be the coefficients of the expansion given in Lemma 3.2 for the function f := F ◦ exp at
the point xmax + iw. Then for every N ≥ 1 and sufficiently small δ > 0,

Zr

(2πi)d
contrib(w) =

∑
|m|−h`−kn<N

∫
Cδ
0

c(m, `, n)ymq̃(y)−s−l
k∏

j=1

h̃j(y)nj−n dy (6.1)

+O
(
|r|2s−d−N

)
.

In the case k = 0, this reduces to

Zr

(2πi)d
contrib(w) =

∑
|m|−h`<N

∫
Cδ
0

c(m, `)ymq̃(y)−s−l dy +O
(
|r|2s−d−N

)
.

Proof: Let C′ be the common restriction of Cw and log z+Cδ
0 to a neighborhood where they agree.

By (5.6), if δ is sufficiently small, we may truncate Cw to C′ losing only an exponentially small
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quantity:

(2πi)d contrib(w) :=
∫
Cw

exp(−r · y)f(y) dy

=
∫
C′

exp(−r · z)f(y) dy + oexp(exp(−r · z))

= Z−r

[∫
C′−log z

exp(−r · y)f(y) dy + oexp(1)
]
.

Use Lemma 3.2 to write f as a finite series plus a remainder term. Integrate term by term over C′

and apply the big-O estimate (5.8) to the remainder term to get the conclusion of the lemma with
Cδ
0 replaced by C′ − log z. Replacing C′ − log z by Cδ

0 affects the integral by oexp(1), establishing the
lemma. �

6.2 Generalized functions

The integrands in (6.1) are homogeneous and the chains of integration projective. Many such
integrals are evaluated in [ABG70] but there is a hitch: the integral is evaluated not over C0 but over
iRd. The latter integral is in general not convergent over iRd for two reasons. First, integrability will
fail near the zeros of q̃ whenever s is large. Secondly, because | exp(r ·x)| = 1 on iRd (as opposed to
the exponential decay on Cw), integrability at infinity will fail whenever |m| ≥ 2s−d. These problems
are solved respectively by moving the contour and by inserting compactly supported functions inside
the integral. The apparatus to do this is the theory of generalized functions (distributions) and their
Fourier transforms, developed in [GS64] and elsewhere. We summarize the facts needed from this
literature.

We work with two linear spaces that are dual to each other. We call these Rd and Rd∗. We fix
bases dual to each other so that for r ∈ Rd∗ and x ∈ Rd, we have 〈r, x〉 =

∑d
j=1 rjxj . Hereafter,

we denote the pairing by r · x. While all of the ensuing constructions could be defined on either
space, our purposes require slightly different constructions the two spaces and we reduce confusion
by developing these asymmetrically.

Let C0(Rd∗) denote the space of smooth complex valued functions on Rd∗ with compact support.
These are called test functions in [GS64] and the closed support of a test function g is denote
by supp (g). Topologize test functions by convergence of all derivatives; this may be metrized, for
example, by

||g|| :=
∑

n

2−n
∑
|k|=n

φ

(
sup

∣∣∣∣ ∂k

∂rk
g

∣∣∣∣)
where φ(x) = x/(x+1). The space G∗ of generalized functions (sometimes called distributions)
is defined to be the dual of C0(Rd∗), namely the space of continuous linear functions on C0(Rd∗). Let
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loc-int be the space of locally integrable functions on Rd∗, that is, functions g such that g ∈ L1(BN )
for the ball BN of every radius N in Rd∗. There is a natural embedding of loc-int into G∗ mapping
the function f to the linear map g 7→

∫
f(r)g(r) dr. We denote by ιf the image of f under this

identification. Generalized functions in the image of this identification are called standard functions,
but there are many nonstandard functions. One example is the function δr defined by δr(g) = g(r).

Sometimes a function is not standard but agrees with a standard function on some region. Let
D be an open set in (Rd)∗ and suppose that for any g whose closed support is contained in D, the
value of the generalized function L is given by

∫
D f(r)g(r) dr for some function f ∈ L1(D). We then

say that L is partially identified with f on D.

Differentiation may be defined on G∗ by

∂

∂rj
L := g 7→ −L

(
∂

∂rj
g

)
. (6.2)

This commutes with the identification map: integrating by parts,(
∂

∂rj
ιf

)
(g) := −ιf

(
∂

∂rj
g

)
:= −

∫
f(r)

∂

∂rj
g(r) dr

=
∫

∂

∂rj
f(r)g(r) dr (6.3)

which is evidently the embedded image of ∂f/∂rj applied to g. An example of this is the generalized
function (∂/∂ri)δr which maps g to (∂g/∂rj)(r). A famous result (not needed here) is that every
generalized function is of this form: given L ∈ G∗, there is a continuous f ∈ loc-int and a k for
which L = ∂kf/∂rk. Restricting the integral to D, we see that differentiation also commutes with
partial identification.

On Rd we define a slightly different space of test functions. Denote by CRD(Rd) the space of
rapidly decaying smooth functions, meaning that they are O(|x|−N ) at infinity for every N > 0.
Again, topologize by convergence of all derivatives. Let G denote the dual of CRD(Rd). This space of
generalized functions is slightly smaller than the space G∗. Let poly-bd denote the space of functions
f on Rd satisfying |f(x)| ≤ C(1 + |x|)N for some C,N > 0. Then the space poly-bd embeds in G;
again, we denote the image of f under this identification by ιf .

6.3 Inverse Fourier transforms

We now define Fourier transforms and their inverses. Fourier transforms will be defined for functions
on the dual space, while inverse Fourier transforms will be defined for functions on ordinary space.
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Fourier transforms will be defined only for nice functions, while inverse Fourier transforms will be
defined for generalized functions.

For g ∈ C0(Rd∗), define the Fourier transform ĝ by

ĝ(x) :=
∫

Rd∗
g(r) exp(−ir · x) dr . (6.4)

Observe that ĝ ∈ CRD(Rd) (this is the Riemann-Lebesgue Lemma). In fact, we may extend ĝ to
a function on all of Cd. This is a holomorphic function and for every integer N > 0 it is shown
in [ABG70, (2.3)] to satisfy an estimate

|ĝ(x + iy)| ≤ C(N)(1 + |x + iy|)−N exp

(
sup

r∈supp (g)

r · y

)
. (6.5)

Let L be a generalized function in G. We define the inverse Fourier transform F−1(L) by

F−1(L)(g) := (2π)−dL(ĝ) . (6.6)

This is well defined because we have just seen that ĝ ∈ CRD(Rd) and it is easy to see that it is
continuous and therefore an element of G∗. Suppose that f ∈ L1(Rd). Then

F−1(ιf)(g) = (2π)−dιf(ĝ)

= (2π)−d

∫
Rd

f(x)
(∫

Rd∗
g(r) exp(ir · x) dr

)
dx .

Since |f | and |g| are integrable, we may switch the order of integration to see that F−1(ιf) is the
generalized function identified with the actual function

(2π)−d

∫
f(x) exp(ir · x) dx .

Although we do not need it here, we remark that F−1 inverts the Fourier transform: let g ∈ C0(Rd∗)
so that ĝ ∈ L1(Rd); then the above computation shows that F−1(ĝ) is equal to the standard function
(2π)−d

∫
ĝ(x) exp(ir·x) dx, which is equal to g by the usual theorem on inverting Fourier transforms.

Boundaries of holomorphic functions

To evaluate the integrals arising in this paper, we must examine generalized functions arising as
limits of holomorphic functions. Let f be holomorphic in a domain Rd + i∆ where zero is contained
in the boundary of ∆. Suppose that f satisfies an estimate

|f(x + iy)| ≤ C|y|−N (1 + |x|)N
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for some N > 0. The estimate (6.5) shows that the integral∫
Rd+iη

f(x)ĝ(x) dx

exists and is independent of η ∈ ∆. The same is true for
∫

Rd+iη
f(x)h(x) dx as long as the esti-

mate (6.5) is satisfied with h in place of ĝ. In particular, this defines a generalized function in G
(see [ABG70, (1.3)–(1.5)] and following). We denote by ι∆f the generalized function this defines;
if f has a limit in L1 as η → 0 in ∆ then ι∆f is just this standard function. An example is the
function f(x) = A(x)−s for some homogeneous polynomial, A. If ∆ is a cone of hyperbolicity for
A, then f is holomorphic on Rd + i∆ and blows up no worse than a power of the magnitude of the
imaginary part of the argument. When s is sufficiently large, this is not a standard function.

Two classical and useful results generalize the analogous well known results for ordinary Fourier
transforms.

Proposition 6.2. Let f be a function satisfying f(x + iy) = O(|y|N ) for some N , as above. Let
xm be any monomial and let L be any linear transformation. Then the inverse Fourier transforms
of xmf and f ◦ L−1 are given respectively by

F−1(xmf)(r) = i|m| ∂
mF−1(f)
∂rm

; (6.7)

F−1(f ◦ L−1)(r) = |L|F−1(f)(L∗r) . (6.8)

Proof: Pick any h ∈ C0(Rd∗)((Rd)∗). Integrals in the following calculation will be over Rd + iξ in
the x-domain and over (Rd)∗ in the r-domain. Using the definition of Fourier transform in the first
line, calculus in the second, integration by parts in the third line, Fubini’s Thereom in the fourth,
and integration by parts once more, we see that∫

x

xmf(x)ĥ(x) =
∫
x

∫
r

xmf(x)h(r)eir·x dr dx

=
∫
x

∫
r

f(x)h(r)
(
−i ∂
∂r

)m

eir·x dr dx

=
∫
x

∫
r

f(x)eir·x
(
i
∂

∂r

)m

h(r) dr dx

=
∫
r

f̂(r)
(
i
∂

∂r

)m

h(r) dr dx

=
∫
r

f(r)
(
−i ∂
∂r

)m

ĥ(r) dr .

The left-hand side of this is (2π)dF−1(xmf)(h) while the right-hand side is by definition (see (6.2))
equal to (2π)dim[(∂/∂r)mF−1(f)](h), thus verifying (6.7).

The second assertion of the theorem is directly verified. Making the coordinate change x = Lx
and using r · Lx = (L∗r) · x recovers (6.8). �
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Suppose the function E on Rd∗ is not locally integrable. Then ιE is not a well defined generalized
function. Nevertheless, ιE is defined as a partial function: if g is a function supported on a set where
E is locally integrable then ιE(g) =

∫
E(r)g(r) dr is perfectly well defined. We wish to conclude

that an acutal Fourier integral such as occurs in (6.1) of Lemma 6.1 is equal to the locally integrable
function of r computed by [ABG70] as the generalized Fourier transform of the integrand in (6.1).
We therefore require the following lemma.

Lemma 6.3. Let F satisfy the cone point hypotheses and let Cδ
0 be as in Definition 5.7. Let

u(x) :=
xm

q̃s
∏k

j=1 h̃
nj

j

be any of the terms in the series expansion f at x + iw as in Lemma 3.2. Suppose that the inverse
Fourier transform F−1(u), defined relative to the domain −iu + Rd, is given by a partial function
ιF−1(u) on the set of non-obstructed dual vectors in the dual cone, N∗ to tanx(B). Let

ψ(r) := (2π)−d

∫
−iCδ

0

e−ir·yu(y)dy

E(r) := ιF−1(u)(−r) .

Then
ψ(r) = E(r) (6.9)

for any non-obstructed r in the dual cone N∗.

Proof: This is a matter of moving −iCδ
0 to −iu + Rd while introducing appropriate smoothing

functions to maintain integrability. We fix a neighborhood N of r of non-obstructed dual vectors in
N∗, as in the conclusion of Theorem 5.6, whose closure is in the interior of −B∗. We then see that∣∣e−ir·y∣∣→ 0 (6.10)

exponentially fast in |y| as y → ∞ in −iCδ
0 , uniformly as r varies over N . It follows that if

g : (Rd)∗ → C is smooth and supported on some compact subset of N , then

|ĝ(y)| ≤ c||g|| exp(−c′|y|) (6.11)

as y varies over Cδ
0 , where ||g|| :=

∫
|g| and c and c′ are positive constants not depending on g.

Now fix r ∈ N and let gn be a sequence of smooth functions supported on N and converging to δr.
Note that the estimate (6.11) holds for the function g = δr as well as for all gn, where in this case
ĝ(x) = e−ir·x.

To establish (6.9), fix an ε > 0. Nonvanishing of q̃ and each h̃j on −iCδ
0 , together with (6.11),

implies that we may pick a compact set K such that∫
−iCδ

0\K
|ĝn(y)u(y)| dy ≤ ε

4
(6.12)
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for all n, and also for δr in place of gn. The sequence ĝn converges to exp(ir · y) uniformly on K,
hence we may choose N0 large enough so that for n ≥ N0,∣∣∣∣∫

K

u(y) |exp(ir · y)− ĝn(y)| dy
∣∣∣∣ ≤ ε

4
. (6.13)

Increasing N0 if necessary, we may also ensure that∣∣∣∣E(r)−
∫
E(r′)gn(r′) dr′

∣∣∣∣ ≤ ε

4
(6.14)

for all n ≥ N0. We may now conclude that n ≥ N0 implies∣∣∣∣∣ψ(r)− (2π)−d

∫
−iCδ

0

ĝn(y)u(y) dy

∣∣∣∣∣ ≤ 3
4
ε . (6.15)

Indeed, the two terms we have subtracted are integrals over −iCδ
0 of two integrands; denoting the

integrands by β and β′, we break −iCδ
0 into K ∪Kc and use the triangle inequality, viz.,∣∣∣∣∫ β −

∫
β′
∣∣∣∣ ≤ ∫

K

|β − β′|+
∫

Kc

|β|+
∫

Kc

|β′|

and (2π)−d < 1 to obtain (6.15).

The homotopy −iΦt in Theorem 5.6 moves −iCδ
0 to −iu+Rd while avoiding the singularities of u

(by homogeneity, term is singular at y if and only if it is singular at iy). We have seen in (6.5) that
ĝn is rapidly decreasing on the image of this homotopy. Truncating at the boundary of a large ball
and sending this to infinity shows that the integral in (6.15) is unaffected by appliying the homotopy.
Hence,

(2π)−d

∫
−iCδ

0

ĝn(y)u(y) dy = (2π)−d

∫
−iu+Rd

ĝn(y)u(y) dy =
∫
E(r′)gn(r′) dr′

by the definition of the inverse Fourier transform. This identity allows us to apply the triangle
inequality to (6.14) and (6.15), yielding

|ψ(r)− E(r)| ≤ ε .

Since ε > 0 was arbitrary, this proves the lemma. �

6.4 Proof of Theorem 3.7

We begin with a result from [ABG70], evaluating the Fourier transform of S−s where S is the
standard symplectic quadratic x2

1 − x2
2 − · · · − x2

d. For this special case, we let ∆ := {x : x1 <

0 and S(x) > 0} be the cone of hyperbolicity containing the negative x1 axis, we choose an element
η = −e1 of ∆, and we let N∗ := {r : r1 > 0 and r21 −

∑d
k=2 r

2
k > 0} be the dual cone to ∆. In
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the case where s is not an integer, we also need notation to specify what is meant by S(x)−s. To
specify a branch of this is the same as specifying a branch of the argument function ArgS(x). On
any simply connected domain where S 6= 0, this may be accomplished by specifiying ArgS(x) at
any point in the domain. Therefore, we write S(x)−s|Arg (S(η))=θ to denote such a specification.

Theorem 6.4 ([ABG70, Equation (4.20)]). Let S(x) := x2
1 − x2

2 − . . . − x2
d, so that S∗(r) =

r21 − r22 − . . . − r2d. Then the inverse Fourier transform of S−s exists in a generalized sense and, if
s 6= 0, d/2− 1, it is given by

eiπs S∗(r)s−(d/2)

22s−1π(d−2)/2Γ(s)Γ(s+ 1− (d/2))
. (6.16)

To be precise, let ∆ be the component of the real cone {S > 0} that contains the negative x1 axis
and let η ∈ ∆, for example, η = e1. Then if g is supported on a compact subset of N∗,

(2π)−d

∫
Rd+iη

S−s(x)ĝ(x) = C

∫
S∗(r)g(r) dr (6.17)

where C = eiπs / [22s−1π(d−2)/2Γ(s)Γ(s+ 1− d/2)]. �

Proof: This result is taken from [ABG70] but with definitions spread across several sections. So
as to make the citation checkable (especially in light of some minor errors), we reference a number
of passages of [ABG70]. Equation [ABG70, 4.13] defines a Fourier transform of S−s (their notation
for S is a). Then in [ABG70, 4.20] they give the following formula for this quantity, attributed
to [Rie49]:

S∗(r)2−d/2

πd/2−122s−1Γ(s)Γ(s+ 2− d/2)
. (6.18)

The argument of the Γ function the second time is wrong: it should be s + 1 − d/2, agreeing
with [Rie49]. They are also missing a factor of eiπs. To see that this factor should be present, note
that their specification of the branch of S−s is given at the top of page 146: they specify this over
the simply connected set iη + Rd by specifying that ArgS(iη) = π + Arg (S(η)). Taking η = e1, we
see that Arg (S(iη)) must be an odd multiple of π. For such a specification, the Fourier transform
cannot be real for small real values of s. Indeed, taking s to be small and positive, and noting that
S is never positive real on iη+Rd, we see that all arguments of S(x) lie between 2nπ and 2(n+1)π,
hence all arguments of S(x)−s lie between 2nsπ and (2n + 2)sπ. Let x = iη + y. Then switching
y and −y conjugates eir·x while reflecting S(x)−s about the line Arg = (2n+ 1)sπ. Therefore, the
integrand of the Fourier transform ∫

iη+Rd

ueir·xS(x)−s dx

is also reflected about the line Arg = (2n + 1)sπ implying that the integral must therefore lie on
the line of reflection. For small values of s this is not real, demonstrating the need for a correction.
The corrected formula (6.18) implies (6.16). �
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Corollary 6.5 (Fourier transform of a cone). For any real quadratic A having signature (1, d−
1), any monomial xm, and any s 6= 0, d/2− 1, the inverse Fourier transform of xmA−s is given by

eiπsi|m| |M |(∂/∂r)mA∗(r)s−(d/2)

22s−1π(d−2)/2Γ(s)Γ(s+ 1− (d/2))
(6.19)

where M is any real linear transformation such that A = S ◦M−1.

Proof: Pick a linear transformation M such that A = S ◦M−1. Recall that A∗(r) = S∗(L∗r). Use
the second part of Proposition 6.2 and then the first to obtain (6.19). �

Proof of Theorem 3.7: We are required to prove the given asymptotic expansion of contrib(w).
We have assumed no quadratic factors, so the second, simpler formula from Lemma 6.1 applies,
giving

contrib(w) =
(

1
2πi

)d

Z−r

∫
Cδ
0

e−r·y
∑

|m|−2n<N

c(m, n)ymq̃(y)−s−n dy +O
(
|r|−(N+d−2s)

)
as long as N > 2s− d.

Now integrate term by term. We see that

contrib(w) = Z−r

O(|r|−d+2s−N ) +
∑

|m|−2n<N

[(
1

2πi

)d ∫
Cδ
0

e−r·yc(m, n)ymq̃(y)−s−n

]
dy

 .
(6.20)

The specification of −s power for this generating function is that the argument of q̃(u) is zero. To
turn this into a Fourier transform, the change of variables y = iy′ is needed. Under this change of
variables, dy = id dy′, and the summand in (6.20) becomes

c(m, n)(2π)−d

∫
−iCδ

0

e−ir·y′(iy′)mq̃(iy′)−s−n dy′ ,

Now the argument of q̃(iy′) is still continued from initial data Arg (q̃(u)) = 0, and this argument
may also be written as iπ plus the argument of q̃(y′) continued from initial data Arg (q̃(−iu)) = −π
as y′ varies over −iCδ

0 . The summand in (6.20) now becomes

c(m, n)(2π)−di|m|e−iπs

∫
−iCδ

0

e−ir·y′ |y′|mq̃(y′)−s−n dy′ .

Everything is now lined up. Lemma 6.3 shows that this integral, ψ(r), is equal to the partial function
E defined by the Fourier transform of the integrand relative to the domain −iu + Rd. Corollary 6.5
computes this partial function (recalling that the inverse Fourier transform builds in the factor
(2π)−d) and yields the summand

c(m, n)(−1)|m| |M |(∂/∂r)mq̃∗(−r)s−(d/2)

22s−1π(d−2)/2Γ(s)Γ(s+ 1− (d/2))
.
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Multiplying by the Z−r in front of the right-hand side of (6.20) establishes desired conclusion (3.4),
still under the assumption N > 2s− d, which was used to bound the remainder term.

Finally, if N ≤ 2s − d then the foregoing argument may be applied with N replaced by the
least integer N ′ greater than 2s − d. Each term in the sum with |m| − 2n > N is O(|r|−d+2s−N )
by (2.12); the remainder term satifies this bound as well because it is O(|r|−d+2s−N ′

) with N ′ > N .
The theorem is therefore proved for every N . �

6.5 Extra linear factors give rise to integral operators

Let F satisfy the cone point hypotheses and let r be a non-obstructed vector in the dual cone to
N∗ := tanxmax(B). Equation (6.7) of Proposition 6.2 has a moral inverse: just as multiplication
by x turns into differentiation in the r-domain, division by a linear function in x should turn into
integration in the r-domain. This subsection proves a theorem along these lines. However, because
anti-differentiation is not well defined, the resulting formula (6.21) fails to specify which iterated
anti-derivative will result. We show that the correct choice can be determined under the additional
assumption 2s > d + 1. This is not, however, the case with the bulk of our examples, whence our
alternative analysis in Section 6.6.

Let L be any linear function, with coefficients L(x) = a1x1 + · · · + adxd. We may view L as a

vector in (Rd)∗. The notation ∂/∂L will be used to denote the differential operator
d∑

j=1

aj
∂

∂rj
on

r-space. Also,
∂n

∂Ln
:=

k∏
j=1

(
∂

∂Ln

)nj

denotes the corresponding sum of monomial operators (∂/∂r)n.

Proposition 6.6. Let F = P/(Qs
∏k

j=1H
nj

j ) with nj positive integers, q̃ quadratic and each h̃j

linear. Let n = (n1, . . . , nk) be the multiexponent of the functions H1, . . . ,Hk in the denominator of
F and denote p := n + n1 = (n1 + n, . . . , nk + n). Then

contrib(w) =
∑

|m|−2`−kn<N

z−r(−1)|p|+|m|c(m, `, n)
∂m

∂rm
u`,n(r) , (6.21)

where u` is an iterated anti-derivative of q̃−s−` satisfying

i|p|
(
∂p

∂h̃p

)
u`,n = F−1(q̃−s−`) (6.22)

= eiπ(s+`)i|m| |M |(∂/∂r)mA∗(r)s+`−(d/2)

22(s+`)−1π(d−2)/2Γ(s+ `)Γ(s+ `+ 1− (d/2))
.

Proof: The proof proceeds analogously to the proof of Theorem 3.7. Using the full expansion,
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Lemma 3.2, instead of Lemma 2.24 leads to the following generalization of (6.20):

contrib(w) = Z−r

(
1

2πi

)d∑∫
Cδ
0

e−r·yc(m, `, n)ymq̃(y)−s−`
k∏

j=1

h̃j(y)−nj−n dy (6.23)

+O
(
|z−r||r|−d+2s−N

)
where the sum is over the finitely many terms with |m|−h`−kn < N and terms with |m|−h`−kn ≥
N ′ are seen by the big-O lemma to contribute O(|z|−r|r|−d+2s−N ′

). Again, changing variables to
y = iy′ shows the summand to be equal to

Z−ri|m|−|p|e−iπsc(m, `, n)F−1

(
ym

q̃(y)−s−`
∏k

j=1 h̃j(y)−nj−n

)
.

The first conclusion of Proposition 6.2 identifies this inverse Fourier transform as an iterated deriva-
tive (introducing a factor of i|m|), hence the summand becomes

Z−re−iπsi−|p|(−1)`+|m|c(m, `, n)
∂m

∂rm
F−1

(
1

q̃(y)−s−`
∏k

j=1 h̃j(y)−nj−n

)
. (6.24)

From Corollary 6.5 we have

F−1
(
q̃−s−`

)
= eiπs(−1)` |M |A∗(r)s+`−(d/2)

22(s+`)−1π(d−2)/2Γ(s+ `)Γ(s+ `+ 1− (d/2))
. (6.25)

Multiplying the numerator and denominator of 1/q̃s+` by
∏k

j=1 h̃
nj+n
j and applying once more the

first part of Proposition 6.2, we see that

F−1(q̃−s−`) = i|p|
∂p

∂h̃p
F−1

(
1

q̃(y)−s−`
∏k

j=1 h̃j(y)−nj−n

)
,

proving the proposition. �

The rest of the work is in determining h from the derivative (6.22). Begin with two classical
regularity lemmas.

Lemma 6.7. Let f ∈ L1(i∆ + Rd). Then F−1(ι∆f) is standard and locally Lipschitz.

Proof: Let g have compact support in (Rd)∗.

F−1(ι∆f)(g) := (2π)−d(ι∆f)(ĝ)

:= (2π)−d

∫
iη+Rd

f(x)ĝ(x) dx

:= (2π)−d

∫
iη+Rd

f(x)

[∫
(Rd)∗

g(r)e−ir·x dr

]
dx

=
∫

(Rd)∗
g(r)

[
(2π)−d

∫
iη+Rd

f(x)e−ir·x dx
]
dr
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by Fubini’s theorem, since e−ir·x is bounded as r varies over the support of g and the imaginary
part of x varies over any bounded subset of ∆. This shows that F−1(ι∆f) is the standard function
ιh where h(r) = (2π)−d

∫
iη+Rd f(x)e−ir·x dx. To check the local Lipschitz condition on h, note that

|h(r)− h(r′)| = (2π)−d

∫
iη+Rd

f(x)
(
e−ir·x − e−ir′·x

)
dx .

If r, r′ vary over a compact set K, and x = iη + ξ then there is a bound independent of ξ:∣∣∣e−ir·x − e−ir′·x
∣∣∣ ≤ CK |r− r′| ,

which implies |h(r)− h(r′)| ≤ CK · ||f ||1 · |r− r′|. �

We also require the Paley-Wiener Theorem, stated as [ABG70, Theorem 2.5]. A generalized
function is said to have support in a closed set K if it annihilates test functions vanishing off of K.

Lemma 6.8 (Paley-Wiener Theorem). Suppose that ∆ contains the convex cone K. Then the
support of F−1(ι∆f) is contained in the negative dual cone −K∗. �

With these in hand, let K∗ be a connected component of the non-obstructed subset of N∗. Fix
r ∈ K∗. Suppose that for each 1 ≤ j ≤ k, there is a line segment {r + λLj : λ ∈ [0, λ∗]} (where
λ∗ could be negative) such that r + λ∗Lj is on the boundary of N∗ and r + βλ∗Lj is in K∗ for
all 0 ≤ β < 1. In other words, for each j, traveling from r in the directions ±Lj , we come to the
boundary of K∗ at the same time as we come to the boundary of N∗. Define the integral operator
Ij on functions on r-space by

Ij(g)(r) =
∫ 0

λ∗

g(r + λLj) dλ .

Let Ip denote the composition over j of powers Ipj

j . We then have the following result.

Theorem 6.9. Under the above geometric conditions on the component K∗ of the non-obstructed
set of N∗, if 2s > d+ 1, then h(r) in (6.21) is given by

i−|p| Ip
[
F−1(q̃−s−`)

]
where p = n + n1 as in Proposition 6.6.

Proof: Under the condition 2s > d + 1, one has |q̃(x)−s| = O(|x|−d−ε) for some ε > 0. Hence
the function q̃−s is integrable away from its poles, as is therefore q̃−s−`

∏k
j=1 h̃

−nj−n
j . Moving to

iη + Rd, we avoid all poles and hence q̃−s−` h̃p ∈ L1. By Lemma 6.7, the Fourier transform is a
standard, locally Lipschitz function, hence continuous. The domain of analyticity of f contains every
cone whose closure is in the interior of tanxmax(B). By the Paley-Wiener Theorem, therefore, the
inverse Fourier transform vanishes outside of the closed negative dual cone, N∗. Each differential
operator ∂/∂Lj in (6.22) may now be inverted uniquely, due to the boundary condition of vanishing
at r + λ∗Lj . The unique inverse is Ij . Together with (6.22), this proves the theorem. �.
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Remark. Without the hypothesis 2s > d+ 1 we still have

h(r) = i−|p| Ĩp
[
F−1(A−s−`)

]
where Ĩj are anti-derivative operators whose boundary conditions are not determined by continuity
from the Paley-Wiener Theorem.

6.6 Proof of Theorem 3.9

We have seen that a linear factor L(x) in the denominator corresponds to a convolution with a
Heaviside function, or equivalently, to an integral operator IL. The integrability hypothesis in
this result is unfortunately somewhat restrictive, ruling out, for example, the case s = 1, d = 3.
Moreover, from a computational viewpoint, it is not desirable to have the answer represented as an
(iterated) integral. It is therefore worth exploring a general method for reducing the dimension of
the integral in question. In [ABG70], homogeneity of the integrand is exploited: integrating out
the radial part, the Fourier transform is reduced to an integral over a cycle in (d − 1)-dimensional
projective space, which will be either the Leray cycle or the Petrovsky cycle. To this device, we add
a residue computation that further reduces the dimension by one. Evaluation of the resulting one-
dimensional integral leads to Theorem 3.9. Computations in projective space rely on some standard
constructions and notational conventions which we now introduce.

Let π : Cd \{0} → CPd−1 be the projection map. Any meromorphic form ω on CPd−1 pulls back
to a form π∗ω on Cd\{0}. The pullback π∗ is one to one onto its range. It is well known e.g., [GH78,
page 409], that the range is the set of all meromorphic (d− 1)-forms on Cd whose contraction with
the Euler vector field

∑
xi∂/∂xi is zero and that are homogenenous of degree zero. Here, the degree

of fdxj1 ∧ · · · ∧ dxjk
is deg f + k and for (d − 1)-forms, those forms killing the Euler field are in

a one-dimensional subspace of the (d − 1)-dimensional cotangent space at each point. Forms on
CPd−1 have no natural names of their own, so we name them by identifying with their pullbacks
to Cd, as is done in [ABG70] and elsewhere. For computational purposes, when integrating over a
chain C in CPd−1, we usually use an elementary chart map from a slice of Cd, such as π restricted
to (z1, . . . , zd−1, 1). If fj are homogeneous of degree 1 − d, for example, pulling back by this chart
map yields ∫

C

d∑
j=1

fj(z) dz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzd =
∫
C′
fd dz1 ∧ · · · ∧ dzd−1

where C′ is the (unique) lifting of C to the (simply connected) slice.

The proof of Theorem 3.9 begins analogously to the proof of Theorem 3.7. Use the general
expansion in Lemma 3.2, just for the leading term, to write

p(xmax + iw + y)
q(xmax + iw + y)h(xmax + iw + y)

=
p(z)

q̃(y)h̃(y)
+R
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where R = O(|y|−2) on Cw. Use Lemma 6.1 to replace Cw by Cδ
0 and use the big-O lemma on the

integral of R to see that

contrib(w) =
Z−rP (Z)

(2πi)3

∫
Cδ
0

exp(−r · y)
1

q̃(y)h̃(y)
dy +O(|r|−1).

Changing variables by y = iy′ and noting that dy/[q̃(y)h̃(y)] = dy′/[q̃(y′)h̃(y′)] gives

contrib(w) =
Z−rP (Z)

(2πi)3

∫
−iu+Cδ

0

exp(−ir · y)
1

q̃(y)h̃(y)
dy +O(|r|−1)

= Z−rP (Z) i−3 F−1

(
1
q̃h̃

)
+O(|r|−1) .

Comparing to (3.9), it suffices, therefore, to show that

F−1

(
1
q̃h̃

)
= i3

Res(2)

π
arctan


√
q̃∗(r)q̃(h̃∗)

h̃∗(r)

 . (6.26)

The Leray and Petrovsky cycles

We are left to compute the inverse Fourier transform of 1/(q̃h̃). The first part of this computation,
reducing to the Leray cycle, is valid for any hyperbolic polynoimal in any non-obstructed direction,
so we do it in this generality. Let P/H be the ratio of two homogeneous polynomials and assume H
is hyperbolic. Later we will specialize to the case where H = q̃h̃. Denote by d∗ := degH−degP −d
the inverse degree of homogeneity of the form (P/H) dz.

Let B be a cone of hyperbolicity for H and fix u ∈ B. Fix a non-obstructed vector r ∈ N∗ :=
−B∗. Recall from our homotopy constuctions that there is a vector field η on Rd with the following
properties.

1. η is homogeneous of degree +1.

2. There is a 1-homogeneous homotopy {ηt : 0 ≤ t ≤ 1} between η0 ≡ u and η1 = η such that for
all t and all nonzero y, H(iy + ηt(y) 6= 0.

3. For all y 6= 0, r · η(y) = 0.

Indeed, a similar homotopy with the third condition replaced by r · η(y) < 0 is constructed in
Section 5. Stopping the homotopy at the instant, depending on y, that it crosses the hyperplane
orthogonal to r, yields the desired η along with a homotopy as prescribed.

Let S+ denote the hemisphere {y ∈ Rd : |y| = 1, r ·y ≥ 0}. Let S− denote the other hemishpere,
where r · y ≤ 0. Let cycles σ± be (singular triangulations of) S± oriented in such a way that
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∂(σ+ + σ−) = 0. Then σ := σ+ − σ− is a (d − 1)-chain supported on Sd−1 whose boundary is
supported on the equator {y ∈ Sd−1 : r · y = 0}.

The map φ defined by φ(y) := iy+η(y) induces a covariant map φ∗ on cycles and homology. The
chain φ∗(σ) maps to a cycle in Cd with boundary in the complex hyperplane Xr := {z : r · z = 0}.
Hence φ∗(σ) represents a homology class in Hd−1(Cd, Xr). For any homogeneous set W ⊆ Cd, let
W denote the projection πW of W to CPd−1. The sets Vq̃ and Xr are homogenous, therefore the
pair (Cd − Vq̃, (Cd − q̃) ∩Xr) projects radially under π to (CPd−1 − Vq̃, (CPd−1 − Vq̃) ∩Xr).4

Definition 6.10 (Leray and Petrovsky cycles). The chain α = α(r) := πφ(σ) is called the
Leray cycle and its class π∗φ∗[σ] ∈ Hd−1(CPd−1 − Vq̃, (CPd−1 − Vq̃) ∩Xr) is called the Leray class.

The boundary of α is a cycle β representing a class in Hd−2(CPd−1 − Vq̃) ∩ Xr). Define the
Petrovsky cycle γ to be a tubular neighborhood around β orthogonal to Xr. This is the image under
π of a cycle supported on {y : |r · y| = ε} and avoiding Vq̃.

The following result is proved in [ABG70, Theorem 7.16]; here we correct a typo: the second
appearance of χ0

q, namely the one in (7.17′), should be just χq; see equation (1.6) on page 122
of [ABG70]. Define a (d− 1)-form ω, killing the Euler vector field and having homogeneous degree
d, by

ω :=
1
d

d∑
j=1

(−1)j+1zj dz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzd .

To explain what is about to appear in (6.27) – (6.28) below, we must see why the integral of a
meromorphic 2-form on CP2 over a relative homology class in H2(CP2,M) is well defined. Indeed,
integration over a relative homology class with respect of a complex submanifold of positive co-
dimension is always well defined, for the following reason. Let C be a representating cycle for the
class, that is a 2-chain with boundary in M. The integral over any other relative cycle differs from
the integral over C by the integral over a relative boundary, a relative boundary being an absolute
boundary plus something in M. Since dω = 0 for any meromorphic 2-form on CP2, the integral
over the boundary vanishes, and since M has positive complex co-dimension, the second part of the
integral vanishes as well.

Theorem 6.11 (Reducing Fourier integrals to Leray/Petrovsky cycles). Let P/H be hy-
perbolic and fix u in a cone B of hyperbolicity for H as above. Let d∗ be the inverse degree of
homogeneity of the form (P/H)ω, that is, d∗ = degH − degP − d. Let α be the Leray cycle and γ
be the Petrovsky cycle. If d∗ ≥ 0 then

F−1

(
P

H

)
=

id∗+1

(2π)d−1d∗!

∫
α

(r · z)d∗
P

H
ω , (6.27)

4The bars denoting projective varities are about to proliferate; we apologize for the mess, but we tried dropping

them but we became confused about which varieties were projective and which were affine.
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while if d∗ < 0 then

F−1

(
P

H

)
=

id∗

(2π)d(|d∗| − 1)!

∫
γ

(r · z)d∗
P (z)
H(z)

ω . (6.28)

�

Remarks. (i) Note that the introduction of the factor (r · z)d∗ makes the integrand 0-homogeneous,
which is exactly what we need to interpret it as a form on CPd−1. (ii) In the case d∗ < 0, the
integrand contains a negative power of r · z. Let Res(ω) be |d∗|th residue of the integrand (r ·
z)d∗(P/H)ω along the projective hyperplane Xr. The product structure in the Petrovsky cycle
immediately reduces the integral one dimension further to

∫
β

Res(ω). In the case d∗ ≥ 0, the integral
does not localize to the boundary cycle β and one must work harder to kill one more dimension.

Residue reduction

The second step is to reduce by one further dimension via a residue computation. The first half of
this step still works in any dimension. Begin by observing:

Lemma 6.12. The homology group Hd−1(CPd−1, Xr) vanishes.

Proof: CPd−1 ∩ Xr is homeomorphic to CPd−2. If p ≤ 2(d − 2) then this inclusion induces an
isomorphism Hp(CPd−1 ∩Xr) → Hp(CPd−1), where both groups have rank 1 if p is even and vanish
otherwise. It follows that the first and last arrows are isomorphisms in the exact sequence

Hd−1(CPd−1 ∩Xr) → Hd−1(CPd−1) → Hd−1(CPd−1, Xr) → Hd−2(CPd−1 ∩Xr) → Hd−2(CPd−1)

hence the middle group vanishes. �

We now make use of the Thom isomorphism to “pass α through VH” and obtain a (d− 2)-chain,
whose tubular neighborhood is homologous to α. The details are as follows. By Lemma 6.12 any
chain representing the pLeray class is a boundary of a d-chain β ∈ (CPd−1, Xr). We may therefore
choose a d-chain C in CPd−1 whose boundary is α plus something in Xr (because ∂C is a cycle and
α is not, the part in Xr will be nonzero). Perturbing C if necessary, we can assume that C intersects
VH transversely. The dimension of the intersection of the d-chain C ′ with the surface VH having
co-dimension 2 is a (d− 2)-chain δ, whose orientation is prescribed by the orientations of C,CPd−1

and VH . The chain δ has boundary in VH ∩Xr, and is therefore a relative cycle in (VH ,VH ∩Xr).

Now we are at a point where we require the dimension to be 3. The chain C has (real) dimension 3
and the surface VH has dimension 4. The projective variety VH may not be smooth, but its singular
set has complex co-dimension at least 1, hence has real dimension at most 2. Generically perturbed
C therefore does not intersect the singular set of VH , and hence δ is supported on the set of smooth
points of VH . We may define the tubular neighborhood T (δ) supported on the set {|H| = ε}, which
is locally a product of δ with a small circle about the origin in C1 with the standard orientation.
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Integration around this circle is computed by taking a residue. We recall a definition of the
residue form on any complex space. Let θ be a meromorphic form with a pole on the set VH , the
pole being simple except on a proper subvariety VH ∩ VK . Then the residue is defined as follows.
Write θ = H · ω where ω is holomorphic away from on VK . Define Res[θ,VH ] to be the unique form
on VH that satisfies

Res[θ,VH ] ∧ dH = ω

away from VK . In coordinates, the residue of (G/H)dz1 ∧ · · · ∧ dzd is given by (G/(∂H/∂z1))dz2 ∧
· · · ∧ dzd; (with zj in place of z1, we have the alternative expression (−1)j−1(G/∂H/∂zj)dz1 ∧ · · · ∧
dzj−1 ∧ dzj+1 ∧ · · · ∧ dzd). The following well known result may be demonstrated by expressing the
integral over the tube as an iterated integral, first around a circle.

Lemma 6.13. Suppose d = 3. The Leray class α is homologous to the tube T (δ) around δ. Conse-
quently, for any meromorphic form θ on H with a simple pole at H,∫

α

θ =
∫

T (δ)

θ = (2πi)
∫

δ

Res[θ;VH ] .

In particular, when d∗ = 0 in Theorem 6.11, putting this together with (6.27) and specializing to
H = q̃h̃ and θ = ω/(q̃h̃) yields

F−1

(
1
q̃h̃

)
=

i

(2π)2

∫
α

ω

q̃h̃
=
−1
2π

∫
δ

ωL

where

ωL := Res
[
ω

q̃h̃
;Vq̃h̃

]
.

�

Remark. In higher dimensions, it may happen that δ intersects the singular set of VH . In that case,
one might expect a version of Lemma 6.13 showing the Leray cycle to be homologous to the sum of
a tubular neighborhood of δ away from the singular set and a cycle supported on a neighborhood of
the singular set.

The special case of a cone and a plane

For the remainder of this section, we specialize to the case in Theorem 3.9. In addition to d = 3,
we suppose k = s = 1, whence the inverse degree, d∗, of homogeneity is zero. We further specialize
to the case where Vq̃ ∩ Vh̃ ∩ Rd 6= ∅ and where the variety Vq̃·h̃ has precisely two points, each of
multiplicity one. Thus we are in the case of Section 5.3, which arises in several of our applications
and is illustrated in figure 14. The normal cone is shaped as in figure 3.3 and the vector field η1

constructed in Section 5.3 is one we can use to construct the Leray cycle. In this case (d = 3), since
δ avoids Vh̃, we may restrict to Vq̃ and write

ωL := Res
[
ω

q̃h̃
;Vq̃

]
.
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Let p be a common zero of q̃ and h̃. The space of 2-forms on CP2 is one-dimensional, hence at
p, the form ω is a multiple of the form dq̃ ∧ dh̃. The double residue

Res(2) := Res
[
ω

q̃h̃
,Vq̃ ∩ Vh̃

]
is the value of this ratio, that is, ω = Res(2)(p) dq̃∧dh̃ at p. We have the following explicit description
of the residue form ωL.

Lemma 6.14. Let t : CP1 → Vq̃ be any local parametrization. Then

ωL = Res(2)(t3) ·
(

dt

t− t3
− dt

t− t4

)
= Res(2)(t4) ·

(
dt

t− t4
− dt

t− t3

)
where t3 and t4 are the values of the parameter t for which h̃ vanishes.

Proof: The form ωL is meromorphic on Vq̃ with precisely two simple poles. Therefore, it may be
written as C[dt/(t − t3) − dt/(t − t4)]. Taking the residue at t = t3 yields Res(ωL; t3) = C. But
iterated resides are the same as multiple residues, hence

C = Res(ωL; t3)

= Res
[
Res

(
ω

q̃h̃
;Vq̃

)
;Vh̃

]
= Res(2)

[
ω

q̃h̃
;Vq̃ ∩ Vh̃

]
= Res(2) .

To carry out the rest of the computation, let us choose coordinates for C3 in which q̃ = x2−y2−z2.
Although these are unrelated to the coordinates in which h̃ and r are described, we will use them
to compute a coordinate-free description of the integral.

The cones of hyperbolicity of q̃ are the two components of x2 > y2 + z2, one containing the
negative x-axis and one containing the positive x-axis. Recall that the cones of hyperbolicity for q̃h̃
are these cones, bisected by the plane h̃ = 0. Recall we have fixed u ∈ B, where B is one of these
sliced cones and its dual has a teardrop shape.

The space Vq̃ is a quadratic curve in CP2. We may choose the explicit parametrization t : CP1 →
Vq̃ by

(x, tx) 7→ (t2 + 1, 2t, t2 − 1)

in the (x, y, z)-coordinate system. Topologically, CP1 is a sphere with RP1 as its equator, and our
parametrization has the nice feature that the copy of RP1 inside CP1 maps to the real part of the
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quadric Vq̃. Thus figure 19 depicts Vq̃ as a sphere and the real part as the equator. The points of Vq̃

where r · x vanishes are denote t1 and t2 and the points where h̃ vanishes are denoted by t3 and t4.
The assumption that Vh̃ and Vq̃ intersect in real space is equivalent to h̃ lying outside the dual cone,
which is equivalent to t having real roots. Thus t3 and t4 are shown on the equator in figure 19.
Note that the two arcs into which t3, t4 separate the equator differ in their position visavis the cone
of hyperbolicity: one of them bounds it (we will call this arc the active one), while the other not.

If r is in the dual cone then t1 and t2 will be complex conjugates, while if r is in the pointy region
of the teardrop then t1 and t2 will be real.

t

t
αA

t 3
4

1

t2

Figure 19: the topological sphere Vq̃, its real part (the equator) and its intersections with the planes
{h̃ = 0} and Xr

Case 1: t1 and t2 are complex

We are nearly ready to evaluate the integral, but we need first to understand the cycle δ. The
intersection class δ is a relative cycle in (Vq̃,Vq̃ ∩ Xr). Thus we may draw a representative of
this class as a path, beginning and ending in the set {t1, t2}. The meromorphic residue form ωL

is holomorphic away from t3 and t4 where it has simple poles. The integral of this form over δ is
therefore determined by combinatorial invariants of δ: the positions of the endpoints and the number
of signed intersections with the two equatorial arcs bounded by t3 and t4.

Lemma 6.15. The homology class of δ in (Vq̃ \ {t3, t4}, {t1, t2}) is that of an oriented path from t2

to t1, intersecting one equatorial arc exactly once.

Proof: It is shown in [ABG70] (see in particular figure 6b there and the paragraph preceding it)
that one can find a representative of the Leray class such that its boundary (in Xr − Vq̃ ∩ Xr) is
localized near the complex points of Vq̃ ∩Xr, i.e. in our situation is the sum of small circles around
the complex zeros of q̃ in Xr, oriented according to their imaginary parts (note that h̃ has no non-real
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point of vanishing of the vector field

Figure 20: showing where the homotopy intersects the quadric

zeros there). It follows that the boundary of the (relative) cycle δ is given by

∂δ = [t1]− [t2]

where t1 has the positive imaginary part, and δ is the claimed path, plus one or more absolute cycles
(i.e. oriented closed loops) in Vq̃ and Vh̃.

To find the homology classes represented by these arcs and loops, we recall the definition of
the Leray class: the vector field η constructed at the end of section 5.3 is restricted to the unit
sphere, defining the relative class, the sum of oppositely oriented semispheres separated by the
hyperplane Xr. To evaluate δ we find a homotopy shrinking these hemispheres to a point, keeping
their boundaries in Xr and tracking where the resulting 3-chain hits Vq̃ and Vh̃. This homotopy
proceeds in two stages: first we take the linear homotopy of (the restriction to the unit sphere of)
η, the vector field constructed in Section 5.3 to the (restriction to the unit sphere of the) constant
vector field x defined in the same place. In the second stage we collapse the sphere to a point,
keeping the constant vector field.

We note first that in Vh̃ this deformation yields the empty set: at no instant are the deformed
vectors tangent to h̃, which would be necessary if the deformation were to intersect h̃. This is not
the case for q̃, and indeed, we know already that the boundary of δ there is nontrivial. The class of
δ is completely determined by the index of intersection with the active arc between t3 and t4. The
intersection number of δ with the active arc is just the number of points in the real part of Vq̃ where
our deformation results, at some instant of the homotopy, in a vector field tangent to the (real part
of) the quadric. It is immediate that there is a single point and a single time in the homotopy where
this occurs (in fact, the vector field vanishes at this place and time), and it is easy to check that this
uniquness survives small perturbations (see figure 20). �

Having this geometric understanding of Vq̃, t1, t2, t3, t4 and δ, we may now compute the integral.
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We find that ∫
δ

Res(2) ·
(

dt

t− t3
− dt

t− t4

)
= Res(2) . log

(t2 − t3)(t1 − t4)
(t1 − t3)(t2 − t4)

= i (α+ β) Res(2) .

Here, the fact that t1, t2 are complex conjugates while t3, t4 are real implies that the numerator and

t

t

t 1

3

4

2tα β

Figure 21: the logarithm as an arctangent

denominator are complex conjugates and the logarithm is purely imaginary, being in fact 2i times
the arctangent of the sum α+ β of the angles shown in figure 21. The logarithm is therefore given
by twice the arctangent of the ratio of imaginary to real parts in the numerator.

Whenever t1, t2 satisfy a quadratic equation t2 + at+ b with real coefficients while t3, t4 satisfy a
quadratic equation t2 + a′t+ b′ = 0, also with real coefficients, then simple algebra shows the cross
ratio to be given by

(t1 − t4)(t2 − t3)
(t1 − t3)(t2 − t4)

=
b+ b′ − aa′/2 + i

√
a2 − 4b

√
4b′ − a′2

b+ b′ − aa′/2− i
√
a2 − 4b

√
4b′ − a′2

. (6.29)

The ratio of the imaginary to real parts simplifies considerably, so we obtain the equivalent expres-
sions

2i arctan
√
a2 − 4b

√
4b′ − a′2

b+ b′ − aa′/2
. (6.30)

Here, we recall the definition of the range of the arctangent function in Theorem 3.9, namely 0 ≤
arctanx < π.

Let L = `1x+ `2y + `3z describe h̃ in our coordinate system. Then t3, t4 solve q̃ = L = 0. The
minimal polynomial for t3 and t4 (produced, for example, in Maple as an elimination polynomial for
the ideal 〈x− (t2 + 1), y − 2t, z − (t2 − 1), x2 − y2 − z2, `1x+ `2y, `3z) is given by

t2 +
2`2

`1 + `3
t+

`1 − `3
`1 + `3

.

Similarly, let r = r1x+ r2y + r3z, giving the minimal polynomial for t1 and t2 as

t2 +
2r2

r1 + r3
t+

r1 − r3
r1 + r3

.
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Plugging in a = 2r2/(r3 + r1), b = (r1− r3)/(r1 + r3), a′ = 2`2/(`3 + `1) and b′ = (`1− `3)/(`1 + `3)
to (6.30) now gives ∫

δ

ωL = 2iRes(2) arctan

(√
r21 − r22 − r23

√
−`21 + `22 + `23

r1`1 − r2`2 − r3`3

)
where the two quantities under the radical signs are both positive. Writing the right-hand side as a
combination of coordinate-free quantities, this becomes

∫
δ

ωL = 2iRes(2) arctan

√
q̃∗(r, r)

√
−q̃∗(h̃, h̃)

q̃∗(r, h̃)
. (6.31)

Combining this with the result of Lemma 6.13 shows that

F−1

(
1
q̃ · h̃

)
=
−i
π

Res(2) arctan

√
q̃∗(r, r)

√
−q̃∗(h̃, h̃)

q̃∗(r, h̃)
,

and checking this against 6.26 proves Theorem 3.9 in the case where r is inside the dual cone.

Case 2: t1 and t2 are real

In this case, r is in the pointy region of the teardrop. The result (6.23) from [ABG70] tells us
that the Leray cycle, which is by definition a relative cycle, is an absolute cycle. It follows that
the intersection class δ is an absolute cycle in the twice punctured sphere. Thus t1 = t2 when the
roots are real, and the cycle δ is represented by a circle. Geometrically, in the previous case (t1, t2
complex), as r approaches the boundary of the dual to the conic, the points t1 and t2 converge to a
single point on the equator and the arc δ closes up into a circle. Provided this point of convergence
is not one of the poles, t3 or t4, the integral will approach a well defined limit, which is the integral
over the absolute intersection cycle. By continuity, the homology class of this absolute cycle cannot
vary as the limit point varies over the common boundary of the two regions of the teardrop, nor can
this class vary as r varies over the pointy region of the teardrop.

To summarize, there is a constant c such that for all r in the pointy region, the integral is
equal to c. This is also the limiting value if r approaches any point of the common boundary from
inside the other region, and thus concides with the limit of the quantity in the previous case, as r
approaches any ray in the common boundary; in the limit the arctangent is π and we obtain simply
P (Z)Res(2)Z−r. �

Remark. If r crosses out of the dual conic at a point α not on the boudary of the pointy region,
it exits the normal cone. We know the integral must become zero in this case. Geometrically, this
corresponds to t1 and t2 coming together in a cycle homologous to zero. There is a discontinuity
if α is one of the two projective points of tangency in figure 10. Near these two points, t1 and t2

approach t3 and t4 respectively. Crossing out out of the dual cone on one side or the other will
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cause δ to close up to a null or non-null cycle, in the former case the integral is zero; the difference
between the two integrals is the residue at the pole t3 or t4.

7 Further questions

1. It would be nice to remove the integrability hypothesis 2s > d+1 from Theorem 6.9. Doing so
would necessitate a specification of which antiderivative

∫ 0

λ∗
g(r + λLj) dλ is meant when the

integral in question is not convergent. There are cases when the is one “obvious” interpretation
of this as a closed form function, but proving this to be correct requires better understanding
of the generalized function partially identified as g on the Paley-Wiener cone.

2. When d = 3 but Q has an isolated singularity of degree greater than 2, the techniques of
Section 6.6 are still applicable through Lemma 6.13. The representation in Lemma 6.14 must
be replaced by one with four poles, and the intersection class in Lemma 6.15 correspondingly
specified. Work is in progress on details of this computation and its applicatoin to the Fortress
tiling ensemble.

3. In principle, generalized Fourier transform theory should give us some information on asymp-
totics in scaling windows near the boundary or in obscured directions. An additional complica-
tion is that, because projective homotopies do not exist giving exponential decay of exp(−r ·x)
for these r, one must verify the existence of chains on which exp(−r · x) decays sufficiently
rapidly to justify the exchanges of limits in Lemma 6.3 and elsewhere. This, together with
the increased complexity of Fourier integrals with varying parameters, has kept us thus far
from obtaining limit theorems near these boundaries. This is perhaps the most broad and
challenging open problem pertaining to the results in this paper.
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