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0 Intro

Begin with an array of numbers indexed by d-tuples of nonnegative integers:

{ar1,...,rd : r1, . . . , rd ≥ 0}.

These numbers arise from some application in combinatorics or probability theory or queu-

ing theory, etc., and we wish to know something about them. In particular, we want

asymptotic information: ar = (1 + o(1))H(r) as r →∞ in some prescribed way, and where

H is a function we understand. (The boldface notation is for vectors.) The way in which

r → ∞ will depend on the application, as will the range of r for which the approxima-

tion is uniform or even valid. Sometimes we may need more precise information, such as

an asymptotic series, and sometimes we might need less, for example limt→∞ r−1 log abtsc
might suffice.

There are many methods of obtaining asymptotics, but let us focus here on the gener-

ating function method. Define

F (z1, . . . , zd) :=
∑

arzr :=
∑

ar1,...,rdz
r1
1 · · · zrdd . (0.1)

The function F exists as a formal power series, and possibly as a convergent power series in

a neighborhood of the origin. In cases where the numbers ar are determined recursively, it is

often far easier to compute the function F than it is to find general formulae for the numbers

ar. One must then translate one’s information about F into asymptotic information about

{ar}.

There are as many ways to do this as there are interesting generating functions. Most

methods use complex contour integration, together with a somewhat ad hoc set of tools for

making the integrals tractable. The focus of these lectures is two-fold: first to present some

new techniques that work well for certain classes of multivariable generating functions, and

second to prove some classification results that change the ad hoc art of asymptotics into a

science, at least for one nontrivial class of functions.
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My personal history with the subject is perhaps relevant here. I began with a concrete

problem to which I attempted to apply generating function methods. After doing a fair

bit of work to obtain the two-variable generating function, I then went to the literature to

“look up” what to do to get out the asymptotics. Surprisingly, I didn’t find what I needed.

After several iterations of reducing the problem to a toy problem, I started to believe that

perhaps it was not known how to extract asymptotics even for the simplest imaginable class,

namely rational functions. Part of my surprise at how little was known stemmed from how

completely trivial it is to obtain asymptotics for rational functions of one variable.

Working out the asymptotics for this example via contour methods was not too hard

and did not much improve on what was known by other means. But soon I had another

example for which basic qualitative behavior was not known by any means, and to which the

same contour techniques could be applied with a little more work. I became interested in

finding a general theory which would guarantee that these methods would always produce

the correct leading term asymptotic at least for the class of examples I was interested in,

namely meromorphic non-entire functions.

The upshot of all this, to date, is (1) an integration technique useful mainly in cases

where the singularities of F are poles (recall we are working over several complex variables,

so a pole is a complex analytic variety on which the modulus of F goes to infinity); (2) a

theorem proving that this technique always works for two-variable meromorphic functions

with nonnegative coefficients; (3) good progress toward such a theorem in any number

of variables; and (4) an idea for how to proceed when the coefficients are not assumed

nonnegative, and a conjecture that the method still always works.

An outline of the remaining lectures is as follows. The course will begin with a brief

introduction to formal power series, together with some detailed examples of multivariable

generating functions and how they are obtained. Next will be a review of the main tech-

niques in asymptotics of one variable generating functions. From this it will be apparent

that oscillating integrals play a major role in the derivation of asymptotics. The theory of

oscillating integrals will first be developed in one variable, following several sources includ-
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ing chiefly Stein (1993). We then go on to outline results in several variables, where the

proofs are similar but the intuition is the same. Technical results needed for later will be

stated and maybe proved. More details will be provided later but an outline of the method

is as follows.

(1) Use the multidimensional Cauchy integral formula to represent ar as an

integral over a d-dimensional torus inside Cd.

(2) Expand the surface of integration across a point z where F is singular, and

use the residue theorem to represent ar as a (d− 1)-dimensional integral of one-

variable residues. The choice of z determines the directions in which asymptotics

may be computed.

(3) Put this in the form of an integral
∫

exp(λf(z))ψ(z) dz for which the large-λ

asymptotics can be read off from the theory of oscillating integrals.

These methods will then be applied to derive asymptotics in various cases of interest,

and the results compared with those obtainable by previously known methods. An example

of the type of result we will derive is the following.

Theorem ??: Let F = G/H be a meromorphic function of two variables, not singular at

the origin. Define

Q(z, w) := −w2H2
wzHz − wHwz

2H2
z − w2z2

(
H2
wHzz +H2

zHww − 2HzHwHzw

)
.

Then

ar,s ∼
G(z, w)√

2π
z−rw−s

√
−wHw

sQ

uniformly as (z, w) varies over a compact set of strictly minimal, simple poles of F on which

Q and G are nonvanishing, and (r, s) ∈ dir(z, w).

After working out a number of examples, I will prove the following classification theorem

for two-variable, meromorphic non-entire functions.
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Theorem ??: Let F = G/H =
∑
ar,sz

rws be the quotient of analytic functions G,H :

C2 → C. Suppose that the coefficients ar,s are all nonnegative, and that F (z, 0) and F (0, w)

are not entire. Then for every direction α ∈ RP1 there is a minimal z ∈ V with α ∈ dir(z).

Extension to more than two variables leads to topological and algebraic-geometric ques-

tions, which we will discuss as time permits.

The last part of the course (time permitting again) will be on generating functions that

are difficult to obtain, and the various means used to obtain them.

1 Generating functions

Let C[[z1, . . . , zd]] denote the ring of formal power series in the variables z1, . . . , zd. Elements

of C[[z1, . . . , zd]] are parameterized by maps f from d-tuples of nonnegative integers to C

via the correspondence f 7→ F :=
∑

r f(r)zr. Addition is defined by (a+ b)(r) = a(r)+ b(r)

and multiplication is defined by convolution: a · b(r) =
∑

s a(s)b(r − s). The sum in this

convolution is always finite, so there is no question of convergence. Exercise: show that

f ∈ C[[z1, . . . , zd]] is a unit (has a multiplicative inverse) if and only if f has a

nonzero constant term. Thus C[[z1, . . . , zd]] has a unique maximal ideal.

Let N be an open polydisk containing the origin in Cd, that is a set {z : |zi| <
ti, 1 ≤ i ≤ d}. Suppose that f, g ∈ C[[z1, . . . , zd]] are absolutely convergent on N , that

is,
∑

r |f(r)||w1|n1 · · · |wd|rd < ∞ when all |wi| < ti. Then f + g and fg are absolutely

convergent on N as well and the sum and product in the ring of formal power series is the

same as in the ring of analytic functions in N . Note that some formal power series fail to

converge anywhere (except at the origin) and that for these it will not work to apply analytic

methods. One can however make a generating function by letting F (x) =
∑

r f(rzr/g(r)

for a judiciously chosen g. A good choice is often to let g(r) be a product of some or all of

the quantities ri!; generating functions normalized by factorials are often called exponential

generating functions.
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The interior of the domain D on which the formal power series F converges is the

union of open polydisks. In particular it is the union of tori, and is hence characterized

by its intersection DR with Rd. The set D is in fact pseudoconvex, meaning that the set

Dlog defined by (x1, . . . , xd) ∈ Dlog iff (ex1 , . . . , exd) ∈ DR is a convex order ideal1. See

Hörmander (1990, Section 2.5) for these and other basic facts about functions of several

complex variables.

Some elementary examples will make these formalities clear to those without experience

using generating functions.

Example 1 (Fibonacci)

Let d = 1 and let ar be the rth Fibonacci number. Let F (z) =
∑∞
r=0 arz

r be the

generating function for the Fibonacci numbers. We compute (1−z−z2)F . Since (1−z−z2)F

has rth coefficient equal to ar − ar−1 − ar−2 (where coefficients with negative indices are

zero), it follows that (1− z − z2)F = 1, whence F = 1/(1− z − z2).

In order to pave the way for a more complicated example involving polyominos (Exam-

ple ?? below), I will complete the asymptotic computation from the generating function.

We use a partial fraction expansion to express F (z) as

1
1− λ1z

+
1

1− λ2z

where λj are the inverse roots of H := 1− z− z2 = 0. (The 1’s in the numerator happen to

be particularly simple.) The nth term is therefore given by summing the nth terms of the

series for 1/(1− λjz), yielding λn1 + λn2 . Since λj = (1±
√

5)/2, we arrive at

an =

(
1 +

√
5

2

)n
+

(
1−

√
5

2

)n
,

the first term giving a simple and very accurate asymptotic.

1An order ideal is a set closed under ≤ in the coordinatewise partial order on Rd.
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This example is a prototype of the way sequences determined by recurrences have easily

computed generating functions. As most of you probably know, a sequence satisfying any

finite linear recurrence ar =
∑k
j=1 cjar−j will have the rational generating function F (z) =

p(z)/(1 −
∑k
j=1 cjz

j) where p(z) is a polynomial whose coefficients are determined by the

(finitely many) small values r for which ar 6=
∑r
j=1 cjar−j (this set necessarily includes the

index of the least nonvanishing coefficient, hence p(z) 6= 0).

Example 2 (Binomial coefficients)

Let d = 2 and let ar,s be the binomial coefficient ar,s :=
(r+s
r,s

)
. Since the {ar,s} satisfy

ar,s − ar−1,s − ar,s−1 = δ0,0, we see that (1 − z − w)F = 1 and F = 1/(1 − z − w). This

converges in the pseudo-convex domain {(z, w) : |z| + |w| < 1}. Simply identifying the

domain of convergence will turn out to give asymptotics for ar,s that are of the correct

exponential order.

This example too generalizes to any linear recursion in more than one variable where

the term ar1,...,rd is expressed as a linear combination of terms as1,...,sd
with s � r. When

the linear recursion has no maximal term, we will see the story is quite different.

Rational generating functions come from many places other than linear recursions. Con-

versely, in higher dimensions, not all linear recursions lead to rational generating functions.

The next two examples illustrate these two possibilities.

Example 3 (Coalescing particles)

Suppose we begin with particles at sites −1,−2, . . . ,−r. At each unit of time, one of the

particles is chosen uniformly at random and it moves a unit to the right. When a particle

moves onto another particle, the two coalesce into a single particle. When a particle hits 0, it

disappears. How many time units does it take before all particles disappear? This problem,

which arises in the analysis of a sorting algorithm, is discussed in Larsen and Lyons (1999).
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To solve this we let Xk be the number of moves made by particle k (and any particles it

coalesces with that were originally to its left) before it coalesces with a particle to its right.

We wish to know the distribution of
∑r
k=1Xk. The precise distribution is not known, but

we compute its mean. Let ar,k denote the expected number of steps that a particle at site

−r − k will make before coalescing with a particle at position −r or disappearing. Then

a0,k = k, ar,0 = 0, and for r, k ≥ 1,

ar,k =
1
2

+
1
2
ar,k−1 +

1
2
ar−1,k+1.

Letting F (z, w) =
∑
r,k≥0 ar,kz

rwk, we see that

(w − 1
2
w2 − 1

2
z)F =

w

2(1− z)(1− w)
+H(z, w) (1.1)

where H is the sum of terms (ar,k − (1/2)ar−1,k+1 − (1/2)ar,k−1 − 1
2)zrwk+1 with rk = 0,

i.e., where (??) fails. When r = 0 and k > 0,

ar,k −
1
2
ar−1,k+1 −

1
2
ar,k−1 −

1
2

= k − k − 1
2

− 1
2

=
k

2
.

This corresponds to a contribution of w/(2(1− w)2) to H. Unfortunately, when k = 0,

ar,k −
1
2
ar−1,k+1 −

1
2
ar,k−1 −

1
2

= −1
2
an−1,1 −

1
2

and we don’t know what this is. Thus we may write

(w − 1
2
w2 − 1

2
z)F =

w

2(1− z)(1− w)
+

w

2(1− w)2
+ wh(z) (1.2)

where h is an unknown function of one variable.

The key now is to use the fact that ar,k is obviously at most r + k. In particular, it

grows slower than an exponential, so F converges in a neighborhood of (0, 0) (in fact in the

unit polydisk). Thus the LHS of (??) is zero on the set V := {(x, y) : w2 − 2w + z = 0}
intersected with the unit polydisk. The RHS must vanish there as well. Near (0, 0), V is

parameterized by w = φ(z) := 1−
√

1− z, where the negative square root is chosen to make

w near zero when z is. Thus

h(z) =
−1

2φ(z)(1− w)2
− 1

2(1− z)(1− φ(z))
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and F is gotten by substituting this into (??).

At the end of the course is planned a section that generalizes this result by prescribing

how to solve arbitrary linear recursions with the sort of boundary conditions given here;

these will in general be algebraic functions but not rational functions. Some of the asymp-

totic methods we develop will be useful for functions other than meromorphic functions,

and in particular, asymptotics of the function F (z, w) above are easily obtained from these

methods or from older results of Bender (1983). The tour de force among derivations of

generating functions for linear recursions is, I think, the following set of examples from

queuing theory due to Flatto et al, which I will describe only briefly at this point, and

examine further if time permits.

Example 4 (Queues)

Suppose a bank has two tellers with separate waiting lines, and each new customer must

choose which one to join. Customers arrive at Poisson rate 1, and we assume they join the

shorter line. Each teller who is not idle finishes serving a customer at rate α > 1/2. What

is the joint stationary distribution of the number of customers in each line? Rather than

give a tie-breaking algorithm for a customer choosing between equal lines, we project to the

unordered pair of line lengths, so the states of the system are parameterized by the length n

of the shortest line and the difference k between the two lengths. This problem is considered

by Flatto and McKean (1977) and the generating function F (z, w) :=
∑
r,s pr,sz

rws is

obtained, where pr,s is the stationary probability of finding lines of length r and r + s.

The obvious relation from the forward equation (flow out of state (r, s) equals flow into

state (r, s) is:

(2α+ 1)pr,s = αpr,s+1 + αpr+1,s−1 + pr−1,s+1.

When r or s is 0 or 1, there are boundary effects. The upshot is that

[z(z + α)− (1 + 2α)zw + αw2]F = J1(z, w)f1(z) + J2(z, w)f2(w)
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where the polynomials J1 and J2 are easy to write down and the functions fi are unknown.

As in the previous example, we do know that the RHS vanishes on V := {(z, w) : z(z+α)−
(1 + 2α)zw + αw2 = 0} in a neighborhood of (0, 0). This together with a determination of

the genus of V (zero) and of the maps of V to itself that preserve one of the coordinates are

enough to determine the poles and zeros of the meromorphic functions f1 and f2, hence F .

This form of determination is convenient for then deriving asymptotics of pr,s as r, s→∞
for fixed α and of the mean of r + s as α→ 1/2.

Flatto and Hahn (1984) consider another queuing model, this time with each customer

served by both queues. The analysis yields again something of the form φ(z, w)F (z, w) =

J1f1(z) + J2f2(w), with V := {(z, w) : φ(z, w) = 0} now having genus 1. An even trickier

computation involving elliptic functions ensues. It is the nature of the boundary conditions

that determines the course of the computation in these cases. Later we describe a class of

boundary conditions which we call standard, that include the Larsen-Lyons problem but

not the queuing models, which always result in algebraic generating functions.

Example 5 (Polyominos)

Let us now do an example where a rational generating function comes from something

other than a simple linear recursion. Define a horizontally convex polyomino to be a union

of some finite number n of lattice squares with the following property: the squares appear

in k consecutive rows, with each row containing a single block of consecutive squares and

each block sharing at least one edge with the blocks above and below it (except for the top

and bottom block respectively). The number of HCP’s with n squares in total, composed

of s rows, is denoted f(n, k). It is not obvious, but we will see that

F (x, y) :=
∑
n,k

f(n, k)xnyk =
xy(1− x)3

(1− x)4 − xy(1− x− x2 + x3 + x2y)
.

For the derivation we follow Wilf (1989, page 152) though the original derivation is due to

Pólya and the more recent derivations due to Klarner, Gessel, Delest and maybe others.

The use of variables x, y rather than z, w keeps Wilf’s notation.
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Let f(n, k, t) denote the number of HCP’s with n squares, k rows, and top row having

length t. The trivariate generating function F (x, y, z) :=
∑
f(n, k, t)xnykzt is rational and

can be derived without too much work beyond the derivation of the bivariate function,

but we will skip this and simply use the third variable to get a useful recursion. Given a

polyomino with specified values of n, k, t, let r be the number in the second-to-top row. The

top and second-to-top rows can be offset in r + t− 1 ways, leading to the identity

f(n, k, t) =
∑
r≥1

f(n− t, k − 1, r)(r + t− 1) (1.3)

with boundary condition f(n, 1, t) = δt,n. Holding k and t fixed gives a generating function

Fk,t(x) :=
∑
n f(n, k, t)xn which then clearly satisfies

Fk,t(x) = xt
∑
r≥1

(r + t− 1)Fk−1,r(x) (1.4)

when k ≥ 2, with F1,t = xt.

Recall that we don’t care about t. Hence we sum on t, defining Uk(x) :=
∑
t≥1 Fk,t(x).

It will also be convenient to define Vk(x) :=
∑
t≥1 tFk,t(x). We have U1(x) = x/(1− x) and

V1(x) = x/(1− x)2. From (??) we get

Fk,t(x) = xt (Vk−1(x) + (t− 1)Uk−1(x))

and summing on t gives

Uk(x) =
x

1− x
Vk−1(x) +

x2

(1− x)2
Uk−1(x).

Multiplying by t before we sum on t yields also

Vk(x) =
x

(1− x)2
Vk−1(x) +

2x2

(1− x)3
Uk−1(x).

This is a linear recurrence over the field of rational functions of x and can be solved as

such. The form of the recurrence is (uk, vk) = (uk−1, vk−1)
(a b
c d

)
, with (u1, v1) specified. To
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determine
∑
uky

k, eliminate {vk} by substituting the first equation into the second twice,

yielding

uk+1 − (a+ d)uk + (ad− bc)uk−1 = 0

except for k = 1. Thus
∑
uky

k will be of the form

J1(x)
1− λ1y

+
J2(x)

1− λ2(y)

where J1 and J2 are determined by the initial values u1 and v1, and λi are the eigenvalues

of the matrix
(a c
b d

)
. In our case,

∑
k Uk(x)y

k is exactly what we’re looking for, and it comes

out to be the rational function displayed above. One can set y = 1 to obtain a one-variable

generating function for
∑
n,k,t f(n, k, t)xn, namely

x(1− x)3

1− 5x+ 7x2 − 4x3
.

While this expression begs a combinatorial proof, the only one apparently known (according

to R. Stanley) is an unwritten proof due to D. Hickerson; N.B. is this the same person who

haunts the halls of U.C. Davis at night doing computations for Conway’s game of Life, and

is otherwise on the academic fringe?

There are countless (!) examples in this vein and in the interest of getting on with

the analysis of asymptotics, I want to limit the examples discussed to those that make a

point. Exercise: Let an,k be the number of ways of placing k non-overlapping

dominos on a 2 × n grid. Find the generating function for these numbers. One

point worth making is that the methods we will develop do not work for entire functions:

singularities, preferably poles, are required. Why should we expect real life generating

functions not to be entire? One reason is that counting functions have integer coefficients,

and thus cannot converge at the point (1, . . . , 1). This justification is a bit too facile for the

following reason. Often we need to count things that grow very fast, say as the factorial

of one of the indices, and the best available generating function is a exponential generating

function such as
∑
ar,sz

rws/r!. This is likely to make the function entire, unless r! happens

to be the growth rate of a·,s up to an exponential factor, that is r! = O(|ar,s|eγs) for some

γ. Thus our methods are indeed limited mainly to the ordinary generating function case,
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though it is worth mentioning that there are plenty of natural examples where the factorial

generating function is not entire.

Example 6 (Two factorial GF’s)

Two such are the ordered set partitions and the Eulerian numbers Ar(s) counting the

number of permutations of {1, . . . , r} having exactly s rises. It is clear why this should have

an exactly factorial growth rate, at least for some values of s, and indeed∑
r,s

Ar(s)zrws

r!
=

w(1− w)
e(w−1)z − w

.

These two examples are discussed in Bender (1973), and the asymptotics given. There will

be more to say about this when we compare Bender’s results to the ones given here.

At times in our asymptotic analyses, it will be convenient to assume nonnegativity:

ar ≥ 0 for all r. How much is lost from an applications point of view when we assume this?

As you might imagine, most combinatorial applications satisfy this condition, but here is

an example that does not.

Example 7 (Tschebysheff polynomials)

The Tschebysheff polynomials Tn(x) are perhaps the oldest known and most useful fam-

ily of orthogonal polynomials. They are defined by Tn(x) = cos(ncos−1x). The generating

function is not hard to write down (see Comtet 1974, page 50), and it is in fact rational:∑
r≥0

Tr(z)wr =
1− zw

1− 2zw + w2
.

The generating function for the Tschebysheff polynomials of the second kind is the same

but without the numerator. Interestingly enough, a generating function we are about to

encounter in the realm of random tilings has a very similar generating function to that for

the Tschebysheff polynomials of the second kind, but with the variable z replaced by a

polynomial expression in a way that makes all the resulting coefficients nonnegative.
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Example 8 (Random tilings)

The last example I wish to discuss in detail is one that motivated much of my work on

this subject. Given a finite connected union of lattice squares in Z2, let C be the collection

of all tilings of the region by dominos (partitions into a disjoint union of adjacent pairs of

squares). Of course C may be empty, for instance if the number of squares is odd or the

number of black and white squares unequal when given a checkerboard coloring, but we

assume C is not empty. Particularly well studied cases are large rectangles (Burton and

Pemantle 1993), or the Aztec Diamond. The Diamond is a shape approximating a tilted

square, but drawn along lattice lines and having the central row and column doubled. Thus

the Diamond of order p has maximum height 2p; see picture. Let µp be the probability

measure gotten from choosing a tiling uniformly at random from all tilings of the Aztec

Diamond of order p. What are the properties of typical samples from µp as p → ∞? In a

series of papers Propp, Larsen, Elkies, Kuperberg, Cohn, Kenyon and maybe others give

detailed answers to this question. Their methods are varied, including some useful bijections

and an analysis of an interacting particle system. Here, however, I will concentrate on what

can be gotten from the generating function.

Color the Diamond like a checkerboard, with the left most of the two top row squares

colored black, and use this to give one of four types to each domino in a tiling. The domino

is called type-1 if the black square is west of the white square, with the types 2, 3, 4 being

assigned to the other three possibilities. Let an,k,p be the proportion of all tilings of the

order p Aztec Diamond that have a type-1 domino in position (n, k). More precisely, note

that the centers of the squares of the Aztec Diamond are at positions (n/2, k/2) with n and

k odd integers such that |n|+ |k| ≤ 2p; a type-1 domino is a horizontal 1×2 rectangle whose

midpoint is (n/2, k/2) with n even, k odd, and n − k ≡ 2p + 1mod4. Then the generating

function for the proportion of tilings containing the domino with midpoint (n/2, k/2) is

given by

F (x, y, z) :=
∑

an,k,px
nykzp =

yz/2
(1− y2z)(1− 2Tz + z2)

where T = (x2+x−2+y2+y−2)/4 (cf. the generating function for Tschebysheff Polynomials
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of the second kind); I use x, y, z for three variable generating functions because of the

awkwardness of z, w,??.

We may of course simplify this by ignoring the numerator and replacing x2 and y2 by x

and y, to get

1
(1− yz)(1− 2tz + z2)

; t :=
x+ x−1 + y + y−1

4
.

When we write this as the quotient of polynomials, the denominator will vanish at the

origin, so this is not quite in standard form. By a change of variables z 7→ xyz, which only

changes the indexing we can turn it into an honest generating function, but for reasons

of preserving the symmetry, it is easiest to work with it in its present form as a Laurent

series. A derivation of this generating function appears in Gessel, Ionescu and Propp (1995),

making use of a particular construction of a random tiling from IID bits. It is proved in

Jockusch, Propp and Shor (1995), by a method involving the analysis of an interacting

particle system, that the large scale features of the placement probabilities are as follows.

Outside the L1 ball |n| + |k| = |p|, the probabilities are nearly zero, while inside they are

not. In Cohn, Elkies and Propp (1996), the saddle point method is used to greatly refine

these results. As p→∞ and (n/p, k/p) → (α, β), there is a phase transition depending on

whether α2 + β2 is less or greater than 1/2. Inside the circle of radius 1/2, the values of

an,k,p converge to a quantity g(α, β) strictly between zero and 1. Between the circle and the

L1-ball, except in the top region, limp→∞ p−1 log an,k,p converges to a value h(α, β) that is

strictly negative; in the top region, the same is true of 1 − an,k,p. Thus outside the circle,

domino placements are deterministic except for an exponentially small probability.

The analytic methods of Cohn, Elkies and Propp (1996), start from the recurrence

responsible for the simple form of the generating function. They carry out an asymptotic

analysis of a quantity related to the placement probabilities and then spend a fair amount

of effort summing these to get the result. In Cohn and Pemantle (2000) we re-derive the

results directly from the final generating function which somehow encodes the summation

and subsequent integral approximation. There we also consider a related model, called the

Fortress model, for which no other method is known to derive the large scale behavior. The
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Fortress of order n is defined to be dual to the usual square-octagon tiling of the plane, and

to occupy a region similar in shape to the Aztec diamond of order n. Tiles are defined so

that tilings correspond to perfect matchings on a sub-diamond of the square-octagon tiling.

The generating function for the probability of a type-1 tile in position (n, k) in an order-p

Fortress is given by

F (x, y, z) = similar but messier expression

Pending a rigorous writeup, the results which we believe to hold for the Fortress are qual-

itatively the same as for the Aztec Diamond, but with the circular boundary (the “arctic

circle” of Propp et al) replaced by a boundary given by the zero set of an eighth degree

polynomial (the “octic circle”). The analyses of both the Aztec Diamond and the Fortress

in Cohn and Pemantle (1999) involve oscillating integrals whose stationary phase points are

at singular points of a complex algebraic variety.

Before leaving the subject of obtaining and classifying generating functions, it is worth

mentioning one more class of functions. Let F (z, w) =
∑
r,s ar,sz

rws be a two-variable gen-

erating function and let D(z) =
∑
r ar,rz

r denote the generating function for the diagonal.

There is a method, which is sometimes reasonably effective, for obtaining D directly from

F . The significance of this is two-fold. First, since the form of D depends only on the form

of F , one can show that if F is nice, then D is at least somewhat nice. For example, if F

is rational then D is algebraic; if F is algebraic, then D is D-finite (meaning that for some

k, the functions D,D′, D′′, . . . , D(k) are linearly dependent over polynomials. Secondly, the

problem of obtaining asymptotics for ar,r can be solved by using one-variable methods on

D. Asymptotics in one variable are considerably easier, so this represents an advance. Un-

fortunately the limitation to the diagonal is severe. By substituting za and wb for z and w,

one can get diagonals of any rational slope, but the complexity of the computation increases

rapidly and the estimates are not uniform in the slope. This method, due to Doubilet, Rota

and Stanley, will be discussed later.
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2 Asymptotics in one variable

To set the terminology, I will quickly review the definition of an asymptotic development

(or expansion). The notation f = O(g) as x→ L means lim supx→L |f(x)/g(x)| <∞. If L

is not specified, we take L = ∞. Similarly, f = o(g) means |f/g| → 0.

If f is a function on R+ or Z+, and L is a number or infinity, then f ≈
∑∞
n=0 gn means

that for any N ,

f(x)−
N∑
n=0

gn(x) = O(gN+1(x)) as x→ L.

In this case we call
∑∞
n=0 gn an asymptotic development of f . The sequence {gn} will always

satisfy gn+1 = o(gn), whence a seemingly weaker but actually equivalent formulation is

f(x)−
N∑
n=0

gn(x) = o(gn(x)) as x→ L.

This does not imply that f =
∑∞
n=0 gn, and in fact the series may be nowhere convergent;

the standard example is

ex
∫ ∞

x

e−t

t
dt ≈

∞∑
n=0

(−1)nn!
xn+1

as x→∞. Sometimes we loosen the terminology and call f(x) ≈
∑∞
n=0 bngn(x) an asymp-

totic development when some values bn are zero, as long as the b0 is nonzero and as long as

we still have f(x)−
∑N
n=0 bngn(x) = O(gn+1(x)). Thus for example, the expansion

an = c0n
−1/2 + c1n

−3/2 +O(ne−αn)

may be considered a terminating asymptotic expansion in decreasing powers of n−k−1/2. We

think this way especially when considering simultaneously other functions whose asymptotic

expansions in decreasing powers of n−k−1/2 do not terminate. Such examples arise in

Section ??.

The most common asymptotic developments are in powers of x− a as x→ a or powers

of x−1 as x → ∞. Because of this we say that f(x) is rapidly decreasing at infinity if
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f(x) = O(x−N ) for all N ≥ 0. Rapidly decreasing functions are smaller at infinity than any

functions with asymptotic developments in powers of x−1. Smaller yet are the functions

of exponential decay, namely those satisfying f(x) = O(e−γx) as x → ∞ for some positive

constant γ.

2.1 Rational functions: formal power series solution

It will be instructive first to review the easy and complete description of the coefficients

of a rational function of one variable. Let F (x) =
∑
anx

n = p(x)/q(x) the ratio of two

polynomials, with q(0) = 1, p and q never vanishing together, and the degree of q denoted

by d. Factor q(x) as
∏d
i=1(1 − r−1

i x), where r1, r2, . . . , rd are the roots of q. Assume the

roots are distinct. Then
1

q(x)
=

d∑
i=1

ci

1− r−1
i x

where {ci} are nonzero constants which may be computed as rational functions of the

roots (we will determine them shortly). The formal power series 1/(1 − r−1
i x) is equal to∑

n≥0 r
−n
i xn. Hence the nth coefficient of F is equal to

∑d
i=1 cir

−n
i . The leading term(s) is

of course r−nM , where M minimizes the modulus of rM . This approximation is very good

unless the next-smallest modulus of a root is close to |rM |. If p = p0 + p1x + · · · + pex
e is

some other polynomial, then the ith summand in the previous summation, instead of being

cir
−n
i , is

cip0r
−n
i + · · ·+ ciper

e−n
i = cip(ri)r−ni .

There are no common roots of p and q, so cip(ri) 6= 0 and again the leading term is given

by the minimum modulus root.

Finally, if the roots are not distinct, then let r1, . . . , rk be the distinct roots with ri

having multiplicity di. There are constants ci,j with 1 ≤ i ≤ k and 1 ≤ j ≤ di for which

1/q =
∑
ci,j/(1− r−1

i x)j . In the same way as before, this leads to

an =
k∑
i=1

di∑
j=1

ci,jp(ri)

(
n+ j − 1
j − 1

)
r−ni .
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The leading term constants ci,di
are nonzero, hence the leading term asymptotic is given by

cM,dM
p(rM )

(
n+ dM − 1
dM − 1

)
r−nM .

2.2 Rational functions and more: analytic solution

Let us compare the formal power series solution, which is complete but specialized, to an

analytic solution. First note that the radius of convergence of the power series for F is equal

to the minimum modulus of a singularity for F , which is rM . For any power series with

radius of convergence R, we have lim supn−1 log |an| = log(R−1). Thus we get the correct

exponential rate, at least for the limsup, with no work at all.

Next, use Cauchy’s integral formula to write

an =
1

2πi

∫
C

dz

zn+1
F (z)

where C is any contour enclosing the origin and contained in the domain of convergence of

F . Let C be a circle of radius r < rM , and let C′ be a circle of radius R > rM . Assume

that rM is the only root of q of minimum modulus and that the moduli of other roots are

greater than R. We then have, by the residue theorem,∫
C

dz

zn+1
F (z)−

∫
C′

dz

zn+1
F (z) = −2πiRes(z−n−1F (z); rM ).

If F = p/q has a simple pole at rM then the residue is just r−n−1
M p(rM )/q′(rM ). The integral

over C′ is bounded by 2πR−M sup|z|=R |F (z)|, and is therefore exponentially smaller than

the residue. Thus the leading term asymptotic for an is

an = −r−n−1
M p(rM )/q′(rM ) +O(R−n).

In fact we may send C′ to infinity, thus picking up all the terms. This will be a sum of terms

−r−n−1
i p(ri)/q′(ri). Incidentally, this is an easy way of determining the constants ci, which

are evidently −1/q′(ri).
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If there is more than one root of minimum modulus, simply sum the contributions. If the

root ri appears with multiplicity di > 1, then the residue at ri is no longer r−n−1
i p(ri)/q′(ri)

but is instead equal to (1/(di − 1)! time the di − 1st derivative at ri of (z − ri)diz−n−1F .

Writing q̃ := q/(z − ri)d, the residue becomes(
p

q̃
z−n−1

)(d−1)
∣∣∣∣∣
z=ri

= (−n− 1)d−1r
−n−d+1
i p(ri)/q̃(ri) +O(nd−2).

This gives the “polynomial correction” for the case of multiple roots.

The advantage of the analytic solution is that it vastly more general. The formal power

series solution requires that F = p/q a quotient of polynomials. Instead, suppose that p

and q are only required to be analytic in some disk B(0, R), and that q has a zero, say a,

inside the disk. The same computation then gives

an =
1

2πi

∫
C
z−n−1F (z) dz =

1
2πi

∫
C′
z−n−1F (z) dz − Res(z−n−1F ; a) (2.1)

where C is a circle of radius less that |a| and C′ has radius r with |a| < r < R and no other

pole of F in B(0, r). Then |
∫
C′ | ≤ 2πr supz∈C′ |F (z)|r−n and the residue is easily computed

as before. For instance, in the case of a simple root of q, the residue is still p(a)a−n−1/q′(a).

What does the analytic method give us for a general function F? If the generating

function F is purely formal, i.e., nowhere convergent, then we learn nothing. That’s why

we use exponential generating functions! If F is entire, we learn very little, though more

can be said by means beyond the scope of these lectures. Assume then that the radius of

convergence of F is positive and finite. If the minimal modulus singularity of F is a pole

(or poles) then the preceding analysis applies. If it is a branchpoint, there are standard

modifications of the method which we will see shortly. If it is an isolated singularity, there

are good prospects for a successful modification of the method, though it is more of an art

than a science; this will be discussed too.

Logically, the worst case is if the domain of convergence of F has an entire circle as

its natural boundary (this means F cannot be analytically continued anywhere outside

the circle). This can and does happen. In fact a classical theorem of Pólya says that if
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F has integer coefficients and radius of convergence 1, then either F is rational or F has

the unit circle for its natural boundary (see Pólya 19??). A point of philosophy: we have

cited integer coefficients as a motivation for considering non-entire functions. Whenever

the growth of the coefficients is not exponential, then, we must be dealing with a rational

function. So is all this generality spurious? The answer is no: including sequences with

exponential growth and those of combinatorial significance that are not integral, there are

quite a lot of meaningful examples. Also, in the multivariable case even rational functions

are nontrivial to analyze and we have already seen a number of pertinent examples there.

Finally, we note that even when the circle is a natural boundary, analytic methods often

give something beyond the determination of the limsup exponential growth rate, depending

on the behavior of the function on the boundary circle.

The remaining discussion of one-variable asymptotics will be as follows. A brief discus-

sion of an example with an isolated essential singularity will shed some light on the role of

oscillating integrals and the method of stationary phase. We will then look at the classical

FPS derivation of asymptotics for branchpoints induced by non-integral powers (following

Henrici 1977, Theorem 11.10). These will be compared to the comparison or “transfer”

theorems (following Flajolet and Odlyzko 1990) which use analytic methods to obtain the

leading term asymptotics for a very wide class of functions, namely whose dominant singu-

larity is a power times a power of log times a power of log log.

2.3 Essential singularities

Since contour integration is an art, it is wise to ask first for the guiding principles behind

choosing the contour. To answer this, we recall the Cauchy integral formula:

an =
1

2πi

∫
C
F (z)

dz

zn+1

where C is a contour not containing a singularity of F . Let R be the radius of convergence of

F . Then C may be taken to be the circle of radius r for any r < R. What does it mean that

all these integrals come out to the same value? The integrand has magnitude on the order of
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r−n, whereas we know the integral is only size R−n. Evidently there is a lot of cancellation

taking place. The cancellation reduces the integral by an exponential factor (r/R)n. As r

expands toward R the oscillation kills at a lower exponential rate, until, right near R, it

isn’t really killing at all. This leads to the stationary phase principle: find a stretch of the

contour where the integrand is not oscillating; this will be the leading contribution to the

integral. A related technique is the saddle point method: if there is no point of stationary

phase, move the contour until you go through one, and make sure you go through at the

right angle. At the moment we do not attempt to prove that this methods are universal,

though later as part of our classification we do prove this for some classes of integrals. We

turn now to an example.

Example 9 (Isolated essential singularity)

Let F (x) = exp(x/(1−x)). Clearly F has a single essential singularity at the point 1. It is

of course possible to compute the coefficients directly from the combinatorial interpretation:

this is the exponential generating function for the number of unordered partitions of an

n element set into ordered sequences. The analytic approach, however, will allow us to

compute these in a way that is more robust with respect to perturbations in the generating

functions. Starting as usual from Cauchy’s integral formula as in (??), we send C′ to infinity

and discover that an is precisely the residue of z−n−1F at 1. We compute this by integrating

over any contour encircling the point z = 1, or in the Riemann sphere (since ex/(1−x) is

analytic at ∞), any simple closed curve separating 0 and 1. Set I(z) = log[z−n−1F (z)] and

compute

I ′(z) =
[−n− 1

z
+

1
(1− z)2

]
.

This vanishes at the point 1− βn, where

βn = − 1
2(n+ 1)

+

√
1

n+ 1
+

1
4(n+ 1)2

= n−1/2 +O(n−1).

Choosing our contour γ to be the line {1− βn + it : −∞ < t <∞}, we have

an =
1

2πi

∫
γ
z−n−1F (z) dz.
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We have chosen βn so that phase of the integrand is stationary at 1 − βn, that is, the

derivative of the (log of the) integrand vanishes. The hope now is that the integral is well

approximated by integrating the degree-two Taylor approximation of I, namely we hope

that

1
2πi

∫ ∞

−∞
exp(I(1− βn + it)) (i dt) (2.2)

≈ 1
2π

∫ ∞

−∞
exp[I(1− βn) +

1
2
I ′′(1− βn)(it)2] dt (2.3)

=

√
1

2πI ′′(1− βn)
exp(I(1− βn)). (2.4)

This hope is easily verified as follows. We compute I ′′(1−βn) = (n+1)/(1−βn)2+2/β3
n =

(2+o(1))n3/2. This tells us that the main contribution to (??) should come from the region

where |t| is not much larger than n−3/4. Accordingly, we pick a cutoff a little greater than

that, say L = 2n−3/4 log n, and break the integrals (??) and (??) into two parts, |t| ≤ L

and |t| > L. Up to the cutoff the two integrals are close, and past the cutoff they are both

small.

The contribution to (??) when |t| > L is a Gaussian tail and is o(exp(I(1−βn)−log2 n)).

The contribution to (??) when |t| > L may be bounded in two parts. When |t| < n−1/2,

use the fact that |z| ≥ 1 on the line of integration to see that the modulus of the integrand

is at most M(t) exp(I(1− βn)) where

|M(t)| = exp Re{ x

1− x
}
∣∣∣∣1−βn−it

1−βn

= exp
[
Re
{

1
βn + it

− 1
βn

}]
.

We then compute

Re
{

1
βn + it

− 1
βn

}
=

βn
β2
n + t2

− 1
βn

=
β−1
n

1 + β−2
n t2

− β−1
n
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=
−β−3

n t2

1 + β−2
n t2

≤ −1 + o(1)
2

n3/2t2

because βn ∼ n−1/2. Thus again we have part of a Gaussian tail and again the contribution

is o(exp(I(1− βn))− log2 n). When |t| > n−1/2 we need to use the z−n−1 term as well:

| exp(I(1− βn + it))|
exp(I(1− βn))

≤ |1− βn|n

|1− βn + it|n
exp(Re{ 1

βn + it
− 1
βn
})

≤ (1 + t2)−n/2 exp(Re{ 1
βn + in−1/2

− 1
βn
}).

Integrating from t = n−1/2 to ∞ and using our previous computation of the real part of

the above difference shows that the contribution is at most the integrand at t = 0 times a

factor of exp(−
√
n/(2 + o(1))).

When |t| ≤ L, we use the Taylor approximation∣∣∣∣I(1− βn + it)− I(1− βn) +
1
2
t2I ′′(t)

∣∣∣∣ ≤ 1
6
t3 sup
|s|≤L

|I ′′′(s)|.

The RHS is bounded by (1 + o(1))t3n2, and hence by 8n−1/4 log3 n. Since the integrand

of (??) is everywhere positive, this implies that the difference between the integrals (??)

and (??) on |t| ≤ L is at most exp(n−1/4 log3 n)− 1 times the integral (??), as desired.

Having established that (??) is the leading term, we finally compute it. Using the

formula for I ′′(z) and the formula

βn = n−1/2 − 1
2
n−1 +O(n−3/2)

we get√
1

2πI ′′(1− βn)
exp(I(1− βn))

= (1 + o(1))

√
1

4πn3/2
exp

(
−(n+ 1) log(1− βn)− 1 +

1
βn

)
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= (1 + o(1))

√
1

4πn3/2
exp

(
−(n+ 1)(−n−1/2 +O(n−3/2))− 1 + n1/2 +

1
2

+O(n−1/2)
)

= (1 + o(1))
√

1
4πe

n−3/4 exp(2
√
n).

Note that computing the full asymptotic development is almost as easy. The cutoff is

calibrated so that the remainder after k terms of the Taylor expansion is always small on

|t| ≤ L, so essentially the same computation suffices to derive an asymptotic series.

Example 10 (Non-integral power)

Among singularities that are not isolated, the nicest are branchpoints. Many though

not all branchpoints can be written as a non-integral power times an analytic function.

Thus we consider the class of functions (1 − z/A)−cψ(z) analytic on a disk containing A

and slit from A to the boundary, where A is any nonzero complex number, c is a complex

number that is not a real integer, and ψ is a function analytic in the disk of radius R for

some R > |A|. Let F (z) =
∑
anz

n be such a function. Since the coefficients of (z − A)c

are explicitly known, the easiest way to obtain the asymptotics for {an} is by convolving

the formal power series. The only work will be in checking that the resulting series really

forms an asymptotic development. We follow Henrici’s (1977) exposition of a theorem of

Darboux:

Theorem 2.1 With F , ψ and {an} as above, let
∑∞
n=0 bn(z − A)n be the power series for

ψ near A. Then for any k ≥ Re{c}+,

an = (−A)−n
 k∑
j=0

(−A)jbj

(
j − c

n

)+ o

(∣∣∣∣∣Ak
(
k − c

n

)∣∣∣∣∣
)

where
(x
n

)
denotes (1/n!)

∏n
j=1(x− j + 1).
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Proof: To see where this is going, formally write F (z) =
∑∞
m=0 bm(−A)m(1− z/A)−c+m.

Expand (1− z/A)−c+m in powers of z using the binomial theorem to get

F (z) =
∞∑
m=0

bm(−A)m
∞∑
n=0

(−A)−n
(
m− c

n

)
zn

to see that the nth coefficient ought to be as claimed.

To justify all this, fix k; it will be clear later why we assume k to be greater than the

positive part of Re{c}. Let rk be the kth Taylor series remainder for ψ, i.e.,

ψ(z) = b0 + b1(z −A) + · · ·+ bk(z −A)k + rk(z)(z −A)k+1.

Then in the domains of convergence of F and ψ,

F (z)−
k∑
j=0

(−A)jbj(1− z/A)j−c = (−A)k+1(1− z/A)k+1−crk(z).

The LHS is the sum of finitely many power series converging in a neighborhood of zero, so

analytically is equal to the power series whose nth coefficient is

an − (−A)−n
k∑
j=0

bj(−A)j
(
j − c

n

)
.

We need now to estimate the nth coefficient Bn of the RHS, which we call G(z). Note that

we have chosen k sufficiently large so that the G is continuous at A. Thus we may use

Cauchy’s formula

Bn =
1

2πi

∫
C

dz

zn+1
G(z)

for any circle C of radius less than |A|, and take limits to let the radius of C equal |A|.
Since the function G is differentiable dk − ce times, integration by parts and the Riemann-

Lebesgue lemma (see below for amplification) show that the nth coefficient of the RHS is

o(|A|−nn−dk−ce). Use Stirling’s formula to see that this is o(|A|−n
(k−c
n

)
), proving that we

have an asymptotic development.

Riemann Lebesgue lemma: the functions einθ converge to zero in the topology de-

termined by integration against bounded continuous functions on the unit circle (and in
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fact in the dual space to L1 - see Rudin (1974) “Real and Complex analysis”). Hence∫
|z|=A z

−nF dz = o(|A|−n) for any F ∈ L1. Now suppose G is j times continuously dif-

ferentiable with G(j) ∈ L1 on the circle |z| = A. Then integrating by parts j times we

get ∫
|z|=A

z−nGdz = (−1)j(j!)−1

(
n− 1
j

)−1 ∫
|z|=A

zj−nG(j)(z) dz

with the boundary terms vanishing due to continuity of G(s), s ≤ j. By the Riemann-

Lebesgue lemma, this is o(n−j)|A|−n. 2

Example 11 (Transfer theorems)

The previous example was in some sense a very special case: we knew the expansion

of (1− z)−c explicitly, and were able to show how the series behaved under a perturbation

that multiplied by an analytic factor. The next example is in this sense also a special class

of functions, but a very wide and hence useful special class. Let C be the class of functions

G(z) := g(1/(1 − z)) where g(z) = zα(log z)γ(log log z)δ for arbitrary real numbers α, γ

and δ. Instead of requiring F (z) = g(z)ψ(z) for ψ analytic, we derive information under

the assumption only that F (z) = O(G(z)) or F (z) = o(G(z)) as z → 1. (Naturally,

we can rescale so that the critical point appears somewhere other than 1.) The price we

pay is that we require F to be analytic out to a radius 1 + η for some η > 0, except on

the cone |Arg(z − 1)| < ξ where ξ is a fixed number in (0, π/2). We call this domain

∆ := {z : |z| ≤ 1 + η, |Arg(z − 1)| ≥ ξ}.

The transfer method of Flajolet and Odlyzko (1990) consists of three results. The first

is an explicit determination of the coefficients of all functions in C. The second and third

are the following theorems.

Theorem 2.2 (Flajolet-Odlyzko O-Theorem) Let G(z) =
∑
bnz

n be in the class C
and let F (z) =

∑
anz

n be analytic in ∆. Then the hypothesis F (z) = O(G(z)) as z → 1

implies an = O(bn).
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Theorem 2.3 (Flajolet-Odlyzko o-Theorem) Let G(z) =
∑
bnz

n be in the class C and

let F (z) =
∑
anz

n be analytic in ∆. Then the hypothesis F (z) = o(G(z)) as z → 1 implies

an = o(bn).

An immediate corollary of these is a transfer asymptotic development result.

Corollary 2.4 Suppose F (z) is analytic in ∆ and has asymptotic development
∑
Gj(z) as

z → 1, where Gj ∈ C for all j and Gj+1 = o(Gj). Let {an} be the coefficients of F and

{b(j)n } be the coefficients of Gj. Then
∑
j b

(j)
n is an asymptotic development of an.

Proof: By hypothesis, for each k,

hk := F −
k∑
j=1

Gj = o(Gk).

All members of C are analytic in ∆, so the finite sum defining hk is analytic in ∆. Applying

the o-theorem gives that the coefficients of hk are o(b(k)n ). Since the coefficients of hk are

the difference between an and
∑k
j=1 b

(j)
n , this establishes the result. 2

So as not to get too far afield, I will prove only the O-theorem, and only for the restricted

class C′ in place of C, where C′ contains all functions (1− z)α. This parallels the exposition

in Flajolet and Odlyzko (1990), which is highly recommended if you have not seen this stuff

before.

Proof of O-theorem: First note that for G = (1 − z)α ∈ C′, the nth coefficient is of

order n−α−1. Next, note that the assumption that F (z) = O(|1 − z|α) near z = 1 implies

(using only continuity, not analyticity) that for some K, |F (z)| ≤ K|1− z|α everywhere on

∆ \ {1}. We use Cauchy’s formula

an =
1

2πi

∫
γ
F (z)

dz

zn+1

where γ is a contour carefully as the union of four elementary contours. Let γ1 be the

circular arc parameterized by 1 + n−1eit for ξ ≤ t ≤ 2π − ξ. Let γ2 be the line segment
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between 1 + n−1eiξ and the number β of modulus 1 + η and Arg(β − 1) = ξ. Let γ3 be

the arc on the circle of radius 1 + η running between β and β the long way, and let γ4

be the conjugate of γ2. We will bound the absolute value of the integral on each segment

separately, so we need not worry about the orientations.

On γ1, the modulus of F is at most Kn−α, the modulus of z−n−1 is at most (1 −
n−1)−n−1 ≤ 2e, and the integral of |dz| is at most 2πn−1, leading to a contribution of size

at most 6Kn−α−1. On γ3 the z−n−1 factor in the integral reduces the modulus to at most

C(η)(1 + η)−n which is of course O(n−N ) for any N . Since the order of the nth coefficient

of G is n−α−1, we are in good shape so far.

By symmetry, we need now only do the computation for γ2. Set ω = eiξ and parametrize

the integral as z = 1 + (ω/n)t for t = 1 to En for a constant, E = |β − 1|. We have

|F (z)| ≤ K|z − 1|α ≤ K(t/n)α and

|z−n−1| =
∣∣∣∣1 +

ωt

n

∣∣∣∣−n−1

so ∫
γ2
|F (z)||z−n−1||dz| ≤

∫ En

1
K

(
t

n

)α ∣∣∣∣1 +
ωt

n

∣∣∣∣−n−1 dt

n

≤ Kn−α−1
∫ ∞

1
tα
∣∣∣∣1 +

ωt

n

∣∣∣∣−n−1

dt. (2.5)

We need to see that the integral in (??) is bounded above for sufficiently large n. We have

|1 + ωt/n| ≥ 1 + Re{ωt/n} = 1 + (t/n) cos(ξ). Thus the integral in (??) is at most

Jn :=
∫ ∞

1
tα
(

1 +
t cos(ξ)
n

)−n
dt.

The integrand is monotone decreasing in n, and clearly finite for n > 1 + α+, so the

decreasing limit is

lim
n→∞

Jn =
∫ ∞

1
tαe−t cos(ξ) dt

which is finite. We have now bounded all four integrals by multiples of n−α−1, so the proof

is complete. 2
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We remark that the o-theorem follows from the O-theorem if you can keep track of the

constants. That is, if F = o(G) then F ≤ εG in some neighborhood of 1 for any positive

ε. Thus if constant in the conclusion of the O-theorem can be made to go to zero as the

constant in the hypothesis goes to zero, the o-theorem is proved.

The counterpart of the transfer theorems is the asymptotic determination of coefficients

of functions in the class C. We quote Flajolet and Odlyzko’s result.

Theorem 2.5 (Flajolet and Odlyzko Theorem 5) Let G(z) = (1/(1−z))α logγ(1/(1−
z)) logδ log(1/(1− z)) =

∑
bnz

n be in the class C. Suppose that α /∈ {0,−1,−2, . . .}. Then

bn ∼
1

Γ(α)
nα−1(log n)γ(log log n)δ.

When δ = 0, there is a full asymptotic development in decreasing powers of log n.

When α is a nonpositive integer, a complete asymptotic development is also available.

In the case γ < 0 = δ the leading term turns out to be

bn = −bΓ(1− α)nα−1(log n)γ−1. (2.6)

We apply this to an example on branching random walks.

Example 12 (Branching RW)

Begin with a single particle at 1. Each unit of time, each particle not at zero gives birth to

two particles, which are displaced from the original particle by ±1, being independently +1

with probability p and −1 with probability 1−p. A particle at 0 never moves or reproduces.

Let Z ≥ 2 be the total number of particles ever to reach 0. Let an := P(Z = n) and let

φ(z) = EzZ =
∑
n≥2 anz

n be the generating function. An identity for φ may be derived as

follows. Start with one particle at 2 and freeze any particle that reaches 1. Then the number

of particles to reach 1 will be distributed as Z. Now unfreeze these, so each produces an
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identically distributed number of particles reaching 0. Thus the generating function for the

number to reach 0 starting with a single particle at 2 is φ(φ(z)). Hence

φ(z) = [(1− p)z + pφ(φ(z))]2 .

We consider the critical case, where p = (2 −
√

3)/4 is the supremum of values such that

P(Z = ∞) = 0. It is shown in Aldous (1999) that 16p(1 − p) = 1 and that for this value

of p, the variable Z is almost surely finite and in fact has finite mean. [To see this is the

critical value, note that among 22n branches of a tree to depth 2n, each of which carrying

a sum whose distribution is Binomial with parameters 2n and x, the expected number of

branches to the right of zero is of exponential order 22n(4x(1 − x))n. This goes to zero as

n→∞ exactly when x < p].

To apply transfer technology, we will show that

φ(z) = 1− 1− z

4p
− (c+O(1))

1− z

log(1/(1− z))
, (2.7)

where c = log(1/(4p))/(4p). It follows from this and (??) that

an ∼ cn−2(log n)−2,

so that Z has a first moment but not a “1 + log” moment.

The derivation of (??) is given in Aldous (1999) so we only sketch it here. Fix a

0 < z0 < 1 and let zn = φ(−n)(z0) so that zn ↑ 1. The recursion for φ gives

zn = ((1− p)zn+1 + pzn−1)2.

Changing variables to yn = 1− zn gives

yn = 1− ((1− p)(1− yn+1) + p(1− yn−1))2

= 1− (1− ((1− p)yn+1 + pyn−1))2.

Solving for yn+1 gives

yn+1 =
1−

√
1− yn − pyn−1

1− p
.
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Setting xn = yn/(4p)n and using 16p(1− p) = 1 gives

xn+1 = 2xn − xn−1 +O(yn)2.

Verifying first that yn is small, we then have xn ∼ An + B, whence yn ∼ (4p)n(An + B).

We may write this as

yn+1 = 4pyn + (1 + o(1))
yn+1

n+ 1
= 4pyn + (1 + o(1))

yn+1

log yn+1/ log(4p)
.

Let z = 1− yn+1 so φ(z) = 1− yn. We then have

1− φ(z) =
1− z

4p
− (1 + o(1))

1− z

4p
log(4p)

log(1− z)
,

proving (??).

3 Oscillating and Laplace-type Integrals in One Variable

To motivate a rather long excursion into oscillating integrals, I am going to do a derivation,

just in two dimensions, of the representation of the coefficients of F as an oscillating integral.

The material on purely oscillating integrals follows Stein (1993, ch. VIII), which is a very

fine source. To arrive at the best results for complex phase, the techniques of Bleistein and

Handelsman (1986) and Wong (1989) are added to the mix, and some interpolation is also

necessary.

We will need to define a few concepts and quantities associated with F . Let F = G/H

the quotient of analytic functions and let V be the zero set o H.

Definition 1 Say that a point (z, w) ∈ V is a smooth point of V if the partial derivatives

of H do not simultaneously vanish there. Although this definition appears overly restrictive,

it will be seen to lose no generality. Say that (z, w) is a strictly minimal point of V if there

is no other (z′, w′) ∈ V with |z′| ≤ |z| and |w′| ≤ |w|.
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Let (z0, w0) be a smooth point of the variety V where the denominator, H, of F vanishes.

By definition, Hz and Hw do not both vanish at (z0, w0), and here we assume without loss

of generality that Hw is nonvanishing. Define the function g (we reserve this letter globally)

to be a parametrization of V near (z0, w0), that is, (z, g(z)) ∈ V for z in a neighborhood of

z0, and g(z0) = w0. The implicit function theorem is effective for series, meaning that the

series coefficients for g are easily determined from the series coefficients for H.

Next, define a function ψ by

ψ(z) = − lim
w→g(z)

(w − g(z))
F (z, w)
w

.

This is just (−1/g(z)) times the residue at g(z) of F (recall that F (z, ·) has a simple pole

at g(z)). It is convenient to change variables in two ways. We wish to let z = z0e
iθ and

view ψ and g as functions of θ. So we define

ψ̃(θ) = ψ(z0eiθ) .

For fixed (r, s) ∈ RP1, we center log g by defining

f̃(θ) = log
g(z0eiθ)
g(z0)

+ i
r

s
θ .

We now state the lemma on which all computations for smooth point expansions are

based.

Lemma 3.1 (Reduction to oscillating integral) Let (z0, w0) be a strictly minimal sim-

ple pole of F = G/H. Assume that wHw 6= 0 at (z0, w0). On a neighborhood N of zero,

define a quantity

Ξ := (2π)−1z−r0 w−s0

∫
N

exp(−sf̃(θ))ψ̃(θ) dθ. (3.1)

Then the quantity

|zr0||ws0| |ar,s − Ξ|

decreases exponentially as N remains fixed and (r, s) →∞.
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Proof: For ε ∈ (0, |w0|), let T be the torus {(z, w) : |z| = |z0|, |w| = |w0|−ε}. By Cauchy’s

formula,

ar,s =
(

1
2πi

)2 ∫
T
z−r−1w−s−1F (z, w) dw dz (3.2)

Write this as an iterated integral

ar,s =
(

1
2πi

)2 ∫
|z|=|z0|

z−r−1
[∫
C0

w−sF (z, w)
dw

w

]
dz (3.3)

where C0 := {w : |w| = |w0| − ε}. Let K ⊆ {z : |z| = |z0|} be a compact set not containing

z0. For each fixed z ∈ K, by the minimality assumption, the function F (z, ·) has radius of

convergence greater than |w0|. Hence the inner integral in equation (??) is O(|w0| + ε)−s.

By continuity of the radius of convergence,we may integrate over K to see that

|zr0||ws0|
∫
K×C0

z−r−1w−s−1F (z, w) dw dz

decreases exponentially. Thus if N is any neighborhood of z in the torus {z : |z| = |z0|},
the quantity

|zr0||ws0|
∣∣∣∣∣ar,s −

(
1

2πi

)2 ∫
N
z−r−1

[∫
C1

F (z, w)
ws

dw

w

]
dz

∣∣∣∣∣ (3.4)

decreases exponentially. Thus we have reduced the problem to an integral over a neighbor-

hood of z.

Near z0 we have parametrized V by w = g(z). Let C1 be the circle of radius |w| + ε.

When N is sufficiently small compared to ε, the image of N under g is disjoint from C1.

Fix such a neighborhood. For any z ∈ N , the function F (z, ·) has a single simple pole in

the annulus bounded by C0 and C1, occurring at g(z). The residue of F at g(z) is equal to

R(z) := −ψ(z)g(z)−s .

Therefore, for each fixed z ∈ N ,∫
C0

F (z, w)
ws+1

dw =
∫
C1

F (z, w)
ws+1

dw − 2πiR(z).
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But |zr0||ws0||
∫
C1
F (z, w)dw/(zr+1ws+1)| is bounded by a constant multiple of (1 + ε/|w|)−s

(the constant depending on the maximum of F on C1) and hence |zr||ws||ar,s −X| is expo-

nentially decreasing, where

X = (2πi)−1
∫
N
z−r−1g(z)−sψ(z) dz (3.5)

= (2πi)−1z−r0 w−s0

∫
N

z−r

z−r0

dz

z

(
g(z)
g(z0)

)−s
ψ(z) .

Changing variables to z = z0e
iθ and dz = izdθ turns the quantity X into

(2π)−1z−r0 w−s0

∫
N ′
e−irθψ̃(θ)

(
g(z)
g(z0)

)−s
dθ

and plugging in the definition of f̃ yields

(2π)−1z−r0 w−s0

∫
N ′

exp(−sf̃(θ))ψ̃(θ) dθ

which is none other than Ξ. 2

3.1 Laplace integrals

In this section, we let C∞
0 denote the class of smooth (C∞) functions supported on a

compact subset of R. Choose ψ ∈ C∞
0 .

Question: What is
∫∞
0 eiλx

k
ψ(x) dx, and why?

While you think about, I will go on to outline our treatment of oscillating integrals. Our

aim is to treat integrals of the form ∫
eλf(x)ψ(x) dx

where f(x) may have an imaginary component which causes the integrand to oscillate

(rapidly, as λ→∞). To see what is going on, we begin with a real integral. Let k ≥ 2 and
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l ≥ 0 be integers. Let t = λxk so that x = t1/k/λ1/k and dx = k−1t1/k−1/λ1/k. Then∫ ∞

0
e−λx

k
xl dx =

∫ ∞

0
e−t

tl/k

λl/k
t1/k−1

kλ1/k
dt (3.6)

=
1

kλ(l+1)/k
Γ
(
l + 1
k

)
.

This leads immediately to

Proposition 3.2 Let ψ ∈ C∞
0 and let bj = ψ(j)(0)/j!. Then as λ → ∞, the integral∫∞

0 e−λx
k
ψ(x) dx has asymptotic development

∞∑
l=0

a+(k, l)blλ−(l+1)/k,

where

a+(k, l) := k−1Γ
(
l + 1
k

)
.

Remark: When k is even it makes sense to integrate instead from −∞ to ∞. We see by

symmetry that the integral in (??) will then vanish for odd values of l and double for even

values of l. Thus it makes sense to extend our notation to define a−(k, l) = (−1)la+(k, l)

when k is even, and to let a(k, l) = a+(k, l) + a−(k, l), also defined only for even k. When

k is even, Proposition ?? then holds with a instead of a+ and the integral going from −∞
to ∞.

Proof: Define PN (x) :=
∑N
l=0 blx

l and RN (x) = x−(N+1)(ψ(x) − PN (x)). Choose b

greater than any point in the support of ψ and note that on [0, b], |RN | ≤ C where

C := sup0≤x≤b ψ
(N+1)(x)/(N + 1)!. Each function e−λx

k
xl is integrable, hence we may

write ∫ ∞

0
e−λx

k
ψ(x) dx =

∫ ∞

0
e−λx

k
xN+1RN (x) dx+

N∑
l=0

bl

∫ ∞

0
e−λx

k
xl dx .

This proves the proposition, if the first integral on the RHS is O(λ−(N+2)/k). This is easy:∣∣∣∣∫ ∞

0
e−λx

k
xN+1RN (x)

∣∣∣∣ dx
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≤
∫ b

0

∣∣∣e−λxk
xN+1RN (x)

∣∣∣ dx+
∣∣∣∣∫ ∞

b
e−λx

k
PN (x)

∣∣∣∣ dx
≤ C

∫ ∞

0

∣∣∣e−λxk
xN+1

∣∣∣ dx+
N∑
l=0

|bl|
∫ ∞

b
e−λx

k
xl dx

≤ C ′λ−(N+2)/k + C ′′e−λb
k
, .

Thus the RHS is indeed O(λ−(N+2)/k) and the bound is in terms of bl for l ≤ N and

sup0≤x≤b ψ
(N+1)(x)/(N + 1)!. 2

Remark: If the integral is an analytic function of λ, our motivating question is answered

by replacing λ with iλ, introducing a factor of eiπ(l+1)/(2k) so that the expansion in Propo-

sition ?? now has coefficient a+(k, l)bleiπ(l+1)/k for the λ−(l+1)/k term. The philosophical

point here is that oscillation (change of phase) kills the integral just about as fast as am-

plitude decay (change in the real part of the exponent).

Our outline for generalizing this proposition is as follows. The proof of Proposition ?? is

already valid when ψ is complex-valued. Next, we replace −xk by any −f ∈ C∞
0 vanishing

to order k at zero, as long as the support of ψ is sufficiently small. Next we allow f to take

complex values, as long as the strict minimum of Re{f} occurs at f(0) = 0. Finally, the

hardest case is when f = iφ with the real function φ ∈ C∞
0 . This is the “purely oscillatory”

case. The non-decay of the magnitude of the integrand requires some extra care in handling,

though in the end we will see that the computation in the preceding remark can be justified.

Fix a real valued f ∈ C∞
0 . Denote ck := f (k)(0)/k!, and assume that for some k ≥ 1,

ck > 0 and each cj vanishes for j < k. (This is what I mean by a function vanishing to

order k at zero.) Choose b less than the first positive value at which f ′ vanishes. Then

the function y(x) := [f(x)/ck]1/k is a diffeomorphism of [0, B] to [0, B∗]. The derivatives

at 0 of the inverse function x = F (y) are easy to compute formally. Since this inversion is

computationally necessary, we show the first few terms; in general note that the first j + 1
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coefficients of F depend only on the first j coefficients of F starting at ck.

F (y) = y − 1
k

ck+1

ck
y2 +

(
3 + k

2k2

c2k+1

c2k
− 1
k

ck+2

ck

)
y3 +O(y4).

Let ψ be a smooth complex-valued function with compact support in [0, B). Again let bj
denote ψ(j)(0)/j!. Defining ψ̃ := (ψ ◦ F ) · F ′, we denote b̃j := ψ̃(j)(0)/j!. The first few of

these are then given as follows (see the later derivation at (??)).

b̃0 = b0 (3.7)

b̃1 =
(
b1 − 2

b0
k

ck+1

ck

)

b̃2 =

(
b2 − 3

b1
k

ck+1

k
+ 3b0

(
3 + k

2k2

c2k+1

c2k
− 1
k

ck+2

ck

))
.

In general the first j depend only on the first j coefficients of f and ψ, and the first nonvan-

ishing b̃l is equal to the first nonvanishing bl. Changing variables gives
∫ B
0 e−λf(x)ψ(x) dx =∫ B∗

0 e−(ckλ)yk
ψ̃(y) dy, giving:

Theorem 3.3 There is an asymptotic development∫ ∞

0
e−λf(x)ψ(x) dx ∼

∞∑
l=0

a+(k, l)b̃lc
−(l+1)/k
k λ−(l+1)/k (3.8)

where the coefficients b̃l depend only on bj and ck+j for j ≤ l, and the constant in front

of the λ−(N+1)/k remainder term may be bounded in terms of the supremum of the first N

derivatives of f and ψ on the support of ψ. When k is even, the same result holds with

a(k, l) in place of a+(k, l) and
∫∞
−∞ in place of

∫∞
0 . 2

Remark: The constants ck and λ may be lumped together: replacing f by f/ck and λ by

ckλ it is clear in advance that the dependence on ck and λ will be via the product ckλ. The

reason for separating out the ck dependence as above is that when f is complex, the phase

of the integral will rotate with powers of c1/kk , and subsuming this into the definition of b̃l
would be less clear.
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3.2 Complex phase

It is now almost trivial to extend this to the case where the exponent is complex. Let

f : R+ → C be smooth and let cj denote f (j)(0)/j!. Let k be minimal such that ck 6= 0; we

assume 1 ≤ k <∞. Let m be minimal such that Re{cm} 6= 0. Since we will need Re{f} > 0

away from 0, we assume of necessity that Re{cm} > 0.

Theorem 3.4 Under the above assumptions on f , let ψ be a smooth function supported in

(0, b), where f(0) = 0, f ′ has no zeros in (0, b) and f maps (0, b) into {z : Re{z} > 0}.
Let bj denote ψ(j)/j!. Then the asymptotic development (??) holds, with the constant in

the O(λ−(N+1)/m) term depending on the derivatives of f and ψ up to (N + 1)m/k − 1.

The numbers cl/kk must be understood as powers of the principal root c1/kk , namely the root

with argument between −π/(2k) and π/(2k). When k is even and the assumptions of the

theorem are extended to an interval (−b, b), with the integral extended to the whole real line,

the expansion holds but the terms with odd values of l disappear and the even terms are

doubled.

Proof: As x → 0+, the value of f(x) approaches 0 staying in the right half plane. This

time we change variables to z = f1/k. Define G by x = G(z), and ψ̃ := (ψ ◦G) ·G′. Since

z = c
1/k
k y, we have G = F ◦ (z 7→ c

−1/k
k z), so the jth coefficient of ψ̃ is c−(j+1)/k

k b̃j . The

integral
∫∞
0 e−λf(x)ψ(x) dx now becomes∫

γ
e−λy

k
ψ̃(y) dy

where γ is a contour from 0 to b∗ := f(b)1/k. For 0 < N < M , write ψ̃ as PN + PN,M +

xM+1RM where PN,M is a series of monomials of degrees N + 1, . . . ,M . Then the integral

becomes the sum of three terms:∫
γ
e−λy

k
PN (y) dy +

∫
γ
e−λy

k
PN,M (y) dy +

∫
γ
e−λy

k
xM+1RM (y) dy

The first two of these integrals may be evaluated by moving the contour. Since f stays in

the right half plane, the 1/k powers may all be chosen to have arguments between −π/(2k)
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and π/(2k). Let γ′ be the line segment [0, ε] followed by the line segment from ε to b∗,

where ε is small enough so that f and ψ̃ are analytic in the domain bounded by γ and γ′

(choosing b as small as necessary as well). Then integrating over [0, ε] gives the series (??)

out to term N +M (recalling that the lth coefficient of ψ̃ is c−(l+1)/k
k b̃l). The integral over

the segment from ε to b∗ is exponentially small in λ, since the real part of f is bounded

away from zero there.

To bound the third integral, parameterize γ by arc-length. The arc-length to the point

f(t) on γ is given by s(t) ∼ ckt
k as t→ 0. Since the real part of f(t) is at least a constant

times tm, we see that Re{γ(t)k} ≥ Csm/k. Thus an upper bound for the absolute value of

the third integral is ∫ ∞

0
e−λCt

m |tM+1RM (γ(t))| dt.

As before, we see this is bounded by C ′λ−(M+1)/m, where C ′ depends on the first M

derivatives of f and ψ. Choosing M ≥ m(N + 1)/k we have a remainder term that is

O(λ−(N+1)/k), and we are done. 2

When k ≥ 3 is odd2, the only way it is possible for f to be defined smoothly on an

interval [−ε, ε] and remain in the right half plane is to have ck purely imaginary and to have

m even. In this case we obtain the following corollary.

Corollary 3.5 Suppose f is a smooth function mapping (−b, b) into the right half plane,

strictly except at f(0) = 0, and ψ is smooth and compactly supported in (−b, b). Define

k,m, {b̃j : j ≥ 0} and {cj : j ≥ k} as before, assume k ≥ 3 is odd, and define

a(k, l) := a+(k, l)
[
ei(l+1)π/(2k) + (−1)le−i(l+1)π/(2k)

]
. (3.9)

Then if k is odd, there is an asymptotic development∫ ∞

−∞
e−λf(x)ψ(x) dx ∼

∞∑
l=0

a(k, l)b̃lsgn(arg(ck))|ck|−(l+1)/kλ−(l+1)/k

2When k = 1 one finds that all the coefficients vanish, corresponding to the fact that the two-sided

integral is rapidly decreasing at a non-stationary point.
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Proof: The integral from 0 to ∞ is given by (??). Changing variables to −x instead of x,

we see that the integral from −∞ to 0 is the same but with ck replaced by ck = −ck and

with f(x)/ck replaced by f(−x)/(−ck). The term b̃lc
−(l+1)/k
k is then replaced by a sum

b̃lc
−(l+1)/k
k + (−1)lb̃lc

−(l+1)/k
k

leading to a combined contribution of

2b̃lc−(l+1)/k
[
ei(l+1)π/(2k) + (−1)le−i(l+1)π/(2k)

]
,

proving the corollary. 2

3.3 Purely oscillating integrals

Theorem ?? fails to be sharp in one respect. The magnitude of the λ−(l+1)/k error term

should still be bounded in terms of the first l derivatives of f and ψ. In other words,

our approach begins to be inefficient when the oscillation is of greater magnitude than the

amplitude decay. The logical continuation of this is that when there is only oscillation and

no amplitude decay at all, a completely new approach is needed.

The prototypical oscillating integral is an integral of the form∫
exp(iλφ(x))ψ(x)dλ (3.10)

where φ and ψ are analytic functions, ψ ∈ C∞
0 , and we desire asymptotics as λ → ∞.

Integrals of this form are governed by the existence of stationary phase points (points

where φ′ = 0) and by the behavior of φ and ψ near such points. If there are no such points

then the integral is typically exponentially small in λ (we have now seen why this should

be true “by analytic continuation”).

The wrinkle in this case is that the magnitude of the integrand does not decay away

from the stationary point, so the step in the proof of Theorem ?? in which the contour

is moved to the real axis will have a contribution potentially too large to ignore. We
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therefore take advantage of the well known partial integration approach to determining the

asymptotic development of purely oscillating integrals. Following Stein (1993), we begin

with a localization principle.

Lemma 3.6 (localization lemma) Define

I(λ) :=
∫ b

a
eiλφ(x)ψ(x) dx (3.11)

where φ and ψ are given functions in C∞, with ψ having compact support in (a, b). Suppose

φ′(x) 6= 0 for all x ∈ (a, b). Then I(λ) is rapidly decreasing, i.e.,

I(λ) = O(λ−N ) as λ→∞

for any N ≥ 0.

Proof: The smooth vanishing of ψ at the endpoints allows us to integrate by parts without

introducing boundary terms. Let dU = iλφ′eiλφ dx and V = ψ/(iλφ′) to get

I(λ) = −
∫ b

a
eiλφ(x) d

dx

(
ψ

iλφ′

)
(x) dx.

For any N ≥ 1 we may repeat this N times to obtain

I(λ) = −
∫ b

a
eiλφ(x)λ−NDN (ψ)(x) dx (3.12)

where D is the differential operator f 7→ (d/dx)(f/iφ′). Letting

A(N,ψ) = sup
a≤x≤b

|Dnψ(x)|,

we see that

I(λ) ≤ λ−NA(N,ψ)

which proves that I(λ) is rapidly decreasing. 2

We call this the localization lemma for the following reason. Suppose in (??) we allow φ′

to vanish on some finite set of points x1, . . . , xd ∈ [a, b]. Then I claim that the contribution to
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I(λ) from any closed region not containing some xi is rapidly decreasing, so the asymptotics

for I(λ) may be read off as the sum of contributions local to each xi. Indeed, for each i

let [ai, bi] be tiny intervals containing xi, with all intervals disjoint and let ξ1, . . . , ξd be

a partition of unity subordinate to {[ai, bi] : 1 ≤ i ≤ d}. Once we see how to obtain

asymptotics in a neighborhood of xi containing no other critical points, we can write ψ =

ψ0 +
∑d
i=1 ψξi, so that the support of ψ0 contains no xi. By the localization lemma,∫

eiλφ(x)ψ0(x) dx is rapidly decreasing. It follows that as long as the integrals Ii(λ) :=∫ b
a e

iλφ(x)ψi(x) dx sum to something not rapidly decreasing, the asymptotic development of

I(λ) is gotten by summing the developments of Ii(λ).

In the case of Lemma ?? a simpler proof would be to change variables to y = φ(x). This

reduces the result to the more familiar statement that the Fourier transform of a smooth

function ψ ◦ φ−1 decreases rapidly. I chose the above proof because the assumption that

φ′ 6= 0 is about to go out the window.

The assumption of compact support is especially important in the purely oscillatory

case. In this case the modulus of the integrand is always order 1, so an integral over an

interval near whose endpoints ψ does not vanish will have boundary contributions on the

possible order of λ−1. For example,∫ b

a
eiλx =

eiλb − eiλa

iλ

which is Θ(λ−1) when λ avoids multiples of 2π(b − a)−1. It should however be noted that

integration over a compact manifold without boundary qualifies as compact support. Thus

if C is e.g., the unit circle, the integral
∫
C exp(iλφ(x))ψ(x) dx may be done by parts, with

no boundary terms ensuing. If φ′ is nonvanishing then the integral is rapidly decreasing.

Define some shorthand for several classes of integrals:

I(λ;φ, ψ) =
∫ ∞

−∞
eiλφ(x)ψ(x) dx; (3.13)

I(λ, k;ψ) =
∫ ∞

−∞
eiλx

k
ψ(x) dx; (3.14)
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I(λ, k, l, δ) =
∫ ∞

−∞
eiλx

k
e−δ|x|

k
xl dx. (3.15)

Let I+ (resp. I−) with the same sets of arguments denote integrals from 0 to ∞ (resp. −∞
to 0) of the same integrands. Our final result for one-variable purely oscillating integrals

will be the asymptotic development of integrals defined as follows.

Theorem 3.7 Let φ and ψ be smooth real functions with ψ ∈ C∞
0 . Assume that the order

of the first nonvanishing derivative of φ at 0 is some number k ≥ 2 and that 0 is the

unique value in the support of ψ at which φ′ vanishes. Let bl := ψ(l)(0)/l! denote the Taylor

coefficients of ψ and let ψ̃ := (ψ ◦ F ) · F ′ where F is the inverse function to x 7→ (φ/ck)1/k

where cl := φ(l)(0)/l!. Then as λ→∞, there is an asymptotic development

I(λ;φ, ψ) =
∞∑
l=0

A(k, l)b̃lc
−(l+1)/k
k λ−(l+1)/k .

The coefficient of λ−(l+1)/k is a continuous function of the first l derivatives of φ and ψ at

0 (for l ≤ 2 see the explicit equation (??)), and the constant in the O(λ−(N+1)/k) remainder

term is bounded by a continuous function of the suprema of the first N + 1 derivatives of φ

and ψ on the support of ψ. An expansion of exactly the same form holds for I+ and I−.

An outline of the proof is as follows. We first restrict attention to the case where

φ(x) = xk. Ideally we would like to solve the case where ψ(x) = xl as well, and then use

the Taylor expansion of ψ to sum these. Since xl is not compactly supported, this does not

make sense, but if we throw in a Gaussian cutoff factor of e−δx
2

we may then carry out

this program. Sending δ to zero, we find that the xl term of ψ contributes to just one term

of the asymptotic expansion, so summing over the Taylor expansion of ψ easily gives the

full asymptotic development. More general phase functions φ may be handled by a change

of variables which reduces to the special case φ(x) = xk but with a different function ψ.

The effect of this change of variables on the coefficients of the asymptotic development are

easily computed by recursion, though we do not present a closed form expression for them,

except for the first several terms.
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Two lemmas will be useful. The first is an estimate on the magnitude of an oscillating

integral when the amplitude at the stationary point vanishes to a given order.

Lemma 3.8 If η ∈ C∞
0 and l ≥ 1 and k ≥ 2 are integers, then∣∣∣∣∫ ∞

−∞
eiλx

k
xlη(x) dx

∣∣∣∣ ≤ Cλ−(l+1)/k (3.16)

for a constant C depending on k, l and the first l derivatives of η. The same estimate holds

if the integral is over the positive half-line and the closed support of η is contained in (0,∞).

An immediate corollary is

Corollary 3.9 Suppose g is smooth, vanishing in an neighborhood of 0, and that g(x) =

O(|x|−N ) for every N . Then ∫
eiλx

k
g(x) dx = O(λ−N )

for every N .

Proof of lemma: Let α be a smooth function equal to 1 on |x| ≤ 1 and vanishing on

|x| ≥ 2. Choose an ε > 0 and rewrite (??) as∫
eiλx

k
xlη(x)α(x/ε) dx+

∫
eiλx

k
xlη(x)[1− α(x/ε)] dx. (3.17)

The absolute value of the first integrand is at most |x|l||η||∞1|x|≤2ε, yielding an integral of

at most C1ε
l+1 where C1 = ||η||∞2l+1/(l + 1).

The second integral will be done by parts, and to prepare for this we examine the

iteration of the operator D := (d/dx)(·/xk−1) applied to the function xlη(x)(1 − α(x/ε)).

The result will be a sum of monomials, each monomial being a product of a power of x,

a derivative of η, a derivative of α and a power of ε. In fact if (a, b, c, d) is shorthand for

xaη(b)(x)α(c)(x/ε)ε(d), and a ≥ 0, then

D(a, b, c, d) = (a− k + 1)(a− k, b, c, d) + (a− k + 1, b+ 1, c, d) + (a− k + 1, b, c+ 1, d− 1).
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By induction, we see that DN (a, b, c, d) is the sum of terms C · (r, s, t, u) with r + u ≥
a + d − kN , s ≤ b +N , t ≤ c +N , and C ≤ (kN ∨ a)!. In particular, since ε ≤ x we may

replace positive powers of ε by the same power of x to arrive at the upper bound:∣∣∣DN
[
xlη(x)(1− α(x/ε))

]∣∣∣ ≤ 1|x|≥εC|x|l−kN (3.18)

where C is the product of supj≤N,|x|∈(1,2) η
(j)(x) and supj≤N,|x|∈(1,2) α

(j)(x).

Now we fix an N ≥ 1 and integrate the second integrand of (??) by parts N times, each

time integrating −ikλxk−1eiλx
k

and differentiating the rest. The resulting integral is∫
eiλx

k
(−ikλ)−NDN

[
xlη(x)(1− α(x/ε))

]
dx.

By (??), the modulus of the integrand is at most C1|x|≥ε|x|l−kN (kλ)−N , which integrates to

at most C2λ
−N εl−kN+1. Set ε = λ−1/k and add the bounds on the two integrals to obtain

an upper bound on
∫
eiλx

k
g(x) dx of (C1 + C2)λ−(l+1)/k. We have also shown that C1 and

C2 depend only on k, l, the first l derivatives of η and the first l derivatives of α. We may

take α always to be a fixed, convenient function, and incorporate its derivatives into our

constants. This proves the lemma for integration over R. For integration over R+, the

proof is exactly the same, with the absolute value of the first integrand bounded identically,

and the second integration by parts done only on the right half-line (no boundary effects

occur since 0 is not in the support of 1− α). 2

The second lemma computes the asymptotics when φ and ψ are monomials and a damp-

ing factor of e−δx
k

is imposed.

Lemma 3.10 As λ→∞, there is an asymptotic development

I(λ, k, l, δ) = λ−(l+1)/k
∞∑
j=0

a(j, k, l, δ)λ−j .

The same holds for I+ and I−, whose coefficients are denoted respectively by a+ and a−.

The constants in the N th remainder term remain bounded (in fact go to 0) as δ → 0.
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Proof: Let z = (δ − iλ)1/kx, where we choose the principal branch of w1/k i.e.,

|Arg(w1/k)| ≤ π/(2k).

The quantity I+(λ, k, l, δ) may be written as∫ ∞(δ−iλ)1/k

0
e−z

k
(δ − iλ)−l/kzk

dz

(δ − iλ)1/k
.

The integrand decreases rapidly as z → ∞ with |Arg(z)| ∈ [0, π/2 − ε], so we may rotate

the contour of integration back to the positive real line, obtaining

I+(λ, k, l, δ) = (δ − iλ)−(l+1)/k
∫ ∞

0
e−x

k
xl dx

taking the l/k power to be the l power of the principal 1/k power. The definite integral has

value a+(k, l) = k−1Γ((l+1)/k). Writing (δ− iλ)−(l+1)/k as (−iλ)−(l+1)/k(1+δi/λ)−(l+1)/k,

the binomial theorem then gives

I+(λ, k, l, δ) = a+(k, l)eiπ(l+1)/(2k)λ−(l+1)/k
∞∑
j=0

(iδ)j
(
−(l + 1)/k

j

)
λ−j .

This proves the lemma with

a+(j, k, l, δ) = k−1Γ
(
l + 1
k

)
eiπ(l+1+jk)/(2k)

(
−(l + 1)/k

j

)
δj . (3.19)

The proof for I− is identical, and the result for I follows from I = I+ + I−. 2

Since we are going to send δ to 0, we do not at this point need explicit forms for the

coefficients a+(j, k, l, δ). Instead, we compute limits as δ → 0. For j > 1, a+(j, k, l, δ) → 0

as δ → 0, and the same with a− and a. When j = 0, we obtain A+(k, l) easily from (??).

To obtain A−(k, l) observe that when k is even, A−(k, l) = (−1)lA+(k, l), while when k is

odd, A−(k, l) = (−1)lA+(k, l). This leads to

A+(k, l) := lim
δ→0+

a+(0, k, l, δ) = k−1Γ
(
l + 1
k

)
eiπ(l+1)/(2k) ; (3.20)

A−(k, l) := lim
δ→0+

a−(0, k, l, δ) = (−1)lk−1Γ
(
l + 1
k

)
e(−1)kiπ(l+1)/(2k) ; (3.21)
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A(k, l) := lim
δ→0+

a(0, k, l, δ) =
2
k
Γ
(
l + 1
k

)
eiπ(l+1)/(2k)δl≡0(2)

(3.22)

if k is even;

A(k, l) := lim
δ→0+

a(0, k, l, δ) =
1
k
Γ
(
l + 1
k

) [
eiπ(l+1)/(2k) + (−1)le−iπ(l+1)/(2k)

]
(3.23)

if k is odd.

We are now ready to prove a restricted version of Theorem ??.

Theorem 3.11 Let ψ ∈ C∞
0 with 0 in the support of ψ. Let bj = ψ(j)(0)/j!. Then I(λ, k;ψ)

has asymptotic development

I(λ, k;ψ) ≈ λ−1/k
∞∑
j=0

bjA(k, j)λ−j/k

and the same with I and A replaced by I± and A±. The constant in the O(λ−N/k) remainder

term is bounded in terms of the suprema of the first N derivatives of ψ near 0.

Proof: We prove the result only for I+, since the proof for I− is identical and the result

for I follows by summing. Let U be a smooth function that is 1 on the support of ψ

and vanishes outside of a compact set. Fix N ≥ 1 and δ > 0 and define the polynomial

P (x) = PN,δ(x) to be the sum of the Taylor series for eδx
k
ψ(x) through the xN term. Let

bj,δ denote the Taylor coefficients. Define the normalized remainder term R(x) = RN,δ(x)

by eδx
k
ψ(x) = P (x) + xN+1R(x). Now represent I+(λ, k;ψ) as∫ ∞

0
eiλx

k
ψ(x) dx =

∫ ∞

0
eiλx

k
e−δx

k
[
eδx

k
ψ(x)

]
U(x) dx = A+B + C

where

A :=
∫ ∞

0
eiλx

k
e−δx

k
P (x) dx ;

B :=
∫ ∞

0
eiλx

k
xN+1e−δx

k
R(x)U(x) dx ;

C :=
∫ ∞

0
eiλx

k
e−δx

k
P (x)(U(x)− 1) dx .
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By Lemma ??,

A =
N∑
l=0

bl,δ

∫ ∞

0
eiλx

k
e−δx

k
xl dx

=
N∑
l=0

bl,δI(λ, k, l, δ)

=
N∑
l=0

bl,δ

N∑
j=0

λ−(l+1)/ka(j, k, l, δ)λ−j +O(λ−(l+1)/k−j(N+1))

=
N∑
l=0

bl,δa(0, k, l, δ)λ−(l+1)/k +
l+1+j(N+1)∑

j=l+1

ξjλ
−j/k +O(λ−(l+1)/k−j(N+1))

where the coefficients ξj are sums of products of coefficients bl,δ with coefficients a(j, k, l, δ)

for which j ≥ 1.

By Lemma ?? with η(x) = e−δx
k
R(x)U(x) and l = N + 1, we know that the magnitude

of B is bounded by Kλ−(l+2)/k. Similarly, by Corollary ??, we see that C is rapidly

decreasing as λ → ∞, hence of magnitude at most Kλ−l. Furthermore, in both cases K

may be bounded in terms of k, l and the first l derivatives of ψ, the bound being uniform

over δ in a neighborhood of 0. It follows that I+(λ, k;ψ) has, up to the λ−(l+1)/k term,

the same asymptotic development as A. In particular, the asymptotics of A do not depend

on δ to this point. As δ → 0, the coefficients bl,δ → bl. Thus we may send δ → 0, which

annihilates all terms with j ≥ 1 and leaves

I+(λ, k;ψ) ≈
N∑
l=0

blA+(k, l)λ−(l+1)/k

which is the desired expansion. 2

Proof of Theorem ??: By assumption, φ(x) = ckx
k(1 + θ(x)) where θ(x) = O(|x|). Let

y = x(1+θ(x))1/k. This is a diffeomorphism in a neighborhood of 0, and we write x = F (y)

to denote its inverse. Then ckyk = φ(x) and so we may change variables to write∫
eiλφ(x)ψ(x) dx =

∫
eiλcky

k
ψ̃(y) dy ,
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where ψ̃ = (ψ ◦ F ) · F ′. Absorbing ck into λ shows that

I(λ;φ, ψ) = c
−(l+1)/k
k I(λ, k; ψ̃) (3.24)

The derivatives of ψ̃ at zero are easily computed from derivatives at 0 of φ and ψ, and

depend continuously on them, which complete the proof. 2

As promised earlier, we derive expressions for the first few terms of the expansion . We

may express y = (φ/ck)1/k by

y = x

(
1 +

ck+1

ck
x+

ck+2

ck
x2 +O(x3)

)1/k

= x+
1
k

ck+1

ck
x2 +

(
1
k

ck+2

ck
+

1
k

1− k

k

1
2
c2k+1

c2k

)
x3 +O(x4).

Inverting we get x = F (y) where F is expressed as

y − 1
k

ck+1

ck
y2 +

(
3 + k

2k2

c2k+1

c2k
− 1
k

ck+2

ck

)
y3 +O(y4).

Then F ′(y) = 1− (2/k)(c2k+1/c
2
k)y + 3[(3 + k)/(2k2)(c2k+1/c

2
k)− (1/k)(ck+2/ck)]y2 + O(y3)

and ψ ◦ F (y) = b0 + b1y + (b2 − (b1/k)(ck+1/ck))y2 + O(y3). Recalling that {bj} are the

coefficients of ψ, and b̃j are the coefficients of ψ̃, we see that

b̃0 = b0 (3.25)

b̃1 = b1 − 2
b0
k

ck+1

ck

b̃2 = b2 − 3
b1
k

ck+1

k
+ 3b0

(
3 + k

2k2

c2k+1

c2k
− 1
k

ck+2

ck

)
.

4 Oscillating integrals in several variables

In one variable, points where the phase function is stationary may be classified by their

degree of vanishing: any two functions vanishing to order k are diffeomorphically equivalent.
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In more than one variable, there are many possible geometries for the behavior of a function

near a critical point. There are as many different oscillating integrals as there are geometries

of zero sets of functions. For a wide-ranging treatment (but not all the proofs) see Arnold

et al (1988). Rather than attempt a comprehensive treatment, I will present two basic

theorems and then develop the estimates needed for later asymptotic computations.

4.1 Localization

As before, we let f : Rd → C be a smooth function, let ψ ∈ C∞
0 (Rd), and denote I(λ) :=∫

e−λf(x)ψ(x) dx. We assume throughout that f(0) = 0 and that f has a critical point at

the origin, i.e., 5f(0) = 0. Letting

qij =
∂2f

∂xi∂xj

∣∣∣∣∣
0

,

we then have near the origin a Taylor expansion

f(x) =
1
2

∑
i,j

qijxixj +O(|x|3) .

Let Q denote the quadratic form Q(x) =
∑
i,j qijxixj and let M = M(Q) denote the matrix

(qij) representing Q called the Hessian of f . The simplest case, and the only one we will

need here, is when M has full rank. Accordingly, we define f to have a nondegenerate

stationary point at the origin if 5f(0) = 0 and if M is non-singular. Intuitively, this means

f vanishes to order two but not to any higher order.

We should already be able to guess the expansion of I(λ) in this case, via the following

steps. (1) localize to a neighborhood of the origin. (2) by a change of variables, f becomes

the sum of x2
j and ψ becomes ψ̃. (3) expand ψ̃ into monomials. (4) the integral of a

monomial against a diagonal quadratic form factors into the product of one-dimensional

integrals, of the type we have already done. As before, approximating ψ̃ by a polynomial

requires a little work since polynomials are not compactly supported; this is summarized in

Lemma ?? below. In addition, step 1 requires a new localization lemma and step 2 requires
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the Morse Lemma along with some easy linear algebra. We begin with the localization

lemmas.

Lemma 4.1 (multivariate localization) Let ψ ∈ C∞
0 map Rd to C and f ∈ C∞ map

Rd to C with Re{f} ≥ 0 and 5f nonvanishing on the closed support of ψ. Then as λ→∞,

the integral

I(λ) :=
∫
Rd
eiλf(x)ψ(x) dλ

is O(λ−N ) for any N > 0. The estimate is uniform when | 5 f | is bounded away from zero

and depends only on the first N derivatives of f and ψ,and on inf | 5 f |.

Proof: For each x in the support of ψ, there is some unit vector ξx and a ball Bx around

x such that ξx · 5f(y) ≥ c > 0 for all y ∈ Bx. The number of balls necessary to cover and

the proximity of c to zero may be bounded in terms of inf | 5 f | and sup | 5 f |. We may

write I(λ) as a finite sum ∑
k

eiλf(x)ψk(x) dx

where each ψk is supported in some ball Bxk
. Fix k and let ξxk

be the first vector in an

orthonormal frame ξ1, . . . , ξd. Write∫
eiλf(x)ψk(x) dx =

∫ (∫
eiλf(x)ψk(x) dξ1

)
dξ2 · · · dξd.

By the one-variable localization lemma, the inner integral is at most A(N,ψk; f)λ−N , where

A depends only on the supremum of the operator (d/dξ1)(f/i(∂f/∂ξ1)) applied n times to

f := ψ [note that equation (??) assumes only that |eiλf(x)| ≤ 1 and not that f is real].

Thus the inner integral is uniformly O(λ−N ) for any N , and by integrating we see that I(λ)

is as well. 2

For later application, we will need a version of the localization lemma that works when

the region of integration has a boundary, as long as there is some direction along the bound-

ary in which the phase is changing. To set this up, we discuss a more general boundary

condition. The domain of integration, D, will be assumed to be a nice cell complex, which
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we now define. A nice cell complex in d dimensions is built out of manifolds of different

dimensions, at least one of which has dimension d. A j-manifold means an orientable man-

ifold without boundary, so it may be diffeomorphic to an open disk in Rj , or to something

else such as the torus (S1)j . We define a nice cell complex in to be a disjoint union of

manifolds, called its cells. If S and T are j and j+1 cells respectively, then we require that

either S is disjoint from the closure T or else S ⊆ T ,. In the latter case, S ∪ T is locally

diffeomorphic to a j+1 dimensional half-space. It follows that every point x ∈ D has a well

defined dimension, namely the dimension of the unique cell containing x, and that a point

x of dimension j has a neighborhood in D diffeomorphic to the orthant Rj × (R+)d−j .

Definition 2 If D is a nice cell complex and f : D → {z : Re{z} ≥ 0} is smooth, we call x

a stationary point for f if Re{f} = 0 and 5f(x) is orthogonal to the tangent space Tx(S)

at x to the unique cell S containing x.

Lemma 4.2 (cell-complex localization) Let D be a nice cell complex and f a smooth

function on D with nonnegative real part. Let ψ ∈ C∞(D) and suppose that f has no

stationary points in the support of ψ. Then

I(λ) :=
∫
D

exp(−λf(x))ψ(x) dx

is rapidly decreasing.

Sketch of Proof: For each x in the support of ψ, let Bx be a neighborhood of x in

which either (i) : Re{f} is bounded away from zero or else (ii) : there is a vector ξ in the

tangent space to the cell S containing x such that πS(5f) · ξ is bounded away from zero; in

the latter case, take a sub-neighborhood which is a product of a neighborhood A of x in S

with another set B. By the hypotheses on D and f , these neighborhoods exist for each x.

Choose a finite subcover and a partition of unity subordinate to it. Then I(λ) is the sum

of finitely many contributions, each of one of two types. The contributions of the type (i)

are all exponentially decreasing since the modulus of the integrand is exponentially small.

The contributions of type (ii) may be written as integrals over B of integrals over A. Each
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integral over A may further be written as an integral in the ξ direction, then integrated in

all other directions. As in the proof of Lemma ??, the integral in the direction ξ is rapidly

decreasing, and uniformity allows us to integrate in the remaining directions to finish the

proof. 2

4.2 Quadratically non-degenerate stationary points

The next lemma states a simple and well known fact about diagonalizing a quadratic

form over the complex numbers. Recall that quadratic forms Q are in one-to-one corre-

spondence with symmetric bilinear forms B by the correspondence Q(x) = B(x,x) and

B(x,y) = (1/4)(Q(x + y) − Q(x − y)) (the polarization identity). These are also in one-

to-one correspondence with symmetric matrices once a basis is chosen. Given two bases

{x1, . . . ,xn} and y1, . . . ,yn}, if (y) = A(x), then the matrices Mx and My representing Q

in the respective bases (x) and (y) are related by My = ATMxA. In particular, we see that

quadratic (or bilinear) forms have a well defined rank, namely the rank of the representing

matrix in any basis.

Lemma 4.3 (diagonalization of quadratic forms) Let Q be a quadratic form of full

rank on a d-dimensional complex vector space. Then there is a basis in which Q is rep-

resented by the identity matrix. Consequently, any nonsingular symmetric matrix over C

may be factored as ATA.

Proof: Induct on d, the statement being clear when d = 1. When d > 1, we observe

that there must be an x with Q(x) 6= 0 or else B and hence M would be singular by the

polarization identity. Multiplying by a scalar, we assume that Q(x) = 1. Write V = xC+V ′

where V ′ is the B-complement of x, namely the set of y for which B(x,y) = 0. Since the

representing matrix M has full rank on V it has full rank on V ′, so by induction, there

is a basis {y1, . . . ,yd−1} for which Q(
∑d−1
j=1 ajyj) =

∑d−1
j=1 a

2
j , and adding x to the basis

completes the induction. 2
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Continuing with background lemmas, we come to the Morse Lemma, which is the multi-

dimensional analogue of the change of variables that straightened out f into a pure power

in Theorem ??. There are many proofs of the Morse Lemma in the literature. The one here

is taken appears in Stein (1993) and Milnor (1969), though I have altered the description

to a formal power series approach, and the complex case (ours) is a little simpler than the

real case (theirs).

Lemma 4.4 (Morse Lemma) Let f be a smooth complex-valued function on Rd whose

expansion near the origin is given by

f(x) =
1
2
Q(x) +O(|x|3) .

Suppose that the Hessian M(Q) is non-degenerate. Then there are functions y1, . . . , yd,

analytic on a neighborhood of the origin, for which

f(x) =
1
2

d∑
j=1

yj(x)2

and Jacobian is a matrix A for which ATA = M(Q).

Proof: Assume first that Q is represented by the identity matrix, that is, Q(x) =
∑d
j=1 x

2
j .

We write 2f(x) as
∑
i,j xixjφij where φij(0) = δij and φij = φji. It is obvious how to do

this as a formal power series, hence if f is analytic at the origin. In the C∞ category, one

first writes 2f =
∑d
j=1 xjgj where gj =

∫ 1
0

∂f
∂xj

(tx) dt; then, since gj vanishes at the origin, it

in turn may be written as
∑d
i=1 xihij ; take φij = (1/2)(hij+hji). Observe that φij(0) = δij .

Now assume for induction that f is of the form (1/2)
∑r−1
j=1 y

2
j +

∑
i,j≥r yiyjφ̃ij , with

φ̃(0) = δij . Then replacing yr by

y′r := φ̃1/2
rr

yr +
∑
j>r

yjφ̃rj
φrr


we find that 2f =

∑r−1
j=1 y

2
j + (y′r)

2 +
∑
i,j>r yiyjφij and φ(0) = δij . By induction, we can

get to r = d and 2f =
∑d
j=1 y

2
j . The changes of variable from yr to y′r all have Jacobian at

the origin equal to the identity matrix, so the final result does as well.
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Finally, to handle the case of a general nonsingular Q, use the diagonalization lemma

to write Q = ATA. Then f = f̃ ◦ A where A is the map x 7→ Ax and the Hessian of f̃ is

the identity. By the previous case, 2f̃(x) =
∑d
j=1 yj(x)2, whence 2f(x) =

∑d
j=1(yj ◦ A)2;

since the Jacobian of (x) 7→ y is the identity, the chain rule shows that the Jacobian of

(x) 7→ (y) ◦A is equal to A. 2

To make use of polynomial approximation, we need the multivariate analogue of

Lemma ?? and Corollary ??. The proof is the same as in the one variable case, except that

we need to integrate by parts rj times in the xj-direction for each j.

Lemma 4.5 Suppose that f(x) = 1
2

∑d
j=1 x

2
j . Suppose further that ψ is smooth and com-

pactly supported. For a multi-index r of nonnegative integers, we let

I(λ) =
∫

exp(−λf(x))xrψ(x) dx .

Then ∣∣∣∣∫ e−λf(x)xrψ(x) dx
∣∣∣∣ = O(λ−

d+|r|
2 ) .

If ψ vanishes in a neighborhood of the origin then the integral is rapidly decreasing. 2

One final lemma involves the topology of S+ ⊂ Cd defined as the set {(z1, . . . , zd) :

Re{z2
1 + · · ·+ z2

d} ≥ 0}.

Lemma 4.6 Let D∗ be a the diffeomorphic image of a neighborhood of the origin in Rd by

a map Ψ : Rd → Cd sending 0 to 0. Suppose D∗ ⊆ S+. Then there is a neighborhood N
of the origin in Rd and a (d + 1)-manifold (with boundary), Ω, having the following two

properties.

0 /∈ ∂Ω \ (D∗ ∪N ) ; (4.1)

Ω ⊆ S+ . (4.2)
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Sketch of proof: Define a homotopy H : D∗ × [0, 1] → Cd by H(z, t) = Re{z} + (1 −
t)Im{z}. Suppose H is a diffeomorphism and H(∂D∗ × [0, 1]) avoids 0. Then the first

property is immediate for Ω = Image(H), and the second property follows from the fact

D∗ ∈ S+ together with the closure of S+ under x+ iy 7→ x+ iαy for α ∈ [0, 1]. If H is not

a diffeomorphism, then either two elements of D∗, x + iy and x + iy′ have the same real

(d-dimensional) part, in which case the one with the larger imaginary part will be called

the “offending element”, or some nonzero “offending” element of D∗ is real. In either case,

the offending element of D∗ is in the interior of S+, so we may perturb the map H keeping

the image inside S+ and make it a local diffeomorphism. Doing this in a neighborhood of

each offending point creates a diffeomorphism, with the two properties required. 2

Finally, we put the lemmas together into the following theorem.

Theorem 4.7 Let D be a nice cell complex in Rd containing the origin in its interior. Let

f : D → C be a smooth function and suppose the origin is the only stationary point of f on

D, in the sense of Definition ?? and suppose that the quadratic approximation Q to f at

the origin is nonsingular. Let ψ be another smooth function on D. Then the integral

I(λ) :=
∫
D

exp(−λf(x))ψ(x) dx

has an asymptotic development

I(λ) ∼
∞∑
j=l

Cjλ
− d+j

2

where l is the order of vanishing of ψ at 0, that is, the minimal degree
∑
rj of a nonzero

term arxr in the expansion of ψ at the origin. If l = 0 (i.e., ψ(0) 6= 0) then

I(λ) ∼ (2π/λ)d/2ψ(0)det(M(Q))−1/2

where the choice of square root of the determinant of M is the product of the principal

square roots of the eigenvalues.

Remark: The factor of 2 is due to the fact that f ∼ 1
2Q; it is easy to confuse Q with Q/2

e.g. when f =
∑
x2
j then Q is twice the identity matrix.
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Proof: Let us write ID(λ; f, ψ) to emphasize the dependence of I on D and the functions f

and ψ. Let η be a standard bump function, that is, η = 1 on the unit ball {z :
∑d
j=1 |zj |2 ≤

1} of Cd, η = 0 outside the ball of radius 2, and η ∈ C∞(Cd). Write ηr for the function

η(x/r). Throughout this proof we will view Rd as a subset of Cd.

For any r > 0, the function (1 − ηr)ψ vanishes in a neighborhood of the origin, so f

has no stationary points in the support of (1 − ηr)ψ. Applying Lemma ?? we see that

ID(λ; f, (1− ηr)ψ) is rapidly decreasing, and hence

ID(λ; f, ψ) ≈ ID(λ; f, ηψ)

modulo a rapidly a decreasing difference. Now apply the Morse Lemma to see that there is

a change of variables making the RHS of this equal to

ID∗(λ; Id, ψ∗)

where Id(x) := 1
2

∑d
j=1 x

2
j has Hessian equal to the identity matrix. Observe that D∗ ⊆ S+

since D∗ is the image of D when we map f to the sum of squares, and f has nonnegative

real part on D. Also, the Jacobian of the change of variables is a matrix A for which

ATA = M(Q). Thus the integrating factor is |A|−1 and we have

ψ∗(0) = |M(Q)|−1/2ψ(0) (4.3)

with the choice of square root of the determinant of M(Q) yet to be determined. Approxi-

mate ψ∗/ηr to homogeneous degree N by its Taylor polynomial PN ; specifically,

Pn(x) =
∑
|r|≤N

prxr

where pr are the Taylor coefficients of ψη. Note that p0 = |M(Q)|−1/2ψ(0). Then ψ∗−ηrP =

O(|x|−N−1) near the origin, so by Lemma ??,

ID(λ; f, ψ) = ID∗(λ; Id, ηPN ) +O(λ−
d+N+1

2 ) (4.4)

Now we rotate the surface of integration using Lemma ??. Let ω be the d-form

exp(−λId(z))η(z)PN (z) dz1 ∧ · · · ∧ dzd. Let Ω be the region given by Lemma ??. Then
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Stokes’ Theorem gives ∫
Ω
dω =

∫
∂Ω
ω.

We now choose r less than half the distance from the origin to ∂Ω \ (D∗ ∪ N ). Then ηr

vanishes on ∂Ω \ (D∗ ∪N ), and hence∫
Ω
dω =

∫
D∗
ω +

∫
N
ω .

Since
∫
D∗ ω is the first term on the RHS of (??), we can put this together with (??), to get

ID(λ; f, ψ) = ±
∫
N
ω ±

∫
Ω
dω +O(λ−

d+N+1
2 )

with the signs determined by the orientations of the boundary pieces. The form dω is

the differential of a form that is holomorphic on the ball of radius 1/r, so it vanishes in a

neighborhood of the origin. Since Ω ⊂ S+, we know that in the region where dω does not

vanish, the function Id has non-negative real part. Since dω = exp(−λId)P d(ηr dz1 ∧ · · · ∧
dzd) we may apply the last part of Lemma ?? to see that

∫
Ω dω is rapidly decreasing. Thus

IN (λ; f, ψ) = ±
∫
N
ω +O(λ−

d+N+1
2 )

Finally, we evaluate
∫
N ω. The function Id has real part at least 1/r2 on the support of

(1− ηr), so the difference between
∫
N ω and

∫
Rd exp(−λId)P decreases exponentially in λ.

But
∫
Rd exp(−λId)P may be evaluated term by term to yield

∑
|r|≤N

pr

d∏
j=1

a(2, rj)
(
λ

2

)−(rj+1)/2

which proves the general expansion. When r = 0, this simplifies to p0(2π/λ)d/2. Substitut-

ing p0 = ψ(0)|M(Q)|−1/2 recovers the claimed leading term up to sign. To determine the

sign of the leading term, we argue as follows.

If fn → f in the topology of uniform convergence of the first N derivatives, then since

the error bounds depend only on the first N derivatives, the coefficients of the expansions

of ID(λ; fn, ψ) converge to the coefficients of the expansion of ID(λ; f, ψ). In particular,
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the choice of |M(Q)|−1/2 must be continuous in the second partials of f which are the

matrix entries of M . Of course there is no global choice of square root of the determinant

that is continuous in the matrix entries, but there is if one restricts to the set of matrices

representing quadratic forms that map real vectors to complex numbers with nonnegative

real parts. Indeed, up to global sign change, the product of the principal square roots of the

eigenvalues is the only such function. We know that when f = Id, the positive square root

is chosen, which determines the global sign, hence the choice of square root for all matrices.

2

4.3 Stationary manifolds

4.4 Cusps

5 Asymptotics in several variables: isolated smooth points

Recall our previous notation: F = G/H =
∑
arzr is a function of d complex variables,

written as a quotient of functions analytic in some domain D. The analytic variety where

H vanishes is denoted V. Writing ar as an iterated Cauchy integral (as in equation (

refeq:cauchy), we see that any function analytic on the closed polydisk D(z) has coefficients

satisfying

ar = O(|z−r|) . (5.1)

The following upper bound may be proved directly:

Lemma 5.1 Let zj = xje
iθj for j = 1, . . . , d and xj > 0. If z ∈ V is on the boundary of D

and the hyperplane through x normal to r is not a support hyperplane for logD, then |zrar|
decreases exponentially, the rate being uniform as r varies over a compact set.

Proof: With x, z and r as in the hypotheses, by definition of support hyperplane there is

a y in the interior of logD with y · r > x · r. By (??), ar = O(e−y·r), which is less than
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e−x·r = |z−r| by an exponential factor. 2

Evidently, all the work is in proving that this estimate is sharp, and in computing

asymptotic expansions in these cases. We proceed from the simplest case to the more

intricate ones.

5.1 Two dimensions

Theorem ?? and its two-sided corollary tell us how to do the integral in the reduction

lemma (Lemma ??), provided we verify a couple of hypotheses. We will need to know

that f̃ ′(0) vanishes and that Re{f̃} ≥ 0 with equality only at 0. Indeed, since (z, g(z)

is a parametrization of V, the strict minimality of (z, w) implies that |g(z′)| > |g(z)| =

|w| whenever |z′| = |z|, and taking logs shows Re{f̃} to be strictly positive except at 0.

Differentiating the relation H(z, g(z)) = 0 gives

g′(z) = −Hz

Hw
(5.2)

and we see that

f̃ ′(0) =
r

s
+
d(log g)
d(log z)

=
r

s
+
zg′

g
=
r

s
− zHz

wHw
.

To be consistent with future notation, we write (r, s) ∈ dir(z, w) to denote the equality of

r/s and zHz/(wHw). Now recall some quantities defined in the preamble to the reduction

lemma. The quantity ψ is defined to be the residue of the function F/w at the smooth

point (z, g(z)); ψ̃ is ψ after changing variables to z = z0e
iθ; and f̃ is log g in terms of θ. We

let k be the order of vanishing of f̃ at 0, and ck := f̃ (k)(0)/k!. Let η invert the function

y(x) = (f(x)/ck)1/k and let ψ∗ = (ψ̃ ◦ η) · η′ be ψ̃ times the integrating factor arising from

straightening out f̃ ; define b∗j := (ψ∗)(j)/j!. The following theorem is simply an application

of Corollary ?? the reduction lemma.

Theorem 5.2 Let F = G/H =
∑
arsz

rws have a strictly minimal, simple pole at (z, w).

Let l0 be the order to which G vanishes near (z, w) on V, that is, the largest l such that
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G(z′, w′) = O(|z− z′|l + |w−w′|l) as (z′, w′) → (z, w) in V. Then there is a full asymptotic

expansion

ar,s ∼
1
2π
z−rw−s

∑
l≥l0

a(k, l)b∗l (cks)
−(l+1)/k , (5.3)

with a(k, l) given by (??) if k is odd, and by (1 + (−1)l)a+(k, l) if k is even. The expansion

is uniform as (z, w) varies over a compact set with (r, s) ∈ dir(z, w) and k and l0 not

changing. 2

We pause to compute one example. The accompanying picture (possibly not drawn yet)

should show the graph of 3− 3x+ x2 in the positive quadrant, with a minimum at x = 3/2

but minimality only when x ≥ 1.

Example 13 (Cube root asymptotics)

Let F (z, w) = 1/(3 − 3z − w + z2). The set V is the set {w = z2 − 3z + 3} and

g(w) = z2−3z+3. The point (1, 1) is in V, indicating that the maximal exponential growth

rate will be zero. Indeed, for directions above the diagonal, Theorem ?? may be used at the

minimal points {(z, g(z)) : 0 < z < 1}, while each direction below the diagonal corresponds

to a pair of complex (finitely) minimal points. The result is that the coefficients decay

exponentially at a rate that is uniform over compact subsets of directions not containing

the diagonal.

The interesting behavior is near the diagonal. The relevant minimal point is (1, 1), where

zrws ≡ 1 and the decay is sub-exponential. Computing f̃ ′′(0) via equation (??) below gives

f̃ ′′(z) = −3
z(z2 − 4z + 3)
(z2 − 3z + 3)2

.

This vanishes when z = 1, and computing further, we find that f̃ vanishes to order exactly

3 here, with c3 := f̃ ′′′(0)/3! = i. Along with ψ̃(0) = 1, this then results in an asymptotic

expansion whose leading term is given by

an,n ∼
1
2π
a(3, 0)i−1/3(1 + eiπ/3) =

Γ(1/3)
6
√

3π
.
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Later, we discuss the question of computing asymptotics “between the cracks” so as to be

able to conclude that lim sup log ar/ log |r| = −1/3 or even lim sup |r|1/3ar = Γ(2/3)

6
√

3π
.

By far the most usual case is k = 2. For this case it is worthwhile computing the

expansion (??) explicitly in terms of the given data, namely the Taylor coefficients of G

and H. This begins with a lemma.

Lemma 5.3 In a neighborhood of (z, w), ψ and the derivatives of g are as follows.

g′(z) = −Hz

Hw
(??)

g′′(z) = − 1
Hw

[
Hzz − 2

Hz

Hw
Hzw +

H2
z

H2
w

Hww

]
. (5.4)

ψ(z) =
G(z, w)

−wHw(z, w)
.

Proof: We have already differentiated the equation H(z, g(z)) = 0 once to get (??).

Differentiate again to get

Hzz + 2g′Hzw + g′′Hw + (g′)2Hww = 0

and use (??) to eliminate g′, giving (??). The formula for ψ follows from the definitions of

ψ and of the partial derivative. 2

We now state the criterion k = 2 in terms of the partial derivatives of H. Since the

proof of the criterion is subsumed in the computation, we do not give the proof yet. Define

Q(z, w) := −w2H2
wzHz − wHwz

2H2
z − w2z2

(
H2
wHzz +H2

zHww − 2HzHwHzw

)
.

We will see that Q = 0 if and only if f̃ ′′(0) vanishes, that is, if and only if k > 2. We now

state:
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Theorem 5.4 Let F = G/H be a meromorphic function of two variables, not singular at

the origin. Then

ar,s ∼
G(z, w)√

2π
z−rw−s

√
−wHw

sQ

uniformly as (z, w) varies over a compact set of strictly minimal, simple poles of F on which

Q and G are nonvanishing, and (r, s) ∈ dir(z, w).

Remarks: Usually the expression in the radical will be positive real, as will the coeffi-

cients ars. The result is true in general, though, as long as the square root is taken to be

+1/(wHw) times the principal root of (−wH3
w/Q). Also note that when (r, s) ∈ dir(z, w)

then the expression wHw/s is coordinate-invariant, that is, equal to zHz/r. Thus the given

expression for ar,s has the expected symmetry.

Proof: Recall that f̃ and log g̃ differ by a linear function of θ. Hence f̃ ′′ = (log g̃)′′. When

Z = zeiθ, we have (d/dθ) = iZ(d/dZ), so

g̃′′ = iZ
d

dZ

(
iZ
d log g
dZ

)
= −Z d

dZ

(
Zg′

g

)
,

where Z = zeiθ. Expanding this yields

f̃ ′′ = −Z g
′ + Zg′′

g
+
Z2(g′)2

g2
. (5.5)

By our assumption, G does not vanish at (z, w), so as long as f̃ ′′(0) 6= 0, we may use

Theorem ?? to conclude that the leading term asymptotic for ar,s is the k = 2, l = 0 term

of (??). The term b0 there is equal to

ψ̃(0)η′(0) = ψ(0)
√

2/f̃ ′′(0) =
G(z, w)

−wHw(z, w)

√
2

f̃ ′′(0)
.

Thus from Theorem ??,

ar,s ∼
A(2, 0)

2π
z−rw−s

G(z, w)
wHw(z, w)

√
2

sf̃ ′′(0)
.
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Now evaluate this using the value A(2, 0) =
√
π and equation (??) along with (??) and (??)

to obtain

ar,s ∼
1√
2π
z−rw−s

G(z, w)
wHw(z, w)

√
(−wHw(z, w))3

sQ

where

Q = (−wHw(z, w))3f̃ ′′(0) = (−wHw(z, w))3z
−g′(z)− zg′′(z)

g(z)
+
z2(g′(z))2

(g(z))2
.

With the help of Lemma ?? we see (using g(z) = w) that

Q = (−wHw(z, w))3
[
−z Hz

−wHw
− z2 1

wHw

(
Hzz − 2

Hz

Hw
Hzw +

H2
z

H2
w

Hww

)
+
z2H2

z

w2H2
w

]
,

which simplifies to the expression in Theorem ??. We see also that the nonvanishing hy-

potheses on Q is enough to guarantee f̃ ′′(0) 6= 0, which finishes the proof of Theorem ??.

2

Example 14 (Lattice paths)

Let ar,s be the number of nearest-neighbor paths from the origin to (r, s) moving only

north, east and northeast. The generating function is F (z, w) = 1/(1 − z − w − zw). The

zero set V of H = 1− z − w − zw is given by w = (1− z)/(1 + z), and the minimal points

of V are those where w ∈ [0, 1]. With the help of relations that hold when z ∈ V we may

compute as follows.

Hz = −1− w

−zHz = 1− w

Q = (1− z)(1− w)(1− zw)
zHz

wHw
=

1− w

1− z
=

1− w2

2w

with Hw and −wHw given by reversing z and w. As z varies over [ε, 1 − ε], the functions

Q and G := 1 do not vanish. The minimal pair (z, w) that solves dir(r, s) ∈ (z, w) is given

66



by z = (
√
r2 + s2 − s)/r and w = (

√
r2 + s2 − r)/s. Theorem ?? then gives

ars ∼
(√

r2 + s2 − s

r

)−r (√
r2 + s2 − r

s

)−s√
1
2π

√
1− z

s

1
1− zw

=

(√
r2 + s2 − s

r

)−r (√
r2 + s2 − r

s

)−s√
1
2π

√
rs

(r + s−
√
r2 + s2)2

√
r2 + s2

,

uniformly when r/s and s/r remain bounded. In particular, when r = s = n, this gives

the following formula for the nth diagonal coefficient (which may alternatively be obtained

by computing the diagonal generating function (1 − 6s + s2)−1/2 according to the method

given in Stanley (1999, section 6.3):

(
√

2− 1)−2n

√
1
2π

2−1/4

2−
√

2
.

5.2 Any dimension

5.2.1 The geometry of V

Let D(z) denote the polydisk {w : |wj | ≤ |zj |∀j ≤ d}. Let T (z) denote the distinguished

boundary of this polydisk, namely {w : |wj | = |zj |∀j ≤ d}. As in the one-dimensional case,

the points of V nearest the origin are the most important. Accordingly we define a point

z ∈ V to be minimal if V ∩D(z) ⊆ T (z); we say that z is locally minimal if this holds in a

neighborhood of z. Divide the minimal points of V into three types. Say that z is strictly

minimal, finitely minimal or toral, according to whether the cardinality of V ∩ D(z) is 1,

finite, or infinite. When infinite, the intersection must be uncountable. If z is a minimal

point of V then the interior of D(z) is contained in D, so the assumption that G and H are

analytic on a neighborhood of D(z) is just a little stronger than what is true automatically.

It will be convenient to have a notation for the projection of z onto the first d − 1

coordinates. We therefore define ẑ := (z1, . . . , zd−1) and extend the notation so that putting

a hat on any d-vector strips off the last coordinate.
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A simple pole of F is a point z ∈ V where H vanishes to order 1. Equivalently, the

gradient 5H does not vanish. Let z be a simple pole of F and assume for specificity that

Hd is nonzero at z. By the implicit function theorem, there is a neighborhood of z where V
may be parametrized by zd = g(ẑ) = g(z1, . . . , zd−1) for some analytic function g. We will

always use g to denote this parametrization.

We will see later (in the proof of Theorem ??) that under some hypotheses on F ,

minimal points of V are always found in the positive real orthant. A relation true in

complete generality is the following.

Lemma 5.5 Let z be a simple pole of F and suppose that zdHd does not vanish there. If z

is locally minimal then for all j < d, the quantity zjHj/(zdHd) is real and nonnegative.

Proof: Given θ and j, let z(θ) be the result of varying z by multiplying the jth coordinate

by eiθ and adjusting the last coordinate so as to remain on V (that is,

z
(θ)
d = g(z1, . . . , zj−1, zje

iθ, zj+1, . . . , zd−1)). Differentiating the relation H(z(θ)) = 0 implic-

itly with respect to θ at 0 yields

izjHj +Hd
dz

(θ)
d

dθ
= 0. (5.6)

By minimality of z, we know that the modulus of z(θ)
d has a minimum at θ = 0, hence

(dz(θ)
d /dθ)/zd is purely imaginary. Plugging this into (??) proves that zjHj/(zdHd) is real.

If zjHj/(zdHd) = −β < 0 then V has a tangent vector at z in the direction −zjej − βzded

which contradicts minimality. Hence zjHj/(zdHd) ≥ 0. 2

Definition 3 Define dir(z) to be the equivalence class of scalar multiples of the vector

(z1H1, . . . , zdHd), defined whenever zjHj does not vanish for all j. By the previous lemma,

when z is a minimal pole of F with nonzero coordinates, dir(z) is a well defined element of

RPd−1.
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The importance of dir is that analysis of F near z yields asymptotic information about

ar with r ∈ dir(z). The function dir appears in GF-sequence method literature as m.

When z ∈ ∂D is on the boundary of the domain of convergence, dir(z) is the normal to the

support hyperplane of the convex set logD at the point (log |z1|, . . . , log |zd|).

We now generalize the definitions of ψ, ψ̃ and f̃ to more than one variable. Again, we

will reserve the names of these functions, so as not to burden the notation with subscripts

and arguments. If z is a simple pole of F with zdHd not vanishing there, define a function

ψ on a neighborhood of ẑ by

ψ(ŵ) = − lim
w→g(ŵ)

(w − g(ŵ))
F (ŵ, w)

w
. (5.7)

Suppose now that ŵ ∈ T (ẑ) and write wj = zje
iθj . For fixed r with rd 6= 0, define a function

f on a neighborhood of ẑ in T (ẑ) by

f(ŵ) = log
(
g(ŵ)
g(ẑ)

)
+ i

d−1∑
j=1

rj
rd
θj . (5.8)

We will be parametrizing integrals over T (ẑ) by θ, so we will want the above function

expressed in terms of θ̂. We therefore compose with the map M taking θ̂ to ŵ defined

by M(θ1, . . . , θd−1) = (z1eiθ1 , . . . , zd−1e
iθd−1), and define the functions g̃ := g ◦ M, f̃ :=

f ◦M, ψ̃ := ψ ◦M .

5.2.2 Reduction to an oscillating integral

The smooth point computation in higher dimensions is exactly analogous to the two-

dimensional case, so I will state and prove the analogues of Lemma ?? and Theorem ??

without further verbiage. Note though, that we assume that the Hessian is non-degenerate,

so we are not proving an analogue of Theorem ??.

Lemma 5.6 (Multivariate reduction to oscillating integral) Let z be a strictly min-

imal simple pole of F = G/H. Assume that zdHd 6= 0. For a neighborhood Ñ of 0 in Rd−1
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define a quantity

Ξ := (2π)1−dz−r
∫
Ñ

exp(−rdf̃(θ̂))ψ̃(θ̂) dθ̂. (5.9)

Then the quantity

|zr| |ar − Ξ|

decreases exponentially as Ñ remains fixed and r →∞.

Proof: For ε ∈ (0, |zd|), let T be the torus T (z) shrunk in the last coordinate by ε, that

is, the set of x for which |xj | = |zj |, j < d and |xd| = |zd| − ε. By Cauchy’s formula,

ar =
(

1
2πi

)d ∫
T

w−r−1F (w) dw (5.10)

where the multi-exponent r−1 means (r1−1, . . . , rd−1). Write this as an iterated integral

ar =
(

1
2πi

)d ∫
T (̂z)

ŵ−r̂−1
[∫
C1

w−rdd F (w)
dwd
wd

]
dŵ . (5.11)

Here C1 is the circle of radius |zd| − ε. Let K ⊆ T (ẑ) be a compact set not containing ẑ.

For each fixed ŵ ∈ K, the function F (ŵ, ·) has radius of convergence greater than |zd|.
Hence the inner integral in equation (??) is O(|zd| + ε)−rd . By continuity of the radius of

convergence,we may integrate over K to see that

|zr|
∫
K×C1

w−r−1F (w) dw

decreases exponentially. Thus if N is any neighborhood of ẑ in T (ẑ), the quantity

|zr|
∣∣∣∣∣ar −

(
1

2πi

)d ∫
N

ŵ−r̂−1

[∫
C1

F (w)
wrdd

dwd

]
dŵ

∣∣∣∣∣
decreases exponentially. Thus we have reduced the problem to an integral over a neighbor-

hood of ẑ.

Near z there is a parametrization wd = g(ŵ) of V. Let C2 be the circle of radius |zd|+ ε.

Then for any sufficiently small ε > 0, the image of N under g is disjoint from C2. Fix such a
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neighborhood. For any ŵ ∈ N , the function F (ŵ, ·) has a single simple pole in the annulus

bounded by C1 and C2, occurring at g(ŵ). The residue of F at g(ŵ) is equal to

R(ŵ) := −ψ(ŵ)g(ŵ)−rd (5.12)

where ψ is defined in (??). Therefore, for each fixed ŵ ∈ N ,∫
C1

F (w)
wrd+1
d

dwd =
∫
C2

F (w)
wrd+1
d

dwd − 2πiR(ŵ).

But |zr
∫
C2
F (w)dwd/wr+1| is bounded by a constant multiple of (1+ε/|zd|)−rd (the constant

depending on the maximum of F on C2) and hence |zr||ar−X| is exponentially decreasing,

where

X = (2πi)1−d
∫
N

(ŵ)−r̂−1g(ŵ)−rdψ(ŵ) dŵ (5.13)

= (2πi)1−d
∫
N

ŵ−r̂

ẑ−r̂

dŵ∏d−1
j=1 wj

(
g(ŵ)
g(zd)

)−rd
ψ(ŵ)

is exponentially decreasing in rd. Changing variables to wj = zje
iθj and dwj = iwjdθj turns

the quantity X into

(2π)1−dz−r
∫
Ñ

d−1∏
j=1

e−irjθj ψ̃(θ̂)
(
g(ŵ)
g(ẑ)

)−rd
dθ̂

and plugging in the definitions of f and f̃ at (??) above yields

(2π)1−dz−r
∫
Ñ

exp(−rdf̃(θ̂))ψ̃(θ̂) dθ̂

which is none other than Ξ. 2

5.2.3 Main result

Theorem 5.7 Let F = G/H =
∑
arzr have a strictly minimal, smooth point z ∈ V.

Suppose zdHd does not vanish. If the Hessian of f̃ at z is nonsingular, then there is an

expansion

ar ∼ z−r
∑
l≥l0

Clr
(1−d−l)/2
d
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where l0 is the degree to which G vanishes on V near the point z . When G does not vanish

at z then l0 = 0 and

C0 = (2π)(1−d)/2H−1/2G(z)
zdHd

where H is the determinant of the Hessian at z.

The θ-linear term in the definition of f̃ is designed to make f̃ stationary at 0 when

r ∈ dir(z). Thus we have a lemma similar to the one-dimensional case.

Lemma 5.8 The quantity f̃(0) always vanishes. If r ∈ dir(z) then 5f̃(0) = 0 and the

real part of f̃ has a strict minimum at 0.

Proof: The first statement is immediate. To prove the second, let j ≤ d− 1 and see from

the definition of f that

rdfj(ẑ) =
rdgj(ẑ)
g(ẑ)

+
rj
zj
.

By definition of dir, the ratio rj/(zjHj) is some constant c independent of j at the point

z = (ẑ, zd). Since g(ẑ) = zd, we find that

c−1rdfj(ẑ) = gj(ẑ)Hd(ẑ, zd) +Hj(ẑ, zd).

The right hand side of this is the derivative of H(w1, . . . , wd−1, g(ŵ)) with respect to wj

at ẑ. By definition of g this vanishes, and hence fj(ẑ) = 0. But f̃j(0) = izjfj(z), so the

gradient of f̃ must vanish at 0. Finally, observe that Re{f̃(θ̂)} = − log |g̃(θ̂)/|zd|. By strict

minimality of z, the modulus of g(ŵ) = g̃(θ̂) is greater than |zd| for any ŵ ∈ T (ẑ). 2

Proof of Theorem ??: We see from Lemma ?? that proving the theorem amounts to

evaluating the quantity Ξ in equation (??). From Lemma ?? we see that 0 is a stationary

point for the function f̃ as long as r ∈ dir(z). We apply Theorem ?? to get an asymptotic

series expansion. The leading term of the integral in (??) is (2π)(d−1)/2ψ̃(0)r(1−d)/2d divided

by the product of the square roots of the eigenvalues of the Hessian. Once we have identified

ψ̃(0) = ψ(0) as G(0)/(zdHd), the theorem follows. 2
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Exercise: show that when d = k = 2 and l ≥ 2 is even, the leading term asymp-

totic is given by the following expression.

ar,s ∼ (z0w0)lz−r0 w−s0

√
wHw

sQ

l+1 l∑
k=0

(−1)k
(
l

k

)
Hk
zH

l−k
w Gl−k,k.

5.2.4 Generalizing

One improvement we have already done the work for is when a smooth minimal point is

finitely minimal. In this case there are finitely many points z(1), . . . , z(n) of V lying on the

torus T (z(1)) with no other points of V lying in D(z(1)). In this case the integral∫
C′\[N1∪···∪Nn]

z−r−1
∫
C
w−s−1F (z, w) dw dz ,

which is the analogue of (??) but with a neighborhood around each of the n minimal points,

will again have modulus at most O(|z−r|) where z is any z(j). We then obtain n different

contributions from the n different minimal points, each computed exactly as in Theorem ??.

The set S := {z(1), . . . , z(n)} is called a complete set of minimal points if there are no more

minimal points on T (z(1)) ∩ V. The one remaining important observation is that the sum

n∑
j=1

Cj(z(j))r

cannot always cancel. That is, the sum is not o(|z(1)|r) for every r in some neighborhood

of RPd−1, and therefore, the leading term of the expansion has been computed. The

impossibility of cancellation is due to the linear independence of the arrays {zr : r ∈ (Z+)d}.
Note though, that one can have cancellation in a single direction, for example one may have

ar,2r ≡ 0 but ar,2r+1 ≡ 1.

When defining smooth points as points where the gradient of H does not vanish, we

remarked that this restrictive definition of smooth points did not lose any generality. Let’s

see why. Suppose that (z0, w0) is geometrically a smooth point of V but that both partials

vanish. By smoothness, V has only one branch through (z0, w0) and by the vanishing
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of the partials, H has a double zero at (z0, w0), hence along the whole branch. Thus

V has multiplicity greater than 1, locally, and we can write F =
χ

(w − g(z))k
for some

meromorphic χ analytic in a neighborhood of (z0, w0) and some r ≥ 2. One can now go

through the derivation of (??) with χ and (w − g(z))k in place of G and H. At the last

step, the residue Res(w−s−1F (z, w);w = g(z)) is computed by multiplying by (w−g(z))k to

remove the singularity, differentiating k−1 times with respect to w and dividing by (k−1)!.

Each time w−k−1 is differentiated, a factor of s comes in. If we only want the leading term

asymptotic, the term with the most factors of s comes when w−s−1 is differentiated k − 1

times and F is left alone. This gives
(−s−1
k−1

)
w−s−kχ(z0, w0). With this replacing ψ in (??),

the computation continues as before. The end result is a leading term sk−1 times greater

than the order of the asymptotic in the case where H is square-free. The case of only one

vanishing partial is left as an exercise for the reader.

Exercise: If one partial of H vanishes but z0 and w0 are nonzero, then r or s

is zero and the problem reduces to one dimension. If 0 < r/s < ∞ and one

partial, say Hz vanishes, then w0 = 0. In this case, V is parameterized locally

by w ∼ C(z0 − z)k for some k ≥ 2, and dir(z, w) � 1/w → ∞ as (z, w) → (z0, w0)

along V. Thus we obtain no new minimal points with one vanishing partial and

0 < r/s < ∞, and for directions not along any coordinate plane, we may ignore

such minimal points.

5.3 A coordinate-free approach

In equation (??), we have broken the symmetry between the coordinates, which is reflected

in the expressions derived afterwards. In the end, expressions for an,m such as (??), which do

not look inherently symmetric, can of course be shown to be so. Theorem ??, for example,

recaptures the symmetry in the expression for an,m. It would be nice, though, to have a

more coordinate free way of reducing coefficient extraction to an oscillating integral. This

is indeed possible; the idea is as follows.
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Let F denote the form F (z1, . . . , zd) dV where dV := dz1∧· · · dzd. By Cauchy’s integral

theorem, we know that ar1,...,rd = (2πi)−d
∫
T F , where T is a torus |z1| = c1, . . . , |zd| = cd for

which the polydisk |z1| ≤ c1, . . . , |zd| ≤ cd does not intersect the singular set of F (namely

V). Pick T to be an infinitesimal torus, and then expand T until it becomes the torus at

infinity. How does
∫
T F change? Letting Ω be a domain bounded by a small torus T0 and

a large torus T1, we have ought to have∫
T0

F −
∫
T1

F =
∫
Ω
dF .

Then, since normally
∫
T1
F → 0 exponentially fast as T1 →∞, we will have

ar1,...,rd ∼
∫
Ω
dF .

The hitch in making this rigorous is the formalization of dF , which we must interpret

as a residue current. Consider by analogy the one variable 1-form f(z) = dz/z. Since 1/z

is holomorphic away from the origin,

df =
d

dz
(1/z) dz ∧ dz = δ0dz ∧ dz ,

leading to the residue theorem. We therefore expect dF to be some kind of a delta function

on the singular variety, V. But since it must be integrated on a d−1-dimensional set Ω∩V,

it must be a d− 1-form.

The following derivation of this d−1-form is worked out in Kenyon and Pemantle (2000).

They first show that there is a d− 1-form living on V, that is naturally associated with F .

Lemma 5.9 Let F be meromorphic with poles but no double poles in a domain D ⊆ Cd.

Let V denote the pole set of F and let ι : V → D denote the inclusion map. Then for any

representation of F = G/H as a quotient of analytic functions on D there is a form ω such

that dH ∧ ω = GdV . The form ωF := ι∗ω is independent of the particular representation

of F as G/H.

75



Proof: The existence of ω is immediate from the fact that dH never vanishes. The kernel

of the map ι∗ is the same as the kernel of the map ω 7→ dH ∧ ω, proving that for fixed

G and H, ι∗ω is well defined. If φ is an analytic function and dH ∧ ω = GdV , then

d(φH) ∧ ω = (φG) dV , showing independence of the representation F = G/H. 2

They then establish that ωF δV is the working version of the form dF that we seek.

Theorem 5.10 Let Ω ⊆ Cd be a compact real d + 1-manifold with boundary. Let F be

meromorphic with no double poles on Ω and let V denote the pole set of F . If V intersects

Ω transversely in a d− 1-manifold with finite volume and F dV ∈ L1(∂Ω), then∫
∂Ω
F dV = 2πi

∫
Ω∩V

ωF .

Proof: First suppose F = G/z1 for some analytic function, G. We need to show∫
∂Ω

G

z1
dV =

∫
Ω∩S

Gdz2 ∧ · · · ∧ dzd.

where S is the z1 = 0 hyperplane. Let Sε denote the set |z1| ≤ ε and let ωε denote the form

GdV/z1 outside of Sε and ε−2z1GdV on Sε. Then ωε is continuous, piecewise smooth and

locally in L1. Its differential is

dωε = ε−21SεGdz1 ∧ dV.

Apply Stokes’ Theorem to ωε, yielding∫
∂Ω
ωε = ε−2

∫
Ω∩Sε

Gdz1 ∧ dV. (5.14)

Since GdV/z1 ∈ L1(∂Ω), the forms ωε converge to ω := GdV/z1 in L1(∂Ω) and the

LHS of (??) converges to
∫
∂Ω ω. It therefore suffices to show that the RHS converges

to 2πi
∫
Ω∩S Gdz2 ∧ · · · ∧ dzd.

By transversality, the projection of Ω onto C× (Ω ∩ V) is a diffeomorphism. The con-

vergence we are trying to establish is a local property, so we may restrict to a neighborhood
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where there is a parameterization of Ω by C× (Ω ∩ S). Specifically, we may assume there

is a diffeomorphic map f : C× (Ω ∩ S) → S such that

Ω = {(x1, y1, α+ f(α)) : (x1, y1) ∈ C, α ∈ Ω ∩ S}.

Pulling back dz1∧dV by f gives 2idx1∧dy1∧ ι∗(dz2∧ · · · ∧dzd) where ι is the inclusion

of Ω ∩ S in Cd. Now write (??) as an iterated integral:∫
α∈Ω∩S

[
2i
∫
x2
1+y21≤ε

ε−2G(x1, y1, α+ f(x1, y1, α)) dx1 ∧ dy1

]
ι∗(dz2 ∧ · · · ∧ dzd).

The inner integral converges uniformly to πG(0, α), so by the finiteness of Ω ∩ S, the RHS

of (??) converges to

2πi
∫
Ω∩S

G · ι∗(dz2 ∧ · · · ∧ dzd)

as desired.

Now remove the assumption F = G/z1. We may always partition Ω into neighborhoods

in which there is a bi-analytic map ψ mapping the V to the set S := {z1 = 0}. The function

F ◦ ψ−1 has a simple pole on S so we may represent F ◦ ψ−1 = G/z1 for some analytic

function G. Observe that ψ maps Ω to a manifold intersecting S transversely in a set of

finite volume. Pulling back F dV by ψ−1 gives a form G/z1, to which we apply the previous

analysis and conclude that ∫
ψ∂Ω

GdV

z1
= 2πi

∫
ψΩ∩S

ω∗

where ω∗ := Gdz2 ∧ · · · ∧ dzd. Pulling this equation back by ψ gives∫
∂Ω
F dV =

∫
Ω∩V

ψ∗ω∗.

The form ω∗ satisfies dz1 ∧ ω∗ = GdV ; pulling this relation back by ψ yields

d(z1 ◦ ψ) ∧ ψ∗ω∗ = G ◦ ψ dV.

Since F may be represented as
G ◦ ψ
H ◦ ψ

, we then conclude that ψ∗ω∗ is the unique form

satisfying the definition of ωF , which finishes the proof. 2
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When we apply this to the tori T0 and T1, we find that

ar ∼
∫
E
ωF

where E is the intersection of V with any homotopy from an infinitesimal torus to an infinite

one. The homotopy class must avoid the coordinate planes as well as V, since z−rG is not

analytic there. Evidently, the possible sets E form a homology class on V of dimension

d − 1, half the dimension of V. It is always possible to satisfy the transversality condition

and to avoid any double or multiple poles of F [since any of these are necessarily isolated,

any generic perturbation of the homotopy will miss them].

Choosing E to contain a stationary phase point for ωF where the modulus of ωF is max-

imized leads, as before, to an oscillating integral. Thus for example in the two dimensional

case, F = (z−n−1w−m−1G)/H dz ∧ dw and ωF = (z−n−1w−m−1G)(dV/dH) on V, where

dv/dH is a form that wedges with dH to yield dV . The appearance of z−ng(z)−mψ(z)dz as

the integrand in (??) is now explained as a non-coordinate free version of z−nw−m(dV/dH)

(recalling that g(z) = w on the set V).

Unfortunately, while we may arrange for the homotopy to avoid singular points of V,

these critical points are sometimes the places where stationary phase is obtained for ωF .

Thus we have an open question: How can we make sense of
∫
E ωF when E is required

to contain a given critical point of V?

5.4 Furstenburg-Doubilet-Stanley-Rota extraction of the diagonal

Let F (z, w) =
∑
r,s ar,sz

rws be a function analytic in a neighborhood of 0 in C2. Define

ξ(y) =
∑
r ar,ry

r. The function ξ may be determined directly from F . When F is a rational

function, it turns out that ξ will always be algebraic; this result in the setting of generating

functions is credited to Furstenburg (1967) and appears in Hautus and Klarner (1971). In

general, the determination of ξ from F may not be computationally effective, so we stick

here to the case where F is rational. Stanley (1999) gives two ways of determining ξ from

F . One is a formal power series approach. The other, which I will follow here, is analytic.
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When |y| is sufficiently small, the function F (z, y/z) is absolutely convergent for z in

some annulus A(y). Treating y as a constant, we view F (z, y/z) as a Laurent series in z

inside the annulus A(y); the constant term C of this series is equal to ξ(y). Thus if we

are able to evaluate this constant term as a function of y, we will have the function whose

power series in a neighborhood of 0 is ξ.

Writing F = P/Q, with P and Q polynomial, we observe that the constant term of

F (z, y/z) is equal to
1

2πi

∫
C
P

(z, y/z)
zQ(z, y/z)

dz

where C is any circle in the annulus of convergence A(y). By Cauchy’s integral formula

then,

ξ(y) =
∑

Res
(
P (z, y/z)
zQ(z, y/z)

;α
)

where the sum is over residues at poles α inside the inner circle of the annulus A(y). For

sufficiently small y, the poles may be parametrized by continuous functions of y. As y → 0,

the annuli A(y) increase to an annulus with inner radius zero, so any poles α(y) that

converge to zero as y → 0 will be included in this sum, and any that do not will be outside

C and will not be included in the sum. The residues are all algebraic functions of y, so we

have represented ξ as the sum of algebraic functions of y. We illustrate by re-computing

the diagonal for the lattice path generating function (cf. Stanley 1999).

Example ?? continued (lattice paths)

Recall that F = 1/(1− z − w − zw), so

z−1F (z, y/z) =
1

z − z2 − y − yz
.

The poles of this are at

z =
1− y

2
± 1

2

√
1− 6y + y2 .

Let α1 denote the root going to zero with y, that is, the one with the minus sign, and let α2

denote the other root. Since z−1F (z, y/z) = −1/[(z−α1)(z−α2)], the residue at z = α1 is
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just −1/(α1 − α2) which is simply (1− 6y + y2)−1/2. Thus

ξ(y) =
1√

1− 6y + y2
.

To obtain an asymptotic expression for ar,r we write

ξ(y) = (1− β+y)−1/2(1− β−y)−1/2

where β± = 3 ±
√

8 are the (reciprocal) roots of 1 − 6y + y2 = 0. The minimum modulus

singularity is at β−, and as y → β−,

ξ(y) ∼ (1− β2
−)−1/2

(
1− y

β−

)−1/2

.

Applying the Flajolet-Odlyzko Transfer Theorem ?? and Corollary ??, we see that the nth

coefficient, cn of ξ(β−y)) satisfies

cn ∼
(1− β2

−)−1/2

Γ(1/2)
n−1/2

and hence that

ar,r ∼
(1− β2

−)−1/2

√
π

r−1/2βr+.

When F is a rational function of more than two variables, the diagonal need not be

algebraic. Extending the hierarchy one more step, we define the class of D-finite functions

to be those satisfying a linear differential equation with polynomial coefficients. These

are generating functions for P-recursive arrays: arrays satisfying a linear recursion with

polynomial coefficients. This class strictly contains the algebraic functions. It was shown in

Lipshitz (1988) that the class of D-finite functions is closed under diagonal collapse (taking

the diagonal in any two variables) and thus in particular, that the diagonals of any rational

or algebraic function are D-finite. Extraction of the polynomial coefficients of the differential

equation (equivalently the polynomial coefficients of the recursion) has recently been made

effective; see Chyzak and Salvy (1998). One may then effectively obtain asymptotics from

these recursions, and indeed for diagonal directions, this is probably the best way to obtain
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asymptotics. The method may be adapted to give recursions along other fixed rays with

rational slopes. Unfortunately, the computation does not admit slope as a parameter, so

the method seems ill suited to obtaining any truly multivariate formulae.

5.5 Comparison to GF-sequence results

6 Toral points

Suppose that V has infinitely many minimal points on a torus T = T (α1, . . . , αd) where

αj > 0. What happens when we mimic the derivation of the multivariate reduction to an

oscillating integral (Lemma ?? and equation ??)? Let T̂ denote the torus T (α̂) ⊆ Cd−1 and

define the set E ⊆ T̂ by ŵ ∈ E if there is a point w = (ŵ, wd) ∈ V ∩T . In other words, it is

the set of projections of V ∩T onto the first d− 1 coordinates. Let N be a neighborhood of

E in T̂ . As before, we write the Cauchy integral for ar as an iterated integral over T̂ ×C1 for

a circle C1 with radius a little smaller than |zd|; then again the contribution from N c × C1

is O(R|z−r|) for some exponentially decreasing function R, so we may localize to N .

Since we have not yet dealt with poles of multiplicity greater than 1, we assume now that

V ∩T contains only simple poles of F . Let Π denote the map from V ∩T to Cd−1 projecting

onto the first d − 1 coordinates. For any ẑ ∈ E, the set Π−1(z) is finite. As ẑ varies over

E each of these inverse images varies analytically except when two inverse images meet.

Since Π−1(E) contains no double points, two inverse images never meet. Hence Π−1(E) is

an analytic k-fold cover of E for some k ≥ 1. It follows that there is a neighborhood NT of

T and a neighborhood N of E in T̂ such that for each ẑ ∈ N there are precisely k values of

z such that (ẑ, z) ∈ NT ∩ V. Thus NT ∩ V is a k-fold cover of N . In other words, for each

(ẑ, z) ∈ NT ∩ V there is a neighborhood of ẑ in T̂ on which is defined an analytic function

gz with gz(ẑ) = z and (ẑ, g(ẑ)) ∈ NT ∩ V. The subscript z is there only to delineate one of

the k possible inverse images.

Let g be such a parametrizing function. The residue at (ŵ, g(ŵ)) of w−rd−1F is still
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given by (??):

R(ŵ) := −ψ(ŵ)g(ŵ)−rd .

Choosing C2 to be a circle of radius |zd| + ε, and then choosing N sufficiently small, we

arrive once more at (??): |zr||ar − Ξ| decays exponentially, where

Ξ := (2π)1−dz−r
∫
Ñ

exp(−rdf̃(θ̂))ψ̃(θ̂) dθ̂.

The set E is a j-dimensional sub-manifold of T (ẑ) for some j. Choosing N smaller if

necessary, we may take it to be locally the topological product of E with a closed ball

about the origin in Rd−1−j . Thus N is a (d−1)-dimensional nice cell complex sitting inside

T̂ . Since E has no boundary, ∂N is disjoint from E. For the purposes of the cell complex

oscillating integral lemma, any stationary point must have Re{f̃} = 0, which in this case

means it must be in E. This means that the stationary points for f̃ in the integral in (??)

are exactly those places in E where 5f̃ = 0. These in turn are exactly projections ẑ = Π(z)

of points z with r ∈ dir(z).

We finally arrive at a result analogous to the main result for strictly minimal simple

poles. The following theorem assumes one further nondegeneracy hypothesis (nonsingularity

of f̃) in order to apply Theorem ??.

Theorem 6.1 Let F = G/H =
∑
arzr have infinitely many minimal points on T =

T (α1, . . . , αd). Assume that all the singularities of F on T are simple poles. Let S(r)

denote the set of z ∈ T ∩ V for which r ∈ dir(z). For each z ∈ T ∩ V let l0(z) denote

the order of vanishing of G on V at z. For fixed z we let g be a local parametrization

of V = {(ŵ, g(ŵ)} near ẑ and we define f̃ to be log g centered and expressed in terms of

θ̂ as before. Then whenever S(r) contains only isolated points where the Hessian of f̃ is

nonsingular, there is an expansion

ar ∼
∑

z∈S(r)

z−r
∑

l≥l0(z)

Clr
(1−d−l)/2
d .

When G does not vanish at z then l0 = 0 and

C0 = (2π)(1−d)/2H−1/2G(z)
zdHd
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where H is the determinant of the Hessian at z. The expansions are uniform as r varies

over compact sets on which l0 is constant (and H 6= 0). 2

As usual, in dimension two it is easier to handle degeneracy of f̃ . As usual for two

dimensions, we switch our notation to (z, w) for (z1, z2) and we introduce (α, γ) for the

radii of the torus, T . Now E = T̂ is just the α-circle (circle of radius α in C1) and Π−1(E)

is a disjoint union of circles embedded in the two-torus, T = T (α, γ). Since E = T̂ , we

do not localize but instead must take N = E. Enlarging the inner circle of integration to

radius γ + ε and comparing gives

ar,s =
1

2πi

∫
|z|=α

z−r−1
∑

x:|x|=γ,(z,x)∈V
Res(w−s−1F ; (z, x)) dz +O(α−r(γ + ε)−s).

The parametrizing functions g always have constant modulus, hence f̃ ′ = d(log g)/dθ will

always be purely imaginary. Since f̃ is normalized to be 0 at 0, f̃ is purely imaginary.

We are now in a position to substitute our evaluation of purely oscillating integrals in

one variable, Theorem ??, where before we used the multivariate Theorem ?? and had to

assume nondegeneracy of the Hessian of f̃ .

Theorem 6.2 Let F = G/H =
∑
arsz

rws and suppose as above that there are α, γ > 0

such that for each θ there are exactly k values of φ for which (z, w) ∈ V, where z := αeiθ

and w := γeiφ. Suppose further that each such (z, w) is a simple pole of F . Let f̃ be a local

parametrization of iφ in terms of θ. Let k = k(θ) be the first integer greater than 1 such

that the kth derivative of f̃(θ) is nonzero. Let l0 = l0(θ) be the vanishing order of G at

(z, w). Then there is an expansion

ar,s ∼ α−rγ−s
∑
l≥l0

Cls
−(l+1)/k, .

If l0 = 0, the leading term is given by

C0 =
∑

(z,w)∈S(r,s)

A(k, 0)
2π

G(z, w)
(wHw)

e−irArg(z)−sArg(w)

(
f̃ (k)

k!

)−1/k

uniformly as r, s→∞ with (r, s) ∈ dir(αeiθ) on compact sets where k and l0 do not change.
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Example 15 (H has degree 1 separately in z and w)

For an example, let us consider generating functions of the form 1/(a+ bz+ cw+ dzw).

We can factor out a and change variables to bz and cw; thus without loss of generality we

take F (z, w) = 1/(1 − z − w + βzw). When β < 1, the minimal points of V are all in

the positive quadrant and are all strictly minimal simple poles. The coefficients ars are all

nonnegative. A uniform expansion of central limit type holds and is not hard to compute.

The lattice paths are an example of this with β = −1, as are binomial coefficients (β = 0).

When β > 1, the coefficients are of mixed sign, and the intersection of V and the positive

quadrant no longer consists entirely of minimal points. Instead, the set of minimal points

is describable as follows.

We parametrize V by

w = g(z) :=
1− z

1− βz
.

For (z, g(z)) to be locally minimal, recall it is necessary that zg′/g be real. Setting

z
g′

g
=

(β − 1)z
(1− z)(1− βz)

= r ∈ R ,

we get

z2 − 2Cz +
1
β

= 0,

where 2C = (1 + β − (β − 1)/r)/β is any real number. When |C| ≥ β−1/2, the solutions

to this are real, and when |C| < β−1/2 the solutions make up the circle {z : |z| = β−1/2}.
In other words, the entire circle of radius β−1/2 is preserved by the linear fractional map g.

It is easy to check that the real values of z corresponding to minimal roots are those with

z ∈ I1 ∪ I2 := (−β−1/2, 0] ∪ (β−1/2, 1].

Computing zHz/(wHw) gives z(βw− 1)/(w(βz− 1)), and on the variety V this reduces

to (w − 1)/(z − 1). For real values of w ∈ I1, the ratio zφz/(wφw) increases monotonically

from (
√
β + 1)/(

√
β − 1) to infinity, while for z ∈ I2, the reciprocal wφw/(zφz) does the

same. Hence for r/s /∈ [(
√
β − 1)/(

√
β + 1), (

√
β + 1)/(

√
β − 1)], Theorem ?? will apply.
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Asymptotics when (
√
β−1)/(

√
β+1) ≤ r/s ≤ (

√
β+1)/(

√
β−1) are obtained from the

torally minimal points of modulus β−1/2. The geometry is simple since both E and N are

the whole circle C := {z : |z| = β−1/2}. We have |zr||ws||ar,s − Ξ| decreasing exponentially,

where since G = 1,

Ξ =
1
2π
z−rw−s

∫
C
exp(sf̃(θ)) dθ .

The function f̃ is purely imaginary since E is the entire 1-torus. Direct computation shows

that the stationary point of f̃ is of order two except when r/s takes on the extreme values

of (
√
β + 1)/(

√
β − 1) or its inverse; here f̃ ′′ vanishes as well and the stationary point is of

order 3. Plugging the computations into Theorem ?? then yields the following result.

Theorem 6.3 If r/s = (
√
β + 1)/(

√
β − 1) then

(−1)r
β(r+s+1)/2

62/3Γ(2/3)
(2
√
β(1 +

√
β))−1/3 .

If r/s = (
√
β − 1)/(

√
β + 1) then the the value is the same with r and s switched. If

(
√
β − 1)/(

√
β + 1) < r/s < (

√
β + 1)/(

√
β − 1), then

ar,s = 2β(r+s)/2 cos(Ψ(r, s))

√
β

π(β − 1)

(
4

β − 1
rs− (s− r)2

)−1/4

+O(s−1)

where the phase factor is given by

Ψ(r, s) =

(
−π

4
− rθ0 − sh(θ0) + arctan

√
4rs

(β − 1)(r + s)2
− (r − s)2

(r + s)2

)
.

Remark: If r/s remains fixed, the first and last terms of the phase are constant, so the

phase varies linearly along rays from the origin.

Proof: We pick a toral minimal point (z, w) = (z(θ), g(z(θ))) and expand. Recall that

z = β−1/2eiθ is on the circle of radius β−1/2, as is w = g(z) = (1 − z)/(1 − βz). Write

f̃(θ) = ih(θ) and compute the derivatives of h. Since h = (1/i) log g, and (d/dθ) = iz(d/dz),
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we see that

h′(θ) = z(log g(z))′

= z

( −1
1− z

+
β

1− βz

)

= 1− 1
1− z

− 1
1− 1

βz

.

Differentiating again,

h′′(θ) = iz
d

dz
h′(θ)

=
−iz

(1− z)2
+

i/(βz)
(1− 1

βz )
2

= 2Im
{

z

(1− z)2

}
since z and 1/(βz) are conjugate.

Stationary points are found by solving h′(θ) + r/s = 0 which gives

1
1− βz

− 1
1− z

= −r
s

and hence

1−
[
β + 1− s

r
(β − 1)

]
z + βz2 = 0 . (6.15)

Also, h′′(θ) vanishes simultaneously with h′(θ) if and only if (??) has a double root, which

happens when β + 1− (s/r)(β − 1) = ±2
√
β, or when

r

s
=
√
β + 1√
β − 1

or its reciprocal.

Consider first the case when r/s is not one of these two extreme values. There will be

two conjugate solutions to (??) and we call the one with positive argument (z0, w0), where

θ0 is the argument, z0 = z(θ0(r, s)) = β−1/2eiθ0 , and w0 = g(z0) = (1− z0)/(1− βz0). The

other one is the conjugate, (z(−θ0), g(z(−θ0))). We now compute the derivatives of h in

terms of r and s.
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Lemma 6.4 Suppose z satisfies (??). Then

1
1− z

=

√
βr

(b− 1)s
exp

(
±i arctan

√
4rs

(β − 1)(r + s)2
− (r − s)2

(r + s)2

)
.

Proof: Begin with the observation that if 1− bx+ ax2 = 0, then

1
1− x

=
b− a− ax

b− a− 1
.

This is proved by crossmultiplying. Apply this with a = β and b = β+1− (s/r)(β− 1) and

use the quadratic formula z = b/(2a)±
√
b2 − 4a/(2a) to get

1
1− z

=
(1 + (s/r))(β − 1)± i

√
2 sr (β + 1)(β − 1)− (1 + s2

r2
)(β − 1)2

2 sr (β − 1)
.

Simplify this to obtain

1
1− z

=
r + s± i

√
4rs
β−1 − (r − s)2

2s
.

The modulus of this is
√
βr/(β − 1)s and since the real part of 1 − z is positive for any

|z| < 1, the argument has absolute value at most π/2 and is therefore the arctangent of the

ratio of imaginary to real parts. 2

Lemma 6.5 Suppose 1− bz + βz2 = 0 with b = β + 1− (s/r)(β − 1). Then

2Im
{

z

(1− z)2

}
= ±r

2

s2

√
4

β − 1
s

r
− (

s

r
− 1)2

= ± r

s2

√
4

β − 1
rs− (r − s)2 .

Proof: Recall that

2Im
{

z

(1− z)2

}
=

−iz
(1− z)2

+
(i/βz)

(1− 1
βz )

2

= −i
(z − 1

βz )(1− β−1)

(1− z)2(1− 1
βz )

2
.
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The denominator is the square of 1− bz + β−1, so this becomes

2Im
{

z

(1− z)2

}
= −i(z − 1

βz
)

1− β−1

(β+1−b
β )2

= −i(z − 1
βz

)
β(β − 1)
r2

s2
(β − 1)2

= −i(z − 1
βz

)
β

r2

s2
(β − 1)

.

Since z and 1/(βz) are the two roots of the equation, and since the difference between the

two roots is ±2
√
b2 − 4β/(2β), we get

2Im
{

z

(1− z)2

}
= ± r2

s2(β − 1)

√
2
s

r
(β + 1)(β − 1)− s2

r2
(β − 1)2 − (β − 1)2

= ±r
2

s2

√
2
s

r

β + 1
β − 1

− (
s2

r2
+ 1)

= ±r
2

s2

√
4
s

r

1
β − 1

− (
s

r
− 1)2 .

2

Now apply Theorem ?? at θ = ±θ0. We see that ar,s = C0β
(r+s)/2s−1/2 +O(s−1), where

C0 =
∑

θ=±θ0
e−irθ−ish(θ)

Γ(1/2)
2π

e±iπ/4
1

1− z(θ)

√
2

sh′′(θ)
.

The two summands are conjugate, so we rewrite this as

ar,s ∼
√

1
2π
β(r+s)/2 1

1− z0

√
2

sh′′(θ0)
Re{exp(−iπ/4 + i arg(1− z0)−1 + i(r − s)θ0)} .

The computation of h′′(θ) in the previous lemma gives

h′′(θ0) = ± r

s2

√
4

β − 1
rs− (r − s)2.
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Using Lemma ?? then gives

ar,s ∼
√

1
2π
β(r+s)/2

√
βr

(β − 1)s

√
2

r
s

√
4(β − 1)−1rs− (r − s)2

· cos

(
−π

4
− sθ0 − rh(θ0) + arctan

√
4rs

(β − 1)(r + s)2
− (r − s)2

(r + s)2

)

and simplifying yields

am,n ∼ β(r+s)/2

√
β

π(β − 1)

(
4

β − 1
rs− (r − s)2

)−1/4

· cos

(
−π

4
− sθ0 − rh(θ0) + arctan

√
4rs

(β − 1)(r + s)2
− (r − s)2

(r + s)2

)
+O(s−1)

which finishes the argument in this case.

Finally, we consider the case when r/s is one of the two extreme values. Assume without

loss of generality that r/s = (
√
β + 1)/(

√
β − 1). The first two derivatives of h then vanish

at zero and nowhere else. We compute (e.g., with Maple)

h′′′(0) =
2β−1

(1− β−1/2)3
+

2β
(β1/2 − 1)3

=
2
√
β(1 +

√
β)

(
√
β − 1)3

6= 0 ,

so the order of vanishing of h at zero is precisely 3. Since z = −g(z) = β−1/2 when θ = 0,

z−rw−s = β(r+s)/2. Theorem ?? then gives

ar,s ∼ β(r+s)/2A(k, 0)
2π

1
1− β−1/2

(−1)r
(
h′′′(0)

6

)−1/k

.

Using the identity A(3, 0)/(2π) = 1/(6Γ(2/3)), we get

ar,s ∼
β(r+s)/2

6Γ(2/3)
1

1− β−1/2
(−1)r

3
√

6(
√
β − 1)

(2
√
β(1 +

√
β))1/3

which simplifies to

(−1)r
β(r+s+1)/2

62/3Γ(2/3)
(2
√
β(1 +

√
β))−1/3 .
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7 Multiple points

When z is a minimal, geometrically smooth point of V, it is either strictly minimal, finitely

minimal or torally minimal, and is smooth for a square-free denominator in the radical of

H. We have obtained asymptotics in all these cases. What remains is to analyze expansions

around non-smooth points of V. The simplest geometry in the non-smooth case is an isolated

multiple point, where locally V is described as the union of finitely many sheets, V1, . . . ,Vk,
intersecting only at z. We will assume that each of these sheets projects diffeomorphically

onto the first d−1 coordinates. In this case, the sheet Vj may be parametrized by (ŵ, uj(ŵ))

for a collection of functions uj , analytic for ŵ in a neighborhood of ẑ and whose graphs

intersect only at ẑ. The only generality lost by this assumption is if V contains a sheet

parallel to each coordinate hyperplane, a case of which we know no natural example. A

version of the Weierstrass preparation lemma allows us to describe F algebraically near z

as follows.

Definition 4 Let vj(ŵ) = 1/uj(ŵ) denote the inverses of the zeros of H(ŵ, ·).

The formulas do not seem particularly simpler in terms of v’s than they do in terms of u’s,

but it will be crucial at a later step to be working with inverse zeros.

Lemma 7.1 (Weierstrass preparation) There are exponents n1, . . . , nj and a function

χ analytic near z, such that uj(ŵ) = wd for each j, 5uj 6= 0 for each j, and such that

F (w) =
χ(w)∏k

j=1(1− wdvj(ŵ))nj
.

Proof: For any fixed ŵ 6= ẑ in a neighborhood of ẑ, the function F (ŵ, ·) has a pole of

some order, nj at the point uj(ŵ). The integer nj must be constant on the sheet Vj . The

product
∏k
j=1(1−wdvj(ŵ))njF must then have a finite limit as wd → uj(ŵ) for each ŵ 6= ẑ.

A meromorphic function goes to infinity wherever it is not singular, hence the product is
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analytic everywhere in a neighborhood of z except possibly at z. By Hartogs’ Theorem (see

Griffiths and Harris 1994, page 7) there are no isolated singularities in Cd for d ≥ 2, hence

the product is analytic in a neighborhood of z, which proves the lemma. 2

Remark 1: The Weierstrass preparation theorem in its stronger form says that a function

whose power series has a nonzero pure wd term may be multiplied by an analytic function

so as to arrive at a function wld +
∑l
j=1 hj(ŵ)wl−jd , where l is the degree of the minimal

pure wd term. Stated in this way, one sees that coefficients of these power series may be

effectively computed.

Remark 2: Immediately following their proof of Hartog’s Theorem, Griffiths and Harris give

a proof of the Weierstrass preparation lemma, different from the one above, in which they

find an analytic function by which to multiply H so that it becomes a polynomial in zd with

coefficients in C[[z1, . . . , zd−1]]. They avoid having to argue that nj is constant on sheets,

which is glossed over in the above proof.

Remark 3: The description of the functions uj , vj parametrizing the sheets of V is only as

effective as the solution of a general algebraic equation. Thus for example, the set of normal

vectors to the sheets is the set of roots of a polynomial equation which may not be solvable

by radicals. On the other hand, symmetric functions of the vj ’s are effectively represented

in terms of G and H, and so are the coefficients of the function χ. In particular,

χ(z) = lim
ε→0

χ(ẑ, zd + ε)

= lim
ε→0

k∏
j=1

(1− (zd + ε)vj(ẑ))nj
G(z)

H(ẑ, zd + ε)

= lim
ε→0

G(z)
∏k
j=1(−εvj(ẑ))nj

εD ((∂/∂zd)DH(z) +O(ε)) /D!

=
D!G(z)(−zd)−D

(∂/∂zd)DH(z)
(7.16)

where D =
∑k
j=1 nj is the total degree of multiplicity.
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7.1 Exponential rate

Recall that the function dir is not defined at a multiple point. We remedy this as follows.

Definition 5 If z ∈ V is a multiple point with sheets Vj parametrized by uj as above, define

dirj(z) =
(
−z1
zd

∂uj
∂z1

, . . . ,−zd−1

zd

∂uj
∂zd−1

, 1
)

in CPd−1. Since ∂uj/∂zl = −H(j)
l /H

(j)
d , where H(j) generates the ideal of Vj, we see that

dirj(z) is just the limit of dir(w) as w → z along the sheet Vj. If z is minimal, then z

is minimal for each sheet, and by Lemma ?? each dirj(z) is an element of the nonnegative

orthant of RPd−1. In this case, we define dir(z) to be the convex hull in RPd−1 of the

vectors dirj(z) (a convex hull in the nonnegative orthant of RPd−1 can be thought of as a

nonnegative cone in Rd).

Remark: If z is not a minimal point of V, the functions dirj are defined but are not

necessarily in RPd−1, so the notion of convex hull may not make sense. Assuming that z is

minimal, write zj = xje
iθj with x ∈ logD. Then the set of normals to support hyperplanes

to logD at x is exactly dir(z). Thus we may extend the above definition to minimal points

(e.g. cone points) that are neither smooth points or multiple points by defining dir(z) to

be the set of normals to support hyperplanes of logD at x. Lemma ?? then immediately

implies:

Proposition 7.2 For any minimal point z ∈ V and any r /∈ dir(z), |zrar| → 0 exponen-

tially fast in r. 2

In the remainder of the treatment of multiple points, it will be shown how a point z

determines asymptotics in every direction in dir(z). There are many variations. Directions

that are extreme points of dir(z) require a separate treatment. As in Section ??, expo-

nents nj > 1 may be analyzed following the same program but computing the residue by
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differentiating. Whether at least two of the sheets intersect transversely also affects the

analysis. All variations are treated in Pemantle and Wilson (2000b and 2000c), including

non-isolated multiple points. After deriving asymptotics in the simplest case (described

shortly), none of these variations poses any significant difficulty, so we will be content here

to present just the case where each nj = 1 and we impose some transversality conditions

on the intersections of the sheets.

The reduction to an oscillating integral begins in a familiar fashion. Just as in the proof

of Lemma ??, when N is a neighborhood of ẑ in T (ẑ), the quantity

|zr|
∣∣∣∣∣ar −

(
1

2πi

)d ∫
N

ŵ−r̂−1

[∫
C1

F (w)
wrd+1
d

dwd

]
dŵ

∣∣∣∣∣ (7.17)

decreases exponentially. Choosing ε small and the N sufficiently small, we localize the

Cauchy integral for ar to a neighborhood (by (??)), write it as an iterated integral, compare

to a torus enlarged in the zd component, observe that the integral over the larger torus is

exponentially smaller than z−r, and hence that ar is well approximated by the residue term.

This time, for each ŵ in a neighborhood of ẑ, we pick up k different residues. We summarize

this in a lemma.

Lemma 7.3 Let z be an isolated multiple point of F . Assume all the exponents nj from the

Weierstrass preparation lemma are 1. For a neighborhood Ñ of 0 in Rd−1 define a quantity

Ξ := (2π)1−dẑ−r̂
∫
Ñ
R(ŵ(θ̂)) dθ̂, (7.18)

where wj(θ̂) := zje
iθj and

R(ŵ) :=
k∑
j=1

Res(w−rd−1
d F ;wd = uj(ŵ)) .

Then the quantity

|zr| |ar − Ξ|

decreases exponentially as Ñ remains fixed and r →∞. 2
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We cannot separate the integral into the sum of k integrals of the form in (??), since

none of the individual residues will be integrable. Instead, to go any further, we need to

understand the residue sum, R. It will take some work to put R in a form to which our

knowledge of oscillating integrals can be applied. To clarify the exposition, we treat the

simplest case first (d = k = 2) and then the general case. First though, we use a little

algebra to see how much asymptotic information is needed beyond what is available as a

corollary of smooth point expansions.

7.2 Dimension of the set of expansions

Let α = (α1, . . . , αd) be an isolated multiple point with sheets V1, . . . ,Vk, with F represented

as χ/
∏k
j=1(1 − zdvj(ẑ))nk . Let G := χ and H :=

∏k
j=1 hj(z) :=

∏k
j=1(1 − zdvj(ẑ))nk . In

trying to understand the asymptotics of the coefficients ofG/H, whenH factors, it is natural

to try a partial fraction expansion. Indeed, we understand from the smooth case how to

find asymptotics for each g/(1− zjvjr(ẑ)l) when g is analytic, so if G/H were representable

as a sum of such terms for every numerator, G, we would need no further analysis. This is

not the case, since whenever g/H that can be written as
∑
gj/(1− zjvjr(ẑ)l), the function

g must vanish at α. We examine in more detail how much the partial fraction expansions

fall short of giving us all functions in the numerator.

Let <α be the local ring of power series about α convergent in a neighborhood of α. Let

S be the family of subsets S ⊆ {1, . . . , k} such that α is not an isolated point of
⋂
i∈S Vi,

and let =α be the ideal generated by all products hS :=
∏
j∈Sc(1 − zdvj(ẑ))nj for which

S ∈ S. If A is any variety containing α, let SA denote the the (possibly empty) set of j

for which A ⊆ Vj . By definition, SA ∈ S, hence some generator hSA
of =α does not vanish

on A. We conclude that α is an isolated element of V (=α). Hence the radical of =α is

M, the (unique maximal) ideal of <α generated by the functions (zi − αi). The quotient

space <α/M is naturally isomorphic to C via f 7→ f(α). By the Nullstellensatz, M is finite

dimensional over =, which is the same as <α/=α being finite dimensional over <α/M' C.

By definition of radical, for each j, some power of zj − αj is in M, which will be useful
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later.

The set =α/H is the submodule of <α/H generated by functions hS/H for S ∈ S. But

hS/H = hSc = 1/
∏
j∈S(zd − vj(ẑ))nj . We have therefore proved the following lemma.

Lemma 7.4 Every function g ∈ <α may be represented as a sum

g0 +
∑
S∈S

gShS

where gS is a power series convergent in a neighborhood of α and g0 is a coset representative

of <α/=α. For each j ≤ k there is an mj with (zj − αj)mjf ∈ =α. 2

We wish to use this partial fraction decomposition to write the coefficients of g as sums

of the coefficients of g0 with coefficients of functions gS . For the above decomposition to

translate to the realm of coefficients, it will need to be a decomposition in the space of

functions analytic in a neighborhood of the origin. Consequently, we will need the following

strengthening, whose proof will be given at the end of this section. Let < be the space of

functions analytic in a neighborhood of the closed polydisk D(α). Every function f ∈ <
has an image (f)α ∈ <α under localization at α.

Theorem 7.5 There is an ideal = of <, the image of which in <α contains the ideal =α,
and which has the following property. It is generated by finitely many functions h(i)

S , S ∈ S,

i ≥ 1, whose localizations (h(i)
S )α satisfy

(h(i)
S )α = uhS

for u a unit of =α. It follows that there is a vector space V′ of the same dimension as

<α/=α such that every G ∈ < has a representation

G = g∗0 +
∑

gS,ih
(i)
S

with g0 ∈ V′. The space V′ may be chosen to be the span of any basis for <α/=α that lies

in <.
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Assuming the theorem for now, we suppose further that the set dir(α) has nonempty

interior. Equivalently, the normals to the hyperplanes of the sheets V1, . . . , Vk span Cd and

hence define a cone with nonempty interior. For each S ∈ S, one may consider the function

FS := h
(i)
S /H. The pole set of this function is a subset of V and near z contains only those

sheets Vj for j ∈ S. With respect to this function, the set dirFS
(α) is a cone whose extreme

points do not span all of Cd (since all sheets Vj with j ∈ S contain a common variety

through α of dimension at least 1). Hence the union U of dirFS
(α) with respect to this

function is a union of lower dimensional cones. In particular, it is not all of dir(α) and is

in fact a set of smaller dimension. Let C1 be any cone with nonempty interior contained in

dirFS
(α) \ U . We may describe all asymptotics on C1 of coefficients of functions G/H as

follows.

Theorem 7.6 (Polynomial theorem for isolated multiple points) Suppose the

function H has a strictly minimal point at α of multiplicity k ≥ 2. Let V1, . . . ,Vk denote

the sheets of V near α. Let C1 be a cone inside dir(α) \ U where U =
⋃
S∈S,j≥1 dir

h
(i)
S

(α),

with S and {hS} as in the previous paragraph. Then there exists a finite dimensional vector

space W (over C) of polynomials in a variable r ∈ Zd such that for every G ∈ <, the

coefficients of F := G/H are given by

ar = α−r(f(r) + g(r))

where f ∈W and g is exponentially decaying on C1 ∩ Zd.

Proof: Replacing F (z) with F (r1z1, . . . , rdzd), we move α to 1 while multiplying ar by

αr. Thus it suffices to prove the theorem in the case α = 1.

Let V = V(d) be the vector space of complex valued functions on the positive orthant

in Zd. For i ≤ d, let σi be the ith shift operator on V, defined by (σif)(r) = f(r+ei) where

ei is the vector whose jth component is δij . Let E ⊆ V(d) be the subspace of functions

decreasing exponentially in r on C1. For a function φ ∈ C[[z1, . . . , zd]], let qφ denote the
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element of V defined by qφ(r) = br, where br are the coefficients of φ/H:

φ(z)
H(z)

=
∑

brzr .

The function 1 is a minimal point of the singular variety of h(i)
S /H for any S, i. Therefore,

by Proposition ??, h(i)
S /H has exponentially decaying coefficients in any direction not in

dir
h
(i)
S /H

(1). By construction, then, each q
h
(i)
S

is in E, and hence the set of functions

q= := {qφ : φ ∈ =} is a subset of E. The ideal M contains all functions vanishing at 1.

Recalling that some power of each (1−zj) annihilates <α/=α, we let P denote the finite set

of r such that (1− z)r :=
∏k
i=1(1− zi)ri /∈ =α. The functions (1− z)r are generate <α/=α,

so by Theorem ?? they generate </=. Since q(1−zi)φ = (I − σi)qφ, it follows that for r /∈ P
and any analytic φ,

(I − σ)rqφ :=

[
k∏
i=1

(I − σi)ri
]
qφ ∈ q= ⊆ E .

We have found a finite set of coset representatives, {φ1, . . . , φl} of </=. Let V′ be their

span over C. By Theorem ?? and the fact that q= ⊆ E, functions in V′ approximate the

coefficients of any function G/H up to a difference that decays exponentially on C1. We

have seen, for each r /∈ P , that (I−σ)rX ⊆ E. The theorem then follows from the following

lemma with X = V′:

Lemma 7.7 Let X ⊆ V(d) be a finite dimensional subspace such that there is a finite set

P for which (I−σ)rX ⊆ E whenever r /∈ P . Then for each f ∈ X there exists a polynomial

g whose monomials have multi-degrees in P , and for which f − g ∈ E.

Proof: Proceed by induction on |P |. If |P | = 1 then P = {0}. In this case, for each f ∈ X
and i ≤ k, the function Ei := (I − σi)f is in E. The cone C1 has nonempty interior, which

implies that C1 ∩Zd has a co-finite subset C ′ which is a connected subgraph of the integer

lattice. For any r ≤ s ∈ C1, there is an oriented path γ0, γ1, . . . , γl connecting r to s in C ′,
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where l =
∑k
i=1(si − ri). (An oriented path takes steps only in the increasing coordinate

directions.) Then

f(s)− f(r) =
l∑

j=1

f(γj)− f(γj−1) =
l∑

j=1

Em(j)(γj−1)

where m(j) = i if γj−1 and γj differ by ei. Sending s to infinity, we see that

f(r) = lim
s→∞

f(s) +
∞∑
j=1

f(γj)− f(γj−1) =
l∑

j=1

Em(j)(γj−1)

where γ connects r to infinity. Thus on C ′, f is a constant plus a tail sum of functions in

E, and the conclusion is true with g = lims→∞ f(s), the constant polynomial.

The induction step is similar. Let Pi = {r : r+ei ∈ P}. Fix f ∈ X. The space (I−σi)X
satisfies the hypotheses of the lemma with Pi in place of P . Since |Pi| < |P |, we may apply

the induction hypothesis to conclude that (I − σi)f = gi + Ei where gi is a polynomial with

multi-degrees in Pi and Ei ∈ E. For any r ≤ s ∈ (Z+)d, and any oriented path γ from r to

s, we have

f(s)− f(r) =
l∑

j=1

f(γj)− f(γj−1)

=
l∑

j=1

gm(j)(γj−1) +
l∑

j=1

Em(j)(γj−1) .

If r, s ∈ C ′ then we have already seen that, as a function of s, the last contribution∑l
j=1 Em(j)(γj−1) is equal to a constant C(r) plus a term decaying exponentially in s. Fixing

r ∈ C ′ so that the set of s ∈ C1 not greater than or equal to r is finite, it remains to show

that

p(s) := f(r) +
l∑

j=1

gm(j)(γj−1)

defines a polynomial in s with multi-degrees in P .

We know that (I − σj)gi = (I − σi)gj since the difference is a polynomial in E, hence

zero. Thus for x ∈ Zd, we see that gi(x) + gj(x + ei) = gj(x) + gi(x + ej). It follows that
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the sum defining p is invariant under switching the order of two steps in the path γ, and

hence is independent of the choice of γ. Choosing γ to take first s1 − r1 steps in direction

e1, then s2 − r2 steps in direction e2 and so on, we may write

p(s) = f(r) +
k∑
j=1

si−ri∑
t=1

gj(s1, . . . , sj−1, ri + t− 1, rj+1, . . . , rk) .

Each of the inner sums is the sum to si− ri of a polynomial with multi-degrees in Pi, which

is well known to be a polynomial with multi-degrees in P . Hence p(s) is a polynomial with

multi-degrees in P and the proof is done. 2

For an isolated multiple point, we always have k ≥ d. In the case k = d and each nj = 1,

the conclusion of the polynomial theorem is strongest. We state it as a corollary.

Corollary 7.8 (plateau result) Let α be an multiple point of the zero set V of H and

suppose the number of sheets k of V near α is equal to the dimension, d, each sheet Vj
appearing with multiplicity nj = 1, and the common intersection of the sheets being the

singleton {α}. Then for each analytic function G, the coefficients ar of G/H may be written

as Cα−r + g(r) with g decaying exponentially on compact subcones of dir(α). Specializing

further to α = 1, the coefficients in dir(1) are constant up to a term of exponential decay.

Proof: Any proper subset of the sheets intersects in variety of positive dimension through

α, hence S contains each subset of sheets of cardinality d− 1. Thus = contains each sheet

function zd − vj(ẑ) and is therefore equal to the unique maximal ideal, M, from which it

follows that P = {0}. The set U is just the boundary of dir(α), whence the cone C1 in the

polynomial theorem may be chosen to be any subcone of the interior of dir(α). Applying

the polynomial theorem now proves the corollary. 2

As we increase d, k−d and the nj ’s, there number of cases grows quickly. The structure

of the space of asymptotics in each case may be worked from Theorem ??. One more

example, the next simplest, will serve to illustrate how this is done.
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Example 16 (k = 3, d = 2, nj ≡ 1)

We suppose F = G/H where H = (1−wv1(z))(1−wv2(z))(1−v3(z)) and vj(z0) = 1/w0

for j = 1, 2, 3. We suppose that (z0, w0) is minimal and that the values dirj(z0, w0) are

distinct and listed in increasing order of r/s. Let Hj(z, w) denote 1−wvj(z). Each pair of

sheets meets locally only at (z0, w0), so S contains only the singleton sets {1}, {2} and {3}.
The ideal = is generated by H1H2,H1H3 and H2H3. It is not hard to see that = contains

all analytic functions vanishing to homogeneous degree two near (z0, w0), hence contains

(1− z)r(1− w)s exactly when r + s ≥ 2. Thus P = {(0, 0), (1, 0), (0, 1)}. Initially this tells

us that

ars = (A+Br + Cs+ E)z−r0 w−s0 (7.19)

on any compact subcone of dir(z0, w0) \ U , where U is the set {dirj(z0, w0) : 1 ≤ j ≤ 3}
and E decays exponentially on the subcone.

Now U is just the boundary of the cone dir(z0, w0) = [dir1(z0, w0),dir3(z0, w0)] together

with the ray dir2(z0, w0), so dir(z0, w0)\U is the union of two open intervals in RP1, namely

C1 := (direc1(z0, w0), direc2(z0, w0)) and C2 := (direc2(z0, w0), direc3(z0, w0)). Instead of

using Lemma ?? and the ideal =, we may analyze the situation by going directly toM. This

is generated by {Hj : 1 ≤ j ≤ 3}. Thus F may be written as a linear combination of func-

tions Hj/H plus the function 1/H. By the plateau corollary, we know that the coefficients

of H1/H = 1/(H2H3) are a constant multiple of z−r0 w−s0 on C2, while by Proposition ??

they are exponentially smaller elsewhere. Similarly, up to exponentially smaller terms, the

coefficients of H3/H are a constant multiple of z−r0 w−s0 on C1. Any G ∈ < is a constant

plus an element of M, hence asymptotics of any qG are given by

z−r0 w−s0 (A0l +A11C1 +A21C2 + E) ,

where E decays exponentially, 1 is an indicator function, and z−r0 w−s0 l is the coefficient array

of 1/H. We know from (??) that q1 is affine on each Ci, and by altering A1 and A2 we can

make it linear on each Ci. We will see later that it is continuous and that it vanishes on the

boundary of dir(z0, w0), and therefore that it is the “tent function” which grows linearly
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on the ray dir2(z0, w0), vanishes on dir1(z0, w0) and dir3(z0, w0), and interpolates linearly

on each of C1 and C2.

We will not go any further into the structure of these polynomial spaces, save for one

remark. Whenever nj ≡ 1 and the sheets meet as transversely as possible, the functions Hj

generate M, and hence any analytic function is a linear combination of 1 and functions Hj .

Recursively, we may assume we have analyzed the case of each Hj/H = 1/
∏
i6=j Hi, so we

need add only one dimension to the subspace of V(d)/E that these generate, namely the

coefficient array for 1/H.

It remains to prove Theorem ??. the first step is to establish:

Lemma 7.9 For each x ∈ D(z) \ {z} there are functions hx
j for which the following hold:

(1) each hx
j is analytic on a neighborhood Ω of D(z);

(2) hx
j = u · hj with u a unit in <α;

(3) hx
j (x) 6= 0.

Proof: Let ω be a neighborhood of z in which the factors hj are analytic, and in which⋂k
j=1 Vj = {z}. Since V does not intersect the interior of D(z), the intersection of Vj with

∂ω is disjoint from D(z) and it follows that we may choose a neighborhood Ω of D(z)

containing no such intersection point. Let Fj be the sheaf over Ω of ideals < hj >. That

is, when w ∈ ω and hj(w) = 0, then (Fj)w is the germs of functions divisible by hj at w,

while when w /∈ ω or w ∈ ω with hj(w) 6= 0, then (Fj)w is all analytic germs at w. The

definition of (Fj)w is potentially ambiguous when w ∈ ∂ω is in the interior of Ω, but since

hj is nonzero here, there is no problem.

The sheaf Fj is a subsheaf of the structure sheaf O, hence coherent, so by Cartan’s

Theorem A (see Grauert and Remmert 1979) there is a map ψ from some Ol onto Fj ,
where O is the sheaf of germs of analytic functions (the structure sheaf) on Ω and l ≥ 1.
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Denote the l generators of Ol by 1i, i ≤ l. The fact that ψ is surjective at z means that hj
is in the image of ψ: for some functions ui in a neighborhood of z,

ψ(
∑
i

ui1i) =
∑
i

uiψ(1i) = hj . (7.20)

By definition of ψ, each ψ(1i) may be written as uijhj in <α. If each uij ∈ M, then each

ψ(1i) ∈M· < hj > contradicting (??); thus at least one uij /∈M· < hj >.

If there is an i with ψ(1i) /∈ M· < hj > and ψ(1i)(x) 6= 0, then the lemma is proved

with hx
j := ψ(1i) and u = uij . If not, then choose i and i′ so that ψ(1i) /∈ M· < hj > and

ψ(1i′)(x) 6= 0. Since it was not possible to choose i = i′, we know that ψ(1i)(x) = 0 and

ui′j ∈M. It follows that uij +ui′j /∈M and the lemma is proved with hx
j := ψ(1i′)+ψ(1i).

2

Corollary 7.10 There is a finite collection {hα : α ∈ A} analytic on a neighborhood of

D(z) such that for each S ∈ S and each w ∈ D(z) \ {z} there is an α ∈ A with

hα(w) 6= 0 and hα = hSu (7.21)

with u a unit of <α.

Proof: Fix S ∈ S. The function hx
S :=

∏
j∈Sc(hx

j )
nj satisfies (??) for all w in some

neighborhood Nx of x. It also satisfies (??) for all w in some neighborhood N of z. By

compactness of D(z), we may choose finitely many x for which the collection of sets Nx

covers D(z) \ N . Taking the union of such collections over S ∈ S proves the corollary. 2

Lemma 7.11 Let Ω be a polydisk and let {hα : α ∈ A} be a finite collection of functions

analytic in Ω. Suppose an analytic function g on Ω is represented in a neighborhood of each

x as
∑
α g

x
αhα with gxα analytic in a neighborhood of x. Then

g =
∑
α

g∗αhα

with g∗α analytic in Ω.
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Proof: Define sheaves over Ω by F = O|A| and G =< hα : α ∈ A >. The map η : F → G
defined by η(fα : α ∈ A) =

∑
α fαhα is a surjection of sheaves. Thus we have a short exact

sequences of sheaves

0 → E → F → G → 0

where E is the kernel of η. The long exact cohomology sequence then gives us an exact

sequence

H0(Ω,F) → H0(Ω,G) → H1(Ω, E)

Since H0 is the set of global sections, we see that the natural map of global sections from

F to G induced by η is surjective if and only if the first cohomology of E vanishes.

It is well known that the cohomology of E vanishes. This is essentially Cartan’s Theo-

rem B, a short development of which is as follows. The noetherian property of each stalk

Ox translates by Oka’s Lemma into a noetherian property for the sheaf O. This guarantees

that E is finitely generated. A set of generators yields a map from some Op to E , whose

kernel must also be finitely generated. Iterating, we get a presentation of E which must

terminate in at most |S| steps by the Sysygy Theorem (Griffiths and Harris 1994, p. 694).

The vanishing of Hq(Ω,Op) for any p and any q > 0 follows from the contractibility of Ω.

It then follows by induction that any finitely presented sheaf over Ω has Hq = 0 for q > 0.

Hence any g ∈ G is the image of a global section of F , which proves the lemma. 2

Proof of Theorem ??: Choose coset representatives for a basis of <α/=α; let V′ be their

span. By construction, if G ∈ <, then G may be written as g∗0 + g with g∗0 ∈ V′ and the

germ (g)z in =α. Evidently, the dimension of V′ is equal to the dimension of <α/=α, which

is finite by Lemma ??.

We now verify the hypotheses of Lemma ??. In a neighborhood of z, we know from (??)

that the functions {h(i)
S } generate =α. Hence there is a representation g =

∑
gzαhα. In a

neighborhood of any other x ∈ D(z) some hα is nonzero, so there is trivially a representation

g =
∑
gxαhα. Applying Lemma ??, it follows that g ∈ =. 2
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7.3 Two intersecting curves in C2

To see where we are heading, examine the special case k = d = 2 near the point (z0, w0),

with the nondegeneracy assumption of a transverse (non-tangential) intersection of the two

sheets V1 and V2. The residue sum is given by

R =
2∑
j=1

Res

(
w−s−1χ(z, w)

(1− wv1(z))(1− wv2(z))
;w = uj(z)

)
.

Observe that 1−wvj(z) = −vj(z)(w−uj(z)). Then it is easy to compute the residues, and

we find that

R =
v1(z)s+1χ(z, u1(z))
v1(z)(1− u1(z)v2(z))

+
v2(z)s+1χ(z, u2(z))
v2(z)(1− u2(z)v1(z))

=
−v1(z)s+1χ(z, u1(z)) + v2(z)s+1χ(z, u2(z))

v1(z)− v2(z)
.

This quantity looks like a difference quotient. Indeed, letting

h(x) := h(z, x) := xs+1χ(z, 1/x) ,

we may write

R =
∫ 1

−1
h′(vt)

dt

2
where vt := (v1 +v2)/2+ t(v1−v2)/2 linearly interpolates between v1 and v2 [proof: change

variables via dt/2 = dvt/(v1 − v2)].

We want to apply Theorem ?? to Ξ which is now an integral over N of an integral over

[−1, 1] of h′(vt). With z = z0e
iθ, we have vt written as a smooth function of (θ, t). Thus

h′(vt(θ, t)) is a smooth function times (s + 1)vst . Once we observe that vt has modulus

bounded above by 1/w0 [by concavity of the modulus and the fact that |vj(z)| ≤ |1/w0| for

j = 1, 2,which is a consequence of minimality], we are in position to apply the oscillating

integral technology. We have |zrws||ars − Ξ| decreasing exponentially, where the quantity

Ξ of (??) may be written (with z = z0e
iθ) as

Ξ =
1
2π
z−r0

∫
N

∫ 1

−1
h′(vt(z))

dt

2
dθ (7.22)
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=
1
4π
z−r0

∫
N

∫ 1

−1
vt(z)s

[
(s+ 1)χ(z,

1
vt(z)

)− vt(z)−2 ∂

∂w
χ(z, 1/vt(z))

]
dt dθ .

Taking the log of vt(z)s we now recognize the integrand as a cell complex oscillating integral:

Ξ =
1
4π
z−r0 w−s0

∫
N

∫ 1

−1
(s+ 1) exp(−sf(θ, t))ψ(θ, t) dt dθ (7.23)

where

f(θ, t) = − log[vt(z0eiθ)w0] + i
r

s
θ

and

ψ(θ, t) = χ(z, 1/vt(z))−
1

s+ 1
vt(z)−2 ∂

∂w
χ(z, 1/vt(z)).

We remark that here it is essential to have changed from uj to vj : the quantity u−s−1
t

does NOT necessarily have modulus bounded above by 1/w0; taking convex combinations

of u1 and u2 before inverting ruins the convexity argument.

Theorem 7.12 Let F = G/H be meromorphic in a neighborhood of D(z, w) and suppose

that (z0, w0) is an isolated multiple point of V of multiplicity 2. Assume further that the

curves V1 and V2 intersect transversely, that r is in the interior of dir(z), and that V1

and V2 each have multiplicity 1. Let N be a neighborhood of the origin in R. Then if

G(z0, w0) 6= 0,

ar,s = z−r0 w−s0

G(z0, w0)√
z2
0w

2
0(H2

zw −HzzHww)
+ Y

where |zrwsY | is exponentially decreasing.

Proof: Observe first that G(z0, w0) 6= 0 is equivalent to ψ(0, t) 6= 0 for sufficiently large s

and in fact that as s→∞, from (??) we have

ψ(0, t) → χ(z0, w0) =
2
w2

0

G(z0, w0)
Hww(z0, w0)

. (7.24)

Next we check that f has a unique stationary point in N×[−1, 1]. The partial derivative

of f with respect to t is equal to −1
vt(z)

(d/dt)vt(z) where z = z0e
iθ. Since (d/dt)vt(z) =
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(v1(z)− v2(z))/2 and v1 and v2 are distinct except at z0, this means f cannot be stationary

except when θ = 0. When θ = 0, the θ-partial derivative of f is given by (using vt(z0) =

1/w0 for all t in the second equality)

∂f

∂θ
(0, t) = i

r

s
− ∂

∂θ

∣∣∣∣
(0,t)

log
[
v1(z) + v2(z)

2
+ t

v1(z)− v2(z)
2

]
(7.25)

= i
r

s
−
[
iz0

v′1(z0) + v′2(z0)
2

+ iz0t
v′1(z0)− v′2(z0)

2

]
/

1
w0

= i
r

s
− iz0w0

(
1 + t

2
v′1(z0) +

1− t

2
v′2(z0)

)
.

We have assumed transverse intersection of the sheets V1 and V2, so v′1(z0) 6= v′2(z0) and

hence there is at most one t for which (0, t) is a stationary point. In fact, there is exactly one

t if and only if r/s is between z0w0v
′
1(z0) and z0w0v

′
2(z0). Writing v′j(z0) = (1/uj)′(z0) =

−(u′j/u
2
j )(z0), we have

z0w0v
′
j(z0) = −u′j(z0)

z0
w0

= dirj(z0, w0) .

Our assumption that r/s is interior to dir(z0, w0) is precisely what we need to guarantee

there is exactly one stationary point, (0, t0) with t0 ∈ (−1, 1).

In order to apply Theorem ?? we must also check that at (0,±1), the gradient of f is

not orthogonal to the boundary of N × [−1, 1]. In fact it is the θ derivative we have just

shown to be non-vanishing there, and since the tangent space to the boundary is in the

∂/∂θ direction at (0,±1), the requirement is met. Using first Lemma ?? and (??), then

Theorem ?? with the determination of ψ(0, t0) in (??),

ar,s ∼ s

4π
z−r0 w−s0

∫
N

∫ 1

−1
exp(−sf(θ, t))ψ(θ, t) dt dθ (7.26)

∼ s

4π
z−r0 w−s0

2π
s

2
w2

0

G(z0, w0)
Hww(z0, w0)

H−1/2

= z−r0 w−s0

G(z0, w0)
w2

0HwwH1/2
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where H is the determinant of the Hessian of f at (0, t0).

We now compute the Hessian of f at (0, t0). The function f(0, ·) is constant at θ = 0

so the pure t partials vanish at θ = 0. In particular, ftt(0, t0) = 0. This means that the

Hessian is nondegenerate if and only if the mixed partial fθ,t(0, t0) is non-vanishing, and

the determinant of the Hessian is the negative of the square of the mixed partial. To obtain

the leading term asymptotic, we therefore do not need to calculate fθ,θ(0, t0). The mixed

partial is computed by setting θ = 0 in (??) and differentiating.

fθ,t(0, t0) =
d

dt

∣∣∣∣
t=t0

[
−iz0w0

(
1 + t

2
v′1(z0) +

1− t

2
v′2(z0)

)]

=
−iz0w0

2
(
v′1(z0)− v′2(z0)

)
=

iz0
2w0

(
u′1(z0)− u′2(z0)

)
.

Consequently,

H =
z2
0

4w2
0

(
u′1(z0)− u′2(z0)

)2
. (7.27)

Since (u′1 − u′2)
2 is a symmetric function of u′1 and u′2, it may be expressed in terms of

the partial derivatives of H.

Lemma 7.13 Let h = u
∏k
j=1(w − uj(z)) for some analytic functions uj with uj(z0) = w0

and u not vanishing at (z0, w0). Then for 1 ≤ j ≤ k, the jth elementary symmetric function

of u′1, . . . , u
′
k is given by

ej(u′1(z0), . . . , u
′
k(z0)) = (−1)j

(
k

j

)
hj,k−j
h0,k

,

where hi,j denotes the partial derivative i times in the first coordinate and j times in the

second coordinate at (z0, w0). Equivalently,

k∑
j=0

(−1)j
(
k

j

)
hj,k−j (u′i(z0))

j = 0.
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Proof: Partially differentiate h a total of k times, k − j times with respect to w and j

times with respect to z. Each factor w − ui(z) vanishes at (z0, w0), so the only nonzero

contributions to hj,k−j(z0, w0) come from differentiating each term once with respect to

either z or w. Thus hj,k−j(z0, w0) is (k − j)!j!u(z0, w0) times the sum over all subsets S

of cardinality j of {1, . . . , k} of
∏
i∈S u

′
i(z0). Dividing by this by h0,k(z0, w0) = k!u(z0, w0)

proves the lemma. 2

Applying this in the case k = 2 with h = H and u =
G(z, w)

χ(z, w)
∏k
i=1(−ui(z))

gives

u′1(z0) + u′2(z0) = − Hzw(z0, w0)
2Hww(z0, w0)

u′1(z0)u
′
2(z0) =

Hzz(z0, w0)
Hww(z0, w0)

.

Hence (with all derivatives evaluated at (z0, w0)),

(u′1 − u′2)
2 = (u′1 + u′2)

2 − 4u′1u
′
2 = 4

H2
wz −HzzHww

H2
ww

.

Plugging this into (??) gives

H =
z2
0(H

2
wz −HzzHww)
w2

0H
2
ww

.

Substituting this into equation (??) in turn gives

ar,s ∼ z−r0 w−s0

G

zw
√
H2
wz −HzzHww

evaluated at (z0, w0). Finally, the plateau result (Corollary ??) implies that the error term

here is of smaller exponential order, leading to the statement of the theorem. 2

7.4 Arbitrary d and k

In order to apply this is several variables, we require the following computational device

which represents the residue sum as a difference quotient. A proof may be found in Devore
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and Lorentz (1993), p. 121 (7.7) and (7.12), though for completeness we give a sketch here.

Fix any d ≥ 2 and let 4 denote the d− 1 simplex, that is the subset of Rd defined by

{(x1, . . . , xd) :
d∑
j=1

xj = 1 and 0 ≤ xj ≤ 1 for all 1 ≤ j ≤ d}.

Let dλ denote Lebesgue measure on 4.

Lemma 7.14 Let h be a function of one complex variable, analytic in a neighborhood of

0, with derivatives denoted h(j). For α = (α1, . . . , αd) ∈ 4, let vα denote the convex

combination α1v1 + · · ·+ αdvd. Then

d∑
j=1

h(vj)∏
r 6=j vj − vr

=
∫
4
h(d−1)(vα) dλ(α)

both as formal power series in d variables v1, . . . , vd and in a neighborhood of the origin in

Cd.

Proof: Both sides are linear in h so it suffices to consider the case where h(z) = zj ,

j = 1, 2, . . .. In this case the LHS may be written as a rational function of v1, . . . , vd,

whose denominator is the Vandermonde determinant
∏
r 6=s(vr − vs). The numerator is∑d

t=1 v
j
t

∏
r 6=s 6=j(vs− vr), which is symmetric in v1, . . . , vd and vanishes whenever the quan-

tities v1, . . . , vd are not distinct. Hence the numerator is divisible by the Vandermonde

determinant and the LHS is a polynomial, evidently homogeneous of degree j − d+ 1 and

vanishing if j < d − 1. The RHS is also a homogeneous polynomial of degree j − d + 1.

Hence the equality for all j follows from the equality summed over all j, so we now consider

the case h(z) = 1/(1− z).

In this case the LHS is given by

1∏d
r=1(1− vr)

d∑
r=1

∏
s 6=r

1− vs
vr − vs

.

Clearing the denominator of the sum (which is the Vandermonde determinant again), one

sees that the numerator is a polynomial of degree d(d − 1) which is again symmetric and
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vanishing when some vr = vs, hence is divisible by the Vandermonde determinant. Thus

the sum is a polynomial of degree 0. Evaluating at v1 = 1, vr = 0 for r > 1, shows that

the value is 1. Since the summation is identically 1, it follows that the LHS is equal to∏d
r=1(1 − vr)−1. As a formal power series, the coefficient of every term vj11 · · · vjdd is equal

to 1. Now evaluate the coefficient of vj11 · · · vjdd on the RHS. By homogeneity, the coefficient

when h(z) = 1/(1 − z) =
∑∞
n=0 z

n is the same as the coefficient when h(z) = zj+d−1 for

j = j1 + · · ·+ jd. Here h(d−1)(z) = (j + d− 1) · · · (j + 1)zj and the RHS reduces to(
j

j1, . . . , jd

)∫
4
αj11 · · ·α

jd
d dλ(α1, . . . , αd) .

The integral is the normalizing coefficient for a Gamma distribution, and is given by

j1! j2! · · · jd!/(j + d − 1)!, showing that the coefficient is 1 and completing the proof of

the lemma. 2

Applying this yields

Corollary 7.15

R =
k∑
j=1

Res(w−rd−1
d F ;wd = uj(ŵ)) =

∫
4
h(d−1)(vα(ŵ)) dλ(α)

where h(x) = xrd+k−1/χ(ŵ, 1/x) and vα(y) :=
∑k
j=1 αjvj(y).

Proof: Since all the poles are simple,

R =
k∑
j=1

Res

(
w−rd−1
d χ(w)∏

r 6=j(1− vr(ŵ)wd)
;wd = uj(ŵ)

)

=
k∑
j=1

(−1/vj(ŵ))vj(ŵ)rd+1χ(ŵ, uj(ŵ))∏
r 6=j(1− vr(ŵ)uj(ŵ))

= −
k∑
j=1

vj(ŵ)rd+k−1χ(ŵ, 1/vj(ŵ))∏k
j=1 vj(ŵ)− vr(ŵ)

.
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Setting h(x) = xrd+k−1/χ(ŵ, 1/y) and applying the theorem yields the corollary. 2

Finally, we plug this into Lemma ?? to see that

Ξ = (2π)1−dẑ−r̂
∫
Ñ

∫
4
h(k−1)vα(ŵ(θ̂)) dλ(α) dθ̂ .

This positions us to prove

Theorem 7.16 Let F = G/H be meromorphic in a neighborhood of D(z) and suppose that

z is an isolated multiple point of V of multiplicity k. Assume further that the intersection

of the tangent planes to the sheets Vj near z is a single point, that r is in the interior of

dir(z), and that the multiplicities of the sheets are all 1. Let N be a neighborhood of the

origin in Rd−1 and let 4 be the (k − 1)-simplex in Rk. Define a function f : N ×4 → C

by

f(θ̂, α) = − log[vα(ŵ(θ̂))zd] + i
d−1∑
j=1

rj
rd
θj .

Under a few more conditions,

ar ∼ (2π)1−dẑ−r̂...

8 Cone points

9 Classification for two-variable meromorphic functions with

nonnegative coefficients

We began with the question of general computation of asymptotics for multivariate gener-

ating functions. We then restricted our attention to meromorphic functions, for which the

zero variety of the denominator was the key to analysis via iterated Cauchy integration.

For purposes of classification some natural questions are:

1. what are all possible local geometries of minimal points of V?
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2. which of these can be handled by variants of the methods we have seen so far?

3. are these sufficient to yield a good approximation to ar no matter what the direction,

dir(r), for any meromorphic generating function?

To make the last question more concrete, consider the simplest possible example, namely

binomial coefficients, where F = 1/(1 − z − w) and V is a complex line. There are no

singular points here, but how do we know that as (z, w) varies over minimal points of V,

the direction dir(z, w) will cover all of RP1?

In the two variable case, assuming nonnegativity of coefficients, this question will be

answered affirmatively by Theorem ??. After that we will discuss the degree to which we

have a complete classification in higher dimensions, or in case the coefficients have mixed

signs.

9.1 Puiseux series

We begin by observing, without restriction on the dimension or signs of the coefficients,

that cusps may never be locally minimal. To properly define our terms, consider the power

series expansion about a point z ∈ V where all the first partials of H vanish. The expansion

of H(x) near z is then a sum of terms of degrees 2 and higher. We call z a homogeneous

point of degree k if this expansion contains terms (xj − zj)k for each j = 1, . . . , d, and

contains no terms of total degree less than k. A point where the first partials vanish that

is not homogeneous of any order is commonly known as a cusp. Discussion of Puiseux

series here

Lemma 9.1 If z is a locally minimal point of V with nonzero coordinates, and F is mero-

morphic in a neighborhood of z then z is homogeneous.

Proof: Passing to F (z1x1, . . . , zdxd) if necessary, we may assume z = 1. Setting xj = 1 for

all but one index j, we cannot obtain the zero function (by minimality), and so some term
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in the expansion around 1 is a pure power of (xj − 1), and we denote the minimal degree

such term by cj(xj − 1)kj . If z is not a homogeneous point, then there is some j for which

some monomial has total degree lower than kj . Assume without loss of generality that

j = d. The function F (x, x, . . . , x, y) then has a minimal degree pure y− 1 term c0(y− 1)k,

k := kd, and some term c′(x − 1)a(y − 1)b with a + b < k. In other words, the Newton

Polygon of F (x, . . . , x, y) around (1, 1) has a support line passing through (0, k) with slope

−p/q in lowest terms, and p > q. It is well known that we may describe the solutions y(x)

of the equation

F (1 + x, . . . , 1 + x, 1 + y) = 0

as follows. Write

H := (y− 1)k(c0 + c1(y− 1)−p(x− 1)q + c2(y− 1)−2p(x− 1)2q + · · ·+ cs(y− 1)−sp(x− 1)sq)

for the polynomial collecting all the terms on this support line. Then for each qth root

of unity, ω, and each root λ of
∑
cs−jλ

j = 0, there is a solution y = λ1/pxq/p(ω + o(1))

as x → 0. The standard proof involves showing that perturbing H by terms of higher

homogeneous degree affects the solutions only by factors of (1 + o(1)) as x→ 0.

Varying x over the set |π−arg(x)| ≤ π/4, we see that the solutions y(x) must sometimes

be in this set as well. For those x, the points (1+x, . . . , 1+x, 1+y) will be in V∩D(1)\T (1),

violating minimality of 1. By contradiction, we have shown that no monomial in the

expansion around 1 has lower total degree than any pure power term, hence 1 is minimal.

2

9.2 Classification theorem

The variety determined by the terms of the power series about z that have leading homoge-

neous degree is called the tangent cone. A test for whether a degree k homogeneous point is

a multiple point is whether the degree k part of the expansion factors completely into linear

factors (equivalently, whether the tangent is a union of hyperplanes). If not, we call z a cone

point. The bad news is that we do not yet know how to deal with cone points. The good
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news is that cone points do not exist in two dimensions (every homogeneous polynomial in

two complex variables factors into linear terms).

To summarize, if F is meromorphic in a neighborhood of its domain of convergence in

C2, then every (z, w) ∈ V is either geometrically a smooth point, or is a multiple point.

For smooth points, Theorem ?? and the generalizations given in section ?? assure us that

asymptotics may be computed in directions dir(z, w). For multiple points, Theorem ??

in the simplest case and the extensions (higher multiplicity in Pemantle and Wilson 2000b

and non-transverse intersections in Pemantle and Wilson 2000c) show that asymptotics

may be computed for all directions dir(z, w). The following theorem then completes the

classification.

Theorem 9.2 Let F = G/H =
∑
ar,sz

rws be the quotient of analytic functions G,H :

C2 → C. Suppose that the coefficients ar,s are all nonnegative, and that F (z, 0) and F (0, w)

are not entire. Then for every direction α ∈ RP1 there is a minimal z ∈ V with α ∈ dir(z).

Proof: Let (x, y) be any point on the boundary of logD. For u < ex and v < ey the

power series for F is convergent at (u, v). As u ↑ ex and v ↑ ey therefore, F (u, v) is finite

and increasing. On the other hand, the power series for F is not absolutely convergent on

T (ex, ey), since we know F to have some singularity on this torus. Hence F (u, v) ↑ ∞ as

(u, v) ↑ (ex, ey). Since F is meromorphic, it must have a pole at (ex, ey), hence (ex, ey) ∈ V
and is a minimal point of V. As (x, y) varies over the boundary of logD, we let γ ⊆ V
denote the curve traced out by this minimal point.

Pick any α ∈ RP1. The convex set logD has horizontal and vertical support hyperplanes

(by non-entirety of F (z, 0) and F (0, w)), and therefore has a support hyperplane normal to

α; let (x, y) be a point of intersection of this support plane with logD. We have just seen

that (z(α), w(α)) := (ex, ey) is a minimal point of V. If (z, w) is a smooth point of V then

dir(z, w) = {α}.

Assume now that (z, w) is not a smooth point. By Lemma ??, (z, w) is a homogeneous
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point, and since d = 2, (z, w) is a multiple point. Then dir(z, w) is the set of normals to

logD at (x, y), so again α ∈ dir(z, w). This finishes the proof. 2

9.3 Progress on singularities in three or more dimensions: classification

and applications

1. Node points are still OK

2. Possibility of other homogeneous singularities

3. Random tiling examples

10 Effective computation

11 Obtaining multivariate generating functions

11.1 Standard boundary conditions

1. Rehash motivating example from Larsen and Lyons

2. Outline the general case of standard BC’s

3. Give a formulation of the solution in terms of symmetric functions, if possible

11.2 Symmetry boundary conditions

Summarize work of Flatto et al.

115



11.3 Queuing models and left-continuous random walks

1. Discuss queuing models leading to left-continuous random walks in more than one

dimension

2. Show how to reduce these to Riemann-Hilbert problems, following Taylor et al

3. Solve some of these
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