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Overview
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Basic setup

II As usual in social choice theory, we have a finite set C of
candidates, of size m, and a finite set V of voters, of size n.

I Each voter submits a strict preference order over the
candidates. The set of possible preference orders is the set
L(C) of permutations of C.

I A profile is a map from V to L(C), stating each voter’s
preference order. There are (m!)n possible profiles, and the
set of them we denote P.
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Symmetry assumptions

I A function is anonymous if it commutes with all permutations
of the voters. In other words, voter identities are irrelevant.

I A function is neutral if it commutes with all permutations of
the candidates. In other words, each candidate is treated
equally.

I Most voting rules are both anonymous and neutral.
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Compressing the data

I By anonymity, the set of profiles can be reduced to the set of
equivalence classes, which are multisets of size m! and weight
n. If we order the candidates, then such a multiset is
represented by a point of Nm!. There are

(
n+m!−1

n

)
of them of

weight n.

I By neutrality, it can be further compressed, by considering
only roots, equivalence classes under candidate permutation.
This divides by another factor of m!.
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Consensus

I Many profiles have an obvious winner, for example if all voters
submit the same preference order.

I Various consensus axioms have been proposed. For example:

I (strong unanimity S) if all voters submit π, elect the top
element;

I (unanimity U) if all voters agree that a is top-ranked, elect a;
I (majority principle) if a majority of voters rank a top, elect a;
I (Condorcet principle) if a wins the majority tournament, elect
a.

I Some of these are less controversial than others. I find
Condorcet’s principle far from compelling.
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Distance

I A distance on a set X is a map d : X ×X → R+ ∪ {+∞}
that satisfies

I nonnegativity: d(x, x) ≥ 0
I triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

Together with these axioms, symmetry and positive definiteness
make a metric. Distances that are not metrics arise often in this
subject.
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Distances on profiles

I Distances on L(C):

I discrete metric
I swap metric
I Spearman’s footrule

I Given a distance on L(C), we can extend to a `1-votewise
distance on P by defining d(π, σ) =

∑n
i=1 d(πi, σi) when

|π| = |σ|, and +∞ otherwise.

I If we start with the discrete metric, we get the Hamming
metric: how many changes of voters are needed. If we start
with the swap metric we get the Kemeny metric.

I Tournament distances: for example the `1-norm of the
reduced weighted adjacency matrix of the majority
tournament.
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Distance rationalization

I Define the rule R(K, d) by electing the winner at π to be the
winner in the closest element of K to π when measured by d.

I Every rule can be represented in this way, so the important
thing is to choose “good” K and d.

I Some examples:

I Kemeny metric, strong unanimity yields Kemeny’s rule
I Kemeny metric, weak unanimity yields Borda’s rule
I Kemeny metric, Condorcet set yields Dodgson’s rule
I Hamming metric, weak unanimity yields plurality rule
I `1-tournament, Condorcet set yields Copeland’s rule
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New rules

I Using the above framework we can derive new rules.

I Hamming metric, Condorcet set yields “voter replacement
rule” (EFS)

I Hamming metric, strong unanimity yields “plurality ranking
rule”

I There must be many more that are worth studying.
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Properties of rules

I If distance and consensus satisfy anonymity (neutrality) then
so does the rule. Proof is straightforward.

I Homogeneity does not follow so easily. Many rules are in fact
homogeneous, but proving it in this framework still seems
hard.

I Monotonicity is also tricky, but some positive results exist.

I Complexity: Note that the Kemeny rule has an NP-hard
winner determination problem, but scoring rules can be dealt
with in polynomial time.
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Errors

I Condorcet considered the model where there is a true answer
and each voter may err in estimating it. A voting rule is an
aggregator that chooses the correct decision.

I This viewpoint was common in mediaeval church applications
of voting.

I Condorcet essentially used the Mallows model of noise (error):
each voter ranks each pair of alternatives correctly with
probability p > 1/2, and all choices are independent.

I Under this model, the probability of observing π′ given that π
is the true answer is proportional to qd(σ,σ

′) where
q = (1− p)/p and d is the Kemeny distance.

I If we use an arbitrary distance d and the same construction,
this is a generalized Mallows model.
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Maximum likelihood estimators

I Finding the maximum likelihood estimator of the correct
ranking under the generalized Mallows model is equivalent to
computing the social welfare rule R(S, d).

I For example, the Kemeny rule gives the MLE under the
Condorcet-Mallows model.

I Scoring rules occur in the same way when we try to compute
the correct winner.

I MLE is a stringent condition. What about other statistical
estimators?
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Aside: other estimators

I Caragiannis, Procaccia and Shah study the sample complexity
of voting rules.

I This is the number of samples required to find the correct
ranking with probability at least 1− ε.

I Under Mallows model, Kemeny rule is optimal for all ε, and
many rules take only O(log(1/ε)) samples. But plurality takes
exponentially many samples.

I How does this relate to the DR framework?

I What about estimators based on methods other than
maximum likelihood?
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Next week

I How is the DR framework expressed when we compress the
data using anonymity and homogeneity?

I What are the geometric consequences?

I The answers are interesting!



Next week

I How is the DR framework expressed when we compress the
data using anonymity and homogeneity?

I What are the geometric consequences?

I The answers are interesting!



Next week

I How is the DR framework expressed when we compress the
data using anonymity and homogeneity?

I What are the geometric consequences?

I The answers are interesting!


