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Basic setup

» As usual in social choice theory, we have a finite set C' of
candidates, of size m, and a finite set V' of voters, of size n.

» Each voter submits a strict preference order over the
candidates. The set of possible preference orders is the set
L(C) of permutations of C'.

» A profile is a map from V to L(C), stating each voter’s
preference order. There are (m!)™ possible profiles, and the
set of them we denote P.
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» Most voting rules are both anonymous and neutral.
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Compressing the data

» By anonymity, the set of profiles can be reduced to the set of
equivalence classes, which are multisets of size m! and weight
n. If we order the candidates, then such a multiset is

. | n+m!—1
rep_resented by a point of N™. There are ( n ) of them of
weight n.

» By neutrality, it can be further compressed, by considering
only roots, equivalence classes under candidate permutation.
This divides by another factor of m/!.
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Consensus

» Many profiles have an obvious winner, for example if all voters
submit the same preference order.
» Various consensus axioms have been proposed. For example:
> (strong unanimity S) if all voters submit 7, elect the top
element;
» (unanimity U) if all voters agree that a is top-ranked, elect q;
» (majority principle) if a majority of voters rank a top, elect a;
» (Condorcet principle) if a wins the majority tournament, elect
a.
» Some of these are less controversial than others. | find
Condorcet's principle far from compelling.



Distance

» A distanceonaset X isamapd: X x X — Ry U{+occ}
that satisfies

Together with these axioms, symmetry and positive definiteness
make a metric. Distances that are not metrics arise often in this
subject.



Distance

» A distanceonaset X isamapd: X x X — Ry U{+occ}
that satisfies

» nonnegativity: d(z,z) >0

Together with these axioms, symmetry and positive definiteness
make a metric. Distances that are not metrics arise often in this
subject.



Distance

» A distanceonaset X isamapd: X x X — Ry U{+occ}
that satisfies

» nonnegativity: d(z,z) >0
» triangle inequality: d(z,z) < d(z,y) + d(y, 2).

Together with these axioms, symmetry and positive definiteness
make a metric. Distances that are not metrics arise often in this
subject.
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Distances on profiles

» Distances on L(C):
> discrete metric
> swap metric
» Spearman’s footrule
» Given a distance on L(C'), we can extend to a /!-votewise
distance on P by defining d(m, o) = Z?:l d(m;, 0;) when
|| = |o|, and +oo otherwise.
> If we start with the discrete metric, we get the Hamming
metric: how many changes of voters are needed. If we start
with the swap metric we get the Kemeny metric.

» Tournament distances: for example the £'-norm of the
reduced weighted adjacency matrix of the majority
tournament.
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» Every rule can be represented in this way, so the important
thing is to choose “good” K and d.

» Some examples:

Kemeny metric, strong unanimity yields Kemeny's rule

Kemeny metric, weak unanimity yields Borda's rule

Kemeny metric, Condorcet set yields Dodgson'’s rule

Hamming metric, weak unanimity yields plurality rule

¢ -tournament, Condorcet set yields Copeland’s rule
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New rules

» Using the above framework we can derive new rules.
» Hamming metric, Condorcet set yields “voter replacement
rule” (EFS)
» Hamming metric, strong unanimity yields “plurality ranking
rule”
» There must be many more that are worth studying.
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Properties of rules

» If distance and consensus satisfy anonymity (neutrality) then
so does the rule. Proof is straightforward.

» Homogeneity does not follow so easily. Many rules are in fact
homogeneous, but proving it in this framework still seems
hard.

» Monotonicity is also tricky, but some positive results exist.

» Complexity: Note that the Kemeny rule has an NP-hard
winner determination problem, but scoring rules can be dealt
with in polynomial time.
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» Condorcet considered the model where there is a true answer
and each voter may err in estimating it. A voting rule is an
aggregator that chooses the correct decision.

» This viewpoint was common in mediaeval church applications
of voting.

» Condorcet essentially used the Mallows model of noise (error):
each voter ranks each pair of alternatives correctly with
probability p > 1/2, and all choices are independent.

» Under this model, the probability of observing 7’ given that 7
is the true answer is proportional to ¢%??") where
g =(1—p)/p and d is the Kemeny distance.

> If we use an arbitrary distance d and the same construction,
this is a generalized Mallows model.
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Maximum likelihood estimators

» Finding the maximum likelihood estimator of the correct
ranking under the generalized Mallows model is equivalent to
computing the social welfare rule R(S,d).

» For example, the Kemeny rule gives the MLE under the
Condorcet-Mallows model.

» Scoring rules occur in the same way when we try to compute
the correct winner.

» MLE is a stringent condition. What about other statistical
estimators?
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» Caragiannis, Procaccia and Shah study the sample complexity
of voting rules.

» This is the number of samples required to find the correct
ranking with probability at least 1 —e.

» Under Mallows model, Kemeny rule is optimal for all ¢, and
many rules take only O(log(1/¢)) samples. But plurality takes
exponentially many samples.

» How does this relate to the DR framework?

» What about estimators based on methods other than
maximum likelihood?
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» How is the DR framework expressed when we compress the
data using anonymity and homogeneity?
» What are the geometric consequences?

» The answers are interesting!



